

FEATURING

CLASS A OPERATION
CIRCUIT SIMPLICITY

HIGHER POWER

HIGH FIDELITY

HIGH EFFICIENCY
HIGH SBNSITIVITY
NO GRID CURRENT
ZERO GRID BIAS
RETARDED OVERLQAD
UNI-POTENTIAL CATHODE

FAST 6.3 VOLT HEATER
ST-14 BULB

A NEW POWER OUTPUT TUBE

The growing demand for High Fidelity fostered the development of an improved power tube. The Triadyme is the answer for a universal, efficient audio system,one which will satisfy the requirements for small table receivers as well as the finest of consoles. Its basic operating principles are truly unique. Its oircuit is the simplest ever devised. The adjacont oircuit diagram is startling by the very absence of component parts. The first Triadyne is the type 6B5.

To the manufacturer of Radio and Publio Address Systems, the tube simplifies his design problems. For small units, a single 6B5 will deliver up to five olean watts, and for larger units, push-pull can provide as much as twenty watts. Another remarkable fact is that it requires no driver, because its grid impedance is as high as any true Class A power tube with the result that driving tubes and their coupling transformers are eliminated, thereby affecting appreciable economy. Yet, officiency, sensitivity, and fidelity are not compromised. The tube provides more power than any other existing tube in the same size bulb. Distortion caused by overloading is far less pronounced than with other tubes when the power rating is exceeded. Detailed information is necessary to fully appreciate these advantages.

The tube operates without bias, so that there is no need for a oathode resistor and its by-pass condenser. The cathode is simply connected directly to B - . However, this grid does not draw any ourrent, since a grid bias is automatioally developed within the tube. Thus the tube may be fed by resistance coupling. With the olimination of the bias resistor and condenser, there is no frequency disorim-

ination nor degenerative offeot. Hense, the frequency characteristio is absolutely flat over the entire audio band.

The plate voltage aupply for a 6B5 needs no better regulation than that of any other class a power amplifier, sinoe this tube is operated from the center point of its plate ourrent - grid voltage oharactoristic. This means that there is no appreaiable inorease in plate ourront whon large signals are applied. Noither does the supply require greater filtering for a given hum output than when feeding other power tubes of equivalent sensitivity.

The overload oharaoteristic is a deoided improvement. The type of overload in a receiver which is decidedly objectionable oocurs when the volume oontrol is near maximum. Here peak signals produce spurts of grid curront which oause unbearable squawking. Now with most output tubes, grid ourrent flows as soon as the rating is slightly exceeded, but this is not true with the 6B5. The signal can actually increase more than 60% above the rating before the tube draws grid current. This advantage considerably retards the overload orashing. It also permits

practioal operation of resistance ooupled push-pull. This retarded overload performance is clearly indicated in Fig. 2, - the distortion versus power output ourve for 300 volt operation. Note that even when the input is increased far above the rating, considerable additional power output is available without objeotionable distortion. The rated signal of only 15 volts amounts to a power sensitivity practioally that of a pentode. The slight ohange in total plate ourrent for full power output is also indicated.

Fig. 3 shows the power and distortion performance when the load resiatance is varied over a wide range while the input signal is held constant. These ourves were taken at two different signal levels. By inspection, it may be seen that the optimum load is 7000 ohms. The power does not fall off rapidly, typical of triode operation; nor does it rise, like a pentode. Therefore, a compromise is obtained between the falling triode and the increasing pentode oharacteristios. Hence, when the reflected speaker load is varying with the signal frequenoy, the high passages are not so rapidly lost nor are they objectionably exaggerated. Also the only harmonic that olimbs at any appreciable rate with increasing load

impedance is the second. These oonditions aid in minimizing the transient response of the speaker. This means that overemphasis of audio peaks, ocouring when the speaker resonates, will be diminished.

Porformance at plate aupply voltages of 325 and 275 are shown by Fig. and 5 respectively. The same data as in Fig. 2 was taken with different supply voltage. 325 volt oparation is the highest whioh may be safely recommended for ordinary operation. Its fine performance is readily appreciated when it is seon that 3.5 watts oan be obtained at about 2% total distortion, 5 watts at 4.5%, and 7 watts at 9%.

Naturally, the tubes can be used in push-pull. The simple ofrouit is given in Fig. 6. Again it is repeated that the grids do not take ourrent. Thus the input transformer's secondary may be a high impedance type or resistance coupled input nay be substituted for the transformer. This permits the practical employment of phase inverter cirouits. The output devioe shown in the circuit is merely present to indioate the type of load used when taking the measurements.

Of course, in actual operation, the usual output transformer is used. The impedance of this transformer should provide 10,000 ohm load from plate to plate. The distortion ourves are given for both 300 and 325 plate volt operation. Since the total distortion values are made up almost ontirely of third harmonic, the individual harnonics have been left out purposoly. Fig. 7 shows that the optimum load is 10,000 ohms. This is $l e s s$ than twioe that reoommended for single tube. Suoh a value can be used because of the Triadyne's harmonio distribution and the oancellation of even harmonios.

In systems where 20 watts or more are desired, the "High Efficioncy Push-Pull" oircuit is recommended, - Fig. 8. Here the output plates operate at 400 volts but the output plate current in each tube is held down to 40 mils at zero input signal. This amounts to 16 watts static dissipation por plate, and the dymamic plate dissipation is somewhat less. The plate heat is, therefore, no greator than when operating normally at 325 volts. Some means must be used to restrict the plate ourrent. This can be accomplished by providing an external bias for the grid or by lowering the input plate voltage. The solid line distortion

curve of Fig. 8 shows the performance when operating under three different conditions A, B, or D. Condition A is simply a " $C^{\prime \prime}$ voltage in series with the oenter tap of the input transformer. It is represented by a battery, but naturally, it may be taken from a bleeder oirouit in the power pack. Condition B supplies the asme voltage by using a self-biasing resistor. The 140 ohm resistor is connected between the two cathodes and ground or Bu. A by-pass condenser is neoessary to surpress distortion which is introduced if an audio voltage appears across the resistor. However, since the sensitivity of the circuit is not perceptibly affected even whon the by-passing is removed, the frequency oharaoteristic is independent of the value of the condenser. A 25 mfd., condenser is all that is necessary for good quality. Condition D is for reduced input plate voltage; - that is, 280 volts. This voltage can be taken from a voltage divider on the power paok. It is interesting to note that the distortion vs power parformance is the same for these three conditiona. Even with the full twenty watts at 5%, the point of grid current has not yet been reached. The other distortion curve is inoluded to show what may be expected if the input plate voltage is lowered by a series dropping resistor; - the condition C. Note that this method does not develop the power of the others. Further, inoreasing the oapacity of the by-pass offers but little advantage. This oondition is included to demonstrate what not to do. In this high offieiency system, the total plate current rises with increasing power output. However, since the total increase is only 25%, the regulation required of the power pack is even less than With other popular systems delivering equivalent power. Fig. 9 shows that a 10,000 ohm load from plate to plate is also an optimum oondition for this High Effioiency oirouit. When greater power is desirod, the Triadynes should be used in push-pull parallel.

The usual family of plate oharacteristios are given in Figure 10. These are particularly interesting for they show the region wherein grid ourrent flows and that high positive voltages may be put on the grid without swinging into this region. The average characteristios for the 6B5 follow:-

PHYS ICAL DTMENS IONS

	Longth 4	
Max.	Diameter	1-13/16 ${ }^{\text {a }}$
Bul		ST-14
Base	Medium	6

6B5 AVERAGE ELECTRICAL CHARACTERISTICS

Heater $\#$	Coated Uni-potential cathode
Voltage	6.3
ano or dmo rolts	
Current	0.8 amperes

BRSE COMNECYIONS

Bottom View of Base

Pin 1-Heater

Pin 2-Output Plato (P_{2})
Pin 3-Input Plate (P_{1})
Pin 4-Input Grid
Pin 5-Cathode
Pin 6-Heater
** 5% total harmonio distortion.

If a grid coupling resistor is used, its maximum value should not exceed 0.5 mogohm.

* The potential difference between heater and cathode should not exceed 50 volts and in no case should the heater be loft floating.

AMPLIFIER RATINGS (CLASS A)

Output Plate (P_{2})	300	volts
Input Plato (p_{1})	300	volts
Grid Bias	0	volts
Output Plate Current	45	man.
Input Plate Current	6.0	moa.
Amplification Faotor	58	
Plate Resistanoe	24,100	Ohms
Shutual Conductance	2,400	micromhos
SINGIE TUBE		
Load Reais tance	7,000	ohms
** Powor Output	4.0	watts
Input volts for rated porrer PUSH-PULL	15	rames.
Load Resistance (plate to plate)	10,000	ohms
** Power Output	10	matts
Input Volts for rated power	38	rames.

HIGF EFFICIENCY PUSH-PULL

Plate Supply	400	volts
Fixed Grid Bias	-13	volts
Or, Self-Bias Resistor (shunted by 25 mfd)	140	ohms
Or, Reduotion of input plate poltage to	280	Folts
Statio P_{2} Current (per tube)	40	mea.
Statio P_{1} Current (per tube)	4.5	moa.
Load Resistanoe (plate to plato)	10,000	ohm
** Power Output	20	watts
Input Volts for rated powor	60	rameso

From the foregoing, it is evident that existing receivers may be easily adapted to make use of the Triadyne's advantages. High fidelity triode, Class AMB, and Class B systoms may be greatly simplifiod and, in most cases, the porformance will be improved. In quality auto sots, the tube will al so find a plaoe. As a replacement tube, the service man will find many sookets where the friadyae may fit. Sets using a Type 42 pentode will easily accommodate a 6 B5 by simply eliminating the grid bias. Suoh a substitution is especially effective beoause the sensitivity and speaker load is almost identical for both tubes. The slightly higher ourrent drain of the now tube will have no affeot on the operation of most sets. A fundamental explanation of the tube's internal operation has so far been avoided in order not to burden the reader who might not be interested in such a discussion. For those who are interested, the explanation follows.

FUNDAMENTAL EXFLANATION

The basic prinoiples of the tube's operation are aimple but due to its newness an explanation would be somowhat oonfuaing if this disoussion wore atarted by desoribing the finished product rather than the logical sequence in the development process.

In the first place, what is the purpose? An attempt to obtain high power, offioiency, good sensitivity, low distortion and all of this at low cost. Fontodes and Class B systems fail to meet some of these requirements. Class A triodes are unsatisfactory due to low plate efficiency and low sensitivity. Their low plate officioncy, the ratio of audio power to d-o plate power, is due to the relatively high plate voltage that is neoessary to obtain an apprem oiable plate ourrent swing which must be restricted to the negative portion of the Ip vs Eg oharaoteristio.

It would seem, therefore, that one possibility of obtaining high officienoy would be to design a triode operating without a negative grid field, that is, a tube which will have only a positive $\mathrm{Ip}_{\mathrm{p}} \mathrm{Eg}$ oharacteristio so that the same plate current swings oan be obtained at a much lower plate voltage. This can be accomplished by increasing the min of the tube so that very little current is present when the grid is at zero potential. This will also provide high sensitivity. Such a tube would have plate oharacteristios similar to those in Fig. 1A. Particularly, note that
 the curves are for zero and positive values of grid voltage. Now, of course, a positive grid draws current so that the grid action of swinging the plate ourrent is no longer a simple field voltage relation. Consequently, power is required in the grid oircuit to swing the plate ourrent. A few grid ourrent ourves are also shown in Fig. 1A. Ip vs Eg_{g} and I_{g} ve E_{g} ourves may be plotted from these characteristios by the usual mothod of representing an optimum plate load resistance by the load line, $M N$. The result is shown in Fig. 2A.

driver stage and a coupling transformor is unsatisfactory due to high distortion as woll as high cost.

This problem is answered by direot ooupling of driver to output tube. A driver, whose plate impedanoe would be low onough to matoh the avorage grid impedance load, will not be considered since such a design is impractical, chiefly because it mould necessitate excessive physical proportions. Consequently, a step-down ratio must be uaed.

First then, suppose an ordinary triode is working into a load much lower than its plate impedance, but instead of this load being in its usual location; that is, between plate and B_{4}; the plate is tied directly to B_{4} and the load is placed betweon cathode and ground. This load will be represented by a resistor, and of course, the d-o drop across this resistor, when no signal is on the grid, produces a negative bias similar to usual solf-biasing. The question is - how would the voltage developed across this resistor vary with respot to input volts? This is graphically show in Fig. 3A, ourve A-B. Fair linearity is present. This is
 much better than should ordinarily be expected when it is realized that the resistanco value used was approximately one fifth the plate impedance of the triode. This is explained by the fact that the circuit is degenerative, as the developed voltage appears as part of the input cirouit and both voltages are in phase with respeot to ground. In other words, the voltage appearing directly across the grid to oathode at any instant is always equal to the input voltage minus the voltage across the resistor. The greater distortion that would be prosont if the circuit were not degenerative is indicated by the curvature of C.D, Fig. 3A, which represents the performance when the ingut signal is impressed between grid and oathode.

described is substituted for the resistor, as drop aoross this impedanoe becomes the negative bias for the grid of the input seotion in the same manner as when the resistor load was used, and correspondingly, it becomes the positive bias for the output grid. Also this bias establishes the operating point for the I_{p} vs E_{g} oharacteriatic of the output section. I_{n} designing, the desired positive bias is determined by selecting the midpoint of the I_{p} vs Eg ourve, Fig. 2A. At this voltage, the value of grid ourrent is determinod, and the driver is simply deaigned so that at a negative bias equal to the seleoted positive bias, the driver's plate current will equal the output grid current. S_{o} much for the static ourrent-voltage relationship.

The question now arises, how will the voltage appearing across the grid-oathode impedance vary with respect to the voltage on the driver? Curve E.F, Fig. 4A, shows the performance. The linearity is exoellent. The curve G-H is included to show the relation without degeneration, and again, the greater curvature is plainly evident. Note that both ourves are considerably straighter than those when a resistor load was used, Fig. 3A. This statement certainly needs clarifying because the grid-cathode impedance is not a simple fixed value es was the resistor. It is actually a varying load, for the grid current does not vary lineally with applied voltage as previously shown by the Ig ourve, Fig. 2A. The reason why this ohanging load has an advantageous effect oan be explained as follows. When a triode works into a step-down load its I_{p} ve Eg characteristic has pronounced curvature. Thus the plate impedance is not a linear function of the input signal. If the load impedance could be made to vary such that it maintained a constant ratio with the plate impedance throughout the signal excursion, the output voltage would become an exact replica of the input signal. In this system, the grid impedance of the output section provides a load which varies in the required manner. Also, this oircuit's phase relation is such that both the plate impedanoe of the driver and the grid cathode impedance of the output section varies in the same direotion, - that is, in sympathy with oach other. Consequently, a nearly constant ratio is maintained throughout the signal excursion.

So it has been shown that the output section's plate ourrent versus grid voltage relation is linear. Further, it has been shown that a driver can be made to produce voltage across the grid impedance of the output section whioh will be linear with respeot to its input voltage. Thus the oomposite relation of out-

no power is required in the driver grid oirouit. Power developed by the entire linear portion of the Ip2 curve is realized long before the input grid is swing far enough to draw ourrent;- that is, becomes positive with respect to its cathode. This unique grid overload oharacteriatic functions as follows. Then kig (the signal input voltage) is zero, Eo (the voltage across input oathode and ground) is the static bias of the tubo. At positive values of Eg, Eo rises beyond the established bias at a rate dependent upon the gain of the driver. Since the gain of the driver must be less than unity due to the degenerative action of the cirouit, the increase in E_{g} is faster than the increase in Eo. Not until Eg overtakes Eo, will the grid draw current.

With these fundamental prinoiples qualitatively established, it appears possible to design a single tube, comprising both sections, which would have the desired characteristics. In spite of the power required by the driver, the overall plate efficiency of the combination would be high. The overall sensitivity would be well up because the loss due to degeneration in the driver would be well overbalanced by the high gain of the output section. The distortion would be low, and void of high frequency transient terms since there are no discontinuities in the characteristic curves. The simplioity of the arrangement is conspicuous by the absence of the usual oircuit component parts.

The above theory is thoroughly conflirmed by the result of this development - the new Triadyne 6B5. Both the characteristic and curve data for this tube is the quantitative proof.

THRIAD MANUTEACTURING $\mathbb{C O}$, INE

FACTS OF INTEREST REGARDING THE COMPAIY BEHIND THE PRODUCT

This ownership management has been pioneering in Radio advancement since 1920 with the result that today we are one of very few in the entire industry and the only privately owned manue facturing company making a complete line of radio tubes.

A complete modern laboratory including radio circuit development is maintained for cooperation with set mannfacturers the world over, and to this are given the services of a large staff of renowned engineers.

Close supervision of our business and an intimate understanding of the problems of our customers achieved the remarkable sales record in 1934 of 100% gain over 1933.

Complete warehouse stocks are maintained at branch offices in Chicago, New York, Los Angeles and Seattle for the prompt servicing of Triad customers. Year in and year out, Triad has made steady forvard strides because of our policy of customer satisfaction first, last and always.

We dedicate ourselves not only to our customers and own improvement, but to the betterment of the entire industry.

TRIAD MANUFACTURING CO., INC.
Factory and Home Office

Radio Manufacturers Association

 SUITE $701-4$ AMERICAN BUILDING1317F STREET,N.W.
WASHINGTON,D.C.
R.M.A. DATA BUREAU

90 Wert Street New York, N. Y.

RELEASE NO. 18A
SEP 291939

To
Tube Engineers:

The inclusion of a resistor in the structure of the 6B5 requires the modification of the basing designation applicable to this tube type.

As originally announced, the assigned basing designation was 6D.

To the modified basing the designation
618 has been assigned.

Respectfully yours,
RIA DATA BUREAU
By: L.C.F. Horle

