

Video Beam Power Amplifier

RCA-6AG7 is a heater-cathode type of metal tube intended for use primarily in the output stage of the video amplifier of telsvision receivers. It may also be used advantageously in television transmitters as a coupling device between video-frequency stages and transmission lines.

The design of the 6AG7 features not only an exceedingly high value of transconductance but also high plate-current capability. As a result, a large voltage for modulating a Kinescope can be built up across the relatively low load resistance required for coupling the 6AG7 to the Kinescope.

TEMTATIVE CHARACTERISTICS and RATINGS

HEATER VOLTAGE IA.C. or D.C.I	6.3	Volts
HEATER CURRENT	0.65	Ampere
DIRECT INTERELECTRODE CAPACITANCE:		
Grid to Plate		
Input	0.060 mex.	$\mu \mu \mathrm{f}$
Output	12	$\mu \mu \mathrm{f}$
Grid to Screen	12	$\mu \mu \mathrm{f}$
Grid to Cathode and Heater	5 approx. $\mu \mu \mathrm{f}$	
Heater to Cathode	7 approx. $\mu \mu \mathrm{f}$	
MAXIMUM OVERALL LENGTH	11 approx. $\mu \mu \mathrm{f}$	
MAXIMUM DIAMETER	$3-1 / 4^{\prime \prime}$	
BASE	$1-5 / 16^{\prime \prime}$	

CHARACTERISTICS

plate voltage
SCREEN VOLTAGE
GRID VOlTAGE INTERLEAD SHIELD
AMPLIFICATION FACTOR PLATE RESISTANCE
transconductance
PLATE CURRENT
SCREEN CURRENT

300	Volts
300	Volts
-10.5	Volts
Connected to ground	
770	
0.1	Megohm
7700	Micromhos
25	Milliamperes
6.5	Milliamperes

MAXIMUH RATINGS and TYPICAL OPERATING CONDITIONS

VIDEO VOLTAGE AMPLIFIER - Class A

plate voltage
SCREEN VOLTAGE
PLATE DISSIPATION
SCREEN INPUT

$$
\begin{aligned}
& 300 \text { max. * Volts } \\
& 300 \text { max. } \\
& 8.7 \text { max. } \\
& 2 \text { malts. Watts } \\
& 2 \text { Watts }
\end{aligned}
$$

[^0]TYPICAL OPERATION IN 4 MC BANDWIDTH AMPLIFIER:

Heater Voltage \#	6.3	Volts
Plate-Supply Voltage	250	Volts
Screen Voltage	140	Volts
Grid Voltage \#\#	-2	Volts
Grid Signal-Swing Voltage (Peak to peak)	4	Volts
Plate Current	33	Milliamperes
Screen Current	8.5	Milliamperes
Load Resistance	1700	Ohms
Voltage Output (Peak to peak)	70 approx. Volts	

\# In circuits where the cathode is not directly connected to the heater. the potential difference between heater and cathode should be kept as low as possible.
彞 The d-c resistence in the grid circuit should not exceed 0.25 megohm.

INSTALLATION

The base pins of the 6AG7 fit the standard octal socket which should be installed to hold the tube preferably in a vertical position with the base either up or down. Horizontal operation is permissible if the socket is positioned so that pins No. 2 and No. 7 are in a vertical plane.

The heater of the 6AG7 is designed to operate on either a.c. or d.c. When a.c. is used, the winding which supplies the heater circuit should operate the heater at its recommended value for full-load operating conditions at average line voltage. When d.c. is used on the heater, the heater terminals should be connected directly across a 6-volt battery. Under any condition of operation, the heater voltage should not deviate more than plus or minus 10% from the normal value of 6.3 volts.

The cathode, when the 6AG7 is operated from a transformer, should be connected through a bias source either to one side or to the electrical mid-point of the heater circuit. In the case of d-c operation from a 6-volt storage battery, the cathode circuit should be tied through a bias source to the negative battery terminal. The potential difference between heater and cathode should be kept as low as possible.

Control-grid bias may be obtained from a fixed supply, from a cathode resistor, or from a variable voltage supplied for automatic control purposes. In video use, the latter method provides for control of the picture background. With the cathode-resistor bias method, the resistor should not be by-passed if it is desired to have degeneration and freedom from distortion. When, however, no degeneration and maximum signal amplitude are desired, compensation can be provided by utilizing filters with equal time constants in the cathode circuit and in the plate circuit.

The screen voltage for the 6AG7 operated with fixed bias or cathode-resistor bias, should preferably be obtained through the use of a resistor in series with the high-voltage B-supply. The use of a series screen resistor requires the use of a large by-pass con-
denser in the screen circuit. The size of the by-pass condenser can be reduced if a suitable compensating filter is used in the piate circuit. When the bias for the 6AG7 is obtained by the automatic background-control method, it is recommended that the screen voltage be obtained from a source of good regulation.

The interlead shield is connected within the tube to pin No.3. This pin should be grounded at the socket to provide ashield between the grid and heater (pin No.2l.

APPLICATIOM

As a video amplifier, the 6AG7 is especially designed for use in the final video stage to modulate the Kinescope in a television receiver. In such service, the 6AG7 will provide adequate modulating voltage without frequency discrimination over the wide bandwidth required for high-definition television reception. The extremely high transconductance and the large plate current of this tube make possible relatively high voltage gain with the low load resistance needed to give uniform output over the wide frequency range. A typical circuit showing suitable constants for a video amplifier is shown below.


```
\(C_{1}=16 \mu \mu \mathrm{~F}=\) TUBE OUTPUT CAPACITAMCE + SOCKET CAPACITAMCE + WIRING
                        CAPACITANCE + COIL CAPACITAMCE
\(C_{2}=16 \mu \mu \mathrm{f}=\mathrm{KIMESCOPE}\) IMPUT CAPACITANCE + SOCXET CAPACITANCE + WIRING
    capacitance + coil capacitance
\(L_{1}=94 \mu \operatorname{FILTER}\) inductor
\(L_{2}=47 \mu \mathrm{H}\) FILTER INDUCTOR
\(R_{1}=30000-O H M\). NON-REACTIVE RESISTOR
\(R_{L}=1700-\) OHM, 10-WATT. HOH-REACTIVE RESISTOR
```

The license extended to the purchaser of tubes appears in the License
Hotice accompanying them. Information contained herein is furnished
without assuming any obligations.

AVERAGE PLATE CHARACTERISTICS

AVERAGE CHARACTERISTICS

AVERAGE CHARACTERISTICS

$$
\begin{aligned}
& \mathrm{G}_{1}=\mathrm{GRID} \\
& \mathrm{G}_{2}=\text { SCREEM } \\
& H=\text { HEATER } \\
& K=\text { CATHODE } \\
& \mathrm{P}_{\mathrm{BF}}=\text { BEAM-FORHIHG PLATES } \\
& \mathrm{S}_{\mathrm{I}}=\text { IHTERLEAD SHIELO }
\end{aligned}
$$

JETEC DATA
JOINT ELECTRON TUBE ENGINEERING COUNCIL COMMITTEE ON RECEIVING TUBES

J5-6AG7
Page 1
Dec. 15, 1950

JETEC TYPE 6AG7

PENTODE

MECHANICAL DATA

Coated unipotential cathode

Mounting position. Vertical*
*Horizontal operation peraitted $1 f$ pins \#2 and \#7 are in vertical plane.
ELECIRICAL DATA

Direct Interelectrode Capacitances**

Grid to plate: (gl to p) max. $0.06 \quad \mu \mu \mathrm{f}$
Input: g to $\left(h+k+g 2+g 3+8+1.8_{1}\right) .$. $13 \quad \mu \mu f$
Output: p to $\left(h+k+g 2+g 3+8+i .8_{0}\right)$................... $7.5 \quad \mu \mu \mathrm{I}$

Heater to cathode: (h to k) approx. 10.7
$\mu \mu \mathrm{P}$
**Pins \#1 and \#3 connected to pin \#5.

Ratings

Heater voltage (ac or dc) .6.3 volts
Maximun heater-cathode voltage 90 volte
Maximum plate voltage . 300
volts
Maximum grid \#2 voltage 300 volts
Maximum plate dissipation . 9 watts
Maximum grid \#2 dissipation 1.5 vatts
Maximum positive de grid \#l voltage o volts
Maximam grid \#l circuit resistance (fixed bias) 0.25 megohm
Maximum grid \#l circuit resistance (self bias). 1.0 megohn

Typical Operating Conditions and Characteristics, Class Al Amplifier

Typical Operating Conditions and Characteristice, Class Al Video Voltage Amplifier 4MC bandwidth

| Grid-leak
 Bias \# |
| :---: | | Cathode |
| :---: |
| Bias |

\#Intended for use where de restoration is accomplished in the grid circuit of the 6AG7.
\#\#Obtained with regulated power supply
\#\#\#rom plate supply through 25,000 ohm resiator
§Zero-aignal value

JOINT ELEGTRON DEVICE ENGINEERING COUNCIL

Announcement
of
Electron Device Type Reregistration

2260 Salmon Towez 11 West Forty-Second Street New York 36, N. Y. Telephone: LOngacer 5:0717

$$
\begin{gathered}
\text { Release No. } 187 \mathrm{C} \text { (Tentative)* } \\
\text { March } 29,1960
\end{gathered}
$$

The Joint Electron Device Engineering Council announced the registration of the following electron device designation

6AG7
on May 24, 1939, Release No. 187, under the sponsorship of Radio Corporation of America, Harrison, New Jersey.

The sponsor now proposes reregistration based on the following data:

ITEM	AS REGISTERED	AS PROPOSED
Under NECHANICAL DATA		
Pin Connections: Pin 3	Interlead Shield	No connection Any
Mounting Position	Vertical*	
* Horizontal operation permitted if pins \#2 and \#7 are in vertical plane.		
Under ELECTRICAL DATA		
Direct Interelectrode	Capacitances:	
Input:	g to $\left(h+k+g 2+g 3+s+i . s_{.}\right)$	gl to $(h+k+g 2+g 3 b s)$
Output:	p to $\left(h+k+g 2+g 3+s+i . s_{0}\right)$	$\begin{aligned} & \text { to } \\ & (h+k+g 2+g 3 l s) \end{aligned}$
Footnote **	Pins \#1 and \#3 connected to pin \#5	Delete

[^1]
[^0]: O With shell connected to cathode.

 * Design maximum for 117-volt line.

[^1]: *Unless valid objection to this reregistration is lodged with the EIA Standards Laboratory prior to April 29, 1960, this reregistration will be made and this information will be considered "FINAL" WITHOUT FURTHER NOTICE!

