KUTHE 5956 HYDROGEN THYRATRON # DESCRIPTION: THE 5956 IS A UNIPOTENTIAL CATHODE, THREE ELEMENT HYDROGEN FILLED THYRATRON DESIGNED FOR NETWORK DISCHARGE SERVICE. IN SUCH SERVICE IT IS SUITABLE FOR PRODUCING PULSE OUTPUTS OF MORE THAN 350 KW AT AN AVERAGE POWER LEVEL OF MORE THAN 400 WATTS. IT IS ESPECIALLY SUITABLE FOR COMPACT, AIRBORNE RADAR SYSTEMS. THE SPECIAL FEATURES OF THE 5956 INCLUDE THE HIGH PEAK VOLTAGE AND CURRENT RATING, THE VERY COMPACT SIZE, AND A HYDROGEN RESERVOIR CONNECTED INTERNALLY ACROSS THE FILAMENT, CAPABLE OF MAINTAINING THE HYDROGEN PRESSURE THROUGHOUT THE USEFUL LIFE OF THE TUBE. ## ELECTRICAL DATA, GENERAL: | ELECTRICAL DATA, GENERAL: | Nom. | MIN. | MAX. | | | |---|------|------------|-----------------------------|--------------------|----------------------------------| | HEATER VOLTAGE HEATER CURRENT (AT 6.3 VOLTS) MINIMUM HEATING TIME | 6.3 | 5•9
5•5 | 6 .7
6 . 7 | 3 | VOLTS A.C.
Amperes
Minutes | | MECHANICAL DATA, GENERAL: | | | | | | | Mounting Position | | | . 1 | . 200 | Any | | Base
Anode Cap
Cooling (Note 1) | | | A, | + - 102 | PER OUTLINE | | NET WEIGHT DIMENSIONS | | | | 4 | Ounces
See Outline | # TYPICAL OPERATION AS PULSE MODULATOR, DC RESONANT CHARGING: | PEAK NETWORK VOLTAGE PULSE REPETITION RATE PULSE LENGTH PULSE FORMING NETWORK IMPEDANCE TRIGGER VOLTAGE PEAK POWER OUTPUT (RESISTIVE LOW PEAK ANODE CURRENT AVERAGE ANODE CURRENT | 8.0
4,500
0.25
50.2
200
311
83
0.094 | KILOVOLTS PULSES/SECOND MICROSECOND OHMS VOLTS KILOWATTS AMPERES AMPERES | | |---|---|--|---| | RATINGS: | | | | | MAX. PEAK ANODE VOLTAGE, FORWARD MAX. PEAK ANODE VOLTAGE, INVERSE (NOTE 2) MIN. ANODE SUPPLY VOLTAGE MAX. PEAK ANODE CURRENT MAX. AVERAGE ANODE CURRENT MAX. RMS ANODE CURRENT (NOTE 3) MAX. EPY X IB X PRR MAX. ANODE CURRENT RATE OF RISE PEAK TRIGGER VOLTAGE (NOTE 4) MAX. PEAK INVERSE TRIGGER VOLTAGE | | 8.0
8.0
2.5
83
100
2.9
2.5 x 109
1,200 | KILOVOLTS KILOVOLTS KILOVOLTS D.C. AMPERES MILLIAMPERES AMPERES A.C. AMPERE/µSECOND | | | INITIAL
LIMIT | END OF LIMIT | | | MAX. ANODE DELAY TIME (NOTE 5) MAX. ANODE DELAY TIME DRIFT MAX. TIME JITTER (NOTE 6) | 0.5
0.1
0.01 | 0.6
0.1
0.02 | JUSECOND
JUSECOND
JUSECOND | | AMBIENT TEMPERATURE SHOCK RATING | | -50° το /90°
24° | CENT.
Navy (Flyweight)
Shock Machine | | ALTITUDE | | 50,000 | FEET AT 5.5 KV
PEAK AND 57
Amperes Peak | # NOTE 1: COOLING PERMITTED. HOWEVER, THERE SHALL BE NO AIRBLAST DIRECTLY ON THE BULB. #### Note 2: THE PEAK INVERSE VOLTAGE SHOULD NOT EXCEED 2.5 KV DURING THE FIRST 25 MICROSECONDS AFTER CONDUCTION. ## NOTE 3: THE ROOT MEAN SQUARE ANODE CURRENT SHALL BE COMPUTED AS THE SQUARE ROOT OF THE PRODUCT OF THE PEAK CURRENT AND THE AVERAGE CURRENT. # NOTE 4: THE VOLTAGE BETWEEN GRID AND CATHODE TERMINALS OF THE SOCKET WITH THE TUBE REMOVED SHOULD HAVE THE FOLLOWING CHARACTERISTICS. | Α. | VOLTAGE | 175-250 Volts | |----|------------------|--------------------------------| | В. | DURATION | 2 Microseconds (AT 70% Points) | | С. | Source IMPEDANCE | 1500 Ohms (max.) | | D. | RATE OF RISE | 200 Volts/microsecond (min.) | THE LIMITS OF ANODE TIME DELAY AND ANODE TIME JITTER ARE BASED ON THE MINIMUM TRIGGER. USING THE HIGHEST PERMISSIBLE TRIGGER VOLTAGE AND LOWEST TRIGGER SOURCE IMPEDANCE MATERIALLY REDUCES THESE VALUES BELOW THE LIMITS SPECIFIED. ## Note 5: THE TIME OF ANODE DELAY IS MEASURED BETWEEN THE 26 PERCENT POINT ON THE RISING PORTION OF THE UNLOADED GRID VOLTAGE PULSE AND THE POINT AT WHICH EVIDENCE OF ANODE CONDUCTION FIRST APPEARS ON THE LOADED GRID PULSE. #### NOTE 6: TIME JITTER IS MEASURED AT THE 50 PERCENT POINT ON THE ANODE CURRENT PULSE. ADDITIONAL INFORMATION FOR SPECIFIC APPLICATIONS CAN BE OBTAINED FROM THE ELECTRON TUBE APPLICATIONS SECTION ITT COMPONENTS DIVISION POST OFFICE Box 412 CLIFTON, NEW JERSEY