
File Catalog: Electron Tube Products
Section: Microwave Tubes

REFLEX KLYSTRON

(MECHANICALLY TUNED)

MAXIMUM RATINGS

(ABSOLUTE VALUES)

Resonator Voltage	330 Vdc
Reflector Voltage	300 Vdc
Filament Voltage	6.3 \pm 8% volts
Resonator Current	35 mAdc
Heater — Cathode Voltage	\pm 50 Vdc

PHYSICAL CHARACTERISTICS

- Dimensions: Refer to the outline drawing.
- Base: Modified Small Octal 8-Pin, B8-21, Low Loss Phenolic.
- Output Coupling: Coaxial. (See Typical Adapter Assembly Drawing.)
- Cooling: Convection.
- Mounting Position: Any.
- Bulb: Metal.
- Tuner: Allen Socket Screw for #8 Allen Wrench.

DESCRIPTION

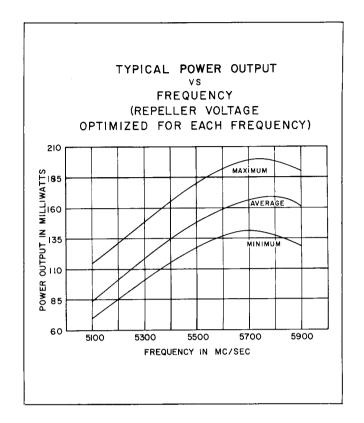
The 6584 (Bendix® Red Bank Type TK-69) Tube is a mechanically tuned C band reflex oscillator. The electrical characteristics of the 6584 have been designed to be similar to the type 6115, with the exception that the repeller voltage variation with frequency has been reduced. The tube is designed for use as a CW oscillator over the range of 5100 Mc./sec. to 5900 Mc./sec. The tube is capacitively tuned over this frequency range by changing the interaction gap spacing.

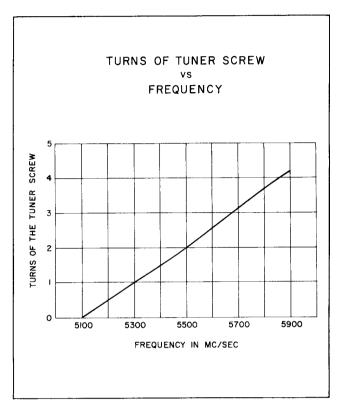
The design is such as to exhibit no spurious oscillation modes when the output connecter is properly terminated.

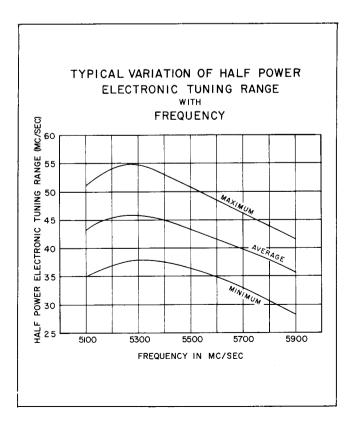
The electron optics of the tube have been designed to reduce electrical hysteresis to a minimum.

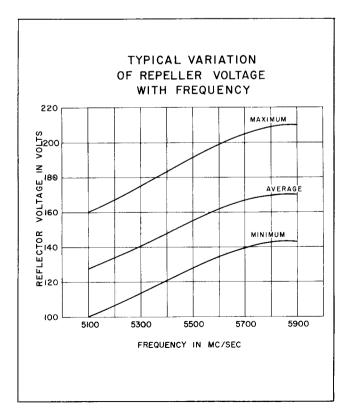
The mechanical tuner design eliminates long mechanical and thermal paths external to the tube structure as well as the use of overstressed diaphragms; hence, mechanical tuning hysteresis is virtually eliminated. In addition, the cavity diaphragm is completely contained within the vacuum enclosure thus eliminating frequency sensitivity to atmospheric pressure as present in tubes having the diaphragm as a part of the vacuum enclosure.

Output coupling is accomplished by means of a coaxial output lead. The output line may be coupled into a coaxial system or directly into a waveguide mount by means of the Typical Adaptor Assembly drawing shown on the last page. This adaptor is the same as the one used for the JAN-2K29.


APPLICATION NOTES

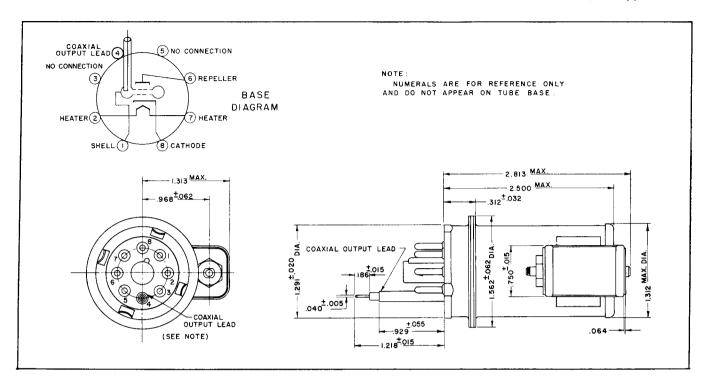

This tube is designed to have improved temperature and altitude characteristics, fast warm-up, stabilized warm-up frequency drift, and reduced repeller voltage variation with frequency. The tube is applicable for use in equipments operating in widely varying ambient temperatures, varying atmospheric pressures and in intermittent operation. Such applications include airborne radar systems, telemetering and microwave relay links. In addition, the reduced repeller voltage vs. frequency characteristic makes possible savings in components for an afc system with given characteristics.

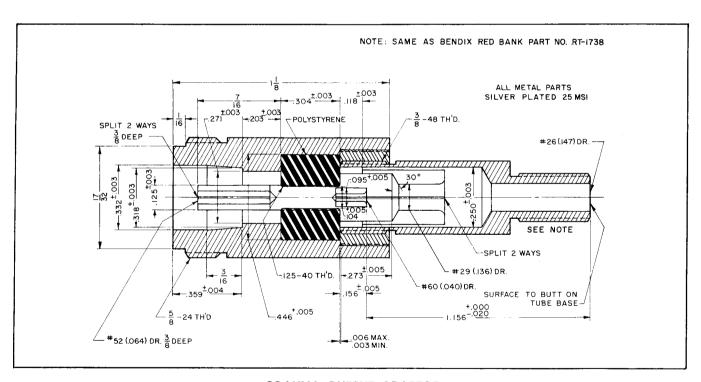



Bendix Type TK-69

AVERAGE CHARACTERISTICS

ELECTRICAL CHARACTERISTICS & TEST CONDITIONS


Test Conditions and Specification Limits


TEST	CONDITIONS	SYMBOL	LIMITS		UNITS	
1531	CONDITIONS	31MBOL	MIN. MAX.		0/4/13	
production tests						
Total Reflector Current	Er = -100 Vdc	Ir	_	7	uAdc	
Reflector Leakage Current	Er = -100 Vdc	lr		5	uAdc	
Reflector Gas Current	Er = -100Vdc	lr	_	2	uAdc	
Bump	Test Conditions; Er/max Po	△ Po/Po		0.10		
Resonator Current	Test Conditions; $Er = -100 \text{ Vdc}$	lrs	_	32 mAdc		
Mechanical Tuning Range	Er/max Po	F min		5100	Мс	
		F max	5900		Мс	
Power Output (1)	$F=5100~{ m Mc};~{ m Er/max~Po}$	Ро	70		mW	
Reflector Voltage (1)	$F=5100~{ m Mc}$; ${ m Er/max~Po}$	Er	<u></u> 100	160	Vdc	
Reflector Voltage (2)	$F=5900\;Mc;Er/max\;Po$	Er	—140	—210	Vdc	
Electronic Tuning (2)	F = 5900 Mc; Er/50% Po	△ F	28		Мс	
Emission	Ef = 5.8 V	△lk/lk		0.15		
Life Test	Test Conditions	t	500	<u> </u>	hrs	
Life Test End Points	Power Output; F = 5900; Er/max Po	Ро	100		mW	
DESIGN TESTS:						
Insulation	Ehk ±45 Vdc			100	uAdc	
Electrode Insulation	500 Vdc; Tube Cold	Rk-rs	2		Meg	
		Rk-rs	2		Meg	
Vibration Operating*	F = 25 cps, Peak to Peak Excursion .080" t = 60 sec	Fm		±1.5	Мс	
Heater Current	Test Conditions		450	550	mA	
Power Output (2)	F = 5900 Mc; Er/max Po	Ро	120	<u> </u>	mW	
Electronic Tuning (1)	F = 5100 Mc; Er/50% Po	△F	34		Мс	
Hysteresis	Test Conditions; Er/max Po	Ratio		0.05		
Modulation Sensitivity	Test Conditions; Er/max Po; \triangle Er $=\pm3$ V	△ F/△ Er	0.61	1.2	Mc/V	
Resonator Voltage Sensitivity	Test Conditions; Er/max Po; △ Ers = 20v p to p ac	△ F/△ Ers	_	0.320	Mc/V	

TEST CONDITIONS:

Ef.	Eres.	Er	lrs	Ehk	F
6.3 volts	300 Vdc	Adjust Vdc	25 mAdc	0	5500 Mc

^{*}Tube is mechanically pretuned to 5100 Mc. Vibration tests are conducted on a cyclic basis for nine five minute periods in each of three mutually perpendicular planes. The tube must be capable of meeting all production tests after completion of the vibration tests.

COAXIAL OUTPUT ADAPTOR

