TETRODE THYRATRON May neak anode voltage **EN92** 25mA tetrode inert gas-filled thyratron with negative control characteristic. Primarily intended for industrial control applications. This data should be read in conjunction with DEFINITIONS AND GENERAL OPERATIONAL RECOMMENDATIONS—THYRATRONS which precede this section of the handbook. #### PRELIMINARY DATA #### LIMITING VALUES (absolute ratings, not design centre) It is important that these limits are never exceeded and such variations as mains fluctuations, component tolerances and switching surges must be taken into consideration in arriving at actual valve operating conditions. | Inverse Forward | 500
500 | V | |---|------------------|---------------| | Max. cathode current Peak Average (max. averaging time = 30s) Surge (fault protection, max. duration 0.1s) | 100
25
2.0 | mA
mA
A | | Max. negative control-grid voltage
Before conduction
During conduction | 100
10 | V | | Max. positive control-grid current for anode voltage more
positive than -10V
Peak
Average (averaging time 1 cycle) | 25
5.0 | mA≺
mA | | Max. peak positive control-grid current for anode voltage more negative than -10V | 30 | μΑ | | Max. control-grid resistor
Grid-controlled rectifier service
Stand-by service | 10
100 | MΩ
kΩ | | Recommended minimum control-grid resistor | 5 | - k() | | Max. negative shield-grid voltage
Before conduction
During conduction | 50
10 | V | | Max. average positive screen-grid current for anode voltage more positive than -10V | 5.0 | mA | | Max. peak heater-to-cathode voltage
Cathode negative
Cathode positive | 25
100 | V | | Min. valve heating time | 10 | s | | Ambient temperature limits -55 t | o +90 | °C | | | | | Note: Where circuit conditions permit the shield-grid should be connected directly to the cathode. #### **CHARACTERISTICS** #### **Electrical** | Heater voltage
Heater current at 6.3V | 6.3
150 | V
mA | |--|------------|----------------------------| | Capacitances | | ≺ | | $c_{\mathbf{a}-\mathbf{g}1}$ | 0.03 | рF | | c _{in} | 2.0 | pF | | c_{out} | 1.5 | pF | | Control ratio | | | | g_1 to k, with $R_{g2}=0\Omega$ | 250 | | | g_2 to k, with $R_{g1}=0\Omega$ | 15 | | | Anode voltage drop | 10 | ٧ | | Recovery (deionisation) time (20 μ s pulse)
$V_a = 500V$, $i_{R(pk)} = 100$ mA. $R_{g1} = 50$ k Ω | | ← - | | $V_{g1} = -50V$ | 40 | [12 | | Critical grid current at $V_a = 350V$ r.m.s. | 0.5 | $\mathbf{A}u_{\mathbf{j}}$ | ### Mechanical | Type of cooling | Convection | |-------------------|------------| | Mounting position | Any | # CONTROL CHARACTERISTIC (see page C4) The curves given indicate the spread in characteristics due to: - (a) Variations in characteristics due to changes in heater voltage. - (b) Variations in characteristics during life. - (c) Variation in grid resistor. GRID ION CURRENT CHARACTERISTICS RECOVERY TIME PLOTTED AGAINST CONTROL-GRID VOLTAGE CONTROL CHARACTERISTICS OPERATING RANGE OF CRITICAL GRID VOLTAGE (See Page D2)