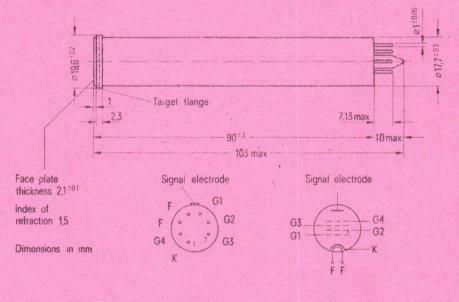
1 2 NOVEMBRE 1975

2/3"-Vidicon camera tube with cadmiumselenid-target

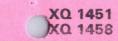
X X X X X X


Vidicon camera tube with magnetic focus and deflection. Useful faceplate 6,6 mm \times 8,8 mm with a 3 : 4 aspect ratio. The seperate mesh electrode G4 improve modulations depth and uniform resolution of the tube. The γ -value of the photoconductive layer is approximately 1 and constant over a wide range of the signal output current. By high sensitivity the tube has a very good resistance by extreme illumination and features short lag, high modulation depth and very low current.

AL/1977/3 Annex PT

XQ 1451 to XQ 1458

Depending on the tequired picture quality the following types are available:


XQ 1452	Live broadcast General industrial TV applications, quality grade I General industrial TV applications, quality grade II	type series with very low lag
XQ 1457	Live broadcast General industrial TV applications, quality grade I General industrial TV applications, quality grade II	type series with low lag

Max. length:103 mmMax. diameter:19,8 mmWeight:approx. 25 gBase:7 pin-miniatur (Jedec E7-91)Socket:Rö Fsg 1034 (for printed circuits)Rö Fsg 1035 (with solder tags)Mounting and transport position:any

9.76 (1) n

XQ 1451 to XQ 1458

1

AL/1977/3 Annex PT - 125 -

.

Heating

Heater voltage Heater current	6.3 95 indirect by ac or parallel supply	V mA dc, series d	D Nr
Characteristics			
Inter-electrode capacitance			
Signal electrode to all other	2	pF	2
Spectral response	see diagram		
Maximum of the spectral response	see diagram		
Focusing method	magnetic		
Deflection method	magnetic		
Useful diameter of the			
photoconductive layer	11	mm	
Useful size of rectangular image			
(3:4 aspect ratio)	6.6 × 8.8	mm	

Maximum ratings (absolute Values) Fullsize scanning of the 6,6 mm×8,8 mm area of the photoconductive layer must be assured.

Grid No 1 voltage	max.	0	V		
		-300	V		
negative	max.		CONTRACTOR OF CARLENS		•
Grid No. 2 voltage	max.	350	V		
Grid No. 3 voltage	max.	800	V		
Grid No. 4 voltage	max.	800	V		
Signal electrode voltage	max.	50	V		
Peak beam current	max.	800	nA		
Peak heater to cathode voltage					
Heater negative			· · · ·		
with respect to cathode	max.	125	V		
Heater positive					
with respect to cathode	max.	10	V		
Faceplate illumination	max.	1000	Lux		
Faceplate temperatur	max.	-20 to +60	°C	(3)	

Scanned area			6,6×8,8	mm	
Grid No. 1 cutoff voltage			-45 to -100	V	
Grid No. 2 voltage			300	V	
Grid No. 3 voltage					
normal resolution			240	V	(6
high resolution			450	V	(5
Grid No. 4 voltage					
normal resolution			400	V	(5
high resolution			750	V	(5
Blanking voltage applied to					
Grid No. 1		min.	75	V	
Blanking voltage applied to					
cathode		min.	20	V	
Signal electrode voltage		The second	adjust	v	(
Dark current			0,5	nA	
"Gamma" of transfer characteri	stics		≈ 0,95		
	VO AAFA		VO 14EC		
	XQ 1451		XQ 1456		
	XQ 1452		XQ 1457		
Resolution	XQ 1453		XQ 1458		
at center of picture	600/700		700/750	TV line	s
at corner of picture	500		550	TV line	
Signal output current	300		300	nA	
Signal uniformity	10		10	%	
Modulations depth at 5 MHz				i i i i i i i i i i i i i i i i i i i	
normal resolution	25		25	%	(
high resolution	35		35	%	C
Lag after 60 ms	6		10	%	0
Sensitivity	2600		2600	uA/Im	(
Faceplate illumination	1		1	Lux	
Signal output current (white)	150		150	nA	6
Signal output current (red)	110		110	nA	6
Signal output current (green)	26		26	nA	0
Signal output current (blue)	17		17	nA	6
Order Numbers					
Type Order-	No	Aco	essories	Order-No.	
	- B 8020	Sock		51001 100.	
	- C 8020		sg 1033	Q 81 - X	13
	- D 8020		sg 1033	0.81 - X	
	- B 8021	nor	og 1004	201-X	
	- C 8021	Dati	ection and focus a	seembly	
	- D 8021	KV1		Q 3006 -	1919

tes

If the maximum variation of the heater voltage exceeds the absolute limits of \pm 5% the operating performance of the tube will be impaired and its life shortened.

This capacitance, which is effectively the output impedance of the tube (resistive component approx. 100 M Ω) increases when the tube is mounted in the deflecting-yoke and focusing coil assembly.

Additional air cooling or heat protection filter between optics and faceplate may be necessary.

Without blanking voltage on grid No. 1.

Optimum focusing of the electron beam is obtained by adjusting either the focusing coil current or the grid No. 3 voltage. The grid No. 3 voltage must be more than 220 V and between 60 and 90% of the grid No. 4 voltage.

Increased grid No. 4 voltage requires an increased deflection amplitude. A higher focusing coil current is necessary, if the grid No. 3 voltage is increased.

Optimum ratio of grid No. 4 and grid No. 3 voltages depends on the focusing coil used. A poor voltage ratio may produce brightening or darkening in the face plate corners.

Recommended signal electrode voltage is noted on the individual test sheet within the range of 20 to 45 volts. Switch off the signal electrode voltage automatic.

The modulation depth is measured at the picture center at 5 MHz in comparison with 0.5 MHz. The modulation depth depends on the signal output current, which is 300 nA.

Signal output current of 300 nA at 60 ms after illumination is removed

At a color temperatur of 2854 K tungsten-filament lamp.

Unfiltered illumination incident on the faceplate is 1 lux. The optical filter interposed between the tube and a light source.

red = Schott OG2/3 mm, green = Schott VG9/1 mm, blue = Schott BG23/3 mm.

Target Defect Specification

General

This specification regards to target defects of vidicon camera tubes visible in the scanned area.

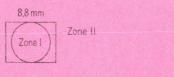
Glas defects of the face plate are not dealt with.

Test Conditions

The tube shall be best centred and focused according to the operating data and adjusting instructions.

The illumination (color temperature 2854 K shall be adjusted to a signal current of 300 nA (100% white signal).

The target voltage must be taken from the test sheet


Temperatur of the face plate 30°C (± 2°).

Monitor adjusted for a non-blooming white.

The video amplifier bandwidth shall be 5.5 MHz.

Target Zones

A uniformly illuminated field with an aspect ratio of 3:4 and a scanned area of $6.6 \text{ mm} \times 8.8 \text{ mm}$ shall be displayed on the target of the vidicon camera tube. According to the following drawing the scanned area is divided into the two zones I and II.

	DD
0	Ann Ann
frend	CD -
26	× 1/2
	7/3 PT

Target Defects Estimation

The target defect size is measured in percent of the picture hight. The equivalent numbers of raster lines in a 625 lines TV-system and in a 525 lines TV-system resp. are indicated for comparison purposes only.

Inspection for target defects to be performed with illuminated and nonilluminated target.

The minimum separation between two target defects must be greater than the diameter of the larger one, otherwise the combination is considered on the whole.

Target defects are not counted when their contrast expressed in % of picture white is less than 13% white spots, <28% black spots.

Blurred spots, streaks, stripes, mesh defects and mottled or grainy background are only permitted when their contrast expressed in % of picture white is less than 13%.

To obtain optimum picture quality or to avoid moire effects the tube may be rotated.

Allowable number, size and position of target defects

Туре				1451 1456			
Target defect Target defects Target defects size in percent size in TV lines size in TV lines of the picture			Maximum allowable number of target defer				
hight 6.6 mm = 100%	625 lines system	525 lines system	1				
>0,8	>5	>4	0	0			
>0.6 to ≤ 0.8	>4 to 5	3 to 4	0	2			
>0.2 to ≤0.6	>1 to 4	1 to 3	3	4			
≦0.2	≦1	< 1	are not considered unless concentration cause smudge appearance				
Туре				1452 1457			
Target defect		Target defects	M	Maximum allowable number of targe			ole number of target defects
size in percent of the picture	size in i v imes	size in i v ines	Zo	ne	Zo	ne	
hight 6.6 mm = 100%	625 lines system	525 lines system	1	11	1	11	
> 1.2	>7	> 6	0	0	O	0	
> 0.8 to $\leq 1,2$	> 5 to 7	4 to 6	0	2	1	2	

are not considered unless concentration causes a <1 51 smudge appearance

4

3 4

3

Target defects outside the scanned area will not be counted.

>1 to 5

1 to 4

> 0.2 to ≤ 0.8

≤0.2

Operating Considerations

The tube must be located in the coil assembly such that a line between the longitudinal axis of the tube and the short pin is parallel to the direction of horizontal deflection.

To obtain high signal uniformity the magnetic fields of the deflection and focusing coils must be adjusted such that the electrons strike the faceplate perpendicularly across the whole area.

The polarity of the focusing coil should be such that a northseeking pole is attracted to the image end of the focusing coil. Connection to the faceplate is usually made by a suitable spring contact mounted in the coil assembly. The connecting cable of the pre-amplifier should be low capacitance.

The following must be observed when firing up the tube for the first time:

- 1) Set the grid 1 voltage negative, until the picture cutoff is reached. Then set the electrode voltages as indicated as operating voltages with a signal electrode voltage which is noted on the individual test sheet. The deflection power must be sufficient to cause the electron beam to scan a maximum area of the photoconductive layer.
- ²) After mounting a dimmed lens reduce the grid 1 voltage until the scanning beam recharges even the brightest spots of the picture. Then improve the picture sharpness with the aid of the focusing field strengh and varving the distance between camera and optics.
- ³) Adjust the alignment field so that the center oft the picture does not move as the grid 3 voltage is varied. After this adjustment it may be necessary to reset the horizontal and vertical centering.
- 4) Adjust the beam current by varying grid 1 voltage so that the brightest picture point is recharged. An unnecessary increase in beam current reduces the picture quality.

Dark Current

The dark current is as low as 1 nA, or below. No picture guality deterioration is caused by the increase of environmental temperature because the approximate dark current ist within 10 nA even at 60°C.

Target Voltage

Target voltage must be adjusted to the optimum value refering to the value noted on the individual test sheet. Increase the target voltage to some voltage when a negative after-image is apt to appear shifting an incident pattern and taking white back ground. If the target voltage is set to too high voltage white spots increase in the picture.

As shown in figures the signal-output current tends to saturate with the target voltage and therefore has a near constant sensitivity. The curve shows the dark current increase. When the dark current becomes extremely large, the picture quality goes wrong.

Photosensitivity and Light Transfer Characteristics

Figures shows the light transfer characteristics with the faceplate illumination using a standard tungsten lamp of 2854 K in colour temperature. Red, Green and Blue sensitivities are measured by interposing the optical filter between the tube and the tungsten lamp.

XQ 1451 XQ 1458

Lag

The build up-and decay-lag at different signal currents are shown in figures respectively. Improvement of lag, especially build up lag, is possible by employing the bias-light when taking a low light level scene and, consequently, low signal current. (See curve (b), (e) and (d) in figures). The intensity of the bias-light should be adjusted so as to take a output current of 20 nA or above.

There is no difference of the influence by spectral wavelength.

If the adjustment of optical lens system of color TV camera is made to have the same level of signal currents in each of the red, green and blue color channels, no differences of lag characteristic occur in the color channels, so that the tail or head of a moving white object does not have any special color, and attract little attention of the human eye. If the optical lens system is designed on the basis of the colour temperature of 6000 K the same level of signal output current will be obtained.

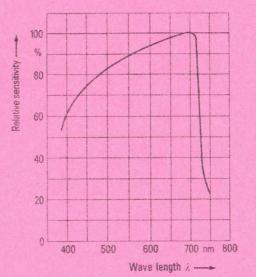
Signal Uniformity

Shading, which is usually observed in the conventional vidicon, is not seen. On account of the saturated signal current-voltage characteristics, signal output currents do not make so much difference throughout the scanning area, even if there is a landing error of electron beam causing a difference of electric fields across the photoconductive target between center and corner.

Flare

The color of the photoconductor is black without giving any harmful reflection of light from the surface of the photoconductor in the visible light region, therefore the stable black level can be obtained.

Beam Current Setting


The beam current is recommended to adjust to twice as much as the value to just discharge the highlight signal current on the typical operation data. Flowing more over the required beam current may decrease the amplitude response characteristics.

Burn-In Damage

At the optimum target voltage, damages caused by excess light, which is usually observed in the conventional vidicon, are seldom seen. When, however, after-image due to the incidence of strong bright spots are observed, operate the tube for a while with uniform illumination at the higher target voltage so as to fade off.

High Voltage Operation

Under the high voltage operation the amplitude response is improved. Figures shows amplitude response characteristics of the high voltage operation.

Typical dark current -

10

01

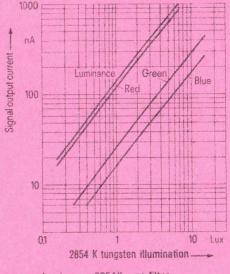
20

40

60

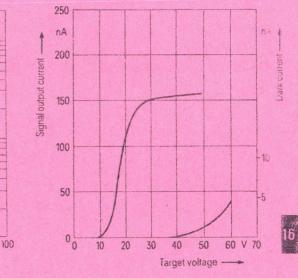
Face plate temperature -----

80 °C


current

Dark

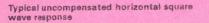
Temperature characteristics

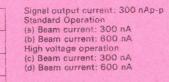

Typical spectral response characteristics

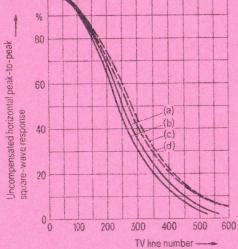
Typical light transfer characteristics

Luminance:	2854K	no filter	
Red:	Schott	0G -2 3 mm	
Green:	Schott	VG - 9 1 mm	
Blue:	Schott	BG - 23 3 mm	

Typical signal output current as a function of target voltage

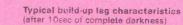

AL/1977/ Annex PT - 128 -

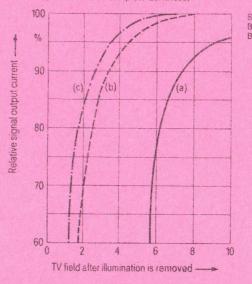

SIEMENS AKTIENGESELLSCHAFT 9.76 (8) n

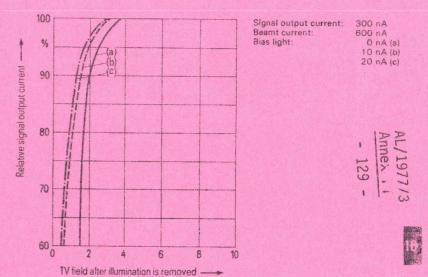

....

.

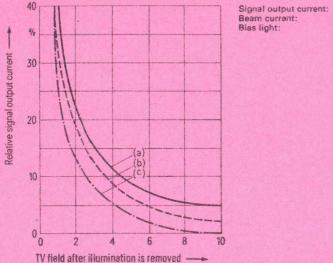
.




100

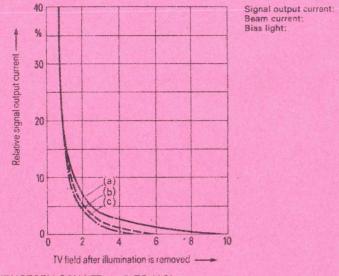


Signal output current: Beam current: Bias light: 50 nA 600 nA 0 nA (a) 10 nA (b) 20 nA (c)


9.76 (11) n

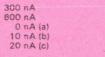
50 nA

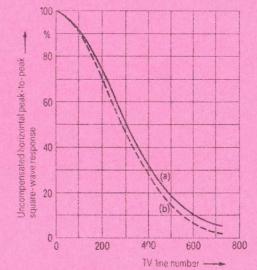
.

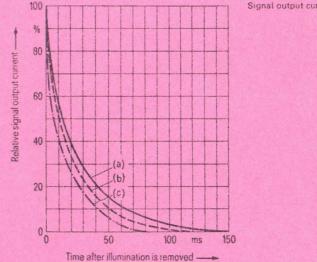

.

Typical decay - lag characteristics

600 nA 0 nA (a) 10 nA (b) 20 nA (c)


....


MENS AKTIENGESELLSCHAFT 9.76 (12) n


Typical horizontal square-wave response

Signal output current: 200 nA

(a) Grid No. 3 Voltage 300 V Grid No. 4 Voltage 500 V (b) Grid No. 3 Voltage 240 V Grid No. 4 Voltage 400 V

Typical lag characteristics

SIEMENS AKTIENGESELLSCHAFT 9.76 (13) n @

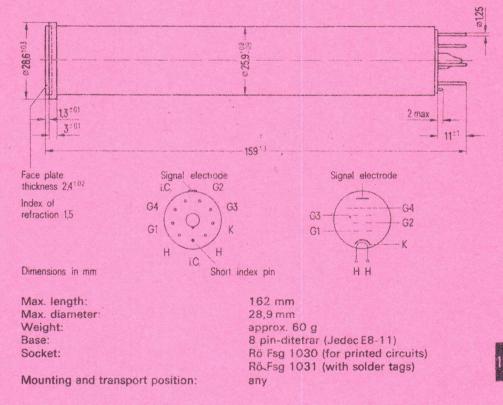
Signal output current

= 100 nA (a = 200 nA (b = 400 nA (c

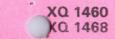
AL/1977/3 Annex PT 1 130 -

12 NOVEMBRE 1976

AL/1977/3: XQ 1460 to Annex PT - 131 -


1"-Vidicon camera tube with cadmiumselenid-target

XXXX XXXX


Vidicon camera tube with magnetic focus and deflection. Useful faceplate of 9,6 mm \times 12,8 mm with a 3 : 4 aspect ratio. The seperate mesh electrode G4 improve modulations depth and uniform resolution of the tube. The γ -value of the photoconductive layer is approximately 1 and constand over a wide range of the signal output current. By high sensitivity the tube has a very good resistance by extreme illumination and features short lag, high modulation depth and very low dark current.

Depending on the required picture quality the following types are available:

(Q 1461 (Q 1462	Medical x-ray applications Live broadcast General industrial TV applications, quality grade I General industrial TV applications, quality grade II	type series with very low lag
(Q 1466 (Q 1467	Medical x-ray applications Live broadcast General industrial TV applications, quality grade I General industrial TV applications, quality grade II	type series with low lag

9.76 (1) n

V

V

Lux

3

°C

	xa	1460	
to	xa	1468	

mm

V

9,6 × 12,8

-45 to -100

Typical Operation (Faceplate temperature approx 25 to 35°C)

Scanned area

Grid No. 1 cutoff voltage

Heater voltage Heater current		6.3 V 95 mA indirect by ac or dc, series or parallel supply			
Characteristics					
Inter-elctrode capacitance	De la companya de la	and the second second second			
Signal electrode to all other		4,6	pF ②		
Spectral response		see diagram			
Maximum of the spectral response		see diagram			
Focusing method		magnetic			
Deflection method		magnetic			
Useful diameter of the					
photoconductive layer		15,7	mm		
Useful size of rectangular image					
(3:4 aspect ratio)		9,6 × 12,8	mm		
Maximum ratings (absolute values) Full size scanning of the $9,6 \text{ mm} \times 1$, be assured.		the photoconductive	layer must		
Grid No. 1 voltage					
positive	max.	0	V		
negative	max.	-300	V		
Grid No. 2 voltage	max.	750	V		
Grid No. 3 voltage	max.	1000	V		
Grid No. 4 voltage	max.	1000	V		
Signal electrode voltage	max.	50	V		
Peak beam current	max.	800	nA		
Peak heater to cathode voltage			-		

max.

max.

max.

max.

125

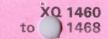
10

1000

-20 to +60

ond no. I cucon vondi	90			-40 10 100	and the second		
Grid No. 2 voltage	A CONTRACTOR			300	V		
Grid No. 3 voltage							
normal resolution				300	V	6	
high resolution				450	V	5	
Grid No. 4 voltage							
normal resolution				500	V	6	
high resolution				750	V	6	
Blanking voltage applie	ed to Grid	No. 1	min.	75	V		
Blanking voltage applie	ed to cath	ode	min.	20	V		
Signal electrode voltag	le			adjust	V	6	
Dark current				0,8 to 1	nA		
"Gamma" of transfer ci	haracteris	tics		≈ 0,95		ID	30
						1 12.	Fr.
						m m	grand
		XQ 1460		XQ 1465		w ×	202
		XQ 1461		XQ 1466		9	
		XQ 1462		XQ 1467		. 1-1	63
		XQ 1463		XQ 1468		122	
Resolution							
at center of picture		700/900		750/1000		lines	
at corner of picture		600/700		600/800		lines	
Signal output current		300		300	nA		
Signal uniformity		10		10	%		
Modulations depth at !	5 MHz						
normal resolution		35		45	%	T	
high resolution		45		55	%	0	
Lag after 60 ms		10		20	%	(8)	
Sensitivity		2600		2600	μΑ/		
Faceplate illumination		1		1	Lux		
Signal output current		300		300	nA		
Signal output current		220		220	nA		
Signal output current	(green)	52		52	nA		
Signal output current	(blue)	34		34	nA	œ	
Order Numbers							
Туре	Order-	No.	Acces	sories	Order-	No.	
XQ 1460		A 8010	Socket				
		B 8010	Rö Fsg	1030		- X 130	
XQ 1461						11 1 1 1	PERSONAL PROPERTY AND INCOME.
XQ 1462	0.72 -	C 8010	Rö Fsg	1031	0.81 -	- X 131	
	Q 72 - Q 72 -	C 8010 D 8010				- X 131	6
XQ 1462	Q 72 - Q 72 - Q 72 -	C 8010 D 8010 A 8011	Deflect	1031 tion and focus	assembly		
XQ 1462 XQ 1463 XQ 1465 XQ 1466	Q 72 - Q 72 - Q 72 - Q 72 -	C 8010 D 8010 A 8011 B 8011					
XQ 1462 XQ 1463 XQ 1465	Q 72 - Q 72 - Q 72 - Q 72 - Q 72 -	C 8010 D 8010 A 8011	Deflect		assembly		

Heating


Heater negative with respect to cathode

Heater positive with respect to cathode

Faceplate illumination

Faceplate temperatur

9.76 (3) n

If the maximum variation of the heater voltage exceeds the absolute limits of \pm 5% the operating performance of the tube will be impaired and its life shortened.

This capacitance, which is effectively the output impedance of the tube (resistive component approx. 100 M Ω) increases when the tube is mounted in the deflectingyoke and focusing coil assembly.

Additional air cooling or heat protection filter between optics and faceplate may be necessary.

Without blanking voltage on grid No. 1.

Optimum focusing of the electron beam is obtained by adjusting either the focusing coil current or the grid No. 3 voltage. The grid No. 3 voltage must be more than 250 V and between 60 and 90% of the grid No. 4 voltage.

Increased grid No. 4 voltage requires an increased deflection amplitude. A higher focusing coil current is necessary, if the grid No. 3 voltage is increased.

Optimum ratio of grid No. 4 and grid No. 3 voltages depends on the focusing coil used. A poor voltage ratio may produce brightening or darkening in the face plate corners.

Recommended signal electrode voltage is noted on the individual test sheet within the range of 20 to 45 volts. Switch off the signal electrode voltage automatic.

The modulation depth is measured at the picture center at 5 MHz in comparison with 0,5 MHz. The modulation depth depends on the signal output current, which is 300 nA.

Signal output current of 300 nA at 60 ms after illumination is removed.

At a color temperatur of 2854 K tungsten-filament lamp.

Unfiltered illumination incident on the faceplate is 1 lux. The optical filter interposed between the tube and a light source.

red = Schott OG2/3 mm, green = Schott VG9/1 mm, blue = Schott BG23/3 mm.

Target Defect Specification

General

This specification regards to target defects of vidicon camera tubes visible in the scanned area.

Glas defects of the face plate are not dealt with.

Test Conditions

The tube shall be best centred and focused according to the operating data and adjusting instructions.

The illumination (color temperature 2854 K shall be adjusted to a signal current of 300 nA (100% white signal).

The target voltage must be taken from the test sheet.

Temperatur of the face plate $30^{\circ}C (\pm 2^{\circ})$.

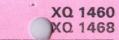
Monitor adjusted for a non-blooming white.

The video amplifier bandwidth shall be 5.5 MHz.

Target Zones

A uniformly illuminated field with an aspect ratio of 3:4 and a scanned area of $9.6 \text{ mm} \times 12.8 \text{ mm}$ shall be displayed on the target of the vidicon camera tube. According to the following drawing the scanned area is divided into the two zones I and II.

Target Defects Estimation


The target defect size is measured in percent of the picture hight. The equivalent numbers of raster lines in a 625 lines TV-system and in a 525 lines TV-system resp. are indicated for comparison purposes only.

Inspection for target defects to be performed with illuminated and nonilluminated target.

The minimum separation between two target defects must be greater than the diameter of the larger one, otherwise the combination is considered on the whole.

Target defects are not counted when their contrast expressed in % of picture white is less than 13% white spots, <28% black spots.

Blurred spots, streaks, stripes, mesh defects and mottled or grainy background are only permitted when their contrast expressed in % of picture white is less than 13%. To obtain optimum picture quality or to avoid moire effects the tube may be rotated.

Allowable number, size and position of target defects

			1		1		
Гуре			XQ 1460 XQ 1465				
							L
Target defect size in percent		Target defects size in TV lines		axim	um al	Iowal	ble number of target defects
of the picture			CONTRACTOR OF	ne	Zo	ne	
hight 9:6 mm = 100%	625 lines system	525 lines system	1	11	1	11	
> 0.8	> 5	>4	0	0	0	0	
$> 0.6 \text{ to} \leq 0.8$	> 4 to 5	3 to 4	0	0	0	0	
> 0.2 to ≤ 0.6	> 1 to 4	1 to 3	2	3	2	3	
≤0.2	0.2 ≤1 <1					derec	I unless concentration causes a
			Tuo		1		· · · · · · · · · · · · · · · · · · ·
Туре						1463 1468	
Target defect				laxim	um a	llowal	ble number of target defects
size in percent	size in TV lines	size in TV lines	-				

		laiger berecis	IVI	aximi	um ai	IOWal	bie number of target defects
size in percent of the picture	size in TV lines	size in TV lines	Zo	ne	Zo	ne	
hight 9.6 mm = 100%	625 lines system	525 lines system	1	11	1	11	
> 1.2	>7	> 6	0	0	0	0	
> 0.8 to ≤ 1.2	> 5 to 7	4 to 6	0	2	1	2	
> 0.2 to ≤ 0.8	> 1 to 5	1 to 4	3	4	3	4	
≤ 0.2	≦ 1	< 1	5 3 C 200		Contraction of the	derec	I unless concentration causes a ce

Target defects outside the scanned area will not be counted.

/1977

Operating Considerations

The tube must be located in the coil assembly such that a line between the longitudinal axis of the tube and the short pin is parallel to the direction of horizontal deflection.

To obtain high signal uniformity the magnetic fields of the deflection and focusing coils must be adjusted such that the electrons strike the faceplate perpendicularly across the whole area.

The polarity of the focusing coil should be such that a northseeking pole is attracted to the image end of the focusing coil. Connection to the faceplate is usually made by a suitable spring contact mounted in the coil assembly. The connecting cable of the pre-amplifier should be low capacitance.

The following must be observed when firing up the tube for the first time:

- 1) Set the grid 1 voltage negative, until the picture cutoff is reached. Then set the electrode voltages as indicated as operating voltages with a signal electrode voltage which is noted on the individual test sheet. The deflection power must be sufficient to cause the electron beam to scan a maximum area of the photoconductive layer.
- ²) After mounting a dimmed lens reduce the grid 1 voltage until the scanning beam recharges even the brightest spots of the picture. Then improve the picture sharpness with the aid of the focusing field strengh and varying the distance between camera and optics.
- ³) Adjust the alignment field so that the center oft the picture does not move as the grid 3 voltage is varied. After this adjustment it may be necessary to reset the horizontal and vertical centering.
- ⁴) Adjust the beam current by varying grid 1 voltage so that the brightest picture point is recharged. An unnecessary increase in beam current reduces the picture quality.

Dark Current

The dark current is as low as 1 nA, or below. No picture quality deterioration is caused by the increase of environmental temperature because the approximate dark current ist within 10 nA even at 60°C.

Target Voltage

Target voltage must be adjusted to the optimum value refering to the value noted on the individual test sheet. Increase the target voltage to some voltage when a negative after-image is apt to appear shifting an incident pattern and taking white back ground. If the target voltage is set to too high voltage white spots increase in the picture.

As shown in figures the signal-output current tends to saturate with the target voltage and therefore has a near constant sensitivity. The curve shows the dark current increase. When the dark current becomes extremely large, the picture quality goes wrong.

Photosensitivity and Light Transfer Characteristics

Figures shows the light transfer characteristics with the faceplate illumination using a standard tungsten lamp of 2854 K in colour temperature. Red, Green and Blue sensitivities are measured by interposing the optical filter between the tube and the tungsten lamp.

XQ 1460 to XQ 1468

Typical spectral response characteristics

100

80

40

20

0

nA

01

20

40

60

0

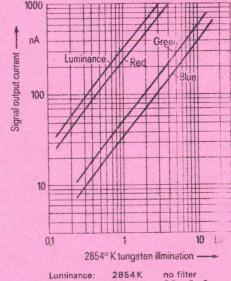
current.

Dark

400

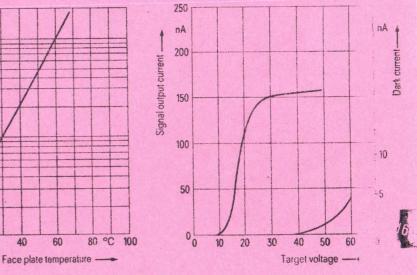
500

Typical dar current -**Temperature characteristics**


600


Wave length -----

700 nm 800


sensitivity

Relativ 60 Typical light transfer characteristics

Typical signal output current as a fun on of target voltage

The build up-and decay-lag at different signal currents are shown in figures respectively. Improvement of lag, especially build up lag, is possible by employing the bias-light when taking a low light level scene and, consequently, low signal current. (See curve (b), (e) and (d) in figures). The intensity of the bias-light should be adjusted so as to take a output current of 20 nA or above.

There is no difference of the influence by spectral wavelength.

If the adjustment of optical lens system of color TV camera is made to have the same level of signal currents in each of the red, green and blue color channels, no differences of lag characteristic occur in the color channels, so that the tail or head of a moving white object does not have any special color, and attract little attention of the human eye. If the optical lens system is designed on the basis of the colour temperature of 6000 K the same level of signal output current will be obtained.

Signal Uniformity

Shading, which is usually observed in the conventional vidicon, is not seen. On account of the saturated signal current-voltage characteristics, signal output currents do not make so much difference throughout the scanning area, even if there is a landing error of electron beam causing a difference of electric fields across the photoconductive target between center and corner.

Flare

Lag

The color of the photoconductor is black without giving any harmful reflection of light from the surface of the photoconductor in the visible light region, therefore the stable black level can be obtained.

Beam Current Setting

The beam current is recommended to adjust to twice as much as the value to just discharge the highlight signal current on the typical operation data. Flowing more over the required beam current may decrease the amplitude response characteristics.

Burn-In Damage

At the optimum target voltage, damages caused by excess light, which is usually observed in the conventional vidicon, are seldom seen. When, however, after-image due to the incidence of strong bright spots are observed, operate the tube for a while with uniform illumination at the higher target voltage so as to fade off.

High Voltage Operation

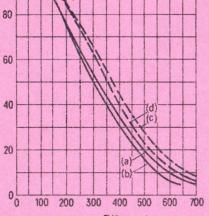
Under the high voltage operation the amplitude response is improved. Figures shows amplitude response characteristics of the high voltage operation.

SIEMENS AKTIENGESELLSCHAFT 9.76 (8) n

XQ 460 463 to

Signal output current: 300 nA

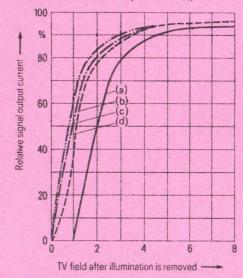
Standard Operation (a) Beam current: 300 nA


(b) Beam current: 600 nA High voltage operation

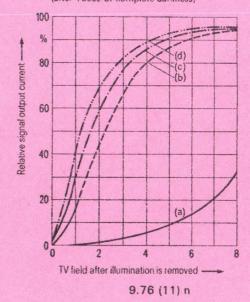
(c) Beam current: 300 nA

(d) Beam current: 600 nA

14


Typical uncompensated horizontal square wave response 100 2/ Uncompensated horizontal peak-to-peak square-wave response 80

TV line number -----


Typical build-up lag characteristics (after 10sec of complete darkness)

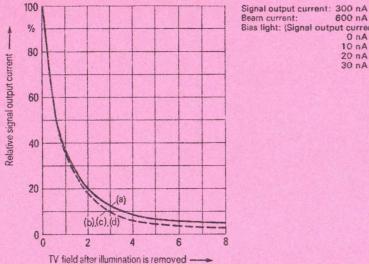
.

Signal output current: 300 nA Beam current: 600 nA Bias light: (Signal output current) 0 nA (a) 10 nA (b) 20 nA (c) 30 nA (d)

Typical build-up lag characteristics (after 10sec of complete darkness)

Signal output current: 50 nA Beam current: 600 nA Bias light: (Signal output current) 0 nA (a) 10 nA (b) 20 nA (c) 30 nA (d)

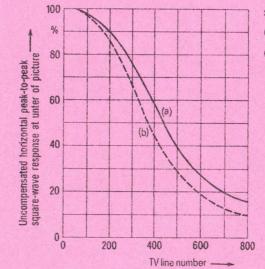
> Annex 11077 1 136 -0



EMENS AKTIENGESELLSCHAFT 9.76 (10) n

600 nA

.


Typical decay - lag characteristics

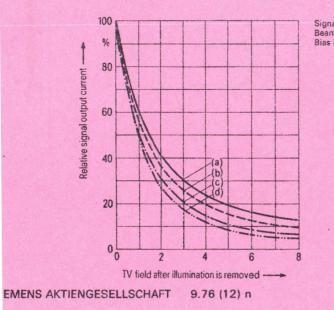
Bias light: (Signal output current) 0 nA (a) 10 nA (b) 20 nA (c) 30 nA (d)

Typical horizontal square-wave response

.

Signal output current: 200 nA

- (a)
- Grid No. 3 Voltage 450 V Grid No. 4 Voltage 750 V
- (b) Grid No. 3 Voltage 300 V Grid No. 4 Voltage 500 V

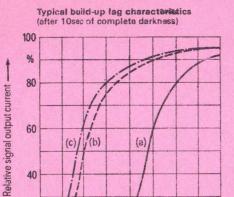

AL/1977/3 Annex PT

137

1

-- -- --

Typical decay - lag characteristics

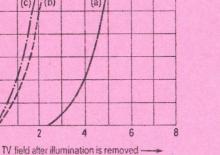


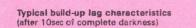
al output curr	rent: 50 nA
current:	600 nA
light: (Signal	output current)
	0 nA (a)
	10 nA (b)
	20 AA (c)
	30 nA (d)

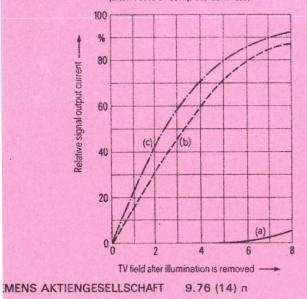
9.76 (13) n

XQ 14 65 to 1 14 38

.

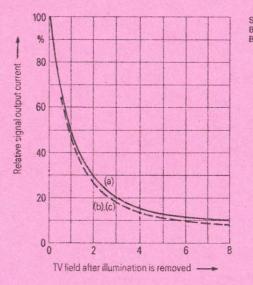



20


1

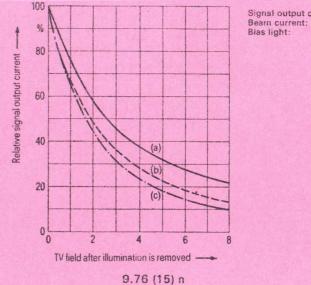
0

Signal Output Current:	100 nA
Beam Current:	400 nA
Bias Light:	0 nA (a)
	20 nA (b)
	30 nA (c)
	30 NA (C,



Signal Output Current: 50 nA Beamt current: 400 nA Bias Light (Signal output current): 0 nA (a) 20 nA (b)

400 nA t current): 0 nA (a) 20 nA (b) 30 nA (c) Typical decay - lag characteristics


.

.

Signal output current:	200	nA
Beam current:	400	
Bias light:	0	nA (a)
	20	nA (b)
	30	nA (c)

Typical decay - lag characteristics

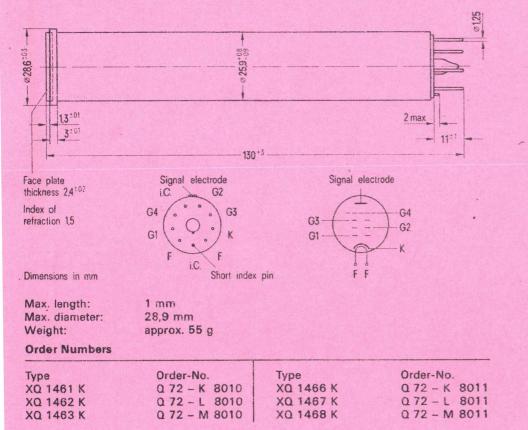
.

Signal output current: 50 nA Bearn current: 400 nA Bias light: 0 nA (a) 20 nA (b) 30 nA (c)

> AL/19/7/3 Annex PT - 138 -

and a second second second

with low log


XQ 1461 K KQ 1468 K

1"-Vidicon camera tube with cadmiumselenid-target

Vidicon camera tube with magnetic focus and deflection. Useful faceplatz 9,6 mm \times 12,8 mm with a 3 : 4 aspect ratio. The separate mesh electrode G4 improve modulations depth and uniform reolution of the tube. The γ -value of the photoconductive layer is approximately 1 and constant over a wide range of the signal output current. By high sensitivity the tube has a very good resistance by extreme illumination and features short lag, high modulation depth and very low dark current.

Depending on the tequired picture quality the following types are available.

XQ 1461 K Live broadcast	type series
XQ 1462 K General industrial TV applications, quality grade I	with very
XQ 1463 K General industrial TV applications, quality grade II	low lag
XQ 1466 K Live broadcast	type series
XQ 1467 K General industrial TV applications, quality grade I	with
XQ 1468 K General industrial TV applications, quality grade II	low lag

1"-Vidicon camera tube with cadmiumselenid-target FIBEROPTICS FACEPLATE

Image pick-up tubes with fiberoptics are applicable for coupling with image intensifiers. Owing to the use of fiberoptic faceplates a direct optical contact arises, hence causing only a minimum loss of light. In addition to that, considerable space saving was obtained by using the fiberoptical light coupling instead of an equivalent lens coupling system.

F General industrial TV applications	with very low rig
--------------------------------------	-------------------

XQ 1466 F General industrial TV applications	
--	--

Fiberoptics faceplate dimension

Fiber	thickness	
Fiber	faceplate	diameter

 $7 \ \mu m$ 26,25 mm ± 0,1 mm

Target defects

XQ 1461

See XQ 1462 and XQ 1467. Defects which base on the fiberoptic faceplate should not desturbe appearance.

Type/Order number:

XQ 1461 F = Q 72 - F 8010XQ 1466 F = Q 72 - F 8011

All the other electrical and mechanical data are equivalent to series XQ 1461 to XQ 1463.

SIEMENS AKTIENGESELLSCHAFT 9.76 (16) n

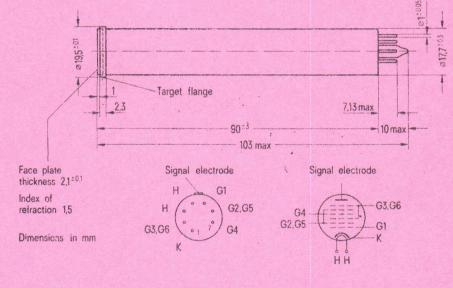
12 NOVEMBRE 1978

AL/1977/3 to XQ 1470 Annex PT

- 140 -

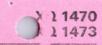
2/3"-Vidicon camera tube with cadmiumselenid-target

Vidicon camera tube with electrostatic focus and magnetic deflection. Useful faceplate of 6,6 mm \times 8,8 mm with a 3 : 4 aspect ratio. The seperate mesh electrode G6 improve modulations depth and uniform resolution of the tube. The γ -value of the photoconductive layer is approximately 1 and constant over a wide range of the signal output current. By high sensitivity the tube has a very good resistance by extreme illumination and features short lag, high modulation depth and very low dark current.


Depending on the tequired picture quality the following types are available:

XQ 1470 General industrial B/W-TV applications, quality grade I XQ 1471 General industrial B/W-TV applications, quality grade II

type series with very low lag type series with low lag


16

XQ 1472 General industrial B/W-TV applications, quality grade I XQ 1473 General industrial B/W-TV applications, quality grade II

Max. length:103 mmMax. diameter:19,6 mmWeight:approx. 27 gBase:7 pin miniatur (Jedec E7-91)Socket:Rö Fsg 1034 (for printed circuits)Rö Fsg 1033 (with solder tags)Mounting and transport position:any

9.76 (1) n

	X	a	1	47	0
to	X	a	7	47	3

Typical Operation (Faceplate temperature approx 25 to 35×C)

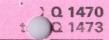
Heating			
Heater voltage Heater current		V mA eries or	1
Characteristics			
Inter-electrode capacitance	2		
Signal electrode to all other		pF	2
Spectral response	see diagram		
Maximum of the spectral response	see diagram		
Focusing method	magnetic		
Deflection method	magnetic		
Useful diameter of the			
photo conductive layer	11	mm	
Useful size of rectangular image			
(3:4 aspect ratio)	6.6 × 8.8	mm	

14

Maximum ratings (absolute values)

Full size scanning of the 6.6 mm \times 8,8 mm area of the photoconductive layer must be assured.

nax. nax. nax. nax. nax. nax. nax.	0 -300 350 350 650 50 600	V V V V V V	
nax. nax. nax. nax.	350 350 650 50	V V V V	
nax. nax. nax.	350 650 50	V V V	
nax. nax.	650 50	V V	
nax.	50	V	
nax.	600	٨٩	
		IIA	
max.	125	V	
max.	10	V	
max.	1000	Lux	
max.	-20 to +60	°C	3
100 Mar 100	max. max. max. max.	max. 10 max. 1000	max. 10 V max. 1000 Lux


Scanned area		6,6 × 8,8	mm	
Grid No. 1 cutoff voltage		-45 to -100	V	
Grid No. 2, 5 voltage		300	V	
Grid No. 4 voltage		≈ 75	V	(5
Grid No. 3, 6 voltage		500	V	
Blanking voltage applied to				
Grid No. 1	min.	80	V	
Blanking voltage applied to				
cathode	min.	20	V	
Signal electrode voltage		adjust	V	E
Dark current		0,5	nA	
"Gamma" of transfer character	istics	≈ 0,95		
	XQ 1470	XQ 1472		
	XQ 1471	XQ 1473	and the second	
Resolution				
at center of picture	550	550	TV line	2000
at corner of picture	500	500	TV line	s
Signal output current	200	200	nA	
Signal uniformity	10	10	%	
Modulations depth at 5 MHz	25	25	%	C
Lag after 60 ms	7	10	%	(
Sensitivity	2600	2600	µA/Im	(
Faceplate illumination	1	1	Lux	
Signal output current (white)	150	150	nA	C
Signal output current (red)	110	110	nA	Ċ
Signal output current (green)	26	26	nA	C
Signal output current (blue)	17	17	nA	đi

Order Numbers

Туре	Order-No.	Accessories	Order-No.
XQ 1470	Q 72 - C 8022	Sockets	
XQ 1471	Q 72 - D 8022	Rö Fsg 1033	Q 81 - X 133
XQ 1472	Q 72 - C 8023	Rö Fsg 1033	Q.81 - X 134
XQ 1473	Q 72 - C 8023		
		Deflection and focu	is assembly

KV 19G Q 3006 - X 5

Notes

- ① If the maximum variation of the heater voltage exceeds the absolute limits of \pm 5% the operating performance of the tube will be impaired and its life shortened.
- This capacitance, which is effectively the output impedance of the tube (resistive component approx. 100 MΩ) increases when the tube is mounted in the deflecting-yoke and focusing coil assembly.
- ③ Additional air cooling or heat protection filter between optics and faceplate may be necessary.
- Without blanking voltage on grid No. 1.
- ⑤ Optimum focusing of the electron beam is obtained by adjusting the grid No. 4 voltage.
- In Recommended signal electrode voltage is noted on the individual test sheet within the range of 20 to 50 volts. Switch off the signal electrode voltage automatic,
- ⑦ The modulation depth is measured at the picture center at 5 MHz in comparison with 0,5 MHz. The modulation depth depends on the signal output current, which is 200 nA.
- Signal output current of 200 nA at 60 ms after illumination is removed.
- At a color temperatur of 2854 K tungsten-filament lamp.
- Unfiltered illumination incident on the faceplate is 1 lux. The optical filter interposed between the tube and a light source.

red = Schott OG2/3 mm, green = Schott VG9/1 mm, blue = Schott BG23/3 mm.

Target Defect Specification

General

This specification regards to target defects of vidicon camera tubes visible in the scanned area.

Glas defects of the face plate are not dealt with.

Test Conditions

The tube shall be best centred and focused according to the operating data and adjusting instructions.

The illumination (color temperature 2854 K shall be adjusted to a signal current of 200 nA (100% white signal).

The target voltage must be taken from the test sheet.

Temperatur of the face plate 30°C (± 2°).

Monitor adjusted for a non-blooming white

The video amplifier bandwidth shall be 5.5 MHz.

Target Zones

A uniformly illuminated field with an aspect ratio of 3:4 and a scanned area of $6.6 \text{ mm} \times 8.8 \text{ mm}$ shall be displayed on the target of the vidicon camera tube. According to the following drawing the scanned area is divided into the two zones I and II.

Target Defects Estimation

The target defect size is measured in percent of the picture hight. The equivalent numbers of raster lines in a 625 lines TV-system and in a 525 lines TV-system resp. are indicated for comparison purposes only.

Inspection for target defects to be performed with illuminated and nonilluminated target.

The minimum separation between two target defects must be greater than the diameter of the larger one, otherwise the combination is considered on the whole.

Target defects are not counted when their contrast expressed in % of picture white is less than 13% white spots, <28% black spots.

Blurred spots, streaks, stripes, mesh defects and mottled or grainy background are only permitted when their contrast expressed in % of picture white is less than 13%.

To obtain optimum picture quality or to avoid moire effects the tube may be rotated.

143

16

Allowable number, size and position of target defects

Туре				470			
		Target defects Target defects		Maxin	กบท เ	allowa	able number of target defects
size in percent of the picture hight	625 lines 525 lines		Zone		Zo	one II	
6.6 mm = 100%	system	system	0	0	0	0	
>1.2	1	-0	0	0	-	-	
$> 0.8 \text{ to} \leq 1.2$	> 5 to 7	4 to 6	0	2	1	2	
$> 0.2 \text{ to} \leq 0.8$	> 1 to 5	1 to 4	3	4	3	4	
≤0.2	≦ 1	< 1	are not considered unless concentration cause smudge appearance				

Operating Considerations

The tube must be located in the coil assembly such that a line between the longitudinal axis of the tube and the short pin is parallel to the direction of horizontal deflection.

To obtain high signal uniformity the magnetic fields of the deflection must be adjusted such that the electrons strike the faceplate perpendicularly across the whole area.

Connection to the faceplate is usually made by a suitable spring contact mounted in the coil assembly. The connecting cable of the pre-amplifier should be low capacitance.

The following must be observed when firing up the tube for the first time:

- ¹) Set the grid 1 voltage negative, until the plcture cutoff is reached. Then set the electrode voltages as indicated as operating voltages with a signal electrode voltage which is noted on the individual test sheet. The deflection power must be sufficient to cause the electron beam to scan a maximum area of the photoconductive layer.
- ²) After mounting a dimmed lens reduce the grid 1 voltage until the scanning beam recharges even the brightest spots of the picture. Then improve the picture sharpness with the aid of the focusing field strengh and varying the distance between camera and optics.
- ³) Adjust the alignment grid-4-voltage. After this adjustment it may be necessary to reset the horizontal and vertical centering.
- ⁴) Adjust the beam current by varying grid 1 voltage so that the brightest picture point is recharged. An unnecessary increase in beam current reduces the picture quality.

Dark Current

The dark current is as low as 1 nA, or below. No picture quality deterioration is caused by the increase of environmental temperature because the approximate dark current ist within 10 nA even at 60°C.

Target Voltage

Target voltage must be adjusted to the optimum value refering to the value noted on the individual test sheet. Increase the target voltage to some voltage when a negative after-image is apt to appear shifting an incident pattern and taking white back ground. If the target voltage is set to too high voltage white spots increase in the picture.

As shown in figures the signal-output current tends to saturate with the target voltage and therefore has a near constant sensitivity. The curve shows the dark current increase. When the dark current becomes extremely large, the picture quality goes wrong.

Photosensitivity and Light Transfer Characteristics

Figures shows the light transfer characteristics with the faceplate illumination using a standard tungsten lamp of 2854 K in colour temperature. Red, Green and Blue sensitivities are measured by interposing the optical filter between the tube and the tungsten lamp.

XQ 1470 Q 1473 tr

Lag

The build up-and decay-lag at different signal currents are shown in figures respectively. Improvement of lag, especially build up lag, is possible by employing the bias-light when taking a low light level scene and, consequently, low signal current. (See curve (b), (e) and (d) in figures). The intensity of the bias-light should be adjusted so as to take a output current of 20 nA or above.

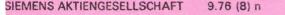
There is no difference of the influence by spectral wavelength.

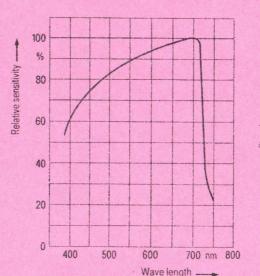
If the adjustment of optical lens system of color TV camera is made to have the same level of signal currents in each of the red, green and blue color channels, no differences of lag characteristic occur in the color channels, so that the tail or head of a moving white object does not have any special color, and attract little attention of the human eye. If the optical lens system is designed on the basis of the colour temperature of 6000 K the same level of signal output current will be obtained.

Signal Uniformity

Shading, which is usually observed in the conventional vidicon, is not seen. On account of the saturated signal current-voltage characteristics, signal output currents do not make so much difference throughout the scanning area, even if there is a landing error of electron beam causing a difference of electric fields across the photoconductive target between center and corner.

Flare


The color of the photoconductor is black without giving any harmful reflection of light from the surface of the photoconductor in the visible light region, therefore the stable black level can be obtained.


Beam Current Setting

The beam current is recommended to adjust to twice as much as the value to just discharge the highlight signal current on the typical operation data. Flowing more over the required beam current may decrease the amplitude response characteristics.

Burn-In Damage

At the optimum target voltage, damages caused by excess light, which is usually observed n the conventional vidicon, are seldom seen. When, however, after-image due to the ncidence of strong bright spots are observed, operate the tube for a while with uniform Ilumination at the higher target voltage so as to fade off.

Typical dark current -

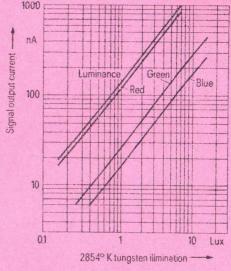
Dark current

10-1

0

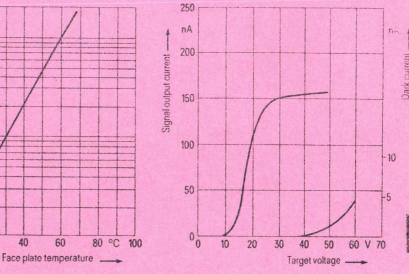
20

40

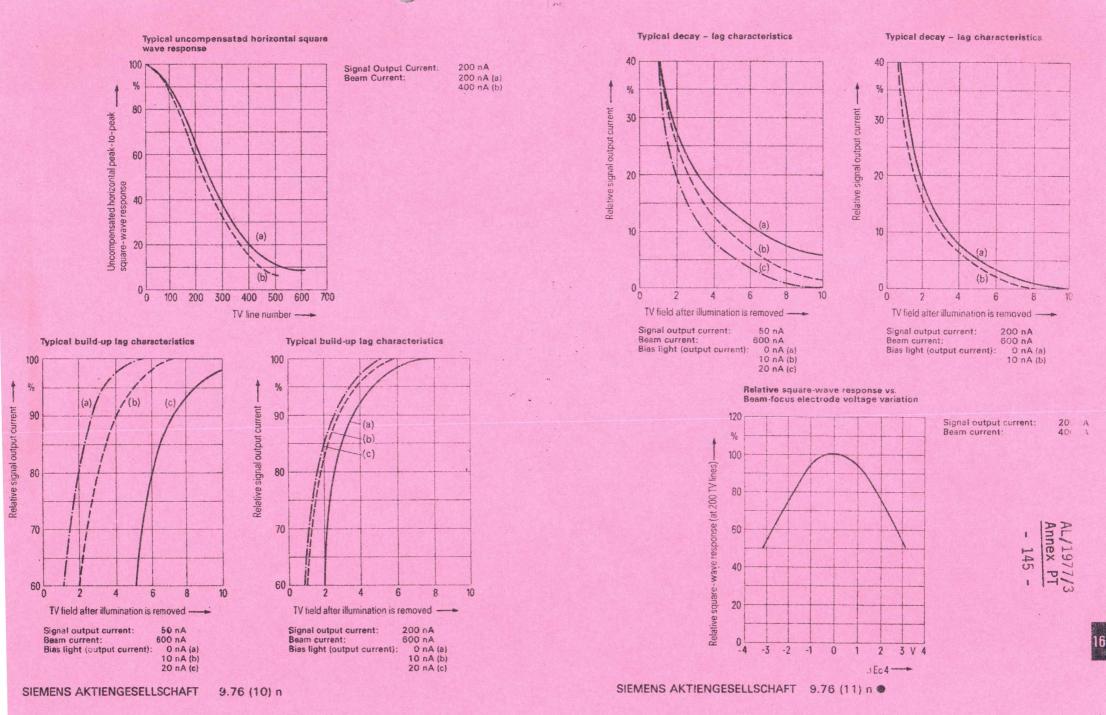

AL/1977, Annex P

144

Temperature characteristics


Typical spectral response characteristics

Typical light transfer characteristics


Luminance:	2854K	no filter
Red:	Schott	0G - 2 3 mm
Grean:	Schott	VG - 9 1 mm
Blue:	Schott	BG - 23 3 mm

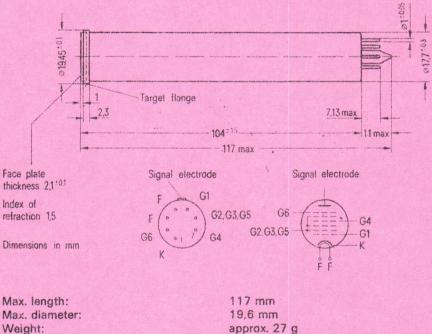
Typical signal output current as a function of target voltage

(Q 1470 (Q 1478 6

4 2	NOVEMBRE 1	976	
12	14 6 4	AL/1977/3 Annex PT	XQ 1480 to XQ 1484
		- 146 -	

2/3"-Vidicon camera tube with cadmiumselenid-target

Vidicon camera tube with electrostatic focus and magnetic deflection. Useful faceplate of 6,6 mm \times 8,8 mm with a 3 : 4 aspect ratio. The separate mesh electrode G6 improve modulations depth and uniform resolution of the tube. The γ -value of the photoconductive layer is approximately 1 and constant over a wide range of the signal output current. By high sensitivity the tube has a very good resistance by extreme illumination and features short lag, high modulation depth and very low dark current.

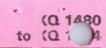

Depending on the tequired picture quality the following types are available:

XQ 1480 Live broadcast color-cameras

- XQ 1481 General industrial color-camera TV applications,
 - quality grade I

XQ 1482 General industrial color-camera TV applications, quality grade II type series with very low lag

XQ 1483 Live broadcast, color-cameras, high resolution, grade I XQ 1484 Live broadcast, color-cameras, high resolution, grade II



Mounting and transport position:

Base: Socket: approx. 27 g 7 pin miniatur (Jedec E7-91) Rö Fsg 1034 (for printed circuits) Rö Fsg 1033 (with solder tags) any

9.76 (1) n

mm

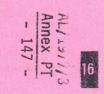
	xa	1480	
to	XQ	1484	

9			
voltage	6.3	V	1
current	95	mA	
	indirect by ac or parallel supply	dc, series or	
teristics		N. S. S. F.	
ectrode capacitance			
electrode to all other	2	pF	2
I response	see diagram		
im of the spectral response	see diagram		
g method	magnetic		
ion method	magnetic		
diameter of the			
onductive layer	11	mm	
size of rectangular image			

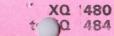
6,6 × 8,8

spect ratio)

um ratings (absolute values) is scanning of the 6.6 mm \times 8.8 mm area of the photoconductive layer must be


	the main shall be a set from photoestand some shall be a set of the set	and the rest of the Destination of the second se		and the second s	
. 1 voltage				in the	
itive	max	0	V		
ative	max.	-300	V		
). 2, 3, 5 voltage	max.	350	V		· · .
). 4 voltage	max.	350	V		
b. 6 voltage	max.	650	V		
electrode voltage	max.	50	V		
eam current	max.	900	nA		
eater to cathode voltage					
iter negative					
respect to cathode	max.	125	V		
iter positive					
n respect to cathode	max.	10	V		
ite illumination	max.	1000	Lux		
ite temperatur	max.	-20 to +60	°C	3	

Typical operation (Faceplate temperature approx. 25 to 3	50	°C	:)
--	----	----	----


Scanned area		6,6×8,8	mm	
Grid No. 1 cutoff voltage		-45 to -100	V	
Grid No. 2, 3, 5 voltage		300	V	
Grid No. 4 voltage		≈ 70	V	(
Grid No. 6 voltage		500	V	
Blanking voltage applied to				
Grid No. 1	min.	80	V	
Blanking voltage applied to				
cathode	min.	20	V	
Signal electrode voltage		adjust	V	1
Dark current		0,5	nA	
'Gamma" of transfer character	ristics	≈ 0,95		
	XQ 1480	XQ 1483		
	XQ 1481	XQ 1484		
	XQ 1482	AG ITOT		
Resolution				
at center of picture	550	550	TV lines	5
at corner of picture	500	500	TV lines	5
Signal output current	300	300	nA	
Signal uniformity	10	10	2%	
Modulations depth at 5 MHz	25	35	%	(
Lag after 60 ms	6	6	%	
Sensitivity	2600	2600	"IA/Im	1
Faceplate illumination	1	1	Lux	
Signal output current (white)	150	150	nA	
	110	110	nA	
Signal output current (red)				
Signal output current (red) Signal output current (green)	26	26	nA	(

Order Numbers

Туре	Order-No.	Accessories	Order-No.
XQ 1480	Q 72 - B 8024	Sockets	
XQ 1481	Q 72 - C 8024	Rö Fsg 1033	Q 81 - X 133
XQ 1482	Q 72 - D 8024	Rö Fsg 1033	Q 81 - X 134
XQ 1483	Q 72 - B 8025		
XQ 1484	Q 72 - C 8025	Deflection and focu	is assembly
		KV 17 D	Q 3006 - X 15

.

Notes

- If the maximum variation of the heater voltage exceeds the absolute limits of ± 5% the operating performance of the tube will be impaired and its life shortened.
- This capacitance, which is effectively the output impedance of the tube (resistive component approx. 100 MΩ) increases when the tube is mounted in the deflecting-yoke and focusing coil assembly.
- ③ Additional air cooling or heat protection filter between optics and faceplate may be necessary.
- Without blanking voltage on grid No. 1.
- ⑤ Optimum focusing of the electron beam is obtained by adjusting the grid No. 4 voltage.
- In Recommended signal electrode voltage is noted on the individual test sheet within the range of 20 to 50 volts. Switch off the signal electrode voltage automatic.
- ⑦ The modulation depth is measured at the picture center at 5 MHz in comparison with 0,5 MHz. The modulation depth depends on the signal output current, which is 300 nA.
- Signal output current of 200 nA at 60 ms after illumination is removed.
- At a color temperatur of 2854 K tungsten-filament lamp.
- Infiltered illumination incident on the faceplate is 1 lux. The optical filter interposed between the tube and a light source.

red = Schott OG2/3 mm, green = Schott VG9/1 mm, blue = Schott BG23/3 mm.

Target Defect Specification

General

This specification regards to target defects of vidicon camera tubes visible in the scanned area.

Glas defects of the face plate are not dealt with.

Test Conditions

The tube shall be best centred and focused according to the operating data anc adjusting instructions.

The illumination (color temperature 2854 K shall be adjusted to a signal current of 200 nA (100% white signal).

The target voltage must be taken from the test sheet.

Temperatur of the face plate 30°C (± 2°).

Monitor adjusted for a non-blooming white.

The video amplifier bandwidth shall be 5.5 MHz.

Target Zones

A uniformly illuminated field with an aspect ratio of 3 : 4 and a scanned area of 6.6 mm \times 8.8 mm shall be displayed on the target of the vidicon camera tube. According to the following drawing the scanned area is divided into the two zones I and II.

Target Defects Estimation

The target defect size is measured in percent of the picture hight. The equivalent numbers of raster lines in a 625 lines TV-system and in a 525 lines TV-system resp are indicated for comparison purposes only.

Inspection for target defects to be performed with illuminated and nonilluminated target.

The minimum separation between two target defects must be greater than the diameter of the larger one, otherwise the combination is considered on the whole.

Target defects are not counted when their contrast expressed in % of picture white is less than 13% white spots, <28% black spots.

Blurred spots, streaks, stripes, mesh defects and mottled or grainy background are only permitted when their contrast expressed in % of picture white is less than 13%.

To obtain optimum picture quality or to avoid moire effects the tube may be rotated.

AL/1977, Annex P

149

llowable number, size and position of target defects

		and the second se							
/pe	•				xa				
arget defect ze in percent	Target defects size in TV lines	Target defects size in TV lines	M	Maximum allowable number of target defects					
f the picture			Zo	Zone Zone		ne			
ight .6 mm = 00%	625 lines system	525 lines system	1	11	1	- 11			
0.8	> 5	>4	0	0	0	0			
0.6 to ≤ 0.8	>4 to 5	3 to 4	0	0	0	2			
0.2 to ≤ 0.6	> 1 to 4	1 to 3	2	3	3	4			
0.2	0.2 ≦1 <1				consi appo		i unless concentration causes a ce		
уре			xa	482					
arget defect		Target defects size in TV lines	M	laxim	um a	llowal	ble number of target defects		
ize in percent f the picture	size in i v lines	Size in TV lines	Zo	ne					
ight .6 mm = 00%	625 lines system	525 lines system	1	11					
1.2	> 7	>6	0	0					
$0.8 \text{ to} \leq 1.2$	> 5 to 7	4 to 6	1	2					
0.2 to ≤ 0.8	> 1 to 5	1 to 4	3	4					
≨0.2	≦ 1	< 1	and the second second		cons e app		d unless concentration causes a ce		
	A support to the test for the second se								

arget defects outside the scanned area will not be counted.

Operating Considerations

The tube must be located in the coil assembly such that a line between the longitudinal axis of the tube and the short pin is parallel to the direction of horizontal deflection.

To obtain high signal uniformity the magnetic fields of the deflection must be adjusted such that the electrons strike the faceplate perpendicularly across the whole area.

Connection to the faceplate is usually made by a suitable spring contact mounted in the coil assembly. The connecting cable of the pre-amplifier should be low capacitance.

The following must be observed when firing up the tube for the first time:

- 1) Set the grid 1 voltage negative, until the picture cutoff is reached. Then set the electrode voltages as indicated as operating voltages with a signal electrode voltage which is noted on the individual test sheet. The deflection power must be sufficient to cause the electron beam to scan a maximum area of the photoconductive layer.
- ²) After mounting a dimmed lens reduce the grid 1 voltage until the scanning beam recharges even the brightest spots of the picture. Then improve the picture sharpness with the aid of the focusing field strengh and varying the distance between camera and optics.
- Adjust the alignment grid-4-voltage. After this adjustment it may be necessary to reset the horizontal and vertical centering.
- ⁴) Adjust the beam current by varying grid 1 voltage so that the brightest picture point is recharged. An unnecessary increase in beam current reduces the picture quality.

Dark Current

The dark current is as low as 1 nA, or below. No picture quality deterioration is caused by the increase of environmental temperature because the approximate dark current ist within 10 nA even at 60°C.

Target Voltage

Target voltage must be adjusted to the optimum value refering to the value noted on the individual test sheet. Increase the target voltage to some voltage when a negative after-image is apt to appear shifting an incident pattern and taking white back ground. If the target voltage is set to too high voltage white spots increase in the picture.

As shown in figures the signal-output current tends to saturate with the target voltage and therefore has a near constant sensitivity. The curve shows the dark current increase. When the dark current becomes extremely large, the picture quality goes wrong.

Photosensitivity and Light Transfer Characteristics

Figures shows the light transfer characteristics with the faceplate illumination using a standard tungsten lamp of 2854 K in colour temperature. Red, Green and Blue sensitivities are measured by interposing the optical filter between the tube and the tungsten lamp.

llowable number, size and position of target defects

		In the second second second second	and weather	1 States and the	aller 2 and					
/ре					XQ 1 XQ 1					
rget defect ze in percent	Target defects size in TV lines		M	Maximum allowable number of target defects						
the picture	Size mit v mies	5128 11 1 1 11105	Zo	Zone Zone		ne				
ght 6 mm = 00%	625 lines system	525 lines system	I		1	. 11				
0.8	> 5	>4	0	0	0	0				
0.6 to ≦ 0.8	> 4 to 5	3 to 4	0	0	0	2				
0.2 to ≦ 0.6	> 1 to 4	1 to 3	2	3	3	4				
0.2 ≦1 <1					consi appe		f unless concentration causes a ce			
уре			xa	1482						
arget defect	Target defects		M	laxim	um al	llowa	ble number of target defects			
ze in percent f the picture ight	size in TV lines		Zo	ne						
.6 mm = 00%	625 lines system	525 lines system	1	11						
1.2	> 7	>6	0	0						
0.8 to ≤ 1.2	> 5 to 7	4 to 6	1	2						
0.2 to ≤ 0.8	> 1 to 5	1 to 4	3	4						
≦0.2	≤ 1	< 1			consi e app		d unless concentration causes a ce			
	and make the state of the state									

arget defects outside the scanned area will not be counted.

Operating Considerations

The tube must be located in the coil assembly such that a line between the longitudinal axis of the tube and the short pin is parallel to the direction of horizontal deflection.

To obtain high signal uniformity the magnetic fields of the deflection must be adjusted such that the electrons strike the faceplate perpendicularly across the whole area.

Connection to the faceplate is usually made by a suitable spring contact mounted in the coil assembly. The connecting cable of the pre-amplifier should be low capacitance.

The following must be observed when firing up the tube for the first time:

- 1) Set the grid 1 voltage negative, until the picture cutoff is reached. Then set the electrode voltages as indicated as operating voltages with a signal electrode voltage which is noted on the individual test sheet. The deflection power must be sufficient to cause the electron beam to scan a maximum area of the photoconductive layer.
- ²) After mounting a dimmed lens reduce the grid 1 voltage until the scanning beam recharges even the brightest spots of the picture. Then improve the picture sharpness with the aid of the focusing field strengh and varying the distance between camera and optics.
- ³) Adjust the alignment grid-4-voltage. After this adjustment it may be necessary to reset the horizontal and vertical centering.
- ⁴) Adjust the beam current by varying grid 1 voltage so that the brightest picture point is recharged. An unnecessary increase in beam current reduces the picture quality.

Dark Current

The dark current is as low as 1 nA, or below. No picture quality deterioration is caused by the increase of environmental temperature because the approximate dark current ist within 10 nA even at 60°C.

Target Voltage

Target voltage must be adjusted to the optimum value refering to the value noted on the individual test sheet. Increase the target voltage to some voltage when a negative after-image is apt to appear shifting an incident pattern and taking white back ground. If the target voltage is set to too high voltage white spots increase in the picture.

As shown in figures the signal-output current tends to saturate with the target voltage and therefore has a near constant sensitivity. The curve shows the dark current increase. When the dark current becomes extremely large, the picture quality goes wrong.

Photosensitivity and Light Transfer Characteristics

Figures shows the light transfer characteristics with the faceplate illumination using a standard tungsten lamp of 2854 K in colour temperature. Red, Green and Blue sensitivities are measured by interposing the optical filter between the tube and the tungsten lamp.

XQ 1480 XQ 1484

Lag

The build up-and decay-lag at different signal currents are shown in figures respectively. Improvement of lag, especially build up lag, is possible by employing the bias-light when taking a low light level scene and, consequently, low signal current. (See curve (b), (e) and (d) in figures). The intensity of the bias-light should be adjusted so as to take a output current of 20 nA or above.

There is no difference of the influence by spectral wavelength.

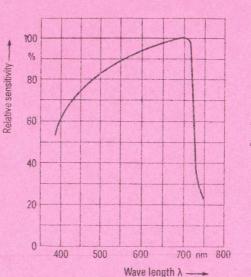
If the adjustment of optical lens system of color TV camera is made to have the same level of signal currents in each of the red, green and blue color channels, no differences of lag characteristic occur in the color channels, so that the tail or head of a moving white object does not have any special color, and attract little attention of the human eye. If the optical lens system is designed on the basis of the colour temperature of 6000 K the same level of signal output current will be obtained.

Signal Uniformity

Shading, which is usually observed in the conventional vidicon, is not seen. On account of the saturated signal current-voltage characteristics, signal output currents do not make so much difference throughout the scanning area, even if there is a landing error of electron beam causing a difference of electric fields across the photoconductive target between center and corner.

Flare

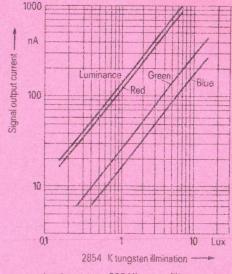
The color of the photoconductor is black without giving any harmful reflection of light from the surface of the photoconductor in the visible light region, therefore the stable black level can be obtained.

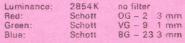

Beam Current Setting

The beam current is recommended to adjust to twice as much as the value to just discharge the highlight signal current on the typical operation data. Flowing more over the required beam current may decrease the amplitude response characteristics.

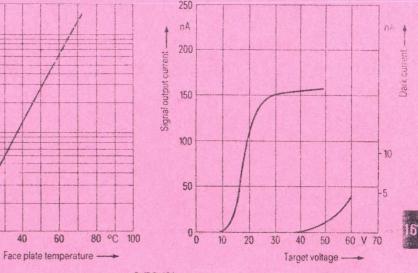
Burn-In Damage

At the optimum target voltage, damages caused by excess light, which is usually observed in the conventional vidicon, are seldom seen. When, however, after-image due to the incidence of strong bright spots are observed, operate the tube for a while with uniform illumination at the higher target voltage so as to fade off.




Typical spectral response characteristics

Typical light transfer characteristics


XQ 1480

to XQ 1484

Typical signal output current as a function of target voltage

SIEMENS AKTIENGESELLSCHAFT 9.76 (8) n

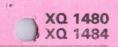
20

40

60

Typical dark current -

10


0,1

0

Dark

Temperature characteristics

9.76 (9) n

.

SIEMENS AKTIENGESELLSCHAFT

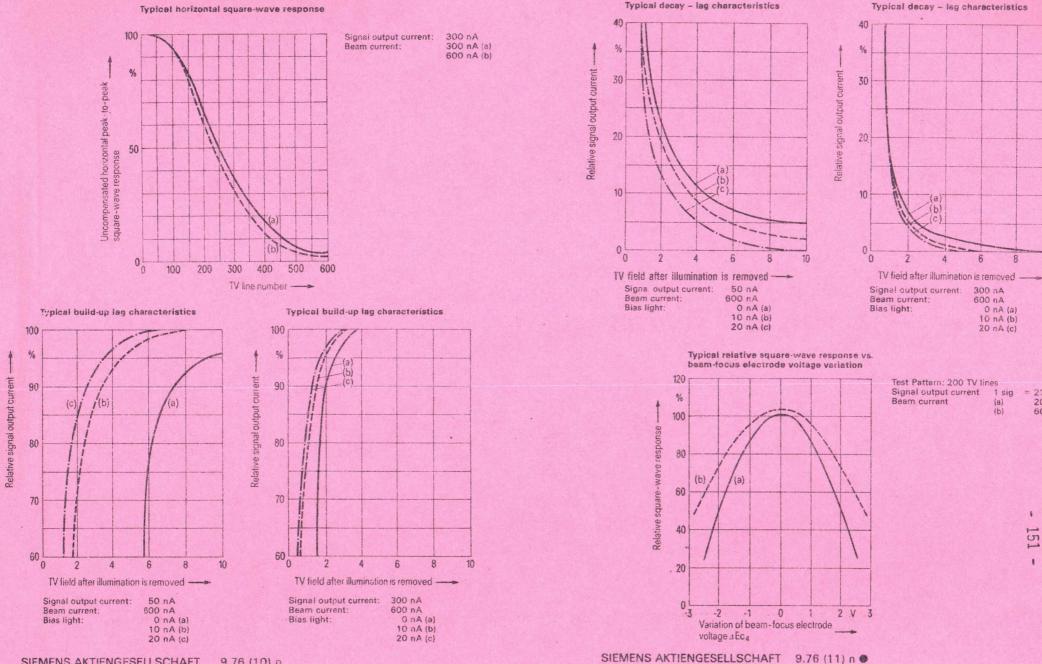
9.76 (10) n

10

= 200 nA

200 nA

600 nA


Innex P 11/1977/

151

8

(a)

(b)

