

The Registered Number of this Handbook is :

CH 6268

Any correspondence concerning additional copies, new sheets, etc., should bear this number, and be addressed to:

Standard Telephones and Cables Limited

 COMPONENTS GROUPEDINBURGH WAY, HARLOW, ESSEX

For technical enquiries please see Page A-2

Components Handbook

Volume 3

Microwave Devices
Travelling-Wave Tubes
Klystrons
Varactor Diodes
Coaxial and H-Wave Oscillators
Microwave Power Indicator Tubes
Thermocouples

STC

Preface

This volume is one of a set that provides comprehensive technical information on the full range of components manufactured and marketed by STC Components and S.T.C. Semiconductors Ltd.

A regular amendment service ensures that the data in these volumes is kept up to date with changes and additions. Data marked with an ' M ' or 'Maintenance' refer to components that are only supplied as replacements for use in existing equipment and should not be used when designing new equipments.

Enquiries regarding this Handbook service should be addressed to Standard Telephones and Cables Ltd., Department 14531. Components Marketing Division. Edinburgh Way. Harlow. Essex or Telephone Harlow (STD code 0279 6) 26811, Ext. 249.
Technical and commercial enquiries concerning specific products should be addressed to the Sales Office of the appropriate Division.

Ref.	Sales Office Address	Telephone No.	Extensions Technical	for enquiries Commercial
1	Capacitor Division Brixham Road, Paignton, Devon	Paignton 50762 \dagger	Capacitors 477 Film Circuits 523	$\begin{aligned} & 418 \\ & 418 \end{aligned}$
2	Electro-Mechanical Division West Road. Harlow, Essex	Harlow 26811*	$\begin{aligned} & 643 \\ & 663 \end{aligned}$	$\begin{aligned} & 636 \\ & 542 \end{aligned}$
3	Magnetic Materials Division Edinburgh Way, Harlow, Essex	Harlow 26811*	735	735
4	Modular Electronics Division Cefndy Road, Rhyl, Flint	$\begin{aligned} & \text { Rhyl } \\ & 4507 \end{aligned}$	13	13
5	Potentiometer Division Broad Lane, Leeds 13, Yorkshire	Pudsey 77261	7	15
6	Quartz Crystal Division Edinburgh Way. Harlow, Essex	Harlow 26811^{*}	585	560
7	Rectifier Division Edinburgh Way. Harlow. Essex	Harlow 26811*	$\begin{array}{r} 449 \\ 253 \\ \hline \end{array}$	$\begin{array}{r} 446 \\ 251 \\ \hline \end{array}$
8	Thermistor Division Edinburgh Way, Harlow. Essex	Harlow 26811*	502	503
9	Valve Division Brixham Road, Paignton, Devon	Paignton $50762 \dagger$	536	532
10	S.T.C. Semiconductors Ltd. Footscray. Sidcup, Kent	$\begin{aligned} & \text { Footscray } \\ & 3333 \ddagger \end{aligned}$	524	571

[^0]
List of Products

The following list gives the products on which data is included in the Components Handbook, the volume in which the data appears and the Sales Office Code (see previous page) to which technical and commercial enquiries should be addressed.

Product H	Handbook Volume	Sales Office
Brimistors (see Thermistors)	7	8
Capacitors	4	1
Crystal Filters	8	6
Diodes and Photo Devices	6A	10
Film Circuits	5	1
Hermetic Seals	1	9
Infra-Red Filters	1	7
Klystrons	3	9
Knobs and Dials	7	5
Lamps	1	9
Logic Modules	5	4
Magnetic Materials	9	3
Microwave Oscillators	3	9
Microwave Tubes	3	9
Ministac	5	4
Photo Devices (see Diodes and Photo Devices)	6 A	10
Potentiometers	7	5
Quartz Crystal Units	8	6
Rectifiers, Selenium	5	7
Rectifiers, Silicon	6 A	10
Rectifiers, Silicon Assemblies	5	7
Rectifiers, Valve	2 C	9
Relays	10	2
Resistors, Carbon Film	7	7
Resistors, Temperature Sensitive (see Thermistors)	rs) 7	8
SafeTstaC Selenium Surge Suppressors	5	7
Silistors (see Thermistors)	7	8
Solenoids	10	2
Switches	10	2
Thermal Delay Switches	1	9
Thermistors	7	8
Thermocouples	3	9
Thyristors	6 A	10
Transformers	9	3 or 7
Transistors	6B	10
Travelling Wave Tubes	3	9
Vacuum Gauges	1	9
Valves	2A. B and C	9
Varactor Diodes	3	9
Wound Components	9	3 or 7
Zener Diodes (see Diodes and Photo Devices)	6A	10
August 1968		A-2

SPECIAL VALVES

Microwave Tubes

MICROWAVE TUBE CODES

STC Reference Code System
OSCILLATORS
Example V238A/1K

AMPLIFIERS

Example W5/2G

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230 London Sales Office, Telephone: 01-300 3333

Telex: 21836
C O M P O N E N T S \quad I

V/Gen.

SPECIAL VALVES

Velocity-Modulated Oscillators

General Information

Coaxial Line Oscillators

Reference	Code	Frequency Range GHz	Minimum Power Output W	Minimum Electronic Tuning Range MHz
	V233A/1K	2.7 to 4.2	0.3	
V233A/1K	V235A/1K	2.7 to 4		
V235A/1K	V238A/1K	3.5 to 4.3	0.5	± 1
V238A/1K	V23A/1KY	3.52 to 4.255	0.55	± 1
V238A/1KY	V243A/2FS	4.1 to 4.6	0.55	± 1
V243A/2FS	V243/3FS	V243A/3FS	4.1 to 4.6	0.75
V243		± 1		

H-Wave Oscillators

V265A/1M	V265A/1M	5.85 to 7.5	0.15	
V271C/3M	V271C/3M	6.85 to 7.35	0.8	± 8.5
V275C/3M	V275C/3M	$\begin{cases}7.25 \text { to } 7.77 & 0.8 \\ & 7.25 \text { to } 8.3\end{cases}$	0.3	$\pm .5$
			± 5	

General Information

GLASS

Fig. I.-Cross section of valve assembly

INTRODUCTION

Coaxial line and H -wave oscillators are forms of single transit klystrons which combine the higher efficiency and frequency stability associated with the single transit type with the convenience of virtually only one resonant cavity to tune as normally associated with the reflex type of klystron.

PRINCIPLES OF OPERATION

An electron beam, accelerated from the cathode by a positively biased screen grid, is focused by grid and magnetic field into a beam, which traverses two interaction gaps in a resonator before reaching the anode, or collector.

In the frequency range 500 to $5000 \mathrm{Mc} / \mathrm{s}$ the resonator takes the form of a section of coaxial line with a hollow centre conductor or drift tube-interaction gaps are between inner and outer conductor as shown in fig. 1.

The frequency of oscillation is determined by the cavity to which the structure is coupled, and by the potential difference between resonator and cathode or between inner conductor and cathode in those tubes where the coaxial line is terminated by an open rather than short circuit. Essentially the beam of electrons is bunched by the r.f. field between outer and inner conductors in the first gap and sustain the r.f. oscillation if the bunches arrive at the second gap when the r.f. field is maximum retarding.
Variation of resonator or drift tube voltages affords a means of frequency modulation.

H-wave oscillators designed for frequencies exceeding $5000 \mathrm{Mc} / \mathrm{s}$ have a resonator which takes the form of a slotted waveguide, with drift tube between the slots, instead of a slotted coaxial line.

Fig. 2.-Circuit for stabilisation of V.M. oscillator tube current

CONNECTIONS

Resonator. For convenience this is usually operated at earth potential and the cathode at a controlled negative potential. When frequency modulation is to be achieved by variation of resonator voltage the resonator disc may be insulated from the cavity by a mica washer which thus forms the dielectric of a capacitor which offers a low impedance path to the r.f. signal.

Drift Tube. In many types this is internally connected to the resonator, but where there is a separate connection it is preferable to use the variation of drift tube voltage alone to obtain maximum output, also to apply frequency modulation signals to it, the d.c. bias being such that the peak drift tube voltage does not exceed the fixed resonator voltage.

Collector (Anode). Applied voltage is usually above that applied to resonator to avoid secondary emission effects.

Screen Grid. The positive bias is set to determine the cathode current. For unattended operation, it is convenient for constant beam current to be obtained by deriving screen voltage from a shunt regulator circuit (fig. 2), with feedback related to the oscillator tube cathode current. Resistor R1 may be zero for applied voltagesbelow 250 V . For higher values R2 may be replaced by a 150 V stabiliser (e.g. OA2) and R1 chosen to limit the stabiliser current to a suitable valve.

Precaution. The screen grid voltage should never exceed the resonator potential except marginally when permitted by an individual valve specification. Due to the heavy cathode loading in these tubes, high screen grid potentials must be avoided during periods of cathode heating: it is particularly important to delay the rise of screen voltage after a temporary shut down period or h.t. trip.

Introduction

CONTINUED

Grid 1. This grid has a negative bias applied to assist in the forming of a narrow ribbon electron beam.

Cathode. The cathodes of V.M. Oscillator tubes are necessarily required to give a high density of emission, and a cathode perheating period of at least 30 seconds (or longer if specified) should be allowed before electrode voltages (in particular the screen grid voltage) are applied.

FOCUSING

Focusing is achieved by grid voltages and maintained across the path of the beam by a magnetic field. This is provided by a permanent horseshoe magnet with a field exceeding 1200 oersteds across the gap. The magnet is mounted on the cavity for coaxial line oscillators but supplied pre-set in position on the valve itself for H -wave types.
For B7G based coaxial line oscillators the use of magnet type Magloy P231677 (Preformations, Ltd.) is recommended. The magnet must be aligned to obtain the highest collector current for a given cathode current. Three holes or notches in the valve resonator disc locate on pins fixed to the valve clamping plate.
For quantity production of cavities, special valves can be supplied for magnet alignment: otherwise at least three but preferably six valves should be used to establish the initial alignment.

Once the magnet has been aligned, and has been securely clamped relative to the locating pins no further adjustment will be necessary for a given valve type.

MODES OF OPERATION

Tube Mode. In order that the bunches of electrons shall arrive in the optimum phase at the second gap, the time taken for them to traverse the drift space is $5,9,13,17$, etc. quarter periods for coaxial line tubes and 3, 7, 11, 15, 19 quarter periods for H -wave tubes and these numbers are referred to the mode number. They differ by a half period between the two types because in the coaxial line tube the r.f. field is radial and therefore in opposite directions across the the two gaps at any instant whereas in the H -wave tubes, which operate in the H_{01} mode of propagation, the r.f. field is across the waveguide in the same direction as (or opposing) the electron beam; therefore, at any instant, its direction is the same in the two gaps between inner and outer conductors.

Introduction

CONTINUED

CIRCUIT MODE-COAXIAL LINE TUBES

(a) Coaxial Line Cavities. The circuit mode is defined in terms of the fractions of wavelength between the cavity tuning piston and the open or short circuit termination of the coaxial line within the valve.

For a valve with open circuit termination of coaxial line within it (e.g. V190C/1M, fig. 3a) the circuit mode is an odd number of quarter wavelengths. For valves with short circuit termination of coaxial line within them (e.g. V231C/1K et seq, fig. 3b) the circuit mode is an even number of quarter wave lengths i.e. an integral number of half wave lengths.
(b) Waveguide Cavities (fig. 3c). The coupling between the valve resonator and a waveguide cavity is complex but for a given frequency of scillation the difference in positions of the tuning piston which tune to this frequency will be an integral number of $\lambda g / 2$ where λg is the waveguide wavelength corresponding to this frequency.
N.B.-For convenience, circuit lengths in the data sheets are quoted using the plane of the resonator disc or a plane through the longitudinal axis of the valve as a reference for giving cavity piston position since a point in the internal structure of a valve does not afford a simple reference.

GENERAL CHARACTERISTICS (Coaxial Line Tubes)

The following general characteristics are typical of most types at their normal operating conditions and are given for guidance.
Variation of beam current with grid voltage.

> Grid 1: $0.25 \mathrm{~mA} / \mathrm{V}^{0}$
> Grid 2: $0.5 \mathrm{~mA}_{/} \mathrm{V}^{*}$

Pulling figure $\simeq 30 \mathrm{kc} / \mathrm{s} \mathrm{mA}$ charge in beam current *except in case of type V190C/1M tube.

Bulb Temperature

Unless otherwise stated in the individual data sheet, the maximum temperature of the bulb at any point should not exceed $250^{\circ} \mathrm{C}$. The area of highest temperature of the bulb is normally in the immediate vicinity of the collector (anode).

Introduction

CONTINUED
(A) VALVE WITH OPEN CIRCUIT COAXIAL LINE: COAXIAL CAVITY.

(B) VALVE WITH SHORT CIRCUIT COAXIAL LINE: COAXIAL CAVITY.

(C) VALVE IN WAVEGUIDE CAVITY

Fig. 3.-Basic Resonator and Cavity Structure

SPECIAL VALVES

Velocity-Modulated Oscillator
Code: V233A/1K (CV2190)

The V233A/1K is a velocity modulated oscillator of the coaxial line type for operation in the frequency band 2.7 to 4.2 GHz .

The valve may be operated in the tuning cavity type 495-LVA-201 in which it will give the performance quoted in these data sheets.

RADIO FREQUENCY PERFORMANCE (Note 1)

Operating frequency range	2.7 to 4.2	GHz
Power output throughout the band, minimum	300	mW

NOTE 1.-A graph of typical power output versus frequency is shown in Figure 3.

TYPICAL OPERATING CONDITIONS (Note 2)

Frequency	$3 \cdot 6$	$4 \cdot 2$	GHz
Direct grid 1 voltage (Note 3)	-40	-40	V
Direct anode voltage (Note 4)	$\mathrm{V}_{\text {res }}+10$	$\mathrm{~V}_{\text {res }}+10$	V
Direct resonator voltage (Note 5)	285	380	V
Direct screen voltage (Note 4)	150	150	V
Direct cathode current (Note 4)	41	45	mA
Direct anode current (Note 4)	33	26	mA
Direct screen current	0.2	0.2	mA
Power output	850	500	mW

NOTE 2.-All voltages are with respect to the cathode.
NOTE 3.-The use of bias improves the proportion of cathode current which passes through the resonator and reaches the collector (anode).
NOTE 4.-The tube operates at a typical anode dissipation of 10 watts, providing also that the cathode current does not exceed 65 mA . If reduced power outputs can be tolerated operation with lower values of cathode current will increase the life of the valves.
NOTE 5.-A graph of resonator voltage versus frequency is shown in Figure 1.

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333 Telex: 21836
C $\begin{array}{lllllllllllllll}\mathrm{O} & \mathrm{M} & \mathrm{P} & \mathrm{O} & \mathrm{N} & \mathrm{E} & \mathrm{N} & \mathrm{T} & \mathrm{S} & \mathrm{G} & \mathrm{R} & \mathrm{O} & \mathrm{U} & \mathrm{P}\end{array}$

Code: V233A/1K (CV2190)

CONTINUED

CATHODE

Indirectly heated, oxide coated.

HEATER

Heater voltage (Note 6)
Heater current

		$6 \pm 5 \%$	V
	Nom. 0.30	Max. 0.33	A
	60	s	

NOTE 6.-The heater is usually supplied by a d.c. voltage or a r.m.s. equivalent at a frequency of 50 Hz . Frequencies greater than 1.5 kHz must not be used.

LIMIT RATINGS (Note 7)

Valve damage may result if any one of these ratings is exceeded.
Maximum mean input power to all electrodes other than heater 18 W
Direct cathode current 65 mA
Peak cathode current 0.5 A

Direct screen voltage
$400 \quad V$
Screen dissipation
1.5 W

D.C. SUPPLY (Note 7)

Electrode connections are made by a shrouded B7G socket plugging on to the base of the valve.

Direct grid 1 voltage	-40	V
Direct anode voltage	$\mathrm{V}_{\text {res }}+10$	V
Direct resonator voltage	150 to 420	V
Direct screen voltage range	0 to $\mathrm{V}_{\text {res }}+50$	V
Direct screen current maximum	5	mA

NOTE 7.-All voltages are relative to the cathode. The resonator is normally at earth potential and the cathode negative. Screen voltage should not exceed resonator voltage +50 , resonator voltage should not exceed anode voltage.

The valve can be operated with anode voltage equal to resonator voltage but there will be some loss in power output. It can also be operated with anode voltages up to $\mathrm{V}_{\text {res }}+40$ with slight increase in power output.

Code: V233A/1K (CV2190)

CAVITY TYPE 495-LVA-201-GENERAL DESCRIPTION

This approved cavity for the $\mathrm{V} 233 \mathrm{~A} / 1 \mathrm{~K}$ is of circular waveguide construction with a coaxial output leading to a Type " N " jack connector.

The waveguide is tuned to the required frequency by a piston with a rack and graduated scale calibrated in centimetres for precise adjustment.

The antenna of the valve enters the waveguide through the end face. Three holes punched in the valve resonator disc locate on pins fixed to the cavity clamping plate to locate the valve.

The coupling loop enters the cavity through the piston face.
The valve electron beam is focused by a permanent magnet of the horseshoe type which is clamped to the cavity.

The outline drawing of the cavity is shown in Fig. 8.

OPERATIONAL DATA FOR TUBE AND CAVITY 495-LVA-201

The coupling loop is preset at midband and gives satisfactory loading of the valve into 70Ω coaxial cable over a limited range, e.g. 3.6 to 4.2 GHz . The position of the loop can be altered by slackening the clamping screw, turning to the required position for maximum power output and reclamping.

The magnet of the 495-LVA-201 is aligned so that the best ratio of anode to cathode current is obtained. Thus no magnet readjustment is necessary when replacing valves.

Curves of circuit length L i.e. piston position as a function of frequency are plotted in Fig. 2.

Output Modulation

(a) Amplitude modulation

The voltage required is dependent upon both the particular operating conditions and the loading of the valve. For 100 per cent modulation it is only necessary to reduce the anode current to a value below the starting current of oscillation. (See below.)
Modulation of either the grid $\left(g_{1}\right)$ or the screen $\left(g_{2}\right)$ is permissible. Modulation voltages of between -50 and -200 applied to the grid will be found to be adequate. For the screen, however, positive modulating voltages of the same order are necessary, and, since the screen takes current, adequate modulation power should be provided.
(b) Frequency modulation

Although the valve is not specifically designed for frequency modulation, about ± 1 MHz is available by variation of the resonator voltage.

Code: V233A/1K (CV2190)

CONTINUED

USE OF V233A/1K CAVITIES OTHER THAN 495-LVA-201

These should take the form of the tuning cavity shown in Fig. 7. Operation is similar to that described for the 495-LVA-201. Output power is obtained over the whole range 2.7 to 4.2 GHz by means of a coupling loop placed either in the piston face (position A of Fig. 7) or at the valve end of the circuit (position B). In position A coupling is as the 495-LVA-201. In position B , however, it is usually necessary to make an adjustment of the loop orientation when tuning the oscillator over the frequency range. For applications where such adjustments of the loops are inadmissible the impedance of the loop must be transformed to that of the load by means of an appropriate impedance matching technique.

The valve will operate satisfactorily in other types of cavity with certain differences in performance.

The permanent magnet used to focus the electron beam may be of any suitable type which gives a uniform field of 1200 oersteds minimum over a 22 mm gap. The magnet must be aligned so that the best ratio of anode to cathode current is obtained. The three holes punched in the valve resonator disc locate on pins fixed to the valve clamping plate. Once the magnet has been aligned and has been securely clamped with respect to the locating pins, no further adjustment will be necessary when replacing valves. It is recommended that at least three, and preferably six, valves are used to establish the initial alignment of the magnet.

The anode current at which oscillations just start, when the valve is loaded only by the cavity, is referred to as the unloaded starting current, and serves as a useful measure of the efficiency of the tuning cavity. In Fig. 4 the unloaded starting current for a typical valve is plotted as a function of frequency using the recommended circuit.

To illustrate the importance of good tuning circuit construction a curve of power output versus the unloaded starting current of the valve cavity combination is given in Fig. 5.

Code: V233A/1K (CV2190)

CONTINUED

Fig. 1.-Resonator Voltage and Anode Current versus Frequency

Fig. 2.-Cavity Length versus Frequency
(Cavity 495-LVA-201)

FREQUENCY MHz.

Code: V233A/1K (CV2190)

CONTINUED

Fig. 3.-Power Output versus Frequency

Fig. 4.-Unloaded Starting Current versus Frequency

Code: V233A/1K (CV2190)

Fig. 5.-Power Output versus Unloaded Starting Current

Code: V233A/1K (CV2190)

Fig. 6.-Cross Section of Valve Assembly

Fig. 7.-Typical Tuning Cavity

Code: V233A/1K (CV2190)

CONTINUED

Fig. 8.-V233A/1K Dimensioned Outline

DIM.	MILLIMETRES	INCHES	DIM.	MILLIMETRES	INCHES
A	73 MAX.	27 MAX.	P	$13 \cdot 5 \pm 4.0$	0.53 ± 0.16
B	42 MAX.	1.65 MAX	Q	8.5 MAX	0.33 MAX.
C	20.1 MAX.	0.79 MAX	S	$3.2+0.13$	$0.125^{+0.005}$
D	30.96 ± 0.06	1.218 ± 0.002	S	${ }^{3.2}-0.00$	-0.000
E	24 MAX.	0.94 MAX	T	$2.36+0.06$	$0.093+0.002$
J	$46 \cdot 0 \pm 6.4$	$1 \frac{13}{16} \pm \frac{1}{4}$	T	-0.00	-0.000
K	11.1 MIN. 12.5 MAX.	$\begin{aligned} & 0.437 \text { MIN. } \\ & 0.504 \text { MAX. } \end{aligned}$	W	$\begin{array}{r} +0.13 \\ -0.00 \end{array}$	$0.110^{+0.005}-0.000$
M	0.3 MAX.	0.012 MAX.	X	21.59 MIN .	0.850 MIN.
N	18 MAX.	0.710 MAX.	Y	20.32 MIN.	0.800 MIN .

NOTE 2. BASIC FIGURES ARE INCHES. NOTE 3. ALSO MIN. CLAMPING DIA.

SPECIAL VALVES

Velocity-Modulated Oscillator
Code: V235A/1K (CV2221)

The V235A/1K is a velocity modulated oscillator of the coaxial line type for operation in the frequency band 2.7 to 4 GHz .

The valve may be operated in the tuning cavity type 495-LVA-226 in which it will give the performance quoted in these data sheets.

RADIO FREQUENCY PERFORMANCE (Note 1)

Operating frequency range	2.7 to 4	GHz
Power output throughout the band, minimum	350	mW
Power output over frequency range 2.7 to 3.8 GHz , minimum	500	mW

NOTE 1.-A graph of typical power output versus frequency is shown in Figure 3.
TYPICAL OPERATING CONDITIONS (Note 2)

Frequency	2.7	3.8	GHz
Direct grid 1 voltage (Note 3)	-40	-40	V
Direct anode voltage	$\mathrm{V}_{\text {res }}+\mathbf{1 0}$	$\mathrm{V}_{\text {res }}+10$	V
Direct resonator voltage (Note 5)	185	318	V
Direct screen voltage	150	150	V
Direct cathode current (Note 4)	65	47	mA
Direct anode current	44	34	mA
Direct screen current	0.2	0.2	mA
Power output	715	900	mW

NOTE 2.-All voltages are with respect to the cathode.
NOTE 3.-The use of bias improves the proportion of cathode current which passes through the resonator and reaches the collector (anode).
NOTE 4.-If reduced power outputs can be tolerated operation with lower values of cathode current will increase the life of the valve.
NOTE 5.-A graph of resonator voltage versus frequency is shown in Figure 1.

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333 Telex: 21836
C $\begin{array}{lllllllllllllll} & O & M & P & O & N & E & N & T & S & G & R & O & U & P\end{array}$

Code: V235A/1K (CV2221)

CONTINUED

CATHODE

Indirectly heated, oxide coated.

HEATER

Heater voltage (Note 6)
Heater current
Min. 0.27 Nom. 0.3

$6 \pm 5 \%$	V
$\operatorname{Max} .$0.33	A
60	S

Preheating time
NOTE 6.-The heater is usually supplied by a d.c. voltage or a r.m.s. equivalent at a frequency of 50 Hz . Frequencies greater than 1.5 kHz must not be used.

LIMIT RATINGS (Note 7)

Valve damage may result if any one of these ratings is exceeded.
Maximum mean input power to all electrodes other than heater
18 W

Direct cathode current
65 mA
Peak cathode current
0.5

Direct screen voltage
400
V
Screen dissipation
1.5
D.C. SUPPLY (Note 7)

Electrode connections are made by a shrouded B7G socket plugging on to the base of the valve.

Direct grid 1 voltage

-40	V
$V_{\text {res }}+10$	V
170 to 385	V
0 to $V_{\text {res }}+50$	V
5	mA

NOTE 7.-All voltages are relative to the cathode. The resonator is normally at earth potential and the cathode negative. Screen voltage should not exceed resonator voltage +50 , resonator voltage should not exceed anode voltage.
The valve can be operated with anode voltage equal to resonator voltage but there will be some loss in power output. It can also be operated with anode voltages up to $\mathrm{V}_{\text {res }}+40$ with slight increase in power output.

Code: V235A/1K (CV2221)

CONTINUED

CAVITY TYPE 495-LVA-226-GENERAL DESCRIPTION

This approved cavity for the $\mathrm{V} 235 \mathrm{~A} / 1 \mathrm{~K}$ is of cylindrical resonator construction with twin coaxial outputs leading to type " N " jack connectors.

One output is of coupling loop construction for the extraction of power. The other has a coupling probe and may be used for frequency measurement. Both probe and coupling loop are adjustable for optimum depth or orientation.

The cavity is tuned to the required frequency by screw-thimble adjustment of the tuner rod. A micrometer type scale is provided for precise adjustment.

The antenna of the valve enters the cavity through the end face. The holes punched in the valve resonator disc locate on pins fixed to the cavity clamping plate to locate the valve.

The valve electron beam is focused by a permanent magnet of the horseshoe type which is clamped to the cavity.

The outline drawing is shown in Figure 7.

OPERATIONAL DATA FOR TUBE AND CAVITY 495-LVA-226

When supplied the magnet of the 495-LVA-226 is aligned so that the best ratio of valve anode to cathode current is obtained. Thus no magnet readjustment is necessary when replacing valves.

A graph of distance of tuner face from valve disc seal versus frequency is shown in Figure 2.
The cavity has a coupling loop designed to operate into 50Ω coaxial cable. Usually it is necessary to make an adjustment of the loop orientation when tuning the oscillator over the frequency range. For applications where such adjustment of the loop is inadmissible, the impedance of the load must be transformed by means of an appropriate impedance matching technique.

Output Modulation

(a) Amplitude modulation

The voltage required is dependent upon both the particular operating conditions and the loading of the valve. For 100 per cent modulation it is only necessary to reduce the anode current to a value below the starting current of oscillation. (See below.)
Modulation of either the grid $\left(g_{1}\right)$ or the screen $\left(g_{2}\right)$ is permissible. Modulation voltages of between -50 and -200 applied to the grid will be found to be adequate. For the screen, however, positive modulating voltages of the same order are necessary, and, since the screen takes current, adequate modulation power should be provided.
(b) Frequency modulation

Although the valve is not specifically designed for frequency modulation, about ± 1 MHz is available by variation of the resonator voltage.

Code: V235A/1K (CV2221)

CONTINUED

USE OF V235A/1K IN CAVITIES OTHER THAN 495-LVA-226

The valve will operate satisfactorily in other types of circuit, with certain differences in performance.

These should take the form of the tuning cavity shown in Figure 8. Operation is similar to that described for the 495-LVA-226. Output power is obtained over the whole range 2.7 to 4 GHz by means of a coupling loop placed either in the piston face (position A of Figure 8) or at the valve end of the cavity (position B). In position A, coupling is as for the 495-LVA-226. However, in position B it is necessary usually to make an adjustment of the loop orientation when tuning the oscillator over the frequency range. For applications where such adjustments of the loops are inadmissible the impedance of the loop must be transformed to that of the load by means of an appropriate impedance matching technique.

The permanent magnet used to focus the electron beam may be of any suitable type which gives a uniform field of 1200 oersteds minimum over a 22 mm gap. The magnet must be aligned so that the best ratio of anode to cathode current is obtained. The three holes punched in the valve resonator disc locate on pins fixed to the valve clamping plate. Once the magnet has been aligned and has been securely clamped with respect to the locating pins, no further adjustment will be necessary when replacing valves. It is recommended that at least three, and preferably six, valves are used to establish the initial alignment of the magnet.

The anode current at which oscillations just start, when the valve is loaded only by the cavity, is referred to as the unloaded starting current, and serves as a useful measure of the efficiency of the tuning cavity. In Figure 4 the unloaded starting current for a typical valve is plotted as a function of frequency using the recommended circuit.

To illustrate the importance of good tuning circuit construction a graph of power output versus the unloaded starting current of the valve cavity combination is given in Figure 5.

Code: V235A/1K (CV2221)
CONTINUED
Fig. 1.-Resonator Voltage and Cathode Current versus Frequency

Fig. 2.-Distance of Tuner from Disc Seal versus Frequency

Code: V235A/1K (CV2221)
 CONTINUED

Fig. 3.-Power Output versus Frequency

Fig. 4.-Anode Starting Current versus Frequency

Code: V235A/1K (CV2221)

CONTINUED

Fig. 5.-Power Output versus Unloaded Starting Current

Code: V235A/1K (CV2221)
 CONTINUED

Fig. 6.-Cross Section of Valve Assembly

Code: V235A/1K (CV2221)

CONTINUED

Fig. 7.-Cavity 495-LVA-226

DIM.	INCHES		MILLIMETRES	
A	$5^{\prime} / 2$	MIN.	139,7	MIN.
	$6.5 / 16$	MAX.*	160,3	MAX.
B	$4.1 / 16$	MAX.* *	103,2	MAX.
C	$4.3 / 4$	MAX. 2	120,7	MAX.
D	$3.5 / 8$	MAX. +	92,1	MAX.
E	$1.3 / 4$	MIN.	44,4	MIN.
	$2.3 / 16$	MAX.	55,6	MAX.
F	$1.7 / 8$	MAX.	47,6	MAX.
G	$3.1 / 8$	MAX.	79,4	MAX.
H	$2.7 / 8$	MAX.	73,0	MAX.
J	$6.5 / 8$	MAX.*	168,3	MAX.

BASIC DIMENSIONS ARE INCHES

+ DENOTES:
WITH ADJUSTMENT FULLY EXTENDED
* DENOTES:

WITH TUNING MICROMETER
ADJUSTMENT FULLY EXTENDED

Code: V235A/1K (CV2221)
 CONTINUED

Fig. 2.-Typical Alternative Cavity

Code: V235A/1K (CV2221)

CONTINUED

Fig. 9.-V235A/1K Outline

DIM	MILLIMETRES	INCHES	DIM.	MILLIMETRES	INCHES
A	73 MAX.	2.7/8 MAX.	P	13.5 ± 4.0	0.53 ± 0.16
B	42 MAX.	1.65 MAX.	Q	8.5 MAX.	0.33 MAX.
C	20.1 MAX.	0.79 MAX.	s	$3.2+0.13$	$0.125+0.005$
D	30.96 ± 0.06	1.218 ± 0.002		$3.2-0.00$	0.125-0.000
E	24 MAX.	0.94 MAX.	T	+ 0.06	$0.093+0.002$
J	46.0 ± 6.4	$1.13 / 16 \pm 1 / 4$	1	$2.36-0.00$	-0.000
K	11.1 MIN. 12.5 MAX.	$\begin{aligned} & \hline 0.437 \text { MIN. } \\ & 0.494 \text { MAX. } \end{aligned}$	W	$\begin{aligned} & \\ & 2.79+0.13 \\ &-0.00\end{aligned}$	$\begin{array}{r} \\ 0.110\end{array}+0.005$
M	0.3 MAX.	0.012 MAX.	N	18 MAX.	0.710 MAX .
NOTE 2:- BASIC FIGURES ARE INCHES. NOTE 3:- ALSO MIN. CLAMPING DIA.			X	21.59 MIN .	0.850 MIN .
			Y	20.32 MIN .	0.800 MIN.

SPECIAL VALVES

Velocity-Modulated Oscillator

Code: V238A/1K (CV5292)

The V238A/1K is a velocity modulated oscillator of the coaxial line type for operation in the frequency band 3.555 to 4.255 GHz .

The valve may be operated in the tuning cavity type 495-LVA-251 in which it will give the performance quoted in these data sheets, or in the slug tuned cavities illustrated in Figures 6 and 7.

RADIO FREQUENCY PERFORMANCE (Note 1)

Operating frequency range 3.555 to 4.255
GHz
Power output throughout the band, minimum
550
mW

NOTE 1.-A graph of typical power output versus frequency is shown in Figure 2.
TYPICAL OPERATING CONDITIONS (Note 2)

Frequency
Direct grid 1 voltage (Note 3)
Direct anode voltage
Direct resonator voltage (Note 4)
Direct screen voltage
Direct cathode current (Note 5)
Direct anode current
Direct screen current
Power output
3.90
$\mathrm{V}_{\text {res }} \begin{array}{r}-40 \\ +20\end{array}$
GHz
v
V
V
V
mA
mA
negligible
1300
mW

NOTE 2.-All voltages are with respect to the cathode.
NOTE 3.-The use of bias improves the proportion of cathode current which passes through the resonator and reaches the collector (anode).
NOTE 4.-A graph of resonator voltage versus frequency is shown in Figure 1.
NOTE 5.-If reduced power outputs can be tolerated, operation with lower values of cathode current will increase the life of the valve.

Frequency Stability

When operated in a temperature-controlled oven, using the slug-tuned waveguide cavities shown in Figures 6 and 7 and with a suitably regulated power supply, the frequency stability is better than $\pm 250 \mathrm{kHz}$ over long periods. Frequency variation with ambient temperature is approximately 50 kHz per ${ }^{\circ} \mathrm{C}$. Frequency variation with resonator voltage is approximately 50 kHz per volt.

Standard Telephones and Cables Limited

Code: V238A/1K (CV5292)

CONTINUED

CATHODE

Indirectly heated, oxide coated.

HEATER

Heater voltage (Note 6)		$6.3 \pm 5 \%$	V	
Heater current	Min. 0.235	Nom. 0.250	Max. 0.265	A
Preheating time			60	s

NOTE 6.-The heater is usually supplied by a d.c. voltage or a r.m.s. equivalent at a frequency of 50 Hz . Frequencies greater than 60 Hz must not be used without consulting the manufacturer.

LIMIT RATINGS (Note 7)
(Valve damage may result if any one of these ratings is exceeded.)
Maximum mean input power to all electrodes other than heater 20 W
Direct cathode current 65 mA
Peak cathode current 0.5 A

Direct screen voltage 400 V
Screen dissipation $\quad 1.5$ W

D.C. SUPPLY VOLTAGES (Note 7)

Electrode connections are made by a shrouded B7G socket plugging on to the base of the valve.

Direct grid 1 voltage
Direct anode voltage

-40	V
$V_{\text {res }}+20$	V
255 to 410	V
0 to $V_{\text {res }}$	V

NOTE 7.-All voltages are relative to the cathode. The resonator is normally at earth potential and the cathode negative. Screen voltage should not exceed resonator voltage, resonator voltage should not exceed anode voltage.
The valve can be operated with anode voltage equal to resonator voltage but there will be some loss in power output. It can also be operated with anode voltages up to $V_{\text {res }}+40$ with slight increase in power output.

Code: V238A/1K (CV5292)

CAVITY TYPE 495-LVA-251-GENERAL DESCRIPTION

This approved cavity for the $\mathrm{V} 238 \mathrm{~A} / 1 \mathrm{~K}$ is of waveguide construction with a coaxial output consisting of an adjustable coupling loop leading to a Type " N " jack connector.

The waveguide is tuned to the required frequency by a piston with a rack and graduated scale calibrated in millimetres for precise adjustment.

The antenna end of the valve enters the waveguide through a hole in its broad face. Three holes punched in the valve resonator disc locate on pins fixed to the cavity clamping plate to locate the valve.

The valve electron beam is focused by a permanent magnet of the horseshoe type which is clamped to the cavity.

An outline drawing of the cavity is shown in Figure 5.

OPERATIONAL DATA FOR TUBE AND CAVITY 495-LVA-251

The coupling loop rotation of 180° will suffice to obtain optimum loading of the valve when feeding a matched 50Ω load.

When the valve is loaded by the cavity only, the anode current at which oscillations just start is referred to as the "unloaded starting current"; it serves as a useful measure of the efficiency of the tuning cavity. In Figure 3 the unloaded starting current for a typical valve in the recommended cavity is plotted as a function of frequency.

The magnet of the 495-LVA-251 is aligned so that the best ratio of anode-to-cathode current is obtained. Thus no magnet readjustment is necessary when replacing valves.

USE OF V238A/1K IN CAVITIES OTHER THAN 495-LVA-251

The frequency range 3.55 to 4.27 GHz can be covered in three slug-tuned waveguide cavities. (See Figures 6 and 7.) The relevant dimensions of these mounts are shown in Fig. 7.

Output is by means of a coupling loop inserted through the narrow face of the waveguide. (See Fig. 6.) A fixed depth of penetration of this loop into the cavity will give satisfactory coupling when feeding into a 70 ohm load of V.S.W.R. $<1 \cdot 2$. A total rotation of the loop of 180° will provide optimum loading of the valve over the entire frequency range.

The coupling loop dimensions should be as shown in Fig. 8. The permanent magnet used to focus the electron beam may be of any suitable type which gives a uniform field of 1400 oersteds minimum over a 22 mm gap. The magnet must be aligned so that the best ratio of anode to cathode current is obtained. The three holes punched in the valve resonator disc locate on pins fixed to the valve clamping plate. Once the magnet has been aligned and has been securely clamped with respect to the locating pins, no further adjustment will be necessary when replacing valves. It is recommended that at least three, and preferably six, valves are used to establish the initial alignment of the magnet.

Fig. 1.-Resonator Voltage as a Function of Frequency

Fig. 2.-Power Output as a Function of Frequency

Fig. 3.-Anode Starting Current as a Function of Frequency in a Cavity with Waveguide 2×1 inch External

Code: V238A/1K (CV5292)

CONTINUED

Fig. 4.-Cross Section of Valve Assembly

CAVITY

Code: 495-LVA-251

Fig. 5.-495-LVA-251 Dimensioned Outline

4-HOLES R DIA

DIM.	INCHES	MILLIMETRES	DIM.	INCHES	MILLIMETRES
A	16.3/4 MAX.	425,5 MAX.	J	1.5/8 APP.	41,3 APP.
B	3.7/8 MAX.	98,4 MAX.	K	1.13/16 APP.	46,0 APP.
C	$3 / 4$ MAX.	19,1 MAX.	L	1/2 APP.	12,7 APP.
D	$5 \pm 1 / 16$	$127,0 \pm 1,6$	M	1 APP.	25,4 APP.
E	1.15/16 MAX.	49,2 MAX.	N	3.1/2 APP.	88,9 APP.
F	$2,750 \pm 0,020$	$69,85 \pm 0,51$	P	3.1/2 MAX.	88,9 MAX.
G	$4.11 / 16 \pm 1 / 16$	$119,1 \pm 1,6$	Q	4.3/4 MAX.	120,7 MAX.
H	$2.3 / 4 \pm 1 / 32$	$69,9 \pm 0,8$	R	$1 / 4$ APP.	6,4 APP.

CAVITY

CONTINUED

Fig. 6.-Slug Cavity

CAVITY

CONTINUED

Fig. 7.-Slug Cavity (Waveguide 2×1 inch External)
WAVEGUIDE EXTERNAL DIMENSIONS
2×1 INCH

TRAVEL OF SLUGS JUST LESS THAN $7 / 8$ INCH TO PREVENT CONTACT WITH OPPOSITE WAVEGUIDE WALL.
NOTE: ALL DIMENSIONS SHOWN ARE INTERNAL DIMENSIONS.

FREQUENCY BAND TO BE COVERED 3.52 to 4.27 GHz .								
CIRCUIT NUMBER	DIMENSION				$\begin{gathered} \text { COARSE } \\ \text { FREQ. } \\ \text { COVER- } \\ \text { AGE } \\ (G H z) \\ \hline \end{gathered}$		FINE TUNER SENSTY.	FINE TUNER RANGE
	$\begin{gathered} \text { A } \\ \text { (CM) } \end{gathered}$	$\begin{gathered} \hline \text { B } \\ \text { (CM) } \end{gathered}$	$\begin{gathered} \hline \text { C } \\ \text { (CM) } \end{gathered}$	$\begin{gathered} \hline D \\ \text { (CM) } \end{gathered}$				
1	2,0	11,15	9,2	4,8	$\begin{aligned} & 3.95 \text { to } \\ & 4.275 \end{aligned}$	0.0013 in. $/ \mathrm{MHz}$. $\stackrel{\text { at }}{4.15 \mathrm{GHz} \text {. }}$		17 MHz at 4.15 GHz .
2	2,0	13,8	11,0	6,0	$\begin{aligned} & 3.75 \text { to } \\ & 4.05 \end{aligned}$			15 MHz at 3.925 GHz .
3	2,0	16,4	14,8	8,05	$\begin{aligned} & 3.52 \text { to } \\ & 3.85 \end{aligned}$	0.001 in./MHz. 3.7 GHz .		13 MHz . at 3.7 GHz .

CAVITY

Fig. 8.-Coupling Loop

LOOP PENETRATION

CENTRE CONDUCTOR \& DIELECTRIC OF UNI-RADIO 21 CABLE

WALL OF WAVEGUIDE

outline of valve

Code: V238A/1K (CV5292)
 CONTINUED

Fig. 9.-V238A/1K Outline

DIM.	MILLIMETRES			INCHES			DIM.	MILLIMETRES		INCHES			
A	88		MAX.	3.46		MAX.	Q	8.5	MAX.	0.33	MAX.		
B	42		MAX.	1.65		MAX.	S	$3.2+$	0.13	$0.125-0.005$-0.000			
C	20.1		MAX.	0.79		MAX.			0.00				
D	30.96	\pm	0.06	1.218	\pm	0.002	T	$2.36+$	0.06	0.093	0.002		
E	24		MAX.	0.94		MAX.			0.00		0.000		
J	60		MAX.	2.36		MAX.	W	$2.79{ }^{+}$		0.110	0.005		
	15.88		MIN.	$\begin{aligned} & 0.625 \\ & 0.812 \end{aligned}$		MIN. MAX.			0.00		0.000		
k	20.63		MAX.			X	21.59	MIN.	0.850	MIN.			
M	0.3		MAX.	0.012			MAX.	Y	$20 \cdot 32$	MIN.	0.800	MIN.	
N	18		MAX.	0.710		MAX.	NOTE 2:- BASIC FIGURES ARE INCHES NOTE 3:- ALSO MIN. CLAMPING DIA.						
P	13.5	\pm	4.0	0.53	\pm	0.16							

SPECIAL VALVES

Velocity-Modulated Oscillator

Code: V238A/1KY

The V238A/1KY is a velocity modulated oscillator of the coaxial line type. It is a selected $\mathrm{V} 238 \mathrm{~A} / 1 \mathrm{~K}$ for operation in the extended frequency range of 3.52 to 4.255 GHz .

The valve may be operated in the tuning cavity type 495-LVA-251 in which it will give the performance quoted in these data sheets, or in the slug tuned cavities illustrated in Figures 6 and 7.

RADIO FREQUENCY PERFORMANCE (Note 1)
Operating frequency range
3.52 to 4.255
GHz
Power output throughout the band, minimum
500
mW

Note 1.-A graph of typical power output versus frequency is shown in Figure 2.
TYPICAL OPERATING CONDITIONS (Note 2)

Frequency	3.52	3.90	GHz
Direct grid 1 voltage (Note 3)	-40	-40	V
Direct anode voltage	$\mathrm{V}_{\text {res }}$	20	$\mathrm{~V}_{\text {res }}+20$
Direct resonator voltage (Note 4)	267	325	V
Direct screen voltage	150	150	V
Direct cathode current (Note 5)	50	50	mA
Direct anode current	43	42	mA
Direct screen current	negligible	negligible	
Power output	960	1300	mW

Note 2.-All voltages are with respect to the cathode.
Note 3.-The use of bias improves the proportion of cathode current which passes through the resonator and reaches the collector (anode).
Note 4.-A graph of resonator voltage versus frequency is shown in Figure 1.
Note 5. -If reduced power outputs can be tolerated, operation with lower values of cathode current will increase the life of the valve.

Frequency Stability
When operated in a temperature-controlled oven, using the slug-tuned waveguide cavities shown in Figures 6 and 7 and with a suitable regulated power supply, the frequency stability is better than $\pm 250 \mathrm{kHz}$ over long periods. Frequency variation with ambient temperature is approximately 50 kHz per ${ }^{\circ} \mathrm{C}$. Frequency variation with resonator voltage is approximately 50 kHz per volt.

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: 01-300 3333
Telex: 21836
C O M P O N E N T S \quad O \quad I R O U P

Code: V238A/1KY

CONTINUED

CATHODE

Indirectly heated, oxide-coated.

HEATER

Heater voltage (Note 6)		$6.3 \pm 5 \%$	V	
Heater current	Min. 0.235	Nom. 0.250	Max. 0.265	A
Preheating time			60	s

Note 6.-The heater is usually supplied by a d.c. voltage or a r.m.s. equivalent at a frequency of 50 Hz . Frequencies greater than 60 Hz must not be used without consulting the manufacturer.

LIMIT RATINGS (Note 7)

Valve damage may result if any one of these ratings is exceeded. Maximum mean input power to all electrodes other than heater
Direct cathode current
20 W

Peak cathode current 0.5 mA

Direct screen voltage
400
A

Screen dissipation
1.5
D.C. Supply Voltages (Note 7)

Electrode connections are made by a shrouded B7G socket plugging on to the base of the valve
Direct grid 1 voltage

-40	V
V res +20	V
250 to 410	V
0 to $\mathrm{V}_{\text {res }}$	V

Direct anode voltage 250 to $410 \quad V$
Direct screen voltage range 0 to $\mathrm{V}_{\text {res }}$

V
Note 7.-All voltages are relative to the cathode. The resonator is normally at earth potential and the cathode negative. Screen voltage should not exceed resonator voltage, resonator voltage should not exceed anode voltage.
The valve can be operated with anode voltage equal to resonator voltage but there will be some loss in power output. It can also be operated with anode voltages up to $\mathrm{V}_{\text {res }}+40$ with slight increase in power output.

Code: V238A/1KY

CONTINUED

CAVITY TYPE 495-LVA-251-GENERAL DESCRIPTION

This approved cavity for the $\mathrm{V} 238 \mathrm{~A} / 1 \mathrm{KY}$ is of waveguide construction with a coaxial output consisting of an adjustable coupling loop leading to a Type ' N ' jack connector.

The waveguide is tuned to the required frequency by a piston with a rack and graduated scale calibrated in millimetres for precise adjustment.

The antenna end of the valve enters the waveguide through a hole in its broad face. Three holes punched in the valve resonator disc locate on pins fixed to the cavity clamping plate to locate the valve.

The valve electron beam is focused by a permanent magnet of the horseshoe type which is clamped to the cavity.

An outline drawing of the cavity is shown in Figure 5.

OPERATIONAL DATA FOR TUBE AND CAVITY 495-LVA-251

The coupling loop rotation of 180° will suffice to obtain optimum loading of the valve when feeding a matched 50Ω load.

When the valve is loaded by the cavity only, the anode current at which oscillations just start is referred to as the "unloaded starting current"; it serves as a useful measure of the efficiency of the tuning cavity. In Figure 3 the unloaded starting current for a typical valve in the recommended cavity is plotted as a function of frequency.

The magnet of the 495-LVA-251 is aligned so that the best ratio of anode-to-cathode current is obtained. Thus no magnet readjustment is necessary when replacing valves.

USE OF V238A/1KY IN CAVITIES OTHER THAN 495-LVA-251

The frequency range 3.52 to 4.27 GHz can be covered in three slug-tuned waveguide cavities. (See Figures 6 and 7.) The relevant dimensions of these mounts are shown in Figure 7.

Output is by means of a coupling loop inserted through the narrow face of the waveguide. (See Figure 6.) A fixed depth of penetration of this loop into the cavity will give satisfactory coupling, when feeding into a 70 ohm load of V.S.W.R. $<1 \cdot 2$. A total rotation of the loop of 180° will provide optimum loading of the valve over the entire frequency range.

The coupling loop dimensions should be as shown in Figure 8. The permanent magnet used to focus the electron beam may be of any suitable type which gives a uniform field of 1400 oersteds minimum over a 22 mm gap. The magnet must be aligned so that the best ratio of anode to cathode current is obtained. The three holes punched in the valve resonator disc locate on pins fixed to the valve clamping plate. Once the magnet has been aligned and has been securely clamped with respect to the locating pins, no further adjustment will be necessary when replacing valves. It is recommended that at least three, and preferably six, valves are used to establish the initial alignment of the magnet.

Code: V238A/1KY

CONTINUED

Fig. 1.-Resonator Voltage versus Frequency

Fig. 2.-Power Output versus Frequency

Fig. 3.-Anode Starting Current versus Frequency in a $2 \times 1 \mathbf{i n}$. External Waveguide Circuit

Code: V238A/1KY

CONTINUED

Fig. 4.-Cross Section of Valve Assembly

T.W.T. MOUNT

Code: 495-LVA-251

Fig. 5.-495-LVA-251 Dimensioned Outline

DIM.	INCHES	MILLIMETRES	DIM.	INCHES	MILLIMETRES
A	$16 \frac{3}{4}$ MAX.	425,5 MAX.	J	15 $\frac{1}{8}$ APPRROX.	41,3 APPROX.
B	37 MAX.	98,4 MAX.	K	113 APPROX.	46,0 APPROX.
C	$\frac{3}{4}$ MAX.	19,1 MAX.	L	$\frac{1}{2}$ APPROX	12,7 APPROX.
D	$5 \pm \frac{1}{16}$	$127,0 \pm 1,6$	M	1 APPROX.	25,4 APPROX.
E	115 MAX.	49,2 MAX.	N	$3 \frac{1}{2}$ APPROX.	88,9 APPROX.
F	2.750 ± 0.020	69,85 $\pm 0,51$	P	$3 \frac{1}{2}$ MAX.	88,9 MAX.
G	$411 \pm \frac{1}{16}$	$119,1 \pm 1,6$	Q	$4 \frac{3}{4}$ MAX.	120,7 MAX.
H	$2 \frac{3}{4} \pm \frac{1}{32}$	$69,9 \pm 0,8$	R	$\frac{1}{4}$ APPROX.	6,4 APPROX.

T.W.T. MOUNT

CONTINUED

Fig. 6.-Slug Cavity

T.W.T. MOUNT

CONTINUED

Fig. 7.-Slug Cavity

WAVEGUIDE EXTERNAL DIMENSIONS

$2 \times 1 \mathrm{INCH}$

TRAVEL OF SLUGS JUST LESS THAN $7 / 8$ INCH TO PREVENT CONTACT WITH OPPOSITE WAVEGUIDE WALL.
NOTE: ALL DIMENSIONS SHOWN ARE INTERNAL DIMENSIONS.

FREQUENCY BAND TO BE COVERED 3.52 to 4.27 GHz .								
CIRCUIT, NUMBER	DIMENSION				$\begin{array}{\|l\|} \hline \text { COARSE } \\ \text { FREQ. } \\ \text { COVER- } \\ \text { AGE } \\ (\mathrm{GHz}) \\ \hline \end{array}$	$\begin{aligned} & \text { COARSE } \\ & \text { TUNER } \\ & \text { SENSTY. } \\ & \text { MEIMUM } \end{aligned}$	FINE TUNER SENSTY	FINE TUNER RANGE
	$\begin{gathered} \hline \text { A } \\ \text { (CM) } \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \text { (CM) } \end{gathered}$	$\begin{gathered} C \\ \text { (CM) } \end{gathered}$	$\begin{gathered} \hline D \\ \text { (CM) } \end{gathered}$				
1	2,0	11,15	9,2	4,8	$\begin{aligned} & 3.95 \text { to } \\ & 4.275 \end{aligned}$	$\begin{aligned} & \hline 0.0013 \\ & \text { in./MHz. } \\ & \text { at } \\ & 4.15 \mathrm{GHz} . \end{aligned}$	$\begin{array}{\|c\|} \hline 0.052 \\ \text { in./MHz. } \\ \text { at } \\ 4.15 \mathrm{GHz} . \end{array}$	17 MHz at 4.15 GHz .
2	2,0	13,8	11,0	6,0	$\begin{aligned} & 3.75 \text { to } \\ & 4.05 \end{aligned}$	0.0015 in./MHz. 3.925 GHz .	0.058 in./MHz. 3.925 GHz .	15 MHz at 3.925 GHz .
3	2,0	16,4	14,8	8,05	${ }_{3.85}^{3.52} \text { to }$	0.001 in. $/ \mathrm{MHz}$ 3.7 GHz .		$\begin{aligned} & 13 \mathrm{MHz} \text {. at } \\ & 3.7 \mathrm{GHz} \text {. } \end{aligned}$

T.W.T. MOUNT
 continued

Fig. 8.-Coupling Loop

1/6 in.

$1 / 8 \mathrm{in}$.
LOOP MUST NOT
ROTATE BEYOND 180° AS SHOWN

LOOP PENETRATION

WALL OF WAVEGUIDE

Code: V238A/1KY
 CONTINUED

Fig. 9.-V238A/1KY Outline

DIM.	MILLIMETRES			INCHES			DIM.	MILLIMETRES		INCHES				
A	88.		MAX.	3.46		MAX.	Q	8.5	MAX.	0.33	MAX.			
B	42		MAX.	1.65		MAX.	S	$3.2+$	0.13	$0.125+0.005$-0.000				
C	20.1		MAX.	0.79		MAX.			0.00					
D	30.96	\pm	0.06	1.218	\pm	0.002	T	2.36	0.06	0.093	0.002			
E	24		MAX.	0.94		MAX.			0.00		0.000			
J	60		MAX.	2.36		MAX.	W	$2.79{ }^{+}$	0.13	+0.005$0.110-0.000$				
	$\begin{aligned} & 15.88 \\ & 20.63 \end{aligned}$		MIN.MAX.	$\begin{aligned} & 0.625 \\ & 0.812 \end{aligned}$		MIN.MAX.			0.00					
K			X			21.59	MIN.	0.850	MIN.					
M	0.3			MAX.	0.012			MAX.	Y	20.32	MIN.	0.800	MIN.	
N	18		MAX.	0.710		$\frac{\text { MAX. }}{0.16}$	NOTE 2:- BASIC FIGURES ARE INCHES NOTE 3:- ALSO MIN. CLAMPING DIA.							
P	13.5	\pm	4.0	0.53	\pm									

SPECIAL VALVES

Velocity Modulated Oscillators

Codes: V243A/2FS (CV5463) V243A/3FS

These valves are coaxial line type velocity-modulated oscillators intended for use in a system with $\pm 50 \mathrm{MHz}$ mechanical frequency modulation and a mid-frequency in the band
 495-LVA-251 over the frequency range 4.1 to 4.7 GHz .

The valves, which have similar electrical characteristics, are closely designed to withstand mechanical shock and vibration and have heat dissipating shields closely fitted to their envelopes to enable them to operate at ambient temperatures up to $100^{\circ} \mathrm{C}$.

The valves have different basing arrangements (See Figures 1 and 2).

RADIO FREQUENCY PERFORMANCE (Note 1)

4.3 GHz Cavity
495-LVA-251 4.2 to 4.4 4.1 to 4.7
GHz

Operating frequency range
Power output
minimum at $4.3 \mathrm{GHz} \quad 750$
mW minimum throughout the band 500 mW
Note 1.-A graph of typical power output versus frequency in the 495-LVA-251 cavity is shown in Figure 5.

TYPICAL OPERATING CONDITIONS (Note 2)

Frequency
Direct grid 1 voltage (Note 3)
Direct anode voltage
Direct resonator voltage
Direct screen voltage
Direct cathode current (Note 4)
Direct anode current
Direct screen current
Power output

4.3	4.4	GHz
-40	-40	V
$\mathrm{~V}_{\text {res }}+20$	$\mathrm{~V}_{\text {res }}+20$	V
254	267	V
170	172	V
65	65	mA
$42 \cdot 5$	44	mA
55	80	$\mu \mathrm{~A}$
1010	990	mW

Note 2.-All voltages are with respect to the cathode.
Note 3.-The use of bias improves the proportion of cathode current which passes through the resonator and reaches the collector (anode).
Note 4.-If reduced power outputs can be tolerated, operation with lower values of cathode current will increase the life of the vaive.

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: 01-300 3333
Telex: 21836

```
C O M P O N E N T S G R O U P
```


CATHODE

Indirectly-heated, oxide-coated.

HEATER

Heater voltage (Note 5)
Heater current
Preheating time
$\begin{array}{llll} & & 6.3 \pm 5 \% & V \\ \text { Min. } 0.235 & \text { Nom. } 0.250 & \text { Max. } 0.265 & \mathrm{~A}\end{array}$
30 sec

Note 5.-The heater is usually supplied by a d.c. voltage or an r.m.s. equivalent at a frequency of 50 Hz . Frequencies greater than 1000 Hz should not be used without consulting the manufacturer.

LIMIT RATINGS

Valve damage may result if any one of these ratings is exceeded.
Mean input power to all electrodes other than heater 18 W
Direct cathode current 65 mA
Resonator dissipation 10 W
Screen dissipation $\quad 1.5$ W
Bulb temperature $300 \quad{ }^{\circ} \mathrm{C}$
Peak cathode current
0.5 A

Screen voltage should not exceed resonator voltage

D.C. SUPPLY VOLTAGES (Note 6)

V243A/2FS electrode connections are made by leads soldered to the wiring-in adaptor on the B7G/F base.

V243A/3FS electrode connections are made by a Winchester Electronics Inc. Miniature Round Socket Series 'M' Ref. No. M7S-LRN which fits with its mating plug on the valve.

Direct grid 1 voltage	-40	V
Direct anode voltage	$\mathrm{V}_{\text {res }}+20$	V
Direct resonator voltage, $4 \cdot 3 \mathrm{GHz}$ cavity	230 to 275	V
	$495-L V A-251$ cavity	220 to 340
Direct screen voltage range	0 to $V_{\text {res }}$	V

Note 6.-All voltages are relative to the cathode. The resonator is normally at earth potential and the cathode negative. Screen voltage should not exceed resonator voltage, resonator voltage should not exceed anode voltage. The output power is controlled by varying the cathode current by the screen grid voltage.
The valve can be operated with anode voltage equal to resonator voltage but there will be some loss in power output. It can also be operated with anode voltages up to $\mathrm{V}_{\text {res }}+40$ with slight increase in power output.

WAVEGUIDE CAVITY FOR OPERATION AT 4.2 to $4.4 \mathbf{~ G H z}$

This is shown in Figure 3. It is of waveguide construction with a coaxial output consisting of an adjustable coupling loop in the narrow face of the waveguide leading to a Type ' N ' jack connector.

The waveguide is matched for maximum power by a stub tuning screw.
The antenna end of the valve enters the waveguide through a hole in its broad face. Three holes punched in the valve resonator disc locate on pins fixed to the cavity clamping plate to locate the valve.

The valve electron beam is focused by a permanent magnet of the horseshoe type which is clamped to the cavity.

The coupling loop rotation of 180° will suffice to obtain optimum loading of the valve when feeding a matched 50Ω load. A fixed depth of penetration of this loop into the cavity will give satisfactory coupling. The coupling loop dimensions are also shown in Figure 3. The permanent magnet used to focus the electron beam may be of any suitable type which gives a uniform field of 1400 gauss minimum over a 22 mm gap. The magnet must be aligned so that the best ratio of anode to cathode current is obtained. Once the magnet has been aligned and has been securely clamped, no further adjustment will be necessary when replacing valves. It is recommended that at least three, and preferably six, valves are used to establish the initial alignment of the magnet.

CAVITY TYPE 495-LVA-251

This is generally similar to the cavity described above excepting that the waveguide is tuned to the required frequency by a piston with a rack and graduated scale calibrated in millimetres for precise adjustment.

The cavity is supplied with a pre-aligned magnet.
The outline drawing of the cavity is shown in Figure 4.

Fig. 1.-V243A/2FS Outline

B7G/F FITTED WITH WIRINGIN ADAPTOR

NOTE:-

1. THIS PORTION OF BULB WILL NOT FOUL A CYLINDER OF INT. DIA. SPECIFIED WHICH IS CONCENTRIC WITH THE PITCH CIRCLE OF THE LOCATING HOLES IN DISC
2. BASIC FIGURES ARE IN INCHES
3. ALSO MIN. CLAMPING DIA.

Codes: V243A/2FS (CV5463) V243A/3FS

CONTINUED

Fig. 2.-V243A/3FS Outline

DIM.	MILLIMETRES	INCHES		DIM.	MILLIMETRES			INCHES		
A	87,31 MAX.	$3.7 / 16$	MAX.	K	13,46	\pm	4,06	0.530		0.160
B	41,91 MAX.	1.650	MAX.	L	8,38			0.330		X.
C	21,08 MAX.	0.830	MAX.	M	3,18	+	0.13	0.125	+	0.005
D	$30,96 \pm 0,05$	1.218	0.002			-	0,00			0.000
E	23,88 MAX.	0.940	MAX.	N	2,36	+	0,05	0.093		0.002
F	152,40 MIN-165,10 MAX	6 MIN -	MAX.			-	0,00			0.000
	15,88 MIN.	0.625	MIN.	P	2,79	+	0,13	0.110		0.005
G	20,64 MAX.	0.812	MAX.			-	0,00			0.000
H	0,31 MAX.	0.012	MAX.	Q	21,59	MIN.		0.850		N.
J	18,03 MAX.	0.710	MAX.	R	38,1	\pm	1,6	1.1/2		1/16

Codes: V243A/2FS (CV5463)
 V243A/3FS

Fig. 3.-Waveguide Cavity for Operation at 4.3 GHz

BASIC UNITS ARE METRIC

DIM.	MILLIMETRES	INCHES	DIM.	MILLIMETRES	INCHES
A	84	3.307	G	2,4	0.093
B	62,5	2.46	H	31	1.218
C	23	0.906	J	1,6	$\frac{1}{16}$
D	11,4	0.45			
E	1,5	0.059			
F	1,5	0.059			

Fig. 4.-495-LVA-251 Outline

DIM.	INCHES	MILLIMETRES	DIM.	INCHES	MILLIMETRES
A	$16 \frac{3}{4}$ MAX.	425,5 MAX.	J	15 APPROX.	41,3 APPROX.
B	37 MAX.	98,4 MAX.	K	113 APPROX.	46,0 APPROX.
C	${ }^{\frac{3}{4}}$ MAX.	19,1 MAX.	L	$\frac{1}{2}$ APPROX.	12,7 APPROX.
D	$5 \pm \frac{1}{16}$	127,0 $\pm 1,6$	M	1 APPROX.	25,4 APPROX.
E	1195 MAX.	49,2 MAX.	N	31 $\frac{1}{2}$ APPROX.	88,9 APPROX.
F	2.750 ± 0.020	69,85 $\pm 0,51$	P	31 $\frac{1}{2}$ MAX.	88,9 MAX.
G	$411 \pm$	$119,1 \pm 1,6$	Q	43 MAX.	120,7 MAX.
H	$2{ }^{\frac{3}{4}} \pm \frac{1}{12}$	$69,9 \pm 0,8$	R	$\frac{1}{4}$ APPROX.	6,4 APPROX.

Fig. 5.-Typical Power Output versus Frequency in Cavity 495-LVA-251

Fig. 6.-Typical Cavity Length versus Frequency in Cavity 495-LVA-251

SPECIAL VALVES

Velocity-Modulated Oscillator

Code: V265A/1M

The V265A/1M is a single-transit velocity-modulated valve (H-wave Oscillator) designed as a local oscillator for operation in the frequency range 5.8 to 7.5 GHz .
The valve may be operated with the input and output tuning cavities 495-LVA-353 and 495-LVA-354 with which it will give the performance quoted in these data sheets.

RADIO FREQUENCY PERFORMANCE (Note 1)

Operating frequency range	5.85 to 7.5	GHz
Power output at frequencies 5.85 and 7.1 GHz , minimum	200	mW
Power output at frequency 7.5 GHz , minimum	150	mW

NOTE 1.-A graph of typical power output versus frequency is shown in Figure 1.
TYPICAL OPERATING CONDITIONS (Note 2)

Frequency	5.85	6.5	7.5	GHz
Direct grid 1 voltage	-50	-50	-50	V
Direct anode voltage	$\mathrm{V}_{\text {res }}+20$	$\mathrm{~V}_{\text {res }}+20$	$\mathrm{~V}_{\text {res }}+20$	V
Direct resonator voltage (Note 3)	253	300	395	V
Direct screen voltage (Note 4)	180	167	155	V
Direct anode current	30	30	30	mA
Direct cathode current	48	46.5	45	mA
Direct screen current	100	100	100	$\mu \mathrm{~A}$
Direct grid 1 current	0.5	0.5	0.5	$\mu \mathrm{~A}$
Power output (Note 5)	530	630	360	mW
Circuit length	5	2.5	1.4	cm

NOTE 2.-All voltages are with respect to the cathode.
NOTE 3.-This is adjusted to give maximum power output at the operating frequency set by the tuning piston. Graphs of frequency as a function of resonator voltage and piston position are shown in Figures 2 and 3.
NOTE 4.-This is adjusted to give an anode current of 30 mA . For unattended operation this should be effected automatically.
NOTE 5.-To obtain this the output cavity tuning slug is adjusted to give maximum power and the waveguide load should have a V.S.W.R. of less than 1-2:1.

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333 Telex: 21836
C O M P O N E N T S \quad S \quad R O U P

Code: V265A/1M

CONTINUED

CATHODE

Indirectly heated, oxide coated.

HEATER

Heater voltage (Note 6)
Heater current
Preheating time

		$6.3 \pm 5 \%$	V
	Mom. 0.225	Max. 0.27	A
60	s		

NOTE 6.-The heater is usually supplied by a d.c. voltage or an r.m.s. equivalent at a frequency of 50 Hz . Frequencies greater than 1.5 kHz must not be used.

LIMIT RATINGS

Valve damage may result if any one of these ratings is exceeded.
Total dissipation for all electrodes except heater 25
W
Direct anode voltage (Note 7) 500 V
Direct resonator voltage 500 V
Direct screen voltage 300 V
Direct anode dissipation 25 W
Direct resonator dissipation W
Direct screen dissipation 2
Direct cathode current 60 mA
Maximum temperature of mica window seal $130 \quad{ }^{\circ} \mathrm{C}$
Maximum temperature of any other part of valve envelope $300 \quad{ }^{\circ} \mathrm{C}$
D.C. SUPPLIES (Note 7)

Electrode connexions are made by a shrouded B8G socket plugging on to the valve.
Direct grid 1 voltage
Direct anode voltage
Direct resonator voltage $\mathrm{V}_{\text {res }}+20 \quad \mathrm{~V}$
-230 to 400 V
Direct screen voltage range 0 to 300 V
Direct screen current maximum $\quad 5 \mathrm{~mA}$
Direct grid 1 current $250 \quad \mu \mathrm{~A}$
NOTE 7.-All voltages are relative to the cathode. The resonator is normally at earth potential and the cathode negative. Screen voltage should not exceed resonator voltage +50 with the limit at 300 volts, resonator voltage should not exceed anode voltage.

Code: V265A/1M

CONTINUED

V265A/1M PHYSICAL FEATURES

The valve is designed to work into W.G. 14 waveguide. Each valve is fitted with its own beam focusing magnet. The magnet is adjusted and locked in position during the testing of the valve and should not be readjusted during its life. A flange plate is fitted on each side of the valve. The output and tuning waveguide circuits are each secured by a split ring locking under the three studs on each plate. An outline drawing of the valve is shown in Figure 6.

TUNING AND OUTPUT CAVITIES 495-LVA-353 AND 495-LVA-354

A diagram of the cavities with a valve assembled is shown in Figure 4. A separate diagram of the tuning cavity showing the reference plane for measurement of piston position is shown in Figure 5. The two cavities are both constructed of waveguide 14. The output cavity is fitted with an adjustable coupling slug to enable correct output loading to be obtained. Some adjustment of this slug is necessary when tuning over the available frequency range.

The frequency tuning circuit is also in waveguide 14 and incorporates a non-contact tuning piston which is calibrated in centimetres for precise adjustment.

Code: V265A/1M

Fig. 1.-Power Output versus Frequency

Fig. 2.-Resonator Voltage versus Frequency

Code: V265A/1M

CONTINUED

Fig. 3.-Piston Position versus Frequency

Code: V265A/1M

CONTINUED

Fig. 4.-Cavity-Valve Assembly

Fig. 5.-Cross-section of Cavities

Code: V265A/1M

CONTINUED

Fig. 6.-V265A/1M Outline

DIM.	MILLIMETRES	INCHES	DIM.	MILLIMETRES	INCHES
A	138,1 MAX.	57 ${ }^{\frac{7}{16} \text { MAX. }}$	K	6,4 $\pm 0,4$	$\frac{1}{4} \pm \frac{1}{64}$
B	57,63 MAX.	2.269 MAX.	L	9,53 ${ }_{-0,25}^{+0,00}$	$0.375{ }_{-0.010}^{+0.000}$
C	74,40 MAX.	2.929 MAX.	M	$4,75 \pm 0,13$	0.187 ± 0.005
D	108,0 $\pm 1,6$	44 $\pm \frac{1}{16}$	N	84,33 NOM.	3.320 NOM.
E	38,1 MAX.	11/ MAX.	P	7,54 $\pm 0,18$	0.297 ± 0.007
F	51,6 MAX.	$2 \frac{1}{32}$ MAX.	Q	71,42 NOM.	2.812 NOM.
G	16,69 $\pm 0,51$	0.657 ± 0.020	R	10,72 $\pm 0,79$	0.422 ± 0.031
H	1,78 MIN.	0.070 MIN .	S	2,36 $\pm 0,18$	0.093 ± 0.007
J	3,18 $\pm 0,25$	0.125 ± 0.010	T	55,6 $\pm 0,8$	$2 \frac{3}{16} \pm \frac{1}{12}$
NOTE.-Basic figures are inches.					

Velocity-Modulated Oscillator

Code: V271C/3M

The V271C/3M is a single-transit velocity-modulated oscillator of a new type for operation in the frequency range $6850-7350 \mathrm{Mc} / \mathrm{s}$.

It is intended for use as a frequency modulated transmitting valve in radio links. No forced air cooling is required for operation up to the conditions specified as maximum ratings.

CATHODE

Indirectly-heated, oxide-coated Heater voltage 6.3 V
Nominal current
0.25

A

DIMENSIONS

Nominal overall length	$5 \frac{1}{4} \mathrm{in} .$,	134	mm
Nominal overall width	$4 \frac{1}{4} \mathrm{in} .$,	108	mm
Nominal overall depth	$1.9 \mathrm{in} .$,	69	mm
Base		B8G	
Weight of packaged assembly, including			
\quad magnet but excluding tuning and out-			
put circuits		900	g
		31.8	oz

MOUNTING

The valve has fitted on each side a flange plate with three OBA tapped holes into which are screwed special studs shown on the outline drawing.
The circuits have special flanges with quick release attachments which engage under the heads of the studs, as shown in Fig. 1.

Alternatively the tuning and output circuits may have plain flanges which are attached to the plates by OBA knurled screws. In this case the special studs are removed by unscrewing them.

Standard Telephones and Cables Limited

Registered Office: Connaught House, Aldwych, W.C. 2

Velocity-Modulated Oscillator

Code: V271C/3M

MAXIMUM RATINGS		
Voltages are given with respect to cathode unless otherwise stated		
Maximum direct anode voltage	600	V
Maximum direct resonator voltage	600	V
Maximum direct drift tube voltage, with respect to resonator	200	\checkmark
Maximum direct screen voltage	400	V
Maximum direct anode dissipation	27	W
Maximum direct resonator dissipation	18	W
Maximum direct drift tube dissipation	3	W
Maximum direct screen dissipation	2	W
Maximum total dissipation for all electrodes except heater	40	W
Maximum direct cathode current	65	mA
Maximum temperature of mica window seal	130	${ }^{\circ} \mathrm{C}$
Maximum temperature of any other part of valve envelope	300	${ }^{\circ} \mathrm{C}$

TYPICAL OPERATING CONDITIONS

Conditions are given for operation in Mode 15 ($3 \frac{3}{4}$ cycles) and Mode 19 ($4 \frac{3}{4}$ cycles). The Mode numbers are the number of quarter periods of oscillation occupied by electrons in transit through the drift space.

Mode 15

Frequency-modulated oscillator in the frequency range 6850 $7350 \mathrm{Mc} / \mathrm{s}$.

Direct anode voltage 550 V
Direct resonator voltage 530 V
Direct grid voltage $\quad-50$ V
*Direct drift tube voltage 395 to 505 V
†Direct screen voltage, approximately 180 V
*This is adjusted to give maximum power output at the operating frequency set by the tuning piston. Graphs of frequency as a function of piston position and drift tube voltage are shown in Figs. 3 and 4. The frequency-modulating voltage is applied to the drift tube only.
\dagger This is adjusted to give a cathode current of 60 mA with a corresponding anode current of 30 to 40 mA .

SPECIAL VALVES

Velocity-Modulated Oscillator

Code: V271C/3M

Mode 19

Oscillator in the frequency range $6850-7350 \mathrm{Mc} / \mathrm{s}$.
Direct anode voltage 370
V
Direct resonator voltage 350 V
Direct grid voltage $\quad-50$ V
*Direct drift tube voltage 240 to 310 V
\dagger Direct screen voltage, approximately 120 V
*This is adjusted to give maximum power output at the operating frequency. The graph of piston position versus operating frequency is the same as for Mode 15.
\dagger This is adjusted to give a cathode current of 45 mA with a corresponding anode current of 22 to 30 mA .

PERFORMANCE

The valve should be used with the tuning and output circuits shown in Fig. 1. With the operating conditions as previously specified and the coupling slug adjusted to give maximum power output into a waveguide load whose V.S.W.R. is less than 1.2 the following performance should be obtained.

Mode 15

Power output, minimum Electronic tuning between half-power points, minimum	800	mW

Modulation sensitivity when loaded for maximum power
Minimum mechanical tuning range obtained by variation of piston position $\quad 6850$ to $7350 \mathrm{Mc} / \mathrm{s}$

Typical Characteristic Curves

Tuning piston position versus frequency
Figure 3
Power output versus frequency
Figure 5
Electronic tuning versus frequency
Mode 19

| Power output, minimum
 Electronic tuning between half-power
 points, minimum | 200 | mW |
| :--- | ---: | ---: | ---: |
| Modulation sensitivity when loaded for
 maximum power | ± 6 | Mc / s |
| 450 to 650 | kc / s per V | |

SPECIAL VALVES

Velocity-Modulated Oscillator

Code: V271C/3M

CIRCUITS

A diagram of the tuning and output circuits with a valve assembled is shown in Fig. 1. A separate diagram of the tuning circuit showing the reference plane for measurement of piston position is shown in Fig. 2.

The valve is designed to operate into Waveguide No. 14, correct loading being obtained by adjustment of the coupling slug. Some adjustment may be necessary to obtain maximum power when tuning over the available frequency range.

The tuning circuit is of $1 \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. internal section waveguide incorporating a non-contact tuning piston moved directly by a micrometer.

MODULATION

Frequency modulation is obtained by variation of the drift tube voltage with respect to resonator.

The direct drift tube current does not exceed 5 mA ; the input capacitance is 20 to 30 pF and the slope resistance is of the order of 25 kilohm.

THERMAL DRIFT AND STABILITY

The initial thermal drift from cold to the final operating frequency is between $9 \mathrm{Mc} / \mathrm{s}$ and $13 \mathrm{Mc} / \mathrm{s}$ and is completed in less than 5 minutes.

The variation of frequency with ambient temperature is between 50 and $100 \mathrm{kc} / \mathrm{s}$ per ${ }^{\circ} \mathrm{C}$ over the range covered by movement of the tuning piston.

MAGNET

The magnet is adjusted and locked in position during the testing of the valve and should not be re-adjusted during the life of the valve.

Code: V271C/3M

CONTINUED

OUTPUT CIRCUIT. TUNING CIRCUIT.

GUIDE SIZEI4.

FIG. 1

TUNING MICROMETER IS SET AT ZERO WITH FRONT FACE OF TUNING PISTON 2.0 mm . IN FRONT OF TUNING CIRCUIT FLANGE FACE.

FIG. 2

Code: V271C/3M

```
CONTINUED
```

Fig. 3.-Typical Mechanical Tuning Characteristic.

Fig. 4.-Typical Optimum Drift Tube Voltage Characteristic.

SPECIAL VALVES

Velocity-Modulated Oscillator

Code: V271C/3M

Fig. 5.-Typical Power Output Characteristic.

Fig. 6.-Typical Variation of Electronic Tuning Range with Operating Frequency.

SPECIAL VALVES

Velocity-Modulated Oscillator

> Code: V271C/3M

DIM.	MILLIMETRES	INCHES	DIM.	MILLIMETRES	INCHES
A	138,1 MAX.	$5 \frac{7}{16}$ MAX.	K	$6,4 \pm 0,4$	$\frac{1}{4} \pm \frac{1}{64}$
B	57,63 MAX.	2.269 MAX.	L	$9,53+0,00$ $-0,25$	0.375 +0.000
C	74,40 MAX.	2.929 MAX.	M	$4,75 \pm 0,13$	0.187 ± 0.005
D	$108,0 \pm 1,6$	$4 \frac{1}{4} \pm \frac{1}{16}$	N	84,33 NOM.	3.320 NOM.
E	38,1 MAX.	11 $\frac{1}{2}$ MAX.	P	7,54 $\pm 0,18$	0.297 ± 0.007
F	51,6 MAX.	$2 \frac{1}{32}$ MAX .	Q	71,42 NOM.	2.812 NOM.
G	$16,69 \pm 0,51$	0.657 ± 0.020	R	$10,72 \pm 0,79$	0.422 ± 0.031
H	1,78 MIN.	0.070 MIN .	S	2,36 $\pm 0,18$	0.093 ± 0.007
J	$3,18 \pm 0,25$	0.125 ± 0.010	T	$55,6 \pm 0,8$	$2 \frac{3}{16} \pm \frac{1}{32}$
NOTE.-Basic figures are inches.					

SPECIAL VALVES

Velocity-Modulated Oscillator

Code: V275C/3M

The V275C/3M is a single-transit velocity-modulated oscillator of a new type for operation in the frequency range $7250-7770 \mathrm{Mc} / \mathrm{s}$.

It is intended for use as a frequency-modulated transmitting valve in radio links. No forced air cooling is required for operation up to the conditions specified as maximum ratings.

CATHODE

Indirectly-heated, oxide-coated
Heater voltage 6.3 V

Nominal current
0.25

A

DIMENSIONS

Nominal overall length	$5 \frac{1}{4} \mathrm{in} .$,	134	mm
Nominal overall width	$4 \frac{1}{4} \mathrm{in} .$,	108	mm
Nominal overall depth	$1.9 \mathrm{in} .$,	69	mm
Base		B8G	
Weight of packaged assembly, including magnet but excluding tuning and out-			
put circuits	900	g	
	31.8	oz	

MOUNTING

The valve has fitted on each side a flange plate with three OBA tapped holes into which are screwed special studs shown on the outline drawing.

The circuits have special flanges with quick release attachments which engage under the heads of the studs as shown in Fig. 1.

Alternatively the tuning and output circuits may have plain flanges which are attached to the plates by OBA knurled screws. In this case the special studs are removed by unscrewing them.

Standard Telephones and Cables Limited

Registered Office: Connaught House, Aldwych, W.C. 2

SPECIAL VALVES

Velocity-Modulated Oscillator

Code: V275C/3M

MAXIMUM RATINGS

Voltages are given with respect to cathode unless otherwise stated.		
Maximum direct anode voltage	600	V
Maximum direct resonator voltage	600	V

Maximum direct drift tube voltage, with $\quad 200$ V
respect to resonator
Maximum direct screen voltage 400 V
Maximum direct anode dissipation 27 W
Maximum direct resonator dissipation 18 W
Maximum direct drift tube dissipation 3
Maximum direct screen dissipation 2 W
Maximum total dissipation for all electrodes
except heater 40 W

Maximum direct cathode current 65 mA
Maximum temperature of mica window seal $130 \quad{ }^{\circ} \mathrm{C}$
Maximum temperature of any other part of valve envelope
$300 \quad{ }^{\circ} \mathrm{C}$

TYPICAL OPERATING CONDITIONS

Conditions are given for operation in Mode 15 ($3 \frac{3}{4}$ cycles) and Mode 19 ($4 \frac{3}{4}$ cycles). The Mode number is the number of quarter periods of oscillation occupied by electrons in transit through the drift space.

Mode 15

Frequency modulated oscillator in the frequency range 7250 $7770 \mathrm{Mc} / \mathrm{s}$.

Direct anode voltage
550
530
-50
395 to 505
*Direct drift tube voltage
\dagger Direct screen voltage, approximately
*This is adjusted to give maximum power output at the operating frequency set by the tuning piston. Graphs of frequency as a function of piston position and drift tube voltage are shown in Figs. 3 and 4. The frequency-modulating voltage is applied to the drift tube.
\dagger This is adjusted to give a cathode current of 60 mA with a corresponding anode current of 30 to 40 mA .

Velocity-Modulated Oscillator

Code: V275C/3M

Mode 19
Oscillator in the frequency range 7 250-7 $770 \mathrm{Mc} / \mathrm{s}$.
Direct anode voltage 370 V
Direct resonator voltage 350 V
Direct grid voltage -50 V
*Direct drift tube voltage 240 to 310 V
\dagger Direct screen voltage, approximately 120 V
*This is adjusted to give maximum power output at the operating frequency. The graph of piston position versus operating frequency is the same as for Mode 15.
\dagger This is adjusted to give a cathode current of 45 mA with a corresponding anode current of 22 to 30 mA .

PERFORMANCE

The valve should be used with the tuning and output circuits shown in Fig. 1. With the operating conditions as previously specified and the coupling slug adjusted to give maximum power output into a waveguide load whose V.S.W.R. is less than 1.2 the following performance should be obtained.

Mode 15

Power output, minimum 750 mW
Electronic tuning between half-power points, minimum
$\pm 8.5 \mathrm{Mc} / \mathrm{s}$
Modulation sensitivity when loaded for maximum power 250 to 450 kc/s

Typical Characteristic Curves

Tuning piston position versus frequency
Power output versus frequency
Electronic tuning versus frequency
Figure 3
Figure 5
Figure 6

Mode 19

Power output 200 mW
Electronic tuning between half-power points
Modulation sensitivity when loaded for maximum power 450 to 650

V .
\qquad
\qquad

Velocity-Modulated Oscillator

Code: V275C/3M

CIRCUITS

A diagram of the tuning and output circuits with a valve assembled is shown in Fig. 1. A separate diagram of the tuning circuit showing the reference plane for measurement of piston position is shown in Fig. 2.

The valve is designed to operate into Waveguide No. 14, correct loading being obtained by adjustment of the coupling slug. Some adjustment may be necessary to obtain maximum power when tuning over the available frequency range.

The tuning circuit is of $1 \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. internal section waveguide incorporating a non-contact tuning piston moved directly by a micrometer.

MODULATION

Frequency modulation is obtained by variation of the drift tube voltage with respect to resonator.

The direct drift tube current does not exceed 5 mA ; the input capacitance is 20 to 30 pF and the slope resistance is of the order of 25 kilohm.

THERMAL DRIFT AND STABILITY

The initial thermal drift from cold to the final operating frequency is between $9 \mathrm{Mc} / \mathrm{s}$ and $13 \mathrm{Mc} / \mathrm{s}$ and is completed in less than 5 minutes.

The variation of frequency with ambient temperature is between 50 and $100 \mathrm{kc} / \mathrm{s}$ per ${ }^{\circ} \mathrm{C}$ over the range covered by movement of the tuning piston.

MAGNET

The magnet is adjusted and locked in position during the testing of the valve and should not be readjusted during the life of the valve.

SPECIAL VALVES

Velocity-Modulated Oscillator

Code: V275C/3M

FIG. 1

FIG. 2

SPECIAL VALVES

Velocity-Modulated Oscillator

Code: V275C/3M

Fig. 3.-Typical Mechanical Tuning Characteristic.

Fig. 4.-Typical Electronic Tuning Characteristic.

SPECIAL VALVES

Velocity-Modulated Oscillator

Code: V275C/3M

Fig. 5.-Typical Power Output Characteristic.

Fig. 6.-Typical Variation of Electronic Tuning Range with Mean Frequency.

SPECIAL VALVES

Velocity-Modulated Oscillator

Code: V275C/3M

DIM.	MILLIMETRES	INCHES	DIM.	MILLIMETRES	INCHES
A	138,1 MAX.	57 7 MAX.	K	6,4 $\pm 0,4$	$\frac{1}{4} \pm \frac{1}{64}$
B	57,63 MAX.	2.269 MAX.	L	9,53 ${ }_{-0,25}^{+0,00}$	$0.375{ }_{-0.010}^{+0.000}$
C	74,40 MAX.	2.929 MAX.	M	$4,75 \pm 0,13$	0.187 ± 0.005
D	108,0 $\pm 1,6$	41 ${ }^{\frac{1}{1}} \frac{1}{16}$	N	84,33 NOM.	3.320 NOM.
E	38,1 MAX.	112 MAX.	P	7,54 $\pm 0,18$	0.297 ± 0.007
F	51,6 MAX.	2 $\frac{1}{32}$ MAX.	Q	71,42 NOM.	2.812 NOM.
G	16,69 $\pm 0,51$	0.657 ± 0.020	R	10,72 $\pm 0,79$	0.422 ± 0.031
H	1,78 MIN.	0.070 MIN .	S	2,36 $\pm 0,18$	0.093 ± 0.007
J	3,18 $\pm 0,25$	0.125 ± 0.010	T	55,6 $\pm 0,8$	$2 \frac{3}{16} \pm \frac{1}{32}$
NOTE.-Basic figures are inches.					

SPECIALVALVES

Travelling-Wave Tubes

General Information

Travelling-Wave Amplifier Tubes
$\left.\begin{array}{l|c|c|c|c|c}\hline \text { Reference } & \text { Code } & \begin{array}{c}\text { Frequency } \\ \text { Range } \\ \text { Gc/s }\end{array} & \begin{array}{c}\text { Max. Power } \\ \text { Output } \\ \text { (mW) }\end{array} & \begin{array}{c}\text { Low Level } \\ \text { Gain } \\ \text { dB }\end{array} & \begin{array}{c}\text { Typical } \\ \text { Noise } \\ \text { Factor } \\ \text { dB }\end{array} \\ \hline \text { W3/2G } & \text { W3/2G } & 10.7 \text { to } 12.5 & 12000 & 40 \text { to } 46 & 26 \\ \text { W3MQ/1D } & \text { W3MQ/1D } \\ \text { W3MQ/1F } & \text { W3MQ/1F }\end{array}\right\}$

Travelling-Wave Limiter Tubes

W9/3E	W9/3E	2.5 to 41	0.1	15	16

SPECIAL VALVES

Medium Power
 Travelling-Wave Amplifier Tube

Code: W3/2G

The W3/2G is a travelling-wave amplifier tube intended for use in microwave radio links in the frequency range 10.7 GHz to $13 \cdot 2 \mathrm{GHz}$. This range may be extended to 15 GHz .

The tube is operated in periodic permanent magnet mounts types WM109C and WM109CR in which it will give the performance quoted in these data sheets.

The design of the mounts permits easy replacement under field conditions.

RADIO FREQUENCY PERFORMANCE		
Operating frequency range	10.7 to $13 \cdot 2$	GHz
Maximum power output	12	W
Gain at 5 W output	40	db
Minimum	45	db
Maximum	26 to 30	db
Noise factor at small signal levels	>65	db
Reverse attenuation		
Phase sensitivity	1	$\% / V$
$\mathrm{~d} \Phi / \mathrm{dV}$ hel	$0 \cdot 15$	$\% / V$
$\mathrm{~d} \Phi / \mathrm{dV} \mathrm{g}_{2}$	2	$\% / \mathrm{db}$

Modulation noise peaks

Measured in any 20 kHz band 0.5 to 10 MHz from carrier are less than 3 db above tube noise after 10 hours and will continue to improve to less than 1 db above tube noise.

Matching

Adjustment of two flags and two plungers in the input and output waveguides of mount WM109C will give a VSWR less than 1.02 at a spot frequency, and less than 1.1 over a 20 MHz band when operating at 5 W output. Mount WM109CR, with two plungers, will give a VSWR less than 1.5 over a 20 MHz band. By similar adjustments, the WM109C will give a broadband match with a VSWR less than 1.5 over 500 MHz in the frequency range 10.7 to 13.2 GHz : under similar conditions the WM109CR VSWR is 2.0 .

Graphs showing typical power output, gain and helix voltage as functions of frequency are shown in Figure 1. Typical maximum power output versus helix voltage is given in Figure 2, and Figure 3 shows typical power output versus power input with the helix voltage adjusted for maximum small signal gain (synchronous helix voltage).

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: 01-300 3333 Telex: 21836
C O M P O N E N T S \quad G R O U P

Code: W3/2G

CONTINUED

TYPICAL OPERATING CONDITIONS (Note 1)

Frequency	12	GHz
Direct helix to cathode voltage (Note 2)	3.4	kV
Direct grid 2 to cathode voltage (Note 3)	2	kV
Direct grid 1 to cathode voltage (Note 4)	-15	V
Direct collector (earth) to cathode voltage	2.2	kV
Direct grid 2 current	0	mA
Direct helix current at 5W output	0.35	mA
Direct collector current	30	mA
Direct cathode current	30.35	mA
Gain at 5W output, approx.	44	db
Saturated output at synchronous helix voltage, approx.	8.5	W
Band of output impedance match to 5\% voltage reflection (Note 5)	20	MHz

Note 1. Electrode voltages are referred to cathode potential. The collector is earthed.
Note 2. Adjusted to synchronous voltage.
Note 3. Adjusted to give required collector current.
Note 4. Adjusted to the value stated on the individual tube and its data sheet.
Note 5. The matching plungers must be adjusted for each tube at the required operating frequency.

CATHODE

Indirectly heated, oxide-coated type.

Note 6. The heater is usually supplied by a d.c. voltage or an r.m.s. equivalent at a frequency of 50 Hz . Other frequencies of supply up to 10 kHz may be used but it is recommended that the manufacturer be consulted beforehand.

Code: W3/2G

CONTINUED

LIMIT RATINGS

	Min	Max	
Voltages	2.9	4	kV
Direct helix to cathode (Note 7)		3	kV
Direct grid 2 to cathode		$-0 \cdot 5$	kV
Direct grid 1 to cathode	1.85		kV
Direct collector (earth) to cathode (Note 7)		4	kV
Direct grid 2 to helix	4	kV	

Note 7. Minimum ratings are specified for continuous operation to avoid excessive helix current. Refer to Operational Data Section.

Currents	Max	
Cathode	35	mA
Helix		
\quad Absolute maximum to trip supplies with delay		
of less than 5 seconds	2.5	mA
Switching transient	20	mA
\quad Direct grid 2	0.5	mA
Power Dissipations		
Grid 2	2	W
Helix	7	W
Collector (Note 8)	70	W

Note 8. Higher values of collector dissipation are permissible if the normal convection cooling is supplemented by forced-air-cooling.

Code: W3/2G

CONTINUED

D.C. SUPPLY VOLTAGES

The collector is connected to the body of the mount via the cooler. It is intended that the mount shall be operated at earth potential. Voltages must be applied in the correct sequence, as given in the "Setting-up Procedure" section of these data sheets.

Helix Voltage

Adjustable for required working conditions, range 3.2 to 3.7 kV
The synchronous helix voltage for individual tubes lies within the range
3.3 to 3.6 kV

Ripple and regulation tolerance depend upon acceptable phase and output amplitude variation, typically:-
2% change in helix voltage causes a fall in gain of $0.25 \quad \mathrm{db}$
1% change in helix voltage causes a phase change of approx. 33
Supply impedance, including resistance in mount, max. (Note 9) 20
Note 9. This is required to avoid excessive voltage drop at switch-on.
Collector Voltage
Set between absolute limits of 2 to 3.5
kV
For operation with depressed collector it is usual to choose a nominal voltage of
$2 \cdot 2$
kV
A minimum collector voltage of 2 kV may be used up to 5 W output power

Grid 1 Voltage

Adjustable for optimum focus, never positive, range 0 to -50 V
The value for minimum helix current is specified on each tube and in its individual data sheet.
A change of 5 V is permissible if it improves focusing when operating conditions have been set up: this in turn may necessitate re-adjustment of grid 2 voltage.

Grid 2 Voltage

Adjustable for required working conditions, range
1.8 to 2.6
kV
When adjusted to give 30 mA collector current
Initial range is
1.8 to $2 \cdot 4$
kV
End of life limit is
kV

Code: W3/2G

CONTINUED

MECHANICAL DATA (W3/2G)
Envelope Glass and metal
$\left.\begin{array}{l}\text { Dimensions } \\ \text { Connection detail }\end{array}\right\}$ As shown in Figure 5

LIFE

$\left.\begin{array}{l}\text { Shelf life } \\ \text { Operational life } \\ \text { Life-end points }\end{array}\right\}$ Subject to guarantee.$~$
(a) Grid 2 voltage greater than 2.6 kV for 30 mA collector current, or
(b) Helix current greater than 2.5 mA for 30 mA collector current, or
(c) Gain or power deteriorated by more than 2 db from initial figures.

ENVIRONMENTAL CONDITIONS	Min	Max	
Storage temperature	-60	+80	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	-10	+60	${ }^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

These approved mounts, in which the W3/2G tube operates, incorporate a periodic permanent magnet system, r.f. coupling and matching elements; mechanical alignment and deflection adjustments; and a convection cooler. They differ from one another in respect of various physical and electrical characteristics; the differences are described in later sections of these data sheets.

A sheathed cable attached to the mount carries the electrode supplies, the collector connection being made to the body of the mount which must be at earth potential. The leads of this cable are effectively choked for microwave frequencies and in the WM109C mount resistors are incorporated in the grid 2 and helix leads to limit surges.

A detachable lid provides access to the tube connections and has attached to it a link which, when the lid is in place, is connected to a twin lead interlock cable attached to the mount. This cable may be wired into supervisory circuits to ensure that no voltage can be applied when the lid is off and the terminals inside the mount are exposed. The lid also provides additional microwave screening.

Optimum adjustment of focusing to allow for variations from tube to tube and in mount manufacture is achieved by the use of three pairs of mechanical positioning screws: two pairs align the tube and the other pair move a magnetic deflector plate.

On the WM109C, fine adjustments to the matching are made with movable flags and variable short-circuit plungers in the waveguides. The flags, which may be rotated and moved longitudinally, are controlled by rods protruding opposite to the input and output ports and offset from the centre line of the waveguide. The short-circuit plungers of non-contact design are moved by rotating the screw stems protruding adjacent to the flag rods.

The WM109CR matching adjustments are simplified in that each waveguide has only one movable flag, the short-circuit plunger being pre-set.

The tube is held firmly in the mount at the collector end by the cooler assembly and at the base end by a ring in the mount to which is attached a two-position retaining catch: the latter is turned over a projection of the tube base ring to lock the tube in position. (The position of the retaining catch is shown in Figures 7 and 9.)

Each mount has a tube ejection mechanism, incorporated in the cooler assembly and operated by an internal control at the lid end of the mount. (See Figures 7 and 9.)

The design of the mount is such that circuit alignment is unaffected by normal handling, and tubes can be easily replaced under field conditions.

The mounts should be secured by the threaded holes in the mount body using $\frac{1}{4}$ inch UNC non-magnetic screws.

```
MECHANICAL DATA (MOUNTS)
    Dimensions As shown in Figures 6 and 9.
    Weight, approx. }12\textrm{lb}5,5\quad\textrm{kg
    Mounting position For maximum efficiency of the convection cooler, the plane of the
        cooler fins should be vertical. Magnetic materials should be kept at
        least }1\mathrm{ inch ( }2,5\textrm{cm})\mathrm{ ) away from the exterior of the mounts, particu-
        larly in the vicinity of the waveguides. Permanent magnets should be
        kept at least 9 inches ( }23\textrm{cm}\mathrm{ ) away from the axis of the mount.
    Fixing of mounts Attach mounts to equipment with }\frac{1}{4}\mathrm{ inch UNC non-magnetic screws fitting into tapped holes provided in mount body.
```


Connecting leads

```
Electrode leads Five-core P.T.F.E. insulated cable, leads colour-coded as shown in Figures 6 and 9 (Note 10).
Interlock leads Twin cable, sleeve coloured blue.
Mechanical adjustment controls (Note 11)
Alignment Two pairs of external knobs
Deflection Two pairs of external knobs
```


R.F. matching adjustments

```
WM109C One sliding flag and one screwed plunger in each waveguide.
WM109CR One sliding flag and one pre-set plunger in each waveguide.
```


Waveguide connections, input and output

```
Flanges for connection to waveguide WG17 (WR75). (Note 12.)
Note 10. In the near future, a 6-core cable will be fitted: this will include a black earth lead to provide an additional earth path to that existing between the mount body and equipment chassis.
Note 11. The positions of adjustment controls are shown in Figures 7 and 9.
Note 12. An outline drawing of a WG17 flange, as fitted to WM109C, is shown in Figure 10. The WM109CR flanges are similar except for the fixing holes which are as given in Figure 8.
```


COOLING

Cooling is effected by the integral convection cooler. It is important that the mount is installed with the cooler fins in the vertical plane. For efficient air circulation, free spaces above and below the cooler of at least 2 inches (5 cm) depth, with access to a free supply of air at ambient temperature, must be provided.

If values of collector dissipation in excess of the specified limit rating are employed, the normal convection cooling must be supplemented by forced-air-cooling (see Note 8 in Limit Ratings Section).

Codes: WM109C WM109CR

CONTINUED

ELECTRICAL DATA

Ratings

Heater to heater-cathode maxim	ximum voltage	1	kV
Heater and heater-cathode			
Helix to	to body of mount, maximum voltage	4.5	kV
Grid 2			
Supervisory cable and interlock	ck 240V a.c.	2	A
ead resistance			
	WM109C (Note 13)	WM109CR	
Grid 2	$47 \mathrm{k} \Omega$	0.05	Ω
Helix	$7.5 \mathrm{k} \Omega$	0.05	Ω
Heater (Note 14)	0.05Ω	0.05	Ω

Note 13. These values include those of the limiting resistors in grid 2 and helix leads.
Note 14. At 0.8 A . Heater line voltage drop of 0.04 V .

R.F. PERFORMANCE

Frequency range
Each mount will permit the specified performance of the W3/2G tube to be achieved
R.F. leakage (Note 15)

Input waveguide level to free space $>65 \quad \mathrm{db}$
Output waveguide level to free space $>65 \quad \mathrm{db}$

Matching

Adjustment of two flags and two plungers in the input and output waveguides of mount WM109C will give a VSWR less than 1.02 at a spot frequency, and less than 1.1 over a 30 MHz band when operating at 5 W output. Mount WM 109 CR , with the adjustment of two plungers, will give a VSWR less than 1.5 over a 30 MHz band.

By similar adjustments the WM109C will give a broadband match with a VSWR less than 1.5 over 500 MHz in the frequency range 10.7 to 13.2 GHz . Under similar conditions, the WM109CR VSWR is 2.0 .

Note 15. Measured by using a $1 \frac{1}{4} \mathrm{in} . \times \frac{5}{8} \mathrm{in} .(3,175 \mathrm{~cm} \times 1,59 \mathrm{~cm})$ waveguide horn in a way such as to obtain a maximum reading.

ENVIRONMENTAL CONDITIONS

Ambient temperature range	Min	Max	
Operating	-10	+60	${ }^{\circ} \mathrm{C}$
Storage	-60	+60	${ }^{\circ} \mathrm{C}$

Code: W3/2G

CONTINUED

OPERATIONAL DATA

Efficient operation of a travelling-wave tube in a periodic permanent magnet mount depends upon certain prime requirements being met during conditions of switch-on, continuous working and switch-off. These requirements are such that satisfactory periodic focusing cannot be achieved with either low helix voltage or low cathode current.

The maximum helix current is likely to occur when the helix voltage is between 1200 and 2000 volts, the actual value of current being dependent upon the setting of the grid 2 voltage relative to the helix voltage.

When switching on, it is essential that the helix current does not exceed the following safe values:

> 30 mA for not longer than 10 milliseconds 10 mA for not longer than 150 milliseconds
> 5 mA for not longer than 1 second 2.5 mA for not longer than 5 seconds

A suitable cathode current control circuit is shown in Figure 4. The grid 2 voltage is supplied from a potentiometer connected across the helix supply, the grid 2 voltage always being proportional to, but less than, the helix voltage.

To avoid excessive helix current surges at switch-on and switch-off, use of the circuit technique illustrated in Figure 4 is recommended. This provides for an unregulated bias of about -300 V to be applied to grid 1 for the first half minute after the application of collector, helix and grid 2 voltages. This highly negative grid 1 bias reduces the beam current to approximately 2 mA which is quite safe should the tube be out of alignment with the magnetic focusing field. Thus, there is time for an approximately correct alignment to be made before the full beam current of about 28 mA is allowed to flow. When the transistor R-C timer circuit closes a reed relay, the effective grid 1 bias is reduced to the pre-set working level and is zener stabilised.

Simultaneous with the switch-off of helix, grid 2 and collector voltages, the reed relay supply voltage will be removed and the relay contacts will open. This results in the immediate re-application of the high negative grid bias so that the t.w.t. beam current is virtually cut-off, thus preventing any dangerous current transient from damaging the helix. This safeguard also applies if the helix trip operates. In this event the e.h.t. must be re-applied manually and the half minute beam current delay is again available for improved focusing to be attempted.

Towards the end of the life of the tube it is likely that the helix current will rise to about 2 mA and the grid 2 voltage, which initially was between 1.8 and 2.4 kV , will increase to about 2600 volts.

Code: W3/2G

CONTINUED

SETTING-UP PROCEDURE (Note 16)

The following procedure is recommended for setting up the W3/2G tube in its mount for operation:

1. Ensure that the mechanical alignment and deflection control knobs on the mount are set to the middle of their travel and that the two-position retaining catch is in a position to allow tube to be inserted.
2. Insert tube in mount (Note 17). At the end of the travel of the tube, pressure needs to be applied to overcome the resistance of the cooler contacts and the spring located on the mount ring before the tube meets the stop at the base end. A slight clockwise twist will help with this insertion. The blue spot on the base of the tube should be aligned with the black mark on the seating; this is necessary for best matching.
3. Secure tube in mount by rotating the two-position retaining catch to turn over the projection of the tube base ring (Note 18).
4. Connect colour-coded leads of the tube to appropriate terminals in the mount and ensure that mount is properly earthed.
5. Replace lid, making sure that the interlock two-pin plug is fitted correctly in its socket.
6. Apply heater voltage and allow one minute heating time.
7. It is necessary to make the following adjustments before switching on to ensure that the helix current will not exceed a safe value:
(a) switch off any r.f. drive.
(b) by using the calibrated potentiometer (R_{1} in Figure 4), pre-set grid 1 voltage to the value specified on the tube and its data sheet (Note 19).
(c) pre-set grid 2 (anode) voltage to a value such that the specified voltage will be achieved on load.
(d) pre-set helix voltage to give 3.3 kV on load.
8. After the one minute cathode pre-heat, switch on simultaneously the collector, helix and grid voltages. The 24 volt supply to the transistor delay circuit should be applied at the same time.
9. Adjust alignment and deflection control knobs to give a minimum helix current. After a 30 second time delay the pre-set grid 1 voltage will be switched on and the control knobs can be re-adjusted to give minimum helix current.
10. Slight adjustments to grid 2 (anode) and grid 1 voltages may be necessary to obtain a collector current of 30 mA and optimum helix current.
11. Apply r.f. input at a level of approximately -15 dbm and adjust helix voltage and matching controls for optimum performance.
Then increase the r.f. input to obtain the required power output.
It is recommended that the helix voltage be set at the synchronous value.
A slight re-adjustment of the control knobs may be necessary to obtain minimum helix current and the value of grid 2 voltage to maintain a collector current of 30 mA .
A small change (approximately ± 5 volts) of grid 1 voltage, with a subsequent change
in grid 2 voltage, is permissible provided improved focusing is obtained.
Final adjustments to the matching controls may also be required.
Note 16. During setting-up, or in subsequent operation of the tube, the helix current trip circuit must be so arranged that if the helix current exceeds 2.5 mA , the h.t. supplies and the supply to the transistor delay circuit are switched off automatically.
Note 17. The insertion of the tube requires a free space between the lid end of the mount and extraneous equipment. When the tube is inserted in the same plane as the longitudinal axis of the mount, a minimum free space of $12 \frac{1}{2}$ inches $(31,8 \mathrm{~cm})$ is needed. By presenting the tube at an angle of 45° to the main axis of the mount a minimum free space of 10 inches $(25,4 \mathrm{~cm})$ is required.
Note 18. Once the tube has been secured by the retaining catch, it is important to ensure that the tube ejection mechanism is not operated inadvertently. Failure to observe this precaution will result in the tube being damaged.
Note 19. Under running conditions, the voltage across the grid 1 potentiometer is 50 V . If the potentiometer is pre-calibrated, the use of a voltmeter to set its position prior to switch-on is avoided

Code: W3/2G

CONTINUED

TUBE REMOVAL PROCEDURE

1. Switch off all h.t. voltages simultaneously.
2. Switch off heater voltage.
3. Remove mount lid.
4. Disconnect tube leads from terminals.
5. Move adjusting knobs to mid-travel positions.
6. Rotate the two-position retaining catch to clear the tube base ring.
7. Support the base end of the tube and gradually operate the tube ejector mechanism to ease the tube from the mount. A slight clockwise twist applied to the tube will assist removal.

Fig. 1.-Typical Frequency Characteristics

Code: W3/2G

CONTINUED

Fig. 2.-Typical Maximum Power Output versus Helix Voltage

Fig. 3.-Typical Power Output versus Power Input

Code: W3/2G

CONTINUED

Fig. 4.-Typical Cathode Current Control Circuit

* RI IS A POTENTIOMETER WITH A CALIBRATED SCALE.
* THE 24V SUPPLY IS SWITCHED AND INTERLOCKED

WITH THE PRIMARY OF THE HELIX AND COLLECTOR H.V. SUPPLY.

W3/2G

Code: W3/2G

CONTINUED

Fig. 5.-W3/2G Outline

DIM	MILLIMETRES		INCHES	
A	304,8	MAX.	12	MAX.
B	36,20	\pm	0,18	1.425
C	74,6	0.007		
D	7,37	MAX.	$215 / 16$	MAX.
E	63,5	\pm	0.290	MAX.

NOTE:- BASIC FIGURES ARE INCHES

Code: W3/2G
CONTINUED
Fig. 6.-WM109C Dimensioned Outline

\dagger The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. In some mounts a black lead is included in the cableform carrying the terminal supply leads: one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.

T.W.T. MOUNT
 Codes: WM109C

CONTINUED

Fig. 7.-Diagram Showing Operational Controls of WM109C

T.W.T. MOUNT

Code: WM109CR

Fig. 8.-WM109CR Dimensioned Outline

NOTE:- BASIC DIMS ARE IN INCHES.
\dagger The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. In some mounts a black lead is included in the cableform carrying the terminal supply leads: one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.

Fig. 9.-Diagram Showing Operational Controls of WM109CR

VIEW OF END 'A' WITH COVER REMOVED

Codes: WM109C

CONTINUED

Fig. 10.-Outline of Waveguide Flange WG17 for WM109C

DIM	INCHES	MILLIMETRES
A	1.500 ± 0.005	$38,10 \pm 0,13$
B	0.520 ± 0.001	$13,21 \pm 0,03$
C	1.875 ± 0.005	$47,63 \pm 0,13$
D	0.561 ± 0.001	$14,25 \pm 0,03$
E	$0.479+0.0002$	$12,17 \pm 0,005$
F	0.854 ± 0.0002	$21,69 \pm 0,005$
G	0.187 ± 0.010	$4,75 \pm 0,25$
H	0.312 ± 0.005	$7,92 \pm 0,13$
J	0.1405 ± 0.002	$3,567 \pm 0,051$
K	$1 / 32 \pm 1 / 64$	$0,8 \pm 0,4$

BASIC DIMS ARE INCHES.

* FOR REF. ONLY.

Low-Noise X-Band

Travelling-Wave Tubes

Codes: W3MQ/1D W3MQ/1F

These travelling-wave tubes are supplied completely packaged in a single reversal permanent magnet mount incorporating magnetic screening: this screening allows undisturbed operation of two tubes with a spacing of only a few inches between mounts.

They are designed for operation as wide-band amplifiers over the frequency band 7 to $11.5 \mathrm{Gc} / \mathrm{s}$ or for use over narrower frequency ranges in the same band. When narrow-band operation is required by customers, the tube will be optimised for a particular band specified, with a consequent improvement in performance.

The r.f. coupling of the W3MQ/1D is via coaxial connectors Type N and of the W3MQ/1F via waveguide connectors WG16.

R.F. CHARACTERISTICS*

Gain, small signal

Typical
39
dB
Minimum
Noise figure
Narrow-band, typical
Wide-band, typical 7.5 to 9 dB 8.5 to 10.5 dB
Maximum
Saturated power output

$$
\begin{array}{lrr}
\text { Typical } & 3 \text { to } 15 & \mathrm{~mW} \\
\text { Minimum } & 2 & \mathrm{~mW}
\end{array}
$$

* Typical broad-band curves are shown in Figure 1.

CATHODE

Indirectly heated, oxide coated
Heater voltage
Nominal current
Minimum pre-heat time
Maximum heater interruption time

6.3	V
0.5	A
120	s
5	s

ELECTRICAL CHARACTERISTICS

Electrode Voltages and Effect on Phase Change

	Nominal Phase				
	Min.				Nom.
	-30 V	-15 V	Max.	Change	

Electrode Currents

Helix current, nominal
$10 \quad \mu \mathrm{~A}$
Collector current, nominal
$500 \quad \mu \mathrm{~A}$
Grid 1 current, nominal
Grid 2 current, nominal
Grid 3 current, nominal
Grid 4 current, nominal
Input and output match
Reverse attenuation
$<2 \cdot 5: 1$
$>70 \quad \mathrm{~dB}$

MECHANICAL DATA

Dimensions As shown in outline drawings
Weight, approx.
27.5 lb

12,5
kg

Codes: W3MQ/1D W3MQ/1F

OPERATIONAL PROCEDURE

1. Connect colour coded leads to the power supply as follows:-

Cathode-Yellow	Grid 3-Grey
Heater—Brown	Grid 4-White
Grid 1-Green	Helix—Orange
Grid 2—Blue	Collector—Red

2. Switch on heater supply and allow two minutes cathode pre-heat time.
3. Apply the voltages specified on the mount label to the collector, helix, grid 4 and grid 3 either in this order or simultaneously. Either the collector or the cathode may be run at earth potential.
4. Set the grid 1 voltage and then the grid 2 voltage to the specified values. As the collector current increases, the helix current may rise to as much as $30 \mu \mathrm{~A}$ but should drop to a few microamperes as the operating current is reached.
5. To obtain optimum focusing, slight adjustment of grid 3 and grid 4 voltages may be necessary.
6. With the voltages specified, optimum broad-band noise performance should be obtained, but to optimise over a narrow frequency band within the normal operating band the helix voltage should be adjusted. Normally, the optimum voltage will be found between 15 V below and 10 V above that specified for broad-band operation, with the lower voltages applying to the lower frequencies. When the helix voltage is changed, the grid 3 and grid 4 voltages should be adjusted again; normally the best noise figure is found close to the optimum focusing condition.
7. Should higher or lower gain be required the collector current may be increased or decreased by up to 20% by adjusting $\mathrm{V}_{\mathrm{g}_{1}}$ or $\mathrm{V}_{\mathrm{g}_{2}}$. Some deterioration in noise figure and focusing is likely to occur but small adjustments to $V_{g_{3}}$ and $V_{g_{4}}$ will minimise this deterioration.
8. Pulsed operation of the tube may be achieved by applying negative pulses of about 100 to 150 volts to grid 1 or grid 2.

Codes: W3MQ/1D W3MQ/1F
 CONTINUED

Fig. 1. Typical r.f. Performance with Fixed Voltages

Codes: W3MQ/1D W3MQ/1F
 CONTINUED

Fig. 2. W3MQ/1D Outline

NOTE:- BASIC DIMENSIONS ARE INCHES.

DIM.	INCHES	MILLIMETRES	
A	$15.1 / 2 \quad$ MAX.	$393,70 \quad$ MAX.	
B	10.830 ± 0.060	$275,08 \pm 1,52$	
C	$3.3 / 32 \pm 1 / 8$	$78,58 \pm 3,18$	
D	$11 / 16 \pm 1 / 32$	$17,46 \pm 0,79$	
E	7830 ± 0.060	$198,88 \pm 1,52$	
F	$4.21 / 32 \pm 1 / 8$	$118,27 \pm 3,18$	
G	$2.1 / 2 \quad$ MAX.	$63,5 \quad$ MAX.	
H	$21 / 32 \pm 1 / 16$	$16,67 \pm 1,59$	
J	$5.13 / 16 \mathrm{MAX}$.	$147,64 \quad$ MAX.	
K	$3.3 / 8 \pm 1 / 32$	$85,73 \pm 0,79$	
L	$6.37 / 64 \pm 1 / 32$	$167,08 \pm 0,79$	
M	$5 / 16 \pm 1 / 64$	$7,94 \pm 0,40$	
N	$1 \pm 1 / 64$	$25,4 \pm 0,40$	
P	$2.1 / 2 \pm 1 / 32$	$63,5 \pm 0,79$	
Q	$4.13 / 16 \pm 1 / 32$	$122,24 \pm 0,79$	
R	$3 / 4 \pm 1 / 64$	$19,05 \pm 0,40$	
S	$1 / 8 \pm 1 / 64$	$3,18 \pm 0,40$	

ELECTRO METHODS PLUG	
BAI5P CONNECTIONS	
ELECTRODE	PIN LETTER
HEATER	P
hk	R
CATHODE	N
G1	L
G2	E
G3	H
G4	K
HELIX	A
COLL	C

$\left.\begin{array}{l}\text { W3MQ/1D } \\ \text { W3MQ/1F }\end{array}\right\}-5$

Codes: W3MQ/1D W3MQ/1F

CONTINUED

Fig. 3. W3MQ/1F Outline

NOTE:-BASIC DIMENSIONS ARE
INCHES
*NOTE:-W/G FLANGES
MAY BE INDEPENDENTLY
POSITIONED WITHIN
NOTE I
W/G FLANGE JOINT
SERVICE N*5985-99
083 - 0004.
RING LOCATING JOINT SERVICE
N $5985-99-083-0002$

Description

The W3MT/4A is a gain-tracking, low-noise travelling-wave tube amplifier intended for use in the frequency range $7,5 \mathrm{GHz}$ to 12 GHz .

All W3MT/4A amplifiers have a close tolerance of gain from one to another over the operating frequency band (i.e. low gaintracking error). All amplifiers follow a standard curve of gain versus frequency to a tolerance of less than $\pm 1,5 \mathrm{~dB}$ over a wide ambient temperature range.

The amplifier is supplied as a package, included in which is a travelling-wave tube, its straightfield focus mount and a potentiometer chain to supply the required voltages to the various tube electrades from three d.c. inputs.

The package is screened magnetically; this screening allows undisturbed operation of two tubes spaced 12 mm apart.
R.F. coupling is by coaxial connectors type OSM jack.

A service is offered to the user by the manufacturer whereby at the end of tube life the package is refurbished at the factory and the tube replaced.

Radio Frequency Performance

Operating frequency range

$$
(\mathrm{GHz}) 7,5 \text { to } 12
$$

Gain tracking; deviation from standard curve across frequency band, maximum
Gain limits (input
less than -35 dBm)
across frequency band (dB) min. 30 (dB) max. 36
Noise figure at small signal levels, maximum across band (dB) 14 maximum at $9,75 \mathrm{GHz}(\mathrm{dB}) 11$ Saturated output power limits (dBm) min. +9 (dBm) max . +17

The tube will withstand the application of an input pulse 1 kW peak, $0,5 \mathrm{~W}$ mean of $1 \mu \mathrm{~s}$ duration with no subsequent change in performance.

Matching

This is preset and is better than 2,5:1 VSWR at the input and output across the recommended frequency band, measured hot.

Typical Operating Conditions

Supply Voltages

It is important that these be maintained within the following tolerances. The polarity of the voltages is with respect to the common return lead, pin E on the BA7P plug. (Note 2).

V_{1}	(V)	+1	$200 \pm 0,25 \%$
V_{2}	(V)	$-25 \pm 0,25 \%$	

The input currents will not exceed the following values:

I_{1}	$(\mathrm{~mA})$	$+3,8$
I_{2}	$(\mathrm{~mA})$	$-3,5$

Nate 2. The tube must not be run with heater voltage only applied for periods other than that recommended for pre-heating. Such running results in degradation of gain tracking performance and a consequent short life.

At no time should V_{1} be applied in the absence of V_{2} (see operating instructions).

Heater

Note 1. The heater voltage must be d.c. with the polarity of the supply as shown in Figure 3.

Limit Ratings

Damage to the package will result if the following ratings are exceeded.
V_{1} voltage input $(V) \quad+1330$
V_{2} voltage input(V) -40
V_{h} voltage input(V) 7,2

Environmental Performance

Ambient temperature
operating range
(Note 3) ($\left.{ }^{\circ} \mathrm{C}\right) \quad-10$ to +55
storage range (OC) -40 to +70
The tube/mount package conforms to the requirements of approved military specification for vibration and shock.

Note 3. At the extreme temperatures of $-10^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}$ the limit of gain deviation from the standard curve is relaxed (to a maximum value of $\pm 2 \mathrm{~dB}$). The noise figure limit at $9,75 \mathrm{GHz}$ is relaxed to 14 dB .

Life

$\left.\begin{array}{l}\text { Shelf life } \\ \text { Dperational life }\end{array}\right\}$
Life end points
(a) the gain deviation from the standard curve exceeds $\pm 2, \mathrm{OdB}$ at normal ambient temperatures.
(b) the noise figure is greater than 15 dB .
(c) one or more of the other tube parameters falls outside the stated limits.

General Data

The tube is completely enclosed in its permanent magnet mount package. No adjustments for focussing or match are necessary.

A screened lead attached to the mount carries the h.t. and heater supplies.

The W3MT/4A is fitted with an elapsed time meter in the heater supply line. It records tube life up to 5000 hours.

Mechanical Dała

Dimensions As shown in Figure 3. Weight $\quad 5,22 \mathrm{~kg} \quad 11,5 \mathrm{lb}$
Fixing Attach amplifier to equipment with 10-32
UNF non-magnetic screws fitting into four tapped holes $9,55 \mathrm{~mm}$ (0,375 inch) deep provided in package body. (See Figure 3).
R.F. connections

Input and output. Type DSM jack Mounting position. No restriction

Proximity of Magnetic Materials

Magnets and ferromagnetic materials in proximity to the tube will affect its performance and may cause permanent damage. Such materials must not be brought closer than 12 mm to any part of the amplifier. Ambient magnetic fields must not exceed 0,001 Tesla.

Operating Procedure

The recommended switch-on procedure is:
(a) switch on heater.
(b) allow one minute warm-up.
(c) switch on V_{2} (negative) and then V_{1} (positive), and only in that order. (Note 4).

When switching off, either remove both h.t. voltages simultaneously or V_{1} before V_{2}.

Note 4. At no time should V_{1} voltage be applied in the absence of V_{2} voltage.

Fig. 1 Typical Noise figure and Saturated Output Power versus Frequency

Fig. 2 Typical plots of Small Signal Gain versus Frequency (6 tubes)

Fig. 3 W3MT/4A Outline

Fig. 3 W3MT/4A Outline - continued.

Notes
(1) Elapsed time meter.
(2) Label.
(3) Input.
(4) Output.
(5) R.F. connectors type 05M210 jack.
Position of connectors shown when tube is mounted on pads 19,05mm (0,75in.) diameter located under the four fixing holes.
(6) Plug type BATP (Pye Connectors Ltd.).
Pin connections as follows:

Four fixing holes 10-32 UNF x 9,5mm (0,375 inch) deep:
position tolerance 0,030 inch diameter (to BS.308).

These components are available from :
ITT Components Group Europe
Standard Telephones and Cables Limited.
Valve Product Division,
Brixham Road.
PAIGNTON. Devon. TQ47BE
Tel. 0803-50762 Telex: 42830

SPECIAL VALVES

Medium Wave
Travelling-Wave Amplifier Tube

Code: W4/2G

The W4/2G is a travelling-wave amplifier tube intended for use in microwave radio links in the frequency range 7 to $8.5 \mathrm{Gc} / \mathrm{s}$.

The tube is operated in periodic permanent magnet mounts types WM108C and WM108CA in which it will give the performance quoted in these data sheets. The mounts are fitted with a convection cooler but a conduction cooler is available and this can be modified, if necessary, to meet individual requirements. The WM108CA mount has a frontend tube ejector control.

The design of the mounts permits easy replacement of tubes under field conditions.

RADIO FREQUENCY PERFORMANCE

Operating frequency range	7 to 8.5	Gc / s
Maximum output power	15	W
Gain at 5 W output		
Minimum	36	db
Maximum	47	db
Noise factor at small signal levels	26	db
Reverse attenuation	70	db
Phase sensitivity		
$\mathrm{d} \Phi / \mathrm{dV}$ hel	-0.75	$\% / V$
$\mathrm{~d} \Phi / \mathrm{dV}$ g2	+0.25	$\% / \mathrm{V}$
AM/PM conversion at 5 W output	1.5	$\% / \mathrm{db}$

Modulation noise peaks
Measured in any $20 \mathrm{kc} / \mathrm{s}$ band 0.5 to $10 \mathrm{Mc} / \mathrm{s}$ from carrier are less than 3 db above tube noise after 10 hours and will continue to improve to less than 1 db above tube noise. Matching

Adjustment of two plungers in the input and output waveguides will give a VSWR less than 1.02 at a spot frequency and less than 1.1 over a $15 \mathrm{Mc} / \mathrm{s}$ band when operating at 5 W output.
A graph showing typical helix voltage, synchronous saturated power output and gain as functions of frequency is shown in Figure 1, and a graph of typical power output versus power input is given in Figure 2.
As will be seen in Figure 2, an increase in output may be achieved by setting the helix voltage above the synchronous value with a resulting drop in gain. Synchronous helix voltage is that which gives maximum gain at low signal levels.

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: 01-300 3333
Telex: 21836
C
C O M P
P O N E N T S
G R
O
U P

Code: W4/2G

CONTINUED

TYPICAL OPERATING CONDITIONS (Note 1)

Frequency	7.8	Gc / s
Direct helix to cathode voltage (Note 2)	3.3	kV
Direct grid 2 to cathode voltage (Note 3)	2	kV
Direct collector (earth) to cathode voltage	2	kV
Direct grid 2 current	0.01	mA
Direct helix current	0.65	mA
Direct collector current	40	mA
Direct cathode current	40.75	mA
Gain at 5W output, approx.	45	db
Saturated output at synchronous helix voltage, approx.	10	W
Band of output impedance match to 5\% voltage reflection (Note 4)		

Note 1. Electrode voltages are referred to cathode potential. The collector is earthed.
Note 2. Adjusted to synchronous voltage.
Note 3. Adjusted to give required collector current.
Note 4. The matching plungers must be adjusted for each tube at the required operating frequency.

CATHODE

Indirectly-heated, oxide-coated type.

HEATER

-	Min	Nom	Max	
Heater voltage (Note 5)		$6 \cdot 3$		V
Heater voltage tolerance				
Long-term average			± 3	\%
Short-term fluctuations up to				
2 minutes duration			± 5	\%
Heater current	0.65	0.73	0.85	A
Heater pre-heating time	60			s
Interruption time for zero pre-heat			10	s

Note 5. The heater is usually supplied by a d.c. voltage or an r.m.s. equivalent at a frequency of 50 cycles. Other frequencies of supply up to $10 \mathrm{kc} / \mathrm{s}$ may be used but it is recommended that the manufacturer be consulted beforehand.

W4/2G

Code: W4/2G

CONTINUED

LIMIT RATINGS

Voltages	Min	Max	
Direct helix to cathode (Note 6)	$2 \cdot 7$	3.7	kV
Direct grid 2 to cathode		2.8	kV
Direct collector (earth) to cathode (Note 6)	1.6	3.7	kV
Direct grid 2 to helix		3.7	kV
Direct grid 2 to collector		3.7	kV

Note 6. Minimum ratings are specified for continuous operation to avoid excessive helix current. Refer to Operational Data Section.

Currents	Nom	Max	
Cathode	40	50	mA
Helix			
\quad Absolute maximum to trip supplies with delay		4	mA
\quad of less than 5 seconds		40	mA
\quad Switching transient	0	0.0	mA
Direct grid 2			
Power Dissipations		2	W
\quad Grid 2	12	W	
Helix		120	W

Note 7. Higher values of collector dissipation are permissible if the normal convection cooling is supplemented by forced-air-cooling.

Code: W4/2G

CONTINUED

D.C. SUPPLY VOLTAGES

The collector is connected to the body of the mount via the cooler. It is intended that the mount shall be operated at earth potential. Voltages must be applied in the correct sequence, as given in the "Setting-up Procedure" section of these data sheets.

Helix Voltage
Adjustable for required working conditions, range 3.1 to 3.7 kV
The synchronous helix voltage for individual tubes lies within the range
3.15 to 3.45 kV

Ripple and regulation tolerance depend upon acceptable phase and output amplitude variation, typically:
2% change in helix voltage causes a fall in gain of 0.5 db
1% change in helix voltage causes a phase change
of approximately 30
Supply impedance, including resistance in mount, maximum (Note 8) 20
k Ω
Note 8. This is required to avoid excessive voltage drop at switch-on.
Collector Voltage
Set between absolute limits of
1.6 and 3.7
kV
For operation with depressed collector, it is usual to choose a nominal voltage of

2
kV
A minimum collector voltage of 1.6 kV may be
used up to 5 W output power

Grid 2 Voltage

Adjustable for required working conditions, range 1.8 to 2.7 kV
When adjusted to give 40 mA collector current:
Initial range is
1.8 to 2.2 kV

End of life limit is
2.7
kV

Code: W4/2G

CONTINUED

MECHANICAL DATA (W4/2G)
Envelope
Glass and metal
Dimensions
Connection detail $\}$
As shown in Figure 6

LIFE

$\left.\begin{array}{l}\text { Shelf life } \\ \text { Operational life }\end{array}\right\}$ Subject to guarantee
Life-end points
(a) Grid 2 voltage greater than 2.7 kV for 40 mA collector current, or,
(b) Helix current greater than 2.5 mA for 40 mA collector current, or,
(c) Gain or power deteriorated by more than 2 db from initial figures.

ENVIRONMENTAL CONDITIONS	Min	Max	
Storage temperature	-60	+80	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	-10	+60	${ }^{\circ} \mathrm{C}$

T.W.T. Mounts

Codes: WM108C
 WM108CA

GENERAL DESCRIPTION

These approved mounts in which the W4/2G tube operates, incorporate a periodic permanent magnet system, r.f. coupling and matching elements, mechanical alignment and deflection adjustments and a convection cooler.
A sheathed cable attached to the mount carries the electrode supplies, the collector connection being made to the body of the mount which must be at earth potential. The leads of this cable are effectively choked for microwave frequencies and resistors are incorporated in the grid 2 and helix leads to limit surges in the unlikely event of a momentary breakdown in the tube.

A detachable lid provides access to the tube connections and has attached to it a link which, when the lid is in place, is connected to a twin lead interlock cable attached to the mount. This cable may be wired into supervisory circuits to ensure that no voltage can be applied when the lid is off and the terminals inside the mount are exposed. The lid also provides additional microwave screening.

Optimum adjustment of focusing to allow for variations from tube to tube and in mount manufacture is achieved by the use of three pairs of mechanical positioning screws: two pairs align the tube and the other pair move a magnetic deflector plate.

Fine adjustments to the matching are made with movable flags in the waveguides. These flags, which may be rotated or moved longitudinally, are controlled by rods protruding opposite to the input and output ports.

The tube is held firmly in the mount at the collector end by spring contacts in the cooler assembly and at the base end by a ring in the mount to which is attached a two-position retaining screw: the latter is turned over a projection of the tube base ring to lock the tube in position. (The position of the retaining screw is shown in Figures 8 and 10.)

Each mount has a tube ejector mechanism, incorporated in the cooler assembly, which is operated by an external control (see Figures 8 and 10).

The design of the mounts is such that circuit alignment is unaffected by normal handling and the tube can be easily replaced under field conditions.

The mounts should be secured by the threaded holes using $\frac{1}{4}$-inch UNC non-magnetic screws.

T.W.T. Mounts

Codes: WM108C

WM108CA

CONTINUED

Abstract

MECHANICAL DATA (MOUNT)

Dimensions Weight, approx. Fixing Connections Electrode leads Type \quad 4-core PTFE insulated cable Colour coding As shown in Figures 7 and 9 Length of leads Interlock leads Type Twin cable Sleeve colour Blue L.ength of leads

Mechanical alignment and deflection adjustments $18 \mathrm{lb} \quad 8,2 \quad \mathrm{~kg}$ Four tapped holes, $\frac{1}{4}$-inch UNC

22 in .55 cm

Alignment Two pairs of external knobs (Note 9) Deflection One pair of external knobs (Note 9) R.F. matching adjustment. Two plungers in input and output waveguides (Note 9)

Waveguides, input and output. Type UG51/U Mounting position for maximum efficiency of cooler Mount horizontal with waveguides in horizontal plane (WM108C). Mount horizontal with waveguides in horizontal or vertical plane (WM108CA). Proximity of Magnetic Materials Magnetic material should be kept at least 1 inch $(2,5 \mathrm{~cm})$ away from the exterior of the mounts, particularly around the waveguides: permanent magnets should be kept at least 9 inches ($22,5 \mathrm{~cm}$) away from the axis of the mounts.

Note 9. Positions of adjustment controls are shown in Figures 8 and 10.

COOLING

The cooler is an integral part of each mount. Cooling takes place by convection and it is important that a mount is installed in the plane recommended.
The air flow through the cooler requires a free space of 2 inches $(5 \mathrm{~cm})$ above and below it with access to a free supply of air at ambient temperature; this is to ensure that the convection cooling is efficient. The cooler temperature under normal conditions of operation is about $65^{\circ} \mathrm{C}$ above ambient temperature.

If values of collector dissipation in excess of the specified limit rating are employed, the normal cooling must be supplemented by forced-air-cooling. (See Note 7 in Limit Rating Section.)

The convection cooler may be replaced by a conduction cooler modified to meet individual requirements in respect of which customers' enquiries are invited.

T.W.T. Mounts

Codes: WM108C WM108CA

CONTINUED

ELECTRICAL DATA

Ratings		
Heater to heater-cathode maximum voltage	1	kV
$\left.\begin{array}{l}\text { Heater and heater-cathode } \\ \text { Helix } \\ \text { Grid } 2\end{array}\right\}$ to body of mount, maximum voltage	4.5	kV
Supervisory cable and interlock Lead resistance (including limiting resistors) Grid 2	240 V a.c.	2

Note 10. At 0.7 A . Heater line voltage drop of 0.05 V .

R.F. PERFORMANCE

Frequency range 7 to $8.5 \quad \mathrm{Gc} / \mathrm{s}$

Each mount will permit the specified performance of the W4/2G tube to be achieved.
R.F. leakage (Note 11)

Input waveguide level to free space $\quad>65 \mathrm{db}$
Output waveguide level to free space
$>65 \mathrm{db}$
Matching
Adjustment of two plungers in the input and output waveguides will give a VSWR less than 1.02 at a spot frequency and less than 1.1 over a $30 \mathrm{Mc} / \mathrm{s}$ band (tube not operating).
Note 11. Measured by using a 2.5 inch $\times 1.5$ inch ($6,4 \mathrm{~cm} \times 3,8 \mathrm{~cm}$) waveguide horn in such a way as to obtain a maximum reading.

ENVIRONMENTAL CONDITIONS

Ambient temperature range Operating Storage

Min	Max	
-10	+60	${ }^{\circ} \mathrm{C}$
-60	+60	${ }^{\circ} \mathrm{C}$

Code: W4/2G

CONTINUED

OPERATIONAL DATA

Efficient operation of a travelling-wave tube in a periodic permanent magnet mount depends upon certain prime requirements being met during conditions of switch-on and continuous working. These requirements are such that satisfactory periodic focusing cannot be achieved with either low helix voltage or low cathode current.

The maximum helix current is likely to occur when the helix voltage is between 1200 and 2000 volts, the actual value of current being dependent upon the setting of the grid 2 voltage relative to the helix voltage.

When switching on, it is essential that the helix current does not exceed the following safe values:

> 40 mA for not longer than 10 milliseconds 20 mA for not longer than 150 milliseconds 10 mA for not longer than 1 second 4 mA for not longer than 5 seconds

A suitable cathode current control circuit is shown in Figure 3. The grid 2 voltage is supplied from a potentiometer connected across the helix supply, the grid 2 voltage always being proportional to, but less than, the helix voltage. With the recommended setting, corresponding to 1800 volts on grid 2 with respect to cathode when the helix supply is at 3300 volts, the maximum value of helix current during the rise of helix voltage may be of the order of 15 mA .

Graphs of helix current versus helix voltage are shown in Figure 4. Here the grid 2 voltage has been pre-set by means of the grid 2 potentiometer, referred to above, to a fraction of the helix voltage at the values shown. The maximum surge current to the helix during the switch-on period will be the appropriate value obtained from the graph.

Figure 5, which is a graph of helix and cathode currents versus grid 2 voltage, shows how the helix current reaches a maximum at about 10 mA cathode current. If the helix voltage is established prior to the application of grid 2 voltage, which is increased to the working value at any suitable rate, the helix current surge will be as indicated in the graph.

The peak current drawn from the helix supply may be minimised by delaying the rise of grid 2 voltage by means of capacitor C_{1} in Figure 3. The value of capacitance is dependent upon the rise time of the helix voltage and should be arranged to keep the grid 2 voltage below 500 volts until the helix voltage has risen to over 2000 volts. A suitable value for a helix supply with a rise time of 0.02 seconds from zero to 2500 volts is $\mathrm{C}_{1}=0.04 \mu \mathrm{~F}$, the surge helix current being reduced to approximately 2 mA .

Towards the end of the life of the tube it is likely that the helix current will rise to about 2 mA and the grid 2 voltage, which initially was between 1.8 and $2 \cdot 2 \mathrm{kV}$, will increase to about 2700 volts.

Code: W4/2G

CONTINUED

SETTING-UP PROCEDURE

The following procedure is recommended for setting up the $W 4 / 2 \mathrm{G}$ tube in its mount for operation:-

1. Ensure that the mechanical alignment and deflection control knobs on the mount are set to the middle of their travel and that the two-position retaining screw is in a position to allow tube to be inserted.
2. Insert tube in mount (Note 12). At the end of the travel of the tube pressure needs to be applied to overcome the resistance of the cooler contacts and the spring locating on the base ring before the tube meets the stop at the base end. A slight clockwise twist will help with this insertion. The blue spot on the base of the tube should be aligned with the black mark on the seating. This is necessary for best matching, but the adjustment is not critical, misalignment up to 20° being permissible.
3. Secure tube in mount by rotating the two-position screw to turn over the projection of the tube base ring (Note 13).
4. Connect colour-coded leads of the tube to appropriate terminals in the mount and ensure that mount is properly earthed.
5. Replace lid making sure that the interlock two-pin plug is fitted correctly in its socket.
6. Apply heater voltage and allow one minute heating time.
7. It is necessary to make the following adjustments before switching on to ensure that the helix current will not exceed a safe value:-
(a) switch off any r.f. drive.
(b) pre-set grid 2 voltage (cathode current control) to give about 1.8 kV when switched on; this corresponds to a cathode current of about 35 mA . At lower voltages the helix current may be excessive.
8. After the one minute cathode pre-heat, switch on collector voltage at 2 kV .
9. Switch on simultaneously the helix voltage at 3.3 kV and the grid 2 voltage to the pre-set value.
10. Adjust alignment and deflection control knobs to give minimum helix current and repeat these adjustments as grid 2 voltage is increased until a collector current of 40 mA is achieved.
11. Apply r.f. input and adjust helix voltage for optimum performance; a slight readjustment of the control knobs may be necessary to obtain minimum helix current, and of grid 2 voltage to maintain a collector current of 40 mA .
Note 12. The insertion of the tube requires a free space between the lid end of the mount and extraneous equipment. When the tube is inserted in the same plane as the longitudinal axis of the mount, a minimum free space of $14 \frac{1}{2}$ inches $(36,8 \mathrm{~cm})$ is needed. By presenting the tube at an angle of 45° to the main axis of the mount a minimum free space of 10 inches $(25,4 \mathrm{~cm})$ is required.
Note 13. Once the tube has been secured by the retaining screw, it is important to ensure that the tube ejection mechanism is not operated inadvertently. Failure to observe this precaution may result in the tube being damaged.

Code: W4/2G

CONTINUED

TUBE REMOVAL PROCEDURE

1. Switch off all h.t. voltages simultaneously.
2. Switch off heater voltage.
3. Remove mount lid.
4. Disconnect tube leads from terminals.
5. Move adjusting knobs to mid-travel positions.
6. Rotate the two-position retaining screw to clear the tube base ring.
7. Support the base end of the tube and gradually operate the tube ejector knob to ease the tube from the mount. A slight clockwise twist applied to the tube will assist removal.

Code: W4/2G

CONTINUED

Fig. 1.-Typical Frequency Characteristics

Code: W4/2G

CONTINUED

Fig. 2.-Typical Power Output versus Power Input at $\mathbf{7 . 8} \mathbf{~ G c} / \mathbf{s}$

Fig. 3.-Typical Cathode Current Control Circuit

Code: W4/2G

CONTINUED

Fig. 4.-Typical Helix Current versus Helix Voltage

Code: W4/2G

CONTINUED

Fig. 5.-Typical Helix and Cathode Currents versus Grid 2 Voltage

Code: W4/2G

CONTINUED

Fig. 6.-W4/2G Outline

INDEX MARKS WILI BE DIAMETRICALIY OPPOSITE
YELLOW LEAD AND WILL NOT DEVIATE
FROM A COMMON \& BY MORE
THAN $15^{\circ} \mathrm{IN}$ EITHER DRECTION

LEAD*	COLOUR	ELECTRODE
1	BLUE	GRID 2
2	YELLOW	HEATER, CATHODE, GRID I
3	BROWN	HEATER
CONTACT		
4		HELIX
5		COLLECTOR

NOTE - BASIC FIGURES ARE INCHES

DIM	MILLIME TRES	INCHES
A	$346,76 \mathrm{MAX}$	13.652 MAX
B	$36,20 \pm 0.18$	1.425 ± 0.007
C	$70,61 \mathrm{MAX}$	2.780 MAX
D	$9,27 \mathrm{MAX}$	0365 MAX
E	$73, \mathrm{O} \pm 3.2$	$27 / 8 \pm 1 / 8$

T.W.T. Mount

Code: WM108C

Fig. 7.-WM108C Dimensional Outline

The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. In some mounts a black lead is included in the cableform carrying the terminal supply leads: one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.

T.W.T. Mount

Code: WM108C

CONTINUED

Fig. 8.-Diagram showing Operational Controls of WM108C

VIEW OF END 'A' WITH COVER REMOVED

T.W.T. Mount

Code: WM108CA

Fig. 9. WM108CA Dimensioned Outline (Provisional)

DIM-X (WITHDRAWAL DISTANCE OF TUBE WITH LATERAL
MOVEMENT OF BASE) IO MIN DIM-Y (WITHDRAWAL DISTANCE OF TUBE WITHOUT LATERAL MOVEMENT OF BASE $14^{1} / 2^{\prime \prime}$ MIN.

* DENOTES:- 4!/4 UNC TAPPED HOLES BOTH SIDES

DIM	INCHES	MILLIMETRES
A	$15^{1 / 8} \mathrm{NCM}$	384, 2 NOM
B	9 MAX	228,6 MAX.
C	$4^{5 / 16}$ MAX	109,5 MAX
D	6.654 ± 0020	$169,01 \pm 0,51$
E	$2^{1 / 4} \pm 1 / 32$	$57,2 \pm 0,8$
F	$5^{3 / 8}+1 / 32$	$136,5 \pm 0,8$
G	$31 / 2 \quad$ MAX	88, 9 MAX
H	$4^{13 / 32 \pm 1 / 8}$	$111.9 \pm 3,2$
J	$213 / 32 \pm 1 / 16$	61,1 $\pm 1,0$
K	$11 / 10 \pm 1 / 10$	$17,5 \pm 1,6$
L	$3^{7 / 16} \pm 1 / 32$	$87,3 \pm 0,8$
M	$2^{3 / 4} \pm 1 / 8$	$69,9 \pm 3,2$
N	$1^{3 / 8} \pm 1 / 16$	$34,9 \pm 1.0$
P	$1^{21 / 32 \pm 1 / 10}$	$42,1 \pm 1,0$
R	$11 / 4$ MAX	31,8 MAX
S	$4^{3 / 8} \quad \mathrm{MAX}$	III , I MAX
U	$4^{1 / 16 \pm 1 / 8}$	103,2 $\pm 3,2$
W	$25 / 8 \quad A P P$	66,7 APP
NETT WEIGHT A PPROX		Ibs

BASIC DIMS ARE IN INCHES

The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. In some mounts a black lead is included in the cableform carrying the terminal supply leads: one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.

T.W.T. Mount

Code: WM108CA

Fig. 10. Diagram showing Operational Controls of WM108CA

VIEW OF END 'A' WITH COVER REMOVED
(c) 1965 Standard Telephones \& Cables Ltd.

W5/2G

SPECIAL VALVES

Medium Power
 Travelling-Wave Amplifier Tube

Code: W5/2G

The W5/2G is a travelling-wave amplifier tube intended for use in microwave radio links in the frequency range 5.85 to 8.5 GHz .
The tube is operated in periodic permanent magnet mounts types WM107A, WM107CA, and WM107GA in which it will give the performance quoted in these data sheets.

The design of the mounts permits easy replacement of tubes under field conditions.

RADIO FREQUENCY PERFORMANCE

Operating frequency range
Maximum power output
Gain at 10W output

> Minimum

Maximum
Gain at 7W output
Minimum
Maximum
Noise factor at small signal levels
Reverse attenuation
Phase sensitivity $\mathrm{d} \Phi / \mathrm{d} V_{\text {hel }}$ $\mathrm{d} \Phi / \mathrm{dV}_{\mathrm{g}_{2}}$
AM/PM conversion at 10 W output
AM/PM conversion at 7W output
Modulation noise peaks

5.85 to 7.2	7.2 to 7.8	7.8 to 8.5	$G H z$ 25
	18	16	W
36			db
43			db
	34	30	db
28	42	38	db
>65	28	28	db
	>65	>65	db
-0.75	-0.75		$\% / \mathrm{V}$
+0.25	+0.25		$\% / \mathrm{V}$
1.7	1.5	1.5	$\% / \mathrm{db}$

Measured in any 20 kHz band 0.5 to 10 MHz from carrier are less than 3 db above tube noise after 10 hours and will improve to less than 1db above tube noise with life.

Matching

Adjustment of flags in the input and output waveguides will give a VSWR less than 1.02 at a spot frequency and less than 1.1 over a 15 MHz band when operating at 10 W output.
Graphs showing typical power output, gain and helix voltage as functions of frequency are shown in Figures 1 and 2, and graphs of typical power output versus power input are given in Figures 3 and 4.
As will be seen in Figures 3 and 4, an increase in output may be achieved by setting the helix voltage above the synchronous value with a resulting drop in gain. Synchronous helix voltage is that which gives maximum gain at low signal levels.

A graph showing typical AM/PM conversion at $6 \cdot 25 \mathrm{GHz}$ is given in Figure 5.

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: 01-300 3333
Telex: 21836
C O M P O N E N T S
$G R O U P$

Code: W5/2G

CONTINUED

TYPICAL OPERATING CONDITIONS (Note 1)

Frequency	$6 \cdot 4$	7.8	GHz
Direct helix to cathode voltage (Note 2)	$3 \cdot 38$	$3 \cdot 29$	kV
Direct grid 2 to cathode voltage (Note 3)	$2 \cdot 3$	$2 \cdot 3$	kV
Direct collector (earth) to cathode voltage	2	2	kV
Direct grid 2 current	0.01	0.01	mA
Direct helix current	0.5	0.5	mA
Direct collector current	50	50	mA
Direct cathode current	$50 \cdot 5$	50.5	mA
Gain at 10W output, approx.	40		db
Gain at 7W output, approx.	42	36.5	db
Saturated output at synchronous helix voltage, approx.	18.5	14	W
Band of output impedance match to 5% voltage reflection (Note 4)	>15	>15	MHz

Note 1. Electrode voltages are referred to cathode potential. The collector is earthed.
Note 2. Adjusted to synchronous voltage.
Note 3. Adjusted to give required collector current.
Note 4. The matching plungers must be adjusted for each tube at the required operating frequency.

CATHODE

Indirectly-heated, oxide-coated type.

HEATER	Min	Nom	Max	
Heater voltage (Note 5) Heater voltage tolerance		6.3		V
\quadLong-term average			± 3	$\%$
\quadShort-term fluctuations up to two minutes' duration	0.65	0.75	± 5	$\%$
Heater current	60			A
Heater pre-heating time Interruption time for zero pre-heat		10	s	

Note 5. The heater is usually supplied by a d.c. voltage or an r.m.s. equivalent at a frequency of 50 Hz . Other frequencies of supply up to 10 kHz may be used but it is recommended that the manufacturer be consulted beforehand.

Code: W5/2G

CONTINUED

LIMIT RATINGS

Voltages	Min	Max	
Direct helix to cathode (Note 6)	2.7	3.7	kV
Direct grid 2 to cathode	-	2.8	kV
Direct collector (earth) to cathode (Note 6)	1.8	3.7	kV
Direct grid 2 to helix		3.7	kV
Direct grid 2 to collector		3.7	kV

Note 6. Minimum ratings are specified for continuous operation to avoid excessive helix current. Refer to Operational Data Section.

Currents	Max	
Cathode	55	mA
Helix		

Absolute maximum to trip supplies with		
delay of less than 5 seconds	4	mA
Switching transient	50	mA
Direct grid 2	0.5	mA

Power Dissipations

Grid 2	2	W
Helix	12	W
Collector (Note 7)	120	W

Note 7. Higher values of collector dissipation are permissible if the normal convection cooling is supplemented by forced-air-cooling. As a general guide, an air flow of about $25 \mathrm{ft}^{3} / \mathrm{min}(708 \mathrm{I} / \mathrm{min}$.) is required for a collector dissipation at 175 W .

Code: W5/2G

CONTINUED

D.C. SUPPLY VOLTAGES

The collector is connected to the body of the mount via the cooler. It is intended that the mount shall be operated at earth potential. Voltages must be applied in the correct sequence, as given in the "Setting-up Procedure" section of these data sheets.

Helix Voltage		
Adjustable for required working conditions, range	3.1 to 3.7	kV
The synchronous helix voltage for individual tubes lies		kV
Ripple and regulation tolerance depend upon acceptable phase and output amplitude variation, typically:		
2% change in helix voltage causes a fall in gain of 1% change in helix voltage causes a phase change of approximately	0.5 30	db
Supply impedance, including resistance in mount, max. (Note 8)	8) 20	k Ω

Note 8. This is required to avoid excessive voltage drop at switch-on.

Collector Voltage

Set between absolute limits of

For operation with depressed collector at 50 mA it is usual to choose a nominal voltage of 2

A minimum collector voltage of 1.6 kV may be used up to 5 W output power

Grid 2 Voltage

Adjustable for required working conditions, range 1.8 to 2.7 kV
When adjusted to give 50 mA collector current Initial range is 2 to 2.4
kV End of life limit is 2.7 kV

W5/2G

Code: W5/2G

MECHANICAL DATA (W5/2G)

Envelope Glass and metal
Dimensions
Connection detail $\}$ As shown in Figure 9

LIFE

Shelf life
Operational life \} Subject to guarantee Life-end points
(a) Grid 2 voltage greater than 2.7 kV for 50 mA collector current, or
(b) Helix current greater than 3.5 mA for 50 mA collector current, or
(c) Gain or power deteriorated by more than 2 db from initial figures.

ENVIRONMENTAL CONDITIONS	Min	Max	
Storage temperature	-60	+80	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	-10	+60	${ }^{\circ} \mathrm{C}$

T.W.T. MOUNTS
 Codes: WM107A
 WM107CA WM107GA

GENERAL DESCRIPTION

These approved mounts, in which W5/2G tubes operate, incorporate a periodic permanent magnet system, r.f. coupling and matching elements, mechanical alignment and deflection adjustments and a convection cooler.

They differ from one another in respect of various physical characteristics and r.f. performance: these differences are detailed in the MECHANICAL DATA, ELECTRICAL DATA and R.F. PERFORMANCE Sections, and the relevant drawings given later in these data sheets.

A sheathed cable attached to the mount carries the electrode supplies, the collector connection being made to the body of the mount which must be at earth potential. The leads of this cable are effectively choked for microwave frequencies and resistors are incorporated in the grid 2 and helix leads to limit surges.

A detachable lid provides access to the tube connections and has attached to it a link which, when the lid is in place, is connected to a twin lead interlock cable attached to the mount. This cable may be wired into supervisory circuits to ensure that no voltage can be applied when the lid is off and the terminals inside the mount are exposed (Note 9). The lid also provides additional microwave screening.

Optimum adjustment of focusing to allow for variations from tube to tube and in mount manufacture is achieved by the use of three pairs of mechanical positioning screws: two pairs align the tube and the other pair move a magnetic deflector plate.

Fine adjustments to the matching are made with movable flags in the waveguides. These flags, which may be rotated or moved longitudinally, are controlled by rods protruding opposite to the input and output ports.

The tube is held firmly in the mount at the collector end by the cooler assembly and at the base end by a ring in the mount to which is attached a two-position retaining catch: the latter is turned over a projection of the tube base ring to lock the tube in position. (The position of the retaining catch is shown in Figures 11, 13, and 15.)

Each mount has a tube ejector mechanism, incorporated in the cooler assembly, which is operated by an external control. (See Figures 11, 13, and 15.)

The design of the mounts is such that tube alignment is unaffected by normal handling, and tubes can be easily replaced under field conditions.

Note 9. The link and twin lead are omitted on the WM107A.

MECHANICAL DATA (MOUNTS)

Dimensions
Mounting position

As shown in Figures 10, 12, and 14.
For maximum efficiency of the convection cooler, the plane of the cooler fins should be vertical. Magnetic materials should be kept at least 1 inch ($2,5 \mathrm{~cm}$) away from the exterior of the mounts, particularly in the vicinity of the waveguides. Permanent magnets should be kept at least 9 inches ($22,9 \mathrm{~cm}$) away from the axis of the mount.
Fixing of mounts Attach mounts to equipment with $\frac{1}{4}$ inch UNC non-magnetic screws fitting into tapped holes provided in mount body.
Connecting leads
Electrode leads

Interlock leads Twin cable, sleeve coloured blue. (Not applicable to WM107A.)
Mechanical adjustment controls (Note 11)
Alignment Two pairs of external knobs.
Deflection One pair of external knobs.
R.F. matching On WM107A and WM107GA two pairs of external plungers controlling two flags in each waveguide.
On WM107CA mount two external plungers controlling a single flag in each waveguide.
Waveguide connections, input and output
WM107A Flanges 1.375 inch $\times 0.197$ inch for connection to waveguide WGL70.
WM107CA Flanges CMR137 for connection to waveguide RG50.
WM107GA Flanges UG344/U for connection to waveguide WR137.
Note 10. All mounts manufactured in future will be fitted with a 5 -core lead incorporating a black coloured earthing lead connected to the mount body.
Note 11. The positions of adjustment controls are shown in Figures 11, 13, and 15.

COOLING

The cooler is an integral part of each mount. Cooling takes place by convection and it is important that the plane of the cooler fins is vertical.

The air flow through the cooler requires a free space of 2 inches $(5 \mathrm{~cm})$ above and below the cooler, with access to a free supply of air at ambient temperature. Normally, the cooler temperature is about $70^{\circ} \mathrm{C}$ above ambient.

If values of collector dissipation in excess of the maximum specified in the LIMIT-RATINGS section are employed, the normal cooling must be supplemented by forced-air-cooling: as a general rule, an air flow of about $25 \mathrm{ft}^{3} / \mathrm{min}(708 \mathrm{I} / \mathrm{min})$ is required for 175 W collector dissipation.

ELECTRICAL DATA

Ratings

Note 12. Not applicable to mount WM107A.
Note 13. At $0 \cdot 7 \mathrm{~A}$. Heater line voltage drop of 0.05 V .

> WM107CA
> WM107GA

R.F. PERFORMANCE

Frequency Range
WM107A

Each mount will permit the specified performance of the W5/2G tube to be achieved.
R.F. Leakage (Note 14)

Input waveguide level to free space $>65 \quad>65$ db
Output waveguide level to free space $>65 \quad>65$ db
Matching
Adjustment of flags in the input and output waveguides will give a VSWR less than 1.02 at a spot frequency and less than 1.1 over a 30 MHz band (tube not operating).

Note 14. Measured by using a 2.5 inch $\times 1.5$ inch ($6,4 \mathrm{~cm} \times 3,8 \mathrm{~cm}$) waveguide horn in a way such as to obtain a maximum reading.

ENVIRONMENTAL CONDITIONS (All mounts)

Ambient temperature range	Min	Max	
Operating	-10	+60	${ }^{\circ} \mathrm{C}$
Storage	-60	+60	${ }^{\circ} \mathrm{C}$

Code: W5/2G

CONTINUED

OPERATIONAL DATA

Efficient operation of a travelling-wave tube in a periodic permanent magnet mount depends upon certain prime requirements being met during conditions of switch-on and continuous working. These requirements are such that satisfactory periodic focusing cannot be achieved with either low helix voltage or low cathode current.

The maximum helix current is likely to occur when the helix voltage is between 1200 and 2000 volts, the actual value of current being dependent upon the setting of the grid 2 voltage relative to the helix voltage.

When switching on, it is essential that the helix current does not exceed the following safe values:-

> 50 mA for not longer than 10 milliseconds 20 mA for not longer than 150 milliseconds 10 mA for not longer than 1 second
> 4 mA for not longer than 5 seconds

A suitable cathode current control circuit is shown in Figure 6. The grid 2 voltage is supplied from a potentiometer connected across the helix supply, the grid 2 voltage always being proportional to, but less than, the helix voltage. With the recommended setting for switch-on, corresponding to 1800 volts on grid 2 with respect to cathode when the helix supply is at 3300 volts, the maximum value of helix current during the rise of helix voltage may be of the order of 15 mA .

Graphs of helix current versus helix voltage are shown in Figure 7. Here the grid 2 voltage has been pre-set by means of the grid 2 potentiometer, referred to above, to a fraction of the helix voltage at the values shown. The maximum surge current to the helix during the switch-on period will be the appropriate value obtained from the graph.

Figure 8, which is a graph of helix and cathode currents versus grid 2 voltage, shows how the helix current reaches a maximum at about 10 mA cathode current. If the helix voltage is established prior to the application of grid 2 voltage, which is increased to the working value at any suitable rate, the helix current surge will be as indicated in the graph.

The peak current drawn from the helix supply may be minimised by delaying the rise of grid 2 voltage by means of capacitor C_{1} in Figure 6. The value of capacitance is dependent upon the rise time of the helix voltage and should be arranged to keep the grid 2 voltage below 500 volts until the helix voltage has risen to over 2000 volts. A suitable value for a helix supply with a rise time of 0.02 seconds from zero to 2500 volts is $C_{1}=0.04 \mu \mathrm{~F}$, the surge helix current being reduced to approximately 2 mA .

Towards the end of the life of the tube it is likely that the helix current will rise to about 3.5 mA and the grid 2 voltage, which initially was between $2 \cdot 1$ and $2 \cdot 4 \mathrm{kV}$, will increase to about 2700 volts.

SETTING-UP PROCEDURE

The following procedure is recommended for setting up the W5/2G tube in its mount for operation:-

1. Ensure that the mechanical alignment and deflection control knobs on the mount are set to the middle of their travel and that the two-position retaining catch is in a position to allow tube to be inserted.
2. Insert tube in mount (Note 15). At the end of the travel of the tube pressure needs to be applied to overcome the resistance of the cooler contacts and the spring located on the mount ring before the tube meets the stop at the base end. A slight clockwise twist will help with this insertion. The blue spot on the base of the tube should be aligned with the black mark on the seating. This is necessary for best matching, but the adjustment is not critical, misalignment up to 20° being permissible.
3. Secure tube in mount by rotating the two-position retaining catch to turn over the projection of the tube base ring (Note 16).
4. Connect colour-coded leads of the tube to appropriate terminals in the mount and ensure that mount is properly earthed (Note 17).
5. Replace lid making sure that the interlock two-pin plug is fitted correctly in its socket (not applicable to mount WM107A).
6. Apply heater voltage and allow one minute heating time.
7. It is necessary to make the following adjustments before switching on to ensure that the helix current will not exceed a safe value:-
(a) switch off any r.f. drive
(b) pre-set grid 2 voltage (cathode current control) to give about 1.8 kV when switched on; this corresponds to a cathode current of about 35 mA . At lower voltages the helix current may be excessive.
8. After the one minute cathode pre-heat, switch on collector voltage at 2 kV .
9. Switch on simultaneously the helix voltage at 3.3 kV and the grid 2 voltage to the pre-set value.
10. Adjust alignment and deflection control knobs to give minimum helix current and repeat these adjustments as grid 2 voltage is increased until a collector current of 50 mA is achieved.
11. Apply r.f. input and adjust helix voltage for optimum performance; a slight readjustment of the control knobs may be necessary to obtain minimum helix current, and of grid 2 voltage to maintain a collector current of 50 mA .
Note 15. The insertion of the tube requires a free space between the lid end of the mount and extraneous equipment. When the tube is inserted in the same plane as the longitudinal axis of the mount, a minimum free space of $14 \frac{1}{2}$ inches $(36,8 \mathrm{~cm})$ is needed. By presenting the tube at an angle of 45° to the main axis of the mount a minimum free space of 10 inches ($25,4 \mathrm{~cm}$) is required.
Note 16. Once the tube has been secured by the retaining catch, it is important to ensure that the tube ejection mechanism is not operated inadvertently. Failure to observe this precaution will result in the tube being damaged.
Note 17. The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. In some mounts a black lead is included in the cableform carrying the terminal supply leads: one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.

Code: W5/2G

CONTINUED

TUBE REMOVAL PROCEDURE

1. Switch off all h.t. voltages simultaneously.
2. Switch off heater voltage.
3. Remove mount lid.
4. Disconnect tube leads from terminals.
5. Move adjusting knobs to mid-travel positions.
6. Rotate the two-position retaining catch to clear the tube base ring.
7. Support the base end of the tube and gradually operate the tube ejector control to ease the tube from the mount. A slight clockwise twist applied to the tube will assist removal.

Code: W5/2G

CONTINUED

Fig. 1.-Typical Frequency Characteristics 5.8 to 7.2 GHz

Code: W5/2G

CONTINUED

Fig. 2.-Typical Frequency Characteristics $\mathbf{7 . 2}$ to 8.5 GHz

Code: W5/2G

CONTINUED

Fig. 3.-Typical Power Output versus Power Input at 6.4 GHz

Fig. 4.-Typical Power Output versus Power Input at 7.8 GHz

Fig. 5.-Typical AM/PM Conversion at 6.25 GHz

Fig. 6.-Typical Cathode Current Control Circuit

Code: W5/2G

CONTINUED

Fig. 7.-Typical Helix Current versus Helix Voltage

Code: W5/2G
CONTINUED

Fig. 8.-Typical Helix and Cathode Currents versus Grid 2 Voltage

Code: W5/2G

CONTINUED

Fig. 9.-W5/2G Dimensioned Outline

NOTE:- BASIC FIGURES ARE INCHES

UIM	MILLIMETRES	WNCHES
A	$346,76 \mathrm{MAX}$.	13.652 MAX.
B	$36,20 \pm 0.18$	1.425 ± 0.007
C	$70,61 \mathrm{MAX}$	2.780 MAX
D	$9,27 \mathrm{MAX}$	0.365 MAX.
E	$73,0 \pm 3.2$	$278 \pm 1 / 8$

T.W.T. MOUNT

Code: WM107A

Fig. 10.-WM107A Dimensioned Outline

DIM-X (WITHDPAWAL DISTANCE OF TUBE WITH LATERAL MOVEMENT OF BASE)IO-MIN
DIM-Y (WITHDRAWAL DISTANCE OF TUBE WITHQ) $141 / 2^{-M I N}$.
CONNECTIONS

LEAD	ELECTRODE
BLUE	GRID 2
YELLOW	HEATER CATHODE GRID
BROWN	HEATER
ORANGE	HELIX
BLACK	COLLECTOR

DIM	MILLIMETRES	INCHES	5
A	533,4 MAX	21	MAX.
B	193,7 MAX.	$75 / 8$	MAX
C	109,5 MAX	$45 / 16$	MAX .
D	88,9 MAX	$31 / 2$	MAX
E	58,7 MAX.	25/16	MAX .
F	225,4 MAX.	$8^{7 / 8}$	MAX
G	30,2 APP.	$1^{3 / 16}$	APP.
H	168,3 MAX	$6^{5 / 8}$	MAX
J	103.56 ± 0.25	$4.077 \pm$	0.010
k	66.7 MAX	$25 / 8$	MAX.
L	$219,86 \pm 0.38$	$8.656 \pm$	0.015
M	$69,9 \pm 3.2$	$2^{3 / 4} 4 \pm$	
N	34.9 ± 1.6	$13 / 8 \pm$	
P	136.5 ± 0.8	$5^{3 / 8} \pm$	1/32
Q	42.9 ± 1.6	$111 / 16 \pm$	
R	28.6 ± 0.4	$11 / 8 \pm$	1/64
S	42.1 ± 1.6	$121 / 32 \pm$	
T	111.1 ± 3.2	$4^{3 / 8} \pm$	1/8
NOTE:- BASIC DIMS ARE IN INCHES.			
NETT WEIGHT APPROX			$\frac{165}{488}$

*The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. In some mounts a black lead is included in the cableform carrying the terminal supply leads: one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.

T.W.T. MOUNT
 Code: WM107A

Fig. 11.-Diagram Showing Operational Controls of WM107A

VIEW OF END 'A' WITH COVER REMOVED

T.W.T. MOUNT

Code: WM107CA

Fig. 12.-WM107CA Dimensioned Outline

The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. In some mounts a black lead is included in the cableform carrying the terminal supply leads: one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.

T.W.T. MOUNT

Code: WM107CA

Fig. 13.-Diagram Showing Operational Controls of WM107CA

VIEW OF END 'A' WITH COVER REMOVED

T.W.T. MOUNT

Code: WM107GA

Fig. 14.-WM107GA Dimensioned Outline

DIM. X WITHDRAWAL DISTANCE O TUBE WITH LAATERAL MOVEMENT OF BASE) 10° MIN.
DIM. Y (WITHDRAWAL DISTANCE OF TUBE WITHOUT LATERAL
MOVEMENT OF BASE) 14.1/2* MIN.

- DENOTES:

C-1/4. UNC TAPPED HOLES
BOTH SIDES

LEAD	ELECTRODE
BLUE	GRID 2
YELLOW	HEATER CATHODE GRID
BROWN	HEATER
ORANGE	HELIX
BLACK	COLLECTOR

DIM.	INCHES		MILLIMETRES	
A	$15.1 / 8$	NOM.	384,2	NOM.
B	$3.1 / 8$	MAX.	79,4	MAX.
C	$4.5 / 16$	MAX.	109,5	MAX.
D	6.654	$\pm .020$	169,01	$\pm 0,51$
E	$2.1 / 4$	$\pm 1 / 32$	57,2	$\pm 0,8$
F	$5.3 / 8$	$\pm 1 / 32$	136,5	$\pm 0,8$
G	$3.1 / 2$	MAX.	88,9	MAX.
H	$4.13 / 32 \pm 1 / 8$	111,9	$\pm 3,2$	
J	$2.13 / 32 \pm 1 / 16$	61,1	$\pm 1,6$	
K	$11 / 16$	$\pm 1 / 16$	17,5	$\pm 1,6$
L	$3.7 / 16$	$\pm 1 / 32$	87,3	$\pm 0,8$
M	$2.3 / 4$	$\pm 1 / 8$	69,9	$\pm 3,2$
N	$1.3 / 8$	$\pm 1 / 16$	34,9	$\pm 1,6$
P	$1.21 / 32$	$\pm 1 / 16$	42,1	$\pm 1,6$
R	$1.1 / 4$	MAX.	31,8	MAX.
S	$4.3 / 8$	MAX.	111,1	MAX.
U	$4.1 / 16$	$\pm 1 / 8$	103,2	$\pm 3,2$
W	$2.5 / 8$	APPROX.	66,7	APPROX.

BASIC DIMENSIONS ARE INCHES

[^1]
T.W.T. MOUNT
 Code: WM107GA

Fig. 15.-Diagram Showing Operation Controls of WM107GA

VIEW OF END 'A' WITH COVER REMOVED

MEDIUM POWER
 TRAVELLING-WAVE AMPLIFIER TUBE
 Code : W5/3G

The W5/3G is a periodically focused travelling-wave amplifier tube of medium power output. It is intended for use in microwave radio links in which there is a requirement for a low $A M / P M$ conversion figure. The typical frequency range of the tube is from 5.85 to $6.5 \mathrm{Gc} / \mathrm{s}$ but customers' enquiries are invited regarding extension of frequency range to $8 \cdot 2 \mathrm{Gc} / \mathrm{s}$.

The $W 5 / 3 G$ is designed to operate in the same type of periodic permanent mag. net mount as the W5/2G tube and may be easily replaced under field conditions.

MECHANICAL DATA - TUBE
Envelope - Glass and metal
Dimensions and connexion detail are shown in the outline drawing included in this data sheet.

RADIO FREQUENCY PERFORMANCE

Operating frequency range	$5 \cdot 85$ to $6 \cdot 5$	Gc/s
Maximum output power	23	W
Gain at 10W output		
Minimum	37	db
Maximum	43	db
Noise factor at small signal levels	<30	db
Reverse attenuation	>65	db
Phase sensitivity $\quad d \Phi / d V_{\text {hel }}$	-0.75	\%/V
$\mathrm{d} \Phi / \mathrm{d} \mathrm{V}_{\mathrm{g} 2}$	+ 0.25	- /V
A.M./P.M. conversion at $6.250 \mathrm{Gc} / \mathrm{s}$, 10 W output ${ }^{\text {a }}$	<1.0	\%/db

Modulation peaks (measured in any $20 \mathrm{kc} / \mathrm{s}$ band 0.5 to $10 \mathrm{Mc} / \mathrm{s}$ from carrier) are less than 3 db above tube noise after 10 hours operation and will continue to improve to less than 1 db above tube noise. Matching *
Adjustment of two plungers in the input and output waveguides will give a VSWR less than $1 \cdot 02$ at a spot frequency and less than $1 \cdot 1$ over a $15 \mathrm{Mc} / \mathrm{s}$ band when operating at 10 W output

RADIO FREQUENCY PERFORMANCE (Cont'd.)

Synchronous helix voltage is the helix voltage which gives maximum gain at low signal levels. An increase in output may be achieved by operating the helix up to 200 volts above the low level value with a resulting drop in gain. A graph showing power output as gain and helix voltage functions of frequency is given in Fig. 2

* Adjustable in mounts WM107A, 495-LVA-107C and WM107G to less than 1% reflection coefficient at input and output.

TYPICAL OPERATING CONDITIONS

Frequency	6.4	Gc / s
Direct helix to cathode voltage *	3.4	kV
Direct grid 2 to cathode voltage	2.3	kV
Direct collector (earth) to cathode voltage	2	kV
Direct grid 2 current	0.01	mA
Direct helix current	0.5	mA
Direct collector current (adjusted by $\left.\mathrm{V}_{\mathrm{g} 2}\right)-$	50	mA
Direct cathode current	50.5	mA
Amplification at 10W output, approx.	40	db
Maximum power output, approx.	22	W
Band of output impedance match to 5%	>15	Mc / s
voltage reflection \varnothing	0.75	o / db
A.M./P.M. conversion at $10 \mathrm{~W} \neq$		

* Adjusted to give optimum small signal gain. The appropriate tielix voltage for individual tubes lies between 3.15 and 3.55 kV .
- The required grid 2 voltage will be between 2.1 and 2.5 kV initially and will rise to about 2.7 kV towards the end of tube life.
\emptyset The trimming devices must be used for matching each tube at the required operating frequency.

F A typical A.M./P.M. conversion graph is shown in Fig. 3.

LIMIT RATINGS

Voltages

Maximum direct helix to cathode	3.7	kV
Maximum direct grid 2 to cathode	2.8	kV
Maximum direct collector (earth) to cathode	3.7	kV
Minimum direct collector to cathode (with tube operating)*	1.8	kV
Maximum direct grid 2 to helix	3.7	kV
Maximum grid 2 to collector	3.7	kV

* The minimum rating is specified to avoid excessive helix current.

A minimum of 1.6 kV may be used up to 5.0 W power output.

Currents

Cathode	55	mA
Helix		

Absolute maximum to trip supplies with delay of less
than 5 seconds 4

Switching transient 45 mA
Direct grid 2
0.5 mA

Power Dissipations

Grid 2	2	W
Helix	12	W
Collector (with natural cooling in mounts type		
WM107A, 495-LVA-107C and WM107G)**	120	W

** Higher values of collector dissipation are permissible if the normal convection cooling is supplemented by forced-air-cooling.

CATHODE

	MIN.	NOM.	MAX.	
Indirectly heated, oxide cuated Heater voltage		6.3		V
Heater voltage tolerance long term average short term fluctuations up to 2			± 3	$\%$
minutes duration	0.6	0.7	± 5	$\%$
Heater current Heater pre-heating time f Interruption time for zero pre-heat	60		0.8	A

\& Pre-heating time applicable for ambient temperatures above $0^{\circ} \mathrm{C}$.

D.C. SUPPLY VOLTAGES

By the design of the mount it is intended that the tube shall be operated with the collector grounded. However, following the usual convention, electrode voltages given below are referred to cathode potential.
Note :- Voltages must be applied in the correct sequence, as given in
"Setting-up Procedure".
Helix Voltage
Adjustable for maximum gain, range 3.1 to 3.7 kV
Ripple and regulation tolerance depend upon
acceptable phase and output amplitude
variation, ty pically:-
2% change in $\mathrm{V}_{\text {hel }}$ causes a 0.5 db fall in gain
1% change in $V_{\text {hel }}$ causes less than 1.0 radian phase change
Supply impedance, including resistance in mount, maximum
20
$k \Omega$
(this is required to avoid excessive voltage drop on switch-on).

Collector Voltage

Set between absolute limits of 1.6 and 3.7 kV
Normally for operation with depressed collector, a nominal voltage of 2.0 kV is chosen.
Grid 2 Voltage (adjusted to give 50 mA collector current)
Initial range 2 to 2.4 kV
End of life limit $2 \cdot 7$
Regulation and ripple - a 1% change in grid 2 voltage
ives a change of approximately 3% in output power.

LIFE
Shelf life)
Operational life)
Life-end points
(a) $\mathrm{V}_{\mathrm{g} 2}$ greater than 2.7 kV for 50 mA collector current,
or (b) thel greater than 2.5 mA for 50 mA collector current,
or (c) gain or power deteriorated by more than 2 db from initial figures
or (d) failure to meet any other clauses of the specification.

ENVIRONMENTAL CONDITIONS

	MIN	MAX	
Starage temperature	-60	+80	${ }^{\circ} \mathrm{C}$
Operating ambient temperature *	-10	+60	${ }^{\circ} \mathrm{C}$

* In mounts types WM107A, 495-LVA-107C and WM107G.

GENERAL DESCRIPTION

These approved mounts in which W5/3G tubes operate, incorporate a periodic permanent magnet system, r.f. coupling and matching elements, all mechanical deflection and alignment adjustments and a convector cooler.

The variants of the mount differ in respect of pattern or arrangement of waveguide flanges, matching adjustments and convector cooler. Within limits these features can be arranged to meet the needs of individual users.

A sheathed cable attached to the mount carries the electrode supplies, the col. lector connection being made to the body of the mount which must be at earth potential. The leads of this cable are effectively choked for microwave frequencies and resistors are incorporated in the grid 2 and helix leads to limit surges in the unlikely event of a momentary breakdown in the tube.

A detachable lid provides additional microwave screening of the tube and has attached to it a link* which, when the lid is in place, is connected to a twin lead interlock cable attached to the mount. This cable may be wired into supervisory circuits to ensure that no voltage can be applied when the lid is off and the terminals inside the mount are exposed.

Optimum adjustment of focusing to allow for variations from tube to tube and in mount manufacture is achieved by the use of three pairs of mechanical position. ing screws: two pairs align the tube and the other pair move a magnetic trimming plate.

Fine adjustments to the matching are made by two plungers in the input and output waveguides.

The tube is held firmly in the mount at the collector by spring contacts in the cooler assembly and at the base ring by a two-position screw located on an end plate.

The mounts are designed so that circuit alignment is unaffected by normal handling, and tubes can be easily replaced under field conditions.

The mounts should be secured by the threaded holes using $1 / 4$ inch UNC non. magnetic screws.

* The link and twin lead are omitted on the WM107A.

T.W.T. MOUNTS

W5/3G

(Continued)

MECHANICAL DATA -			
Dimensions - See outline drawings			
Weight (max.)		18	lbs
		8,16	kg
Fixing - four tapped holes, $1 / 4$ inch UNC ${ }^{\text {a }}$			
Connexions			
Electrode leadsColour code	4-core P.T.F.E. insulated		
	As shown in outline drawings		
Length	Mount WM107A $\quad 5 \mathrm{ft}$	1,5	m
	Mount WM107G $\} 1.5 \mathrm{ft}$	0,46	m
	Mount 495-LVA-107C)		
Length			
	All mounts $\quad 1.5 \mathrm{ft}$	0,46	m
Mechanical deflection and alignment adjustment -			
Waveguides, input and output			
Mount WM107A	WGL70 with rectangular flange		
	1.375 in $\times 0.197 \mathrm{in}$		
Mount WMI O7G	Built in transition pieces to UG344U flanges		
Mount 495.LVA.107C	Built in transition pieces to CMR137 flanges		
Mounting position for maximum efficiency of cooler			
Mount WMI07A	Mount vertical with waveguides in horizontal plane		
Mount 495-LVA-107CMount WM107G	Mount horizontal with waveguides in horizontal plane		
	Mount horizontal with waveguid	ertical	
Free space of not less than 2 inches $(5,8 \mathrm{~cm})$ should be provided around the cooler for effective passage of air.			
Proximity of magnetic materials			
Magnetic material should be kept at least 1 inch $(2,5 \mathrm{~cm})$ away from the exterior of the mount, particularly around the waveguides; permanent magnets should be			

ELECTRICAL DATA

Ratings	
Cathode plus heater Heater Second grid	As for W5/3G tu
Helix	
Collector	
Supervisory cable and	lock

240 Va.c. $2 \cdot 0 \mathrm{~A}$

ELECTRICAL DATA (Cont'd.)

Lead Resistance (including limiting resistors)

$$
\begin{array}{cc}
\text { WM107A } & \text { WM107G } \\
& \text { 495-LVA.107C }
\end{array}
$$

Second grid	7.5	47	$\mathrm{k} \Omega$
Helix	1.0	7.5	$\mathrm{k} \Omega$
Heater (at 0.7 A and heater line volts drop of 0.05 V)	0.07	0.07	Ω

R.F. Performance

Frequency range
5.85 to $6.6 \quad 5.85$ to $8.2 \mathrm{Gc} / \mathrm{s}$

Each mount will permit specified performance of $W 5 / 3 \mathrm{G}$ to be obtained
R.F. Leakage *

Input waveguide level to free space)
Output waveguide level to free space) $>65 \mathrm{db}$

* Measured by using a 2.5 inch $\times 1.5$ inch ($6,4 \mathrm{~cm} \times 3,8 \mathrm{~cm}$) waveguide horn to obtain maximum reading.
Matching
Adjustments of two plungers in the input and output waveguides will give a VSWR less than 1.02 at a spot frequency and less than $1 \cdot 1$ over a $15 \mathrm{Mc} / \mathrm{s}$ band

ENVIRONMENTAL CONDITIONS (All Mounts)

Ambient temperature

Operating **	-10	+60	${ }^{\circ} \mathrm{C}$
Storage	-60	+60	${ }^{\circ} \mathrm{C}$

** In mounts types WM107A, 495-LVA-107C and WM107G.

OPERATIONAL DATA

Cathode Current Control

Satisfactory periodic focusing cannot be obtained with either low helix voltages or low cathode current. The maximum helix current is likely to occur with a helix voltage between 1200 volts and 2000 volts, the actual value of current depending upon the setting of the grid 2 voltage relative to the helix voltage. It is essential when switching on to ensure that the helix dissipation does not exceed a safe value. A typical manual control circuit is shown in Fig. 1. The grid 2 voltage is supplied from a potentiometer connected across the helix supply, the grid 2 voltage always being proportional to, but less than, that of the helix. With the recommended setting, corresponding to 1.8 kV on grid 2 with respect to cathode when the helix supply is at $3 \cdot 3 \mathrm{kV}$, the maximum value of the helix current during the rise of helix voltage may be of the order of 15 mA .

The peak current drawn from the helix supply may be reduced by delaying the rise of grid 2 voltage by means of capacitor Cl in Fig. 1.

The value of capacitance is dependent upon the rise time of the helix voltage and should be arranged to keep the grid 2 voltage below 500 V until the helix voltage has risen to over 2000 V . A suitable value for a helix supply with a rise time T of 0.02 seconds from zero to 2500 V is $\mathrm{Cl}-0.04 \mu \mathrm{~F}$, the surge helix current being reduced to approximately 2 mA .

Values for other conditions may be determined from:

$$
C_{1} R_{1}-2 T
$$

Fig. 1. Typical Cathode Current Manual Control Circuit

SETTING-UP PROCEDURE

The following procedure is recommended for setting up the $W 5 / 3 G$ tube in its mount for operation :-

1. Ensure that the mechanizal alignment and deflection control knobs on the mount are set to the middle of their travel and that the two-position screw referred to at (3) below is in a position to allow tube to be inserted.
2. Insert tube in mount. At the end of the travel of the tube pressure needs to be applied to overcome the resistance of the cooler contacts and the spring locating on the base ring before the tube meets the stop at the base end. A slight twist will help with this insertion. The black mark on the base of the tube should be aligned with the black mark on the seating. This is necessary for best matching, but the adjustment is not critical, misalignment up to 20° being permissible.
3. Secure tube in mount by rotating the two-position screw to turn over the projection of the tube base ring.*
4. Connect colour-coded leads of the tube to appropriate terminals in the mount.
5. Replace lid making sure that the interlock two-pin plug is fitted correctly in its socket. (Not applicable to mount WMI 07A).
6. Apply heater voltage and allow one minute heating time.
7. As mentioned in the Cathode Current Control section, satisfactory periodic focusing cannot be obtained with either low helix voltages or low cathode current. Accordingly it is necessary to make the following adjustments before switching on to ensure that the helix current will not exceed a safe value :-
(a) switch off any r.f. drive
(b) pre-set grid 2 voltage (cathode current control) to give about 1.8 kV when switched on; this corresponds to a cathode current of about 35 mA . At lower voltages the helix current may be excessive.
8. After the one minute cathode pre-heat, switch on collector voltage at $2 \cdot 0 \mathrm{kV}$.
9. Switch on simultaneously the helix voltage at 3.3 kV and the grid 2 voltage to the pre-set value.
10. Adjust alignment and deflection control knobs to give minimum helix current and repeat these adjustments as grid 2 voltage is increased until a collector current of 50 mA is achieved.

SETTING-UP PROCEDURE (Cont'd.)

11. Apply r.f. input and adjust helix voltage for optimum performance; a slight readjustment of the control knobs may be necessary to obtain minimum helix current, and of grid 2 voltage to maintain a collector current of 50 mA .

It is necessary to operate the tube with the collector earthed and the cathode at a negative potential with respect to earth. To obtain optimum performance, the tube should be operated at the rated collector current of 50 mA . Towards the end of the life of the tube it is likely that the helix current may rise to about 2.0 mA and the grid 2 voltage, which was initially between $2 \cdot 1$ and $2 \cdot 4 \mathrm{kV}$, will rise to about 2.6 kV .

* Special Note

Once the tube is in its operating position in the mount, any undue pressure on the collector ejector knob (located at the end of the cooler) may cause damage to the tube. Accordingly, care must be taken to ensure that the ejector knob is not knocked, or, that when the tube is to be removed no pressure is exerted on the knob until the wo-position clamping screw has been turned to clear the tube base ring.

TUBE REMOVAL PROCEDURE

1. Switch off all h.t. voltages simultaneously.
2. Switch off heater voltage.
3. Remove mount lid.
4. Disconnect tube leads from terminals.
5. Move adjusting knobs to mid-travel positions.
6. Rotate the two-position clamping screw to clear the tube base ring.
7. Support the base end of the tube and gradually apply pressure to the collector ejector knob to ease the tube from the mount. A slight clockwise twistapplied to the tube will assist removal.
(Continued)

Fig. 2. Typical Frequency Characteristics

Fig. 3. $\mathrm{AM} / \mathrm{PM}$ Conversion versus Power Output

W5/3G Outline

LEAD	COLOUR	ELECTRODE
1	BLUE	GRID 2
2	YELLOW	HEATER, CATHOOE, GRIDI
3	BROWN	HEATER
CONTACT		
4		HELIX
5		COLLECTOR

NOTE:- BASIC FIGURES ARE INCHES

DIM	MILLIMETRES	INCHES
A	$346,76 \mathrm{MAX}$.	13.652 MAX
B	$36,20 \pm 0.18$	1.425 ± 0.007
C	$70,61 \mathrm{MAX}$.	2.780 MAX.
D	$9,27 \mathrm{MAX}$.	0.365 MAX.
E	$73,0 \pm 3.2$	$2718 \pm 1 / 8$

WM107A Outline

(Continued)

WM107G Outline

* $_{4}-1 / 4$ U.N.C.TAPPED
HOLES

LEAD	ELECTRODE
BLUE	GRID 2
YELLOW	HEATER CATHODE GRID.I
BROWN	HEATER
ORANGE	HELIX
COLLECTOR EARTHED	

DIM	MILLIMETRES	INCHES
A	381, O MAX.	15 MAX
B	228,6 MAX.	9 MAX.
C	109,5 MAX	$4^{5 / 16}$ MAX.
D	$169,01 \pm 0.51$	0.054 ± 0.020
E	$57,2 \pm 0.8$	$21 / 4 \pm 1 / 32$
F	$136,5 \pm 0,8$	$5^{3 / 8} \pm 1 / 32$
G	88,9 MAX.	$31 / 2$ MAX.
H	119,1 MAX.	$4^{11 / 16}$ MAX.
J	54,0 MAX.	$21 / 8$ MAX.
K	$17,5 \pm 1,6$	$11 / 16 \pm 1 / 16$
L	$87,3 \pm 0,8$	$37 / 16 \pm 1 / 32$
M	71,4 $\pm 3,2$	$2^{13 / 16 \pm 1 / 8}$
N	$36,5 \pm 1,6$	$1^{7 / 16 \pm 1 / 16}$
5	$42,1 \pm 1,6$	$1^{21 / 32 \pm 1 / 16}$

Standard Telephomes and Cables Limited COMPONENTS GROUP

VALVE DIVISION
PAIGNTON • DEVON
Telex:
4230

LONDON SALES OFFICE
FOOTSCRAY • SIDCUP • KENT
Telephone: Footscray 3333
Telex: 21836

SPECIAL VALVES

Travelling-Wave Amplifier Tube

Code: W7/4G (CV6162)

The W7/4G is a travelling-wave amplifier tube intended for use in microwave radio links in the frequency range 3.6 to $5 \mathrm{Gc} / \mathrm{s}$. The tube is operated in periodic permanent magnet type mounts 495-LVA-101A, B or C, in which it will give the performance quoted in these data sheets. The design of the mounts permits easy replacement of tubes under field conditions.

RADIO FREQUENCY PERFORMANCE

Operating frequency range	3.6 to 5	Gc / s
Maximum power output	15	W
Gain at 6 W output		
Minimum	35	db
Maximum	42	db
Noise factor at small signal levels	27	db
Reverse attenuation	>65	db
Phase sensitivity		
d $/ \mathrm{CV}_{\text {hel }}$	0.75	$\% / \mathrm{V}$
d $/ \mathrm{VV}_{\mathrm{g}}$	0.25	$\% / \mathrm{V}$
AM/PM conversion at 6 W output	2	$\% / \mathrm{db}$

Modulation noise peaks
Measured in any $4 \mathrm{kc} / \mathrm{s}$ band 0.5 to $10 \mathrm{Mc} / \mathrm{s}$ from carrier are less than 3 db above tube noise after 10 hours and will continue to improve to less than 1 db above tube noise.

Matching
Adjustment of plungers in the input and output waveguides will give a VSWR less than 1.02 at a spot frequency and less than 1.1 over a $15 \mathrm{Mc} / \mathrm{s}$ band when operating at 6 W output.

Graphs showing typical power output, helix voltage and gain as functions of frequency are shown in Figure 1 and a graph of typical output power versus input power is given in Figure 2. Figure 3 shows typical maximum power output and gain at 6 W versus helix voltage.

Synchronous helix voltage is that which gives maximum gain at low signal levels.

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230 London Sales Office, Telephone: 01-300 3333 Telex: 21836

Code: W7/4G (CV6162)

CONTINUED

Frequency	3.9	4.7	Gc/s
Direct helix to cathode voltage (Note 2)	3	2.95	kV
Direct grid 2 to cathode voltage (Note 3)	2	2	kV
Direct collector (earth) to cathode voltage	2	2	kV
Direct grid 2 current	0.01	0.01	mA
Direct helix current	0.5	0.5	mA
Direct collector current	40	40	mA
Direct cathode current	$40 \cdot 5$	40.5	mA
Gain at 6W output, approx.	40	37	db
Saturated output at synchronous helix voltage, approx.	12	9	W
Band of output impedance match to 5% voltage reflection (Note 4)	>15	>15	Mc / s

Note 1. Electrode voltages are referred to cathode potential. The collector is earthed.
Note 2. Adjusted to synchronous voltage.
Note 3. Adjusted to give required collector current.
Note 4. The matching plungers must be adjusted for each tube at the required operating frequency.

CATHODE

Indirectly-heated, oxide-coated type.

HEATER	Min	Nom	Max	
Heater voltage (Note 5) Heater voltage tolerance		6.3		V
\quadLong-term average			± 3	$\%$
Short-term fluctuations up to 2 minutes duration	0.65	0.73	0.85	A
Heater current Heater pre-heating time Interruption time for zero pre-heat	60		10	s

Note 5. The heater is usually supplied by a d.c. voltage or an r.m.s. equivalent at a frequency of 50 cycles. Other frequencies of supply up to $10 \mathrm{kc} / \mathrm{s}$ may be used but it is recommended that the manufacturer be consulted beforehand.

Code: W7/4G

CONTINUED

LIMIT RATINGS

Voltages	Min	Max	
Direct helix to cathode (Note 6)	2.8	3.5	kV
Direct grid 2 to cathode	-	2.8	kV
Direct collector (earth) to cathode (Note 6)	1.6	3.5	kV
Direct grid 2 to helix		3.5	kV
Direct grid 2 to collector		3.5	kV

Note 6. Minimum ratings are specified for continuous operation to avoid excessive helix current. Refer to Operational Data Section.

Currents	Nom	Max	
Cathode	40	50	mA
Helix			
\quad Absolute maximum to trip supplies with		4	mA
\quad delay of less than 5 seconds	5	45	mA
\quad Switching transient	0.01	0.5	mA
Direct grid 2			
Power Dissipations		2	W
Grid 2	12	W	
Helix	100	W	

Note 7. Higher values of collector dissipation are permissible if the normal convection cooling is supplemented by forced-air-cooling.

Code: W7/4G

CONTINUED

D.C. SUPPLY VOLTAGES

The collector is connected to the body of the mount via the cooler. It is intended that the mount shall be operated at earth potential. Voltages must be applied in the correct sequence, as given in the "Setting-up Procedure" section of these data sheets.

Helix Voltage		
Adjustable for required working conditions, range The synchronous helix voltage for individual tubes lies within the range	2.8 to 3.3	kV
Ripple and regulation tolerance depend upon acceptable phase and output amplitude variation, typically:	2.8 to 3.1	kV
2% change in helix voltage causes a fall of gain of 1% change in helix voltage causes a phase change of approximately	0.5	db
Supply impedance, including resistance in mount, maximum (Note 8)	25	o

Note 8. This is required to avoid excessive voltage drop at switch-on.

Collector Voltage

Set between absolute limits of 1.6 and 3.5 kV
For operation with depressed collector it is usual to choose a nominal voltage of 2 kV
A minimum collector voltage of 1.6 kV may be used up to 5 W output power.
Grid 2 Voltage

Adjustable for required working conditions, range	1.7 to 2.6	kV
When adjusted to give 40 mA collector current	1.8 to 2	kV
Initial range is		

Code: W7/4G

CONTINUED

MECHANICAL DATA (W7/4G)
Envelope Glass and metal
Dimensions
Connection detail $\}$ As shown in Figure 5

LIFE

Shelf life
Operational life $\}$ Subject to guarantee
Life-end points
(a) Grid 2 voltage greater than $2 \cdot 6 \mathrm{kV}$ for 40 mA collector current, or
(b) Helix current greater than 3 mA for 40 mA collector current, or
(c) Gain or power deteriorated by more than 2 db from initial figures.

ENVIRONMENTAL CONDITIONS

	Min	Max	
Storage temperature	-60	+80	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	-10	+60	${ }^{\circ} \mathrm{C}$

T.W.T. Mounts
 Codes: 495-LVA-101A
 495-LVA-101B
 495-LVA-101C

GENERAL DESCRIPTION

These approved mounts in which W7/4G tubes operate, incorporate a periodic permanent magnet system, r.f. coupling and matching elements, mechanical deflection and alignment adjustments and a convector cooler.

The variants of the mount differ in respect of pattern or arrangement of waveguide flanges, matching adjustments, deflection and alignment devices and convector cooler. Within limits these features can be arranged to meet the needs of individual users.
A sheathed cable attached to the mount carries the electrode supplies, the collector connection being made to the body of the mount which must be at earth potential. The leads of this cable are effectively choked for microwave frequencies and resistors are incorporated in the grid 2 and helix leads to limit surges in the unlikely event of a momentary breakdown in the tube.
A detachable lid provides access to the tube connections and has attached to it a link which, when the lid is in place, is connected to a twin lead interlock cable attached to the mount. This cable may be wired into supervisory circuits to ensure that no voltage can be applied when the lid is off and the terminals inside the mount are exposed. The lid also provides additional microwave screening.

Optimum adjustment of focusing to allow for variations from tube to tube and in mount manufacture is achieved by the use of two pairs of mechanical positioning screws: one pair align the tube and the other pair move a magnetic trimming plate.

Fine adjustments to the matching are made with movable plungers in the waveguides. These plungers are controlled by knobs and locking screws on the input and output waveguides.

The tube is held firmly in the mount at the collector end by spring contacts in the cooler assembly and at the base end by a ring in the mount to which is attached a two-position retaining screw: the latter is turned over a projection of the tube base ring to lock the tube in position. (The position of the retaining screw is shown in Figures 7, 9 and 11.)

Each mount has a tube ejector mechanism, incorporated in the cooler assembly, which is operated by an external knob. On the 495-LVA-101A mount this knob is fitted to the cooler; on the 495-LVA-101B and 495-LVA-101C mounts the knob is located at the lid end. (See Figures 7, 9 and 11).

The design of the mounts is such that circuit alignment is unaffected by normal handling, and tubes can be easily replaced under field conditions.

The mounts should be secured by the threaded holes using $\frac{1}{4}$-inch UNC non-magnetic screws.

Codes: 495-LVA-101A
 495-LVA-101B
 495-LVA-101C

CONTINUED

MECHANICAL DATA-MOUNTS

Dimensions
Weight, maximum
Fixing

Connections

Electrode leads Type
Colour coding
Length of leads
Interlock leads
Type
Length of leads
Sleeve colour

As shown in Figures 6, 8 and 10.
$24 \mathrm{lb} \quad 10,9$ kg
Four tapped holes, $\frac{1}{4}$ inch UNC

4-core PTFE insulated cable
As shown in Figures 6, 8 and 10.
Mount 495-LVA-101A and C $18 \mathrm{in} . \quad 45.5 \mathrm{~cm}$
Mount 495-LVA-101B 60 in. $152,4 \mathrm{~cm}$
Twin cable
Mount 495-LVA-101A and C $18 \mathrm{in} . \quad 45,5 \mathrm{~cm}$ Mount 495-LVA-101B $\quad 36$ in. $91,4 \mathrm{~cm}$ Blue

Mechanical alignment and deflection adjustments
Alignment
Two external knobs (Note 9)
Deflection Two external knobs (Note 9)
R.F. matching adjustment. Plungers in the input and output waveguides (Note 9)

Waveguides, input and output
Mounts 495-LVA-101A and B WG12A (2 in. $\times 0.666 \mathrm{in}$. internal). See Figure 12 for details
Mount 495-LVA-101C
Built-in transition pieces to WR229
Mounting position for maximum efficiency of cooler
Mount 495-LVA-101A
Mount horizontal with waveguides in horizontal plane
Mounts 495-LVA-101B and C
Mount horizontal with waveguides in vertical plane
Proximity of magnetic materials
Magnetic materials should be kept at least 1 inch $(2,5 \mathrm{~cm})$ away from the exterior of the mount, particularly around the waveguides; permanent magnets should be kept at least 9 inches $(22,5 \mathrm{~cm})$ away from the axis of the mount.
Note 9. Positions of adjustment controls on mounts are shown in Figures 7, 9 and 11.

COOLING

The cooler is an integral part of each mount. Cooling takes place by convection and it is important that a mount is installed in the plane recommended.

The air flow through the cooler requires a free space of 2 inches (5 cm) above and below it with access to a free supply of air at ambient temperature; this is to ensure that the convection cooling is efficient. The cooler temperature under normal conditions of operation is about $70^{\circ} \mathrm{C}$ above ambient temperature.

If values of collector dissipation in excess of the specified limit rating are employed, the normal convection cooling must be supplemented by forced-air-cooling. (See Note 7 in Limit Ratings Section.)

Codes: 495-LVA-101A 495-LVA-101B 495-LVA-101C

ELECTRICAL DATA

Note 10. At 0.7 A and heater line voltage drop of 0.05 V .

R.F. PERFORMANCE

Frequency range

$$
\begin{array}{ccc}
\text { 495-LVA-101 A \& C } & 495-\text { LVA-101B } \\
3.6 \text { to } 5 & 3.8 \text { to } 5 \quad \mathrm{Gc} / \mathrm{s}
\end{array}
$$

Each mount will permit the specified performance of the W7/4G tube to be achieved.
R.F. leakage (Note 11)

Input waveguide level to free space $>65 \quad>65 \quad \mathrm{db}$
Output waveguide level to free space $>65>65 \mathrm{db}$
Matching
Adjustment of plungers in the input and output waveguides will give a VSWR less than 1.02 at a spot frequency and less than 1.1 over a $30 \mathrm{Mc} / \mathrm{s}$ band (tube not operating).
Note 11. Measured by using a 2 inch $\times 2$ inch ($5,08 \mathrm{~cm} \times 5,08 \mathrm{~cm}$) waveguide horn in such a way as to obtain a maximum reading.

ENVIRONMENTAL CONDITIONS (All mounts)
Ambient temperature range

	Min	Max	
Operating	-10	+60	${ }^{\circ} \mathrm{C}$
Storage	-60	+60	${ }^{\circ} \mathrm{C}$

Code: W7/4G

CONTINUED

OPERATIONAL DATA

Efficient operation of a travelling-wave tube in a periodic permanent magnet mount depends upon certain prime requirements being met during conditions of switch-on and continuous working. These requirements are such that satisfactory periodic focusing cannot be achieved with either low helix voltage or low cathode current.

The maximum helix current is likely to occur when the helix voltage is between 1200 and 2000 volts, the actual value of current being dependent upon the setting of the grid 2 voltage relative to the helix voltage.

When switching on, it is essential that the helix current does not exceed the following safe values:

> 50 mA for not longer than 10 milliseconds
> 20 mA for not longer than 150 milliseconds
> 10 mA for not longer than 1 second
> 4 mA for not longer than 5 seconds

A suitable cathode current control circuit is shown in Figure 4. The grid 2 voltage is supplied from a potentiometer connected across the helix supply, the grid 2 voltage always being proportional to, but less than, the helix voltage. With the recommended setting, corresponding to 1700 volts on grid 2 with respect to cathode when the helix supply is at 3000 volts, the maximum value of helix current during the rise of helix voltage may be of the order of 10 mA .

The peak current drawn from the helix supply may be minimised by delaying the rise of grid 2 voltage by means of capacitor C_{1} in Figure 4. The value of capacitance is dependent upon the rise time of the helix voltage and should be arranged to keep the grid 2 voltage below 500 volts until the helix voltage has risen to over 2000 volts. A suitable value for a helix supply with a rise time of 0.02 seconds from zero to 2500 volts is $C_{1}=0.04 \mu \mathrm{~F}$, the surge helix current being reduced to approximately 2 mA .

Towards the end of the life of the tube it is likely that the helix current will rise to about 2.5 mA and the grid 2 voltage, which initially was between 1800 and 2000 volts, will increase to about 2500 volts.

Code: W7/4G

CONTINUED

SETTING-UP PROCEDURE

The following procedure is recommended for setting up the W7/4G tube in its mount for operation:-

1. Ensure that the mechanical alignment and deflection control knobs on the mount are set to the middle of their travel and that the two-position retaining screw is in a position to allow tube to be inserted.
2. Insert tube in mount (Note 12). At the end of the travel of the tube, pressure needs to be applied to overcome the resistance of the cooler contacts and the spring locating on the base ring before the tube meets the stop at the base end. A slight clockwise twist will help with this insertion. The blue spot on the base of the tube should be aligned with the black mark on the seating. This is necessary for best matching, but the adjustment is not critical, misalignment up to 20° being permissible.
3. Secure tube in mount by rotating the two-position retaining screw to turn over the projection of the tube base ring (Note 13).
4. Connect colour-coded leads of the tube to appropriate terminals in the mount and ensure that mount is properly earthed.
5. Replace lid making sure that the interlock two-pin plug is fitted correctly in its socket.
6. Apply heater voltage and allow one minute heating time.
7. It is necessary to make the following adjustments before switching on to ensure that the helix current will not exceed a safe value:-
(a) switch off any r.f. drive
(b) pre-set grid 2 voltage (cathode current control) to give about 1.7 kV when switched on; this corresponds to a cathode current of about 35 mA . At lower voltages the helix current may be excessive.
8. After the one minute cathode pre-heat, switch on collector voltage at 2 kV .
9. Switch on simultaneously the helix voltage at 3 kV and the grid 2 voltage to the pre-set value.
10. Adjust alignment and deflection control knobs to give minimum helix current and repeat these adjustments as grid 2 voltage is increased until a collector current of 40 mA is achieved.
11. Apply r.f. input and adjust helix voltage for optimum performance; a slight readjustment of the control knobs may be necessary to obtain minimum helix current, and of grid 2 voltage to maintain a collector current of 40 mA .
Note 12. The insertion of the tube requires a free space between the lid end of the mount and extraneous equipment. When the tube is inserted in the same plane as the longitudinal axis of the mount, a minimum free space of 18 inches $(45,7 \mathrm{~cm})$ is needed. By presenting the tube at an angle of 45° to the main axis of the mount a minimum free space of 14 inches $(35,6 \mathrm{~cm})$ is required.
Note 13. Once the tube has been secured by the retaining screw, it is important to ensure that the tube ejection mechanism is not operated inadvertently. Failure to observe this precaution may result in the tube being damaged.

Code: W7/4G

TUBE REMOVAL PROCEDURE

1. Switch off all h.t. voltages simultaneously.
2. Switch off heater voltage.
3. Remove mount lid.
4. Disconnect tube leads from terminals.
5. Move adjusting knobs to mid-travel positions.
6. Rotate the two-position retaining screw to clear the tube base ring.
7. Support the base end of the tube and gradually operate the tube ejector knob to ease the tube from the mount. A slight clockwise twist applied to the tube will assist removal

Code: W7/4G

CONTINUED

Fig. 1.-Typical Frequency Characteristics

Code: W7/4G

CONTINUED

Fig. 2.-Typical Power Output versus Power Input (At Synchronous Helix Voltage)

Code: W7/4G

CONTINUED

Fig. 3.-Typical Helix Voltage Characteristics (Measured at $3.9 \mathrm{Gc} / \mathrm{s}$)

Code: W7/4G

CONTINUED

Fig. 4.-Typical Cathode Current Control Circuit

Fig. 5.-W7/4G Dimensioned Outline

NOTE:- BASIC FIGURES ARE INCHES.

DIM	MILLIMETRES	
A	465,43 MAX.	18.324 MAX.
B	$36,20 \pm 0,18$	1.425 ± 0.007
C	70,62 MAX.	2.780 MAX.
D	$13,46 \mathrm{MAX}$.	0.530 MAX.
E	$57,2 \pm 3,2$	$21 / 4 \pm 1 / 8{ }^{\circ}$

T.W.T. Mount

Code: 495-LVA-101A

Fig. 6.-495-LVA-101A Dimensioned Outline

The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. In some mounts a black lead is included in the cableform carrying the terminal supply leads: one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.

T.W.T. Mount

Code: 495-LVA-101A

CONTINUED

Fig. 7.-Diagram Showing Operational Controls of 495-LVA-101A

VIEW OF END 'A' WITH COVER REMOVED

T.W.T. Mount

Code: 495-LVA-101B

Fig. 8.-495-LVA-101B Dimensioned Outline

DIM-X (WITHDRAWAL DISTANCE
OF TUBE WITH LATERAL MOVEMENT
OF BASE) 14^{*} MIN.
DIM-Y (WITHDRAWAL DISTANCE OF
TUBE WITHOUT LATERAL
MOVEMENT OF BASE) 18° MIN.

NOTE :-
BASIC DIMENSIONS ARE INCHES.
METT WEIGHT 23 LBS APPROX.

DIM	MILLIMETRES	INCHES
A	514, 4 MAX.	$201 / 4 \mathrm{MAX}$.
B	$187,33 \pm 0,51$	7.375 ± 0.020
C	127, 0 MAX.	5 MAX.
0	286, 26 ± 0.51	$11 \cdot 270 \pm 0 \cdot 020$
E	57.2 ± 0.8	21/4 $\pm 1 / 32$
F	238, 1 ± 0.8	$93 / 8 \pm 1 / 32$
G	98, 4 Max.	$37 / 8 \mathrm{MAX}$.
H	84, $1 \pm 2,4$	$3^{5 / 16 \pm 3 / 32}$
J	54, O MAX.	$21 / 8$ max.
K	$23,81 \pm 0,51$	0.937 ± 0.020
L	139,70士0,51	5.500 ± 0.020
M	97,6 $\pm 3,2$	$3{ }^{2 / 192} \pm 1 / 8$
N	34,9 $\pm 1,6$	$13 / 8 \pm 1 / 16$
P	$136,5 \pm 4,8$	$5^{3 / 8 \pm 3 / 16}$

The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. In some mounts a black lead is included in the cableform carrying the terminal supply leads: one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.

T.W.T. Mount

Code: 495-LVA-101B

CONTINUED

Fig. 9.--Diagram Showing Operational Controls of 495-LVA-101B

VIEW OF END 'A' WITH COVER REMOVED

T.W.T. Mount

Code: 495-LVA-101C

Fig. 10.-495-LVA-101C Dimensioned Outline

NETT. WEIGHT 23LBS APPAOX.

DIM	MILLIMETRES	INCHES
A	514.4 MAX	201/4 Max
B	198, 4 MAX	7 13/16 MAX
C	127.0 MAX	5 MAX
D	286, 26 ± 0.51	11.270 ± 0.020
E	$57,2 \pm 0.8$	$21 / 4 \pm 1 / 32$
F	238,1 1 ± 0.8	$9^{3 / 3} \pm \pm 1 / 32$
G	98, 4 MAX	$3^{7 / 8} \mathrm{MaX}$
H	77, $8 \pm 2,4$	$31 / 16 \pm 3 / 32$
J	54, O MAX	$21 / 8$ max
K	17.513	$11 / 16 \pm 1 / 8$
L	$147,6 \pm 1,6$	$5^{1 / 3 / 16 \pm 1 / 16}$
M	97,6さ3,2	$3^{27 / 32 \pm 1 / 8}$
N	34.9 ± 1.6	$1^{3 / 8} \pm 1 / 16$
P	$142,8 \pm 4,8$	$5^{5 / 8} \pm 3 / 16$

The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. In some mounts a black lead is included in the cableform carrying the terminal supply leads: one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.

T.W.T. Mount

Code: 495-LVA-101C

CONTINUED

Fig. 11.-Diagram Showing Operational Controls of 495-LVA-101C

VIEW OF END A' WITH COVER REMOVED

T.W.T. Mounts

Codes: 495-LVA-101A
495-LVA-101B
CONTINUED

Fig. 12.-Outline of Waveguide Flange WG12A

\square

Description

These tubes are intended for use in microwave radio links in frequency bands within the range $5,85 \mathrm{G}$ zz to 7,9GHz. Useful performance is also obtained in the range $5,1 \mathrm{GHz}$ to $5,85 \mathrm{GHz}$.

The W5/4GC and W5/4GF tubes operate in the periodic permanent magnet type focus mounts WM112C and WM112F respectively in which they give the

Radio Frequency Performance (Note1)

```
```

f range

```
```

f range
Po(sat.) typical across f range
Po(sat.) typical across f range
Po(wkg.)
Po(wkg.)
Po(sat.) at optimum Vhel, min.
Po(sat.) at optimum Vhel, min.
5,85 to 6,5GHz
5,85 to 6,5GHz
6,51 to 7,2GHz
6,51 to 7,2GHz
6,51 to 7,9
6,51 to 7,9
G at 10W output across range
G at 10W output across range
5,85 to 6,5GHz, max./min.
5,85 to 6,5GHz, max./min.
6,51 to 7,2GHz, max./min.
6,51 to 7,2GHz, max./min.
5,85 to 7,2GFz, max./min.
5,85 to 7,2GFz, max./min.
7,2 to 7,9GHz, max./min.
7,2 to 7,9GHz, max./min.
G flatness at 10W output over any
G flatness at 10W output over any
25MHz band, max. (Note 3)
25MHz band, max. (Note 3)
N at 10W output, max.
N at 10W output, max.
Modulation noise peak=

```
```

Modulation noise peak=

```
```

Reverse attenuation at 10 W output, min.
AM/PM conversion at 10 W output, typical

5,85 to $7,2 \mathrm{GHz}$	$(0 / \mathrm{dB})$	1,8	1,8
7,2 to $7,9 \mathrm{GHz}$	$(0 / \mathrm{dB})$	-	2,5

Note 1. Performance graphs are shown in Figures 1 to 4.
performance quoted in this data. The mounts are designed to permit easy replacement of tubes under field conditions.

The W5/4GC - WM112C and W5/4GF WM112F tube/mount combinations are direct replacements for the W5/2GD - WM107DA and W5/2GF - WM107DF combinations respectively in existing equipment.

Radio Frequency Performance (Note1)
(C) International Telephone and Telegraph Corporation

Radio Frequency Performance - continued
Matching, input and output (hot)

$$
\begin{aligned}
& \text { A VSWR }<1,2: 1 \text { is obtainable over } \\
& \text { any } 25 \mathrm{MHz} \text { band when operating at } \\
& 10 W \text { output (achieved by adjustment } \\
& \text { of flags in input and output wave- } \\
& \text { guides). } \\
& \text { W5/4GC W5/4GF }
\end{aligned}
$$

Phase sensitivity at optimum voltage and working output

$\mathrm{d} \varphi / \mathrm{d} V_{\text {hel }}$, max. $d \varphi / d V_{a}$, max.	(\square / V) $(0 / V)$	$-1,5$ $+0,5$	$-1,5$ $+0,5$
ith optimum voltages at working output			
ΔG for $\pm 1 \%$ change in $V_{\text {hel }}$, max.	(dB)	-0,8	-0,8
ΔG for $\pm 2 \%$ change in $V_{\text {hel }}$, max.	(dB)	-2,0	-2,0
$d G / d V_{g 2}$ for $V_{g 2}$ change up to $\pm 2 \%$, max.	$(d B / V)$	+0,03	+0,03

Note 2. Optimum voltage is defined as value of $V_{h e l}$ for $G_{m a x}$. at 10 W output.
Note 3. Dbtained by tuning input and output match adjusters for max. gain flatness.

Typical Operating Conditions (Note 4)

f	(GHz)	5,85	6,5	7,2	7,9
Direct Vhel-k, optimum (note 2)	(kV)	3,43	3,36	3,31	3,27
Direct Vg2-k (Note 5)	(kV)	2,3	2,3	2,3	2,3
Direct $V_{\text {col }}($ earth)-k	(kV)	2,1	2,1	2,1	2,1
Direct $\mathrm{I}_{\mathrm{g} 2}$	$(\mu \mathrm{A})$	-2,0	-2,0	-2,0	-2,0
Direct Ihel at working output	(mA)	0,5	-, 5	-, 5	-, 5
Direct $\mathrm{I}_{\text {col }}$	(mA)	50	50	50	50
Direct I_{k}	(mA)	50,5	50,5	50, 5	50, 5
G max. at working output (Note 6) W5/4GF	(dB)	42,8	42,2	40,5	35,8
W5/4GC	(dB)	39,4	38,6	36,8	-
$\mathrm{P}_{\text {o }}$ (sat.) at optimum $\mathrm{V}_{\text {hel }}$ (Notes 6, 7)	(W)	18,5	18	17,5	15,8
N at working output	(dB)	24,5	24,5	24,5	24,5
Phase sensitivity at working output $d \varphi / d V_{\text {hel }}$	$(0 / V$ $10 / V)$	-0,75	-0,75	-0,75	-0,75
$\mathrm{d} \varphi / \mathrm{dV} \mathrm{g} 2$	(0/V)	-0,25	+0,25	+0,25	+0,25
Change of G, with voltages at working output					
ΔG for $\pm 1 \%$ change in Vhel	(dB)	-0,5	-0,5	-0,5	-0,5
ΔG for $\pm 2 \%$ change in $V_{\text {hel }}$	(dB)	-1, 0	-1,0	-1,0	-1, 0
$d G / d V_{g 2}$ for $V_{g 2}$ change up to $\pm 2 \%$	B/V)	+0,02	+0,02	+0,02	+0,02

Note 4. Electrode voltages are referred to cathode potential. The collector is earthed.
Note 5. Adjusted to give stated $\mathrm{I}_{\text {col }}$.
Note 6. The mount matching adjusters must be adjusted for each tube at the required operating frequency and power level.
Note 7. An increase in output may be achieved by setting $V_{h e l}$ above the synchronous value, with a resulting drop in gain: in these conditions an increase in $V_{\text {col }}$ to $2,3 \mathrm{kV}$ is recommended to limit Ihel

Cathode/Heater

Cathode	Indirectly heated, oxide coated type			type max.
Heater				
V_{h} (Note 8)	(V)	-	6,3	-
V_{h} tolerance				
long-term average	(\%)	-	-	$\pm 3,0$
short-term fluctuations up to 2 minutes duration	(\%)	-	-	$\pm 5,0$
I_{h}	(A)	0,65	0,75	0,85
Heater pre-heating time	(s)	60	-	-
Interruption time for zero pre-h	(s)	-	-	10

Note 8. The heater is usually supplied by a direct voltage or an r.m.s. equivalent at a frequency of 45 Hz to 65 Hz . If other supply frequencies are to be used, the manufacturer should be consulted beforehand. If the heater is operated with d.c., it is preferable to make the free heater lead negative with respect to the cathode.

Limit Ratings

Limit Ratings - continued

```
Power dissipations
    Pg2, max. (W)
    Phel, max. (W)
Phel, max. (W)
Pcol, max. (Note 10)
(w)
Note 9. Minimum ratings are specified for continuous operation to avoid excessive Ihel.
Note 10. Higher values of \(P_{\text {col }}\) are permissible if the normal convection cooling is supplemented by forced-air-cooling. As a general guide, an air flow of about \(25 \mathrm{ft} 3 / \mathrm{min}\). ( \(708 \mathrm{l} / \mathrm{min}\).) is required for a Pcol of 175 W up to an altitude of \(10000 \mathrm{ft}(3050 \mathrm{~m})\). (See section on Collector Cooler later).
```


D.C. Supply Requirements

General
The tube collector is connected to the body of the mount via the cooler. The mount shall be operated at earth potential. Voltages must be applied in the correct sequence, as given in the Setting-up Procedure section.

Helix Voltage
$V_{\text {hel }}$ is adjustable for required working conditions, range 3,2 to 3, 日kV. The optimum $V_{\text {hel }}(N a t e ~ 2)$ for individual tubes lies within the range 3,2 to $3,7 \mathrm{kV}$. Ripple and regulation tolerances depend upon acceptable phase and output amplitude variations (see Typical Operating Conditions and Radio Frequency Performance sections).
A protective resistor, value $7,5 k \Omega$, may be used in the power supply
line: this resistor is already fitted in the WM112C mount.
The supply impedance, including that of the protective resistor, should not exceed $20 k \Omega$: this is required to avoid excessive voltage-drop at switch-on.

A trip circuit must be incorporated in the helix supply to prevent burnout of the tube by the passage of excessive $I_{\text {hel }}$. (See Limit Ratings section for required settings).

Collector Voltage
For operation with depressed collector at $I_{\text {col }}=50 \mathrm{~mA}, V_{\text {col }}$ should be set within limits of 1,9 and $2,4 \mathrm{kV}$.

For operation at 1 OW output, the nominal voltage is $2,1 \mathrm{kV}$.
Prolonged operation below $1,9 \mathrm{kV}$ should be avoided.
Off-load $V_{\text {col }}$ should not exceed $3,3 \mathrm{kV}$.
Grid 2 Voltage
V_{g} is adjustable for required conditions, range 2,0 to $2,7 \mathrm{kV}$. When adjusted to give $I_{\text {col }}=50 \mathrm{~mA}$, initial range is 2,0 to $2,4 \mathrm{kV}$: end of life limit is $2,7 \mathrm{kV}$.

Grid 2 Current
This will be in the range $-50 \mu \mathrm{~A}$ to $+100 \mu \mathrm{~A}$ for the majority of tubes. A protective resistor, value $47 k \Omega$ is fitted in the grid 2 lines of the mounts.

Certain prime requirements should be met during conditions of switch-on and continuous working. Satisfactory periodic focussing cannot be achieved with low $V_{h e l}$ or low I_{k}. If the tube is operated with Vhel below the minimum limit of $3,2 \mathrm{kV}$, the $I_{\text {hel }}$ may be excessive, the actual value of $I_{\text {hel }}$ being dependent upon the setting of $V_{g 2}$ relative to $V_{h e l}$. When switching-on it is imperative that $I_{h e l}$ does not exceed the transient values given in the tube Limit Ratings section.

Cathode Current Control Circuit

A suitable cathode current contral circuit is shown in Figure 5. Vaz is supplied from a potentiometer connected across the helix supply, $V_{g} \tilde{z}$ always being proportional to, but less than, Vhel.
The recommended setting for switch-on is 2 , OkV on grid 2 with respect to cathode, and a helix supply of $3,3 \mathrm{kV}$. The switch-on of $\mathrm{V}_{\mathrm{g} 2}$ should be delayed until $V_{\text {hel }}$ has reached $3,3 \mathrm{kV}$.
The rise times of $V_{\text {hel }}$ and $V_{\text {col }}$ are not important: $V_{g 2}$ may be applied as soon as these voltages have reached their set values. The rise time of $V_{g 2}$ must be short to limit the $I_{h e l}$ transient value. A typical rise time is 10 ms .

The delaying device, for example a reed relay, should also operate to cut-off the grid 2 supply in the event of the helix trip being operated; this prevents excessive $I_{g 2}$ being passed.
The $10 M \Omega$ bleed resistor prevents build-up of static charge on grid 2 during the period when $V_{h e l}$ and $V_{\text {col }}$ only are applied.
On final switch-off $V_{q 2}$ should precede $V_{\text {hel }}$ on a time scale such that $V_{g 2}$ drops below 250 V before $V_{\text {hel }}$ falls below $3,2 \mathrm{kV}$.
An alternative switch-on method of delaying $V_{g 2}$ rise by a shunt capacitor (C_{1} in Figure 5) may be used. $V_{h e l}, V_{c o l}$ and $V_{g 2}$ may be applied simultaneously, but $V_{\text {hel }}$ should exceed $3,2 \mathrm{kV}$ before $\mathrm{V}_{g} 2$ exceeds 250 V and essentially the sequence of voltage rises must be (i)V col (ii) $V_{\text {hel }}$ (iii) $V_{g 2}$ with the rise times of (i) and (ii) sufficiently fast to limit the rise time of V_{g} 。
With this method the surge of $I_{h e l}$ at switch-on may operate the helix trip and appropriate re-setting arrangements should be provided.

Mechanical Data (Tubes)

Envelope	Glass and metal
Dimensions and connection detail \quad As shown in Figure 6	

Tube Life

Shelf and operational life Life-end points

Subject to guarantee
(a) $V_{\text {g2 }}>2,7 \mathrm{kV}$ for $I_{\text {col }}=50 \mathrm{~mA}$, or
(b) $I_{\text {hel }}>3,5 \mathrm{~mA}$ for $I_{\text {مп } 1}=50 \mathrm{~mA}$, or
(c) G or P_{0} deteriorated by more than

2dB from initial figures.

Focus Mounts - Description

These approved mounts in which the W5/4G series tubes operate incorporate a periodic permanent megnet system, r.f. coupling waveguides with matching elements, mechanical tube focussing adjustments and a convection collector cooler.
A sheathed cable attached to the mount carries the electrode supplies, the collector connection being made through the body of the mount which must be at earth potential. The leads of this cable are effectively choked for microwave frequencies.
A hinged lid provides access to the tube ccnnections. It has attached to it a link which, when the lid is in place, is connected to a twin-lead interlock cable attached to the mount. This cable may be wired into supervisory circuits to ensure that no voltage can be acplied when the lid is off and the terminals inside the mount are exposed. The lid also provides microwave screening.
Optimum adjustment of focussing to allow for variations from tube to tube and in mount manufacture is achieved by the use of three pairs of mechanical positioning screws. (See Figure B).
Fine adjustments to the matching are made with a movable flag in each waveguide. These flags, which may be rotated or moved longitudinally, are controlled by plungers protruding opposite to the input and output ports. (See Figure 8).

The operation of closing the hinged lid automatically locates the tube in the mount longitudinally. Mating rings at the base end of the tube and mount provide lateral location.
Each mount has a tube ejector mechanism, incorporated in the cooler assembly, which is operated through a cable by a control at the base end This control is concealed by the hinged lid to prevent inadvertent operation when the lid is closed. (See Figures B and 9)

Focus Mounts - Data

R.F. leakage

Dimensions
Fixing of mounts

Input and output waveguide levels to free space $>65 \mathrm{~dB}$.
As shown in Figures 7 and 10.
Attach mounts to equipment with $1 / 4$ inch UNC non-magnetic screws fitting into 0,5 inch $(12,7 \mathrm{~mm})$ deep tapped holes in mount body (see Figure 8).

Waveguide connections

Electrode supply cables WM1 12C

WM1.12F

Input and output flanges as shown in rigure 11 and 12 for connection to WG14 (WR137). Tin-plated shims and screws, which are available if required, should be used for connection to brass waveguide flanges.

The five cores for $h, h / k$, hel g2 and col/ earth are contained in a braided and sheathed cableform: the braid and col/earth are connected to the mount body.
The cableform is similar to that for the WM112F except that the hel lead is a screened and sheathed core. A short lead is attached to the hel screening at the free end. The hel screen is insulated from earth and other cores for connection to cathode potential.

Maximum ratings			
Heater and heater/cathode			
Helix	to body of mount, $3,3 \mathrm{kV}$ max.		
Grid 2 Helix screen (WM112F only)	to body of mount, $3,3 \mathrm{kV}$ max.		
Supervisory cable and			
interlock	to body of mount voltage 500 V max. current 10 A max.		
Lead resistance, (including lead resistors)		WM112C	WM112F
	Grid 2	47k』	4,7kת
	Helix	7,58	0,098
	Heater	$0,04 \Omega$	0,09

Collector Cooler

Cooling takes place by convection and it is important that the mount is operated in the position intended. The mount is intended for horizantal operation and the cooling fins must be vertical.
The air flow through the cooler requires a free space of 2 inches (5 mm) around the cooler slots with access to a free supply of air at ambient temperature. The cooler temperature under normal conditions of operation is about $120^{\circ} \mathrm{C}$ above ambient temperature.
At altitudes up to $15000 \mathrm{ft}(4772 \mathrm{~m}$) and within the maximum ambient temperatures specified below, free convection is adequate for dissipations up to the specified limit rating. Where it is required to exceed either the ambient temperature or the collector dissipation limits, forced-air-cooling is necessary and the manufacturer should be consulted to obtain the flow applicable to individual requirements. (See also Note 10).

Environmental Conditions - Tube and mount

Proximity of Magnetic Materials

Soft magnetic materials should be kept at least 1 inch (2,5cm) away from the exterior of mount.

Magnetized materials in the vicinity of the mount must be positioned so that $I_{\text {hel }}$ at P_{o} (sat.) does not increase by more than $0,1 \mathrm{~mA}$.
Assistance with focussing tests in the presence of permanent magnets and guidance concerning their position is always available from the manufacturer.

Setting-up Procedure

The following procedure is recommended for setting-up the tube in its mount for operation:

1. Ensure that the mechanical tube focussing control knobs on the mount are set to the middle of their travel.
2. Ensure that the mount is properly earthed.
3. (a) Disengage the catch and open the lid. Insert tube (see Note 11) far enough for the colour-coded leads to be easily connected. No damage is caused by pushing the tube fully home; it simply tends to be partially ejected by the cooler on releasing the base.

The yellow line on the tube base cap should be aligned with the white index mark on the seating ring; this is necessary for best matching but the adjustment is not critical, in that misalignment up to 20° is permissible.
(b) Close lid, engage the catch. This operation automatically moves the tube to its correct longitudinal position relative to the mount, completes the interlock circuit and prevents operation of the tube ejector mechanism.
4. Make the following adjustments before switching on to ensure that the helix current will not exceed that value which causes the trip to operate.
(a) Switch off any r.f. drive.
(b) Set the $V_{\text {hel }}$ contral to give operation at $3,3 \mathrm{kV}$; set the $\mathrm{V}_{\mathrm{g} 2}$ (cathode current control) to give about 2, akV at switch-on; this corresponds to a I_{k} of around 35 mA . Set $V_{c o l}$ to give $2,1 \mathrm{kV}$ under operating conditions.
5. Apply V_{h} and allow one minute heating time.
6. Apply $V_{\text {hel }}$ and $V_{\text {col }}$.
7. Apply $V_{g 2}$ at the preset value.
8. Adjust focussing control knobs to give minimum $I_{\text {hel }}$ and repeat these adjustments as $V_{g 2}$ is increased until a $I_{\text {col }}$ of 50 mA is achieved.
9. Apply an r.f. input of approximately -15 dBm , adjusit the input and citput r.f. matching and Vhel for maximum output. Increase the r.f. input to obtain the required output level, readjust focussing control knobs to minimise $I_{h e l}$. Dptimise $V_{h e l}$, readjust matching adjusters, r.f. input level and focus controls, and also $V_{g 2}$ to maintain appropriate $I_{\text {col }}$.

Note 11. The insertion of the tube requires a free space between the lid of the mount and extraneous equipment: the space required is specified in Figures 7 and 10.

Tube Removal Procedure

1. Switch off all voltages preferably $V_{g 2}$ first but otherwise simultaneously.
2. Switch off V_{h}.
3. Move focus control knobs to mid-travel position.
4. Disengage catch in hinged lid and thus allow the spring loaded cooling fins to push the tube outwards.
5. Disconnect the tube leads from their terminals.
6. Pull the tube ejector control to free the collector from the cooling fins and withdraw the tube.

Travelling-wave Amplifier Tubes

Fig. 1. Typical Output Power; Helix Voltage and Gain versus Frequencv

Fig. 2. Typical Output Power versus Input Power - W5/4GF

Fig. 3. Typical Output Power versus Input Power - W5/4GC

Fig. 4. Typıcal Gain Variation, Noise Factor and AM/PM Conversion

Fig. 5. Typical Cathode Current Control Circuit

Fig. 6. Dutline of W5/4GC and W5/4GF Tubes

Dimensions

	in	
A	$351,8 \mathrm{max}$	$13,85 \max$
B	$36,20 \pm 018$	$1,425 \pm 0007$
C	$77,5 \max$	$3,05 \max$
D	$9,27 \max$	$0,365 \max$
E	46 nom	1,8 nom

Electrode leads and contacts $\begin{array}{lll}\frac{\text { lead }}{1} & \text { colour } & \\ & \text { electrode } \\ 2 & \text { blue } & \mathrm{g}_{2}, \mathrm{~g}_{1} \\ 3 & \text { brown } & \mathrm{h}\end{array}$

contact	
4	hel
5	col

View at X

Fig. 7. Outline WM112C Mount

Dimensions

	mm	in.
A	387, 4 max.	15,25 max.
B	196,9 max.	7,75 max.
C	104,8 $\pm 1,0$	4,125 $\pm 0,04$
D	$169,01 \pm 0,51$	6,654 $\pm 0,02$
E	$57,2 \pm 0,40$	$2,25 \pm 0,016$
F	$136,5 \pm 0.40$	$5,375 \pm 0,016$
G	111,1 max.	4,375 max.
H	109,5 $\pm 3,2$	$4,313 \pm 0,125$
J	$66,7 \pm 1,6$	$2,625 \pm 0,063$
K	$17,48 \pm 0,79$	$0,68 \mathrm{E} \pm 0,031$
L	$87,3 \pm \square, 8$	$3,438 \pm 0,031$
M	$69,9 \pm 3,2$	$2,75 \pm 0,125$
N	34,9 $\pm 1,6$	$1,375 \pm 0,063$
P	$48,4 \pm 1,6$	$1,906 \pm 0,063$
R	41,3 max.	1,625 max.
5	12,7 app.	1,5 app.
U	$106,4 \pm 3,2$	$4,188 \pm \square, 125$
W	104, 8 max.	4,125 max.
z	$52,4 \pm 0,40$	$2,063 \pm 0,016$

Withdrawal distances of tube:
X (with lateral mavement of tube base up to 45°) $=254 \mathrm{~mm}$ min.
Y (without lateral mavement of tube base) $=350 \mathrm{~mm}$ min.

Fig. B. Diagram showing Operational Controls of WM112C Mount

knobs

Fig. 9. Outline of Flange 53/WGF/14/3 for WM112C Mount

	mm	in
A	$49,02 \mathrm{tp}$	$1,93 \mathrm{tp}$
B	$29,97 \mathrm{tp}$	$1,18 \mathrm{tp}$
C	$38,10 \pm 0,4$	$1,5 \pm 0,016$
D	$15,88 \pm 0,13$	$0,625 \pm 0,005$
E	$34,93 \pm 0,2$	$1,375 \pm 0,008$
F	$57,34 \pm 0.4$	$2,281 \pm 0,016$
G	$6,35 \pm 0,4$	$0,25 \pm 0,016$
H	$4,09 \pm 0.05$	$0,161 \pm 0.002$
J	$32,69 \mathrm{tp}$	$1,287 \mathrm{tp}$
K	$23,70 \mathrm{tp}$	0.933 tp
L	$16,33 \mathrm{tp}$	$0,643 \mathrm{tp}$
M	$6,27 \mathrm{tp}$	$0,24 \mathrm{tp}$
P	$0,80 \mathrm{max}$	$0,031 \max$
Q	$49,02 \pm 0,05$	$1,93 \pm 0,002$
R	$24,51 \pm 0,05$	$0,965 \pm 0,002$

Note
Angle of face N to \mathbb{E} of w.g. aperture is $90^{\circ} \pm 0,25^{\circ}$.

Fig. 10. Dutline WM112F Mount

Withdrawal distances of tube:
X (with lateral movement of tube base up to 45°) $=254 \mathrm{~mm}$ min.
Y (without lateral movement of tube base) $=350 \mathrm{~mm}$ min.

Fig. 11. Diagram showing Operational Controls of WM112F Mount

Fig. 12. Dutline of Flange 53/WGF/14/2 for WM112F Mount

	mm	in
A	$49,02 \mathrm{tp}$	$1,93 \mathrm{tp}$
B	$29,97 \mathrm{tp}$	$1,18 \mathrm{tp}$
C	$38,10 \pm 0,4$	1,5
D	0,016	
D	$15,88 \pm 0,13$	$0,625 \pm 0,005$
E	$34,93 \pm 0,2$	$1,375 \pm 0,008$
F	$57,94 \pm 0,4$	$2,281 \pm 0,016$
G	$6,35 \pm 0,4$	$0,25 \pm 0,016$
H	$4,09 \pm 0,05$	$0,161 \pm 0,002$
J	$32,69 \mathrm{tp}, 03$	$1,287 \mathrm{tp}$
K	$23,70 \mathrm{tp}$	0.933 tp
L	$16,33 \mathrm{tp}$	$0,643 \mathrm{tp}$
M	$6,27 \mathrm{tp}$	$0,247 \mathrm{tp}$
P	0,80 max	$0,031 \mathrm{ma}$

Feature	Characteristic	Tolerance	Datum
Width A		0,005 wide	Width E MMC
Width B		Symmetry	0,005 wide
Width D MMC			
Width C	Syid	0,010 wide	Width D MMC
Width F		0,010 wide	Width E MMC
Holes H	Positional	0,002 MMC	
Face N	Flatness	Note 2	

Notes

1. Angle of face N to \mathbb{E} of w.g. aperture is $90^{\circ} \pm 0,25^{\circ}$.
2. To ensure that final inspection tolerance of $0,0008 \mathrm{in}$. is met, a max. flatness tolerance of $0,0005 \mathrm{in}$. is applied at piecepart manufacture.

W7/5GA
 Codes: W7/5GB
 W7/5GC

These travelling-wave tubes, when operated in the appropriate periodic permanent magnet type mounts, cover between them the frequency range 3.6 to 5 GHz .

The mounts, of which there are five types, give a choice of r.f. connections and other features; they are listed below under their commercial codes together with the tubes which operate in them.

$\left.\begin{array}{l}\text { WM110A } \\ \text { WM110C }\end{array}\right\}$	$\}$W7/5GA WM110B
W7/5GB WM110CA	
$\left.\begin{array}{l}\text { WM110CB }\end{array}\right\}$W7/5GC	

RADIO FREQUENCY PERFORMANCE (Tubes)

(See page 7 for frequency performance of mounts)

	W7/5GA	W7/5GB	W7/5GC	
Operating frequency range	3.6 to $4 \cdot 2$	4.4 to 5	3.7 to 5	GHz
Power output, maximum	30	30	25	W
Gain				
at 10 W			37 to 45	dB
at 20 W	41 to 46			dB
at 25 W		35 to 44		dB
AM/PM conversion				
at 10W			$<1 \cdot 5$	\% dB
at 20 W	<1.5	<1.5		
Reverse attenuation	>70	>70	>70	dB

Graphs showing typical performance are shown in Figures 1 to 5.

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: 01-300 3333
Telex: 21836
C O M P O N E N T S \quad O \quad R O U P

TYPICAL OPERATING CONDITIONS (Note 1)

W7/5GA W7/5GB W7/5GC

Frequency
Direct helix to cathode voltage (Note 2)
Direct grid 1 to cathode voltage (never positive)
Direct grid 2 to cathode voltage (Note 3)
Direct collector (earth) to cathode voltage
Direct grid 2 current
Direct helix current
Direct collector current
Input power for 10 W output for 20 W output for 25 W output
Saturated output at synchronous helix voltage, approximately
Gain-flatness characteristic (Note 4) over 30 MHz over 20 MHz over 15 MHz

3.9	4.7	4.2	GHz
2.6	2.6	2.55	Vk
-10	-10	-10	V
1.5	1.6	1.3	kV
1.8	2.2	1.7	kV
0	0	0	mA
0.6	0.6	0.6	mA
80	85	65	mA

Note 1.-Electrode voltages are referred to cathode potential. The collector is earthed.
Note 2.-Adjusted to synchronous voltagel! (that which gives maximum gain at low signal levels).
Curves of typical synchronous helix voltage versus frequency are shown in Figure 5.
Note 3.-Adjusted to give required collector current.
Note 4.-The matching plungers must be adjusted for each tube at the required operating frequency.

CATHODE (All Tubes)

Indirectly heated, oxide coated type
HEATER (All Tubes)

	Min.	Nom.	Max.	V
Heater voltage (Note 5)	-	$6 \cdot 3$	-	
Heater voltage tolerance Long-term average	-	-	± 3	$\%$
\quad Short-term fluctuations up to	-	-	± 5	$\%$
2 minutes' duration	-	1	-	A
Heater current	60	-	-	s

Note 5. The heater is usually supplied by a d.c. voltage or a r.m.s. equivalent at a frequency of 50 Hz . Other frequencies of supply up to 10 kHz may be used but it is recommended that the manufacturer be consulted beforehand.

LIMIT RATINGS (All Tubes)

Voltages	Min.	Max.	
Direct helix to cathode	-	3	kV
Direct grid 1 to cathode	-	0.5	kV
Direct grid 2 to cathode	-	2.5	kV
Direct collector (earth) to cathode (Note 6)	1.6	3	kV

Note 6.-The minimum rating is specified for continuous operation to avoid excessive helix current.

Currents	Max.	
Cathode	100	mA
Helix		
Absolute maximum to trip supplies with	4.5	mA
delay of less than 5 seconds	50	mA
\quad Switching transient	0.5	mA
Direct grid 2		
Power Dissipations	2	W
Grid 2, maximum	12	W
Helix, maximum	150	W

Note 7.-Higher values of collector dissipation are permissible if the normal cooling is supplemented by forced-air-cooling.

D.C. SUPPLY VOLTAGES (All Tubes)

The collector is connected to the body of the mount via the cooler. It is intended that the mount shall be operated at earth potential. Voltages must be applied in the correct sequence, as given in the "Setting-up Procedure" section of these data sheets.
Helix voltage
Adjustable for required working conditions, range 2.4 to 2.9 kV
The synchronous helix voltage for individual tubes
lies within the range
Supply impedance, including resistance in
mount, maximum (Note 8)
2.45 to 2.75

Note 8.-This is required to avoid excessive voltage drop at switch-on.
Collector voltage
Set between absolute limits of
1.7 and 2.5

For depressed collector operation at 80 mA , it is usual to choose a nominal voltage of 1.8 kV .
For depressed collector operation at 85 mA , the minimum voltage should be 2.2 kV .
For collector dissipations above 150 W , forced-air-cooling must be used.
A minimum collector voltage of 1.7 kV may be used up to 65 mA collector current.
Grid 2 voltage
Adjustable for required working conditions, range
When adjusted to give 80 mA collector current
Initial range is
End of life limit is
Grid 1 voltage (specified for each valve), range

1.15 to 1.8	kV
1.4 to 1.6	kV
2	kV
-0.5 to -25	V

MECHANICAL DATA (Tubes)

Envelope
Dimensions
Connection detail $\}$

Glass and metal
As shown in Figure 7

LIFE

Shelf life
Operational life
Guarantee subject to negotiation

Life-end points

(a) Grid 2 voltage greater than 2 kV for 80 mA collector current, or
(b) Helix current greater than 4.5 mA for 80 mA collector current, or
(c) Gain or power deteriorated by more than 2 db from initial figures.

ENVIRONMENTAL CONDITIONS
 Storage temperature
 $-60+80$
 Operating ambient temperature
 $-10+60$

GENERAL DESCRIPTION OF MOUNTS

These approved mounts, in which the W7/5G series of tubes operate, incorporate a periodic permanent magnet system; r.f. coupling and matching elements; mechanical deflection adjustments and a convection cooler.

They differ from one another in respect of various physical features and r.f. performance: these differences are described later and are shown in the relevant drawings.

A sheathed cable attached to the mount carries the electrode supplies, the collector connection being made to the body of the mount which must be at earth potential. The leads of this cable are effectively choked for microwave frequencies and resistors are incorporated in the grid 2 and helix leads to limit surges.

A detachable lid provides access to the tube connections and has attached to it a link which, when the lid is in place, is connected via a twin-lead interlock cable attached to the mount. This cable may be wired into supervisory circuits to ensure that no voltage can be applied when the lid is off and the terminals inside the mount are exposed. The lid also provides additional microwave screening.

Optimum adjustment of focusing to allow for variations from tube to tube and in mount manufacture is achieved by the use of three pairs of mechanical positioning screws; two pairs align the tube and the other pair move a magnetic deflector plate.

Fine adjustments to the matching are made with movable plungers in the waveguides.
The tube is held firmly in the mount at the collector end by the cooler assembly and at the base end by a ring in the mount to which is attached a two-position retaining catch: the latter is turned over a projection of the tube base ring to lock the tube in position. (The position of the retaining catch is shown in Figues 9, 12, 14, 16 and 18.)

Each mount has a tube ejector mechanism, incorporated in the cooler assembly, which is operated by an external control lever. (See Figures 9, 12, 14, 16 and 18.)

The design of the mounts is such that circuit alignment is unaffected by normal handling, and tubes can be easily replaced under field conditions. The mount should be secured by the threaded holes using $\frac{1}{4}$-inch UNC non-magnetic screws.

MECHANICAL DATA (Mounts)

Unless otherwise indicated, the following data is common to all mounts.
Dimensions As shown in Figures 8, 11, 13, 15 and 17.
Mounting position For maximum efficiency of the convection cooler, the plane of the cooler fins should be vertical. Magnetic materials should be kept at least 1 inch ($2,5 \mathrm{~cm}$) away from the exterior of mounts, particularly in the vicinity of the waveguides. Permanent magnets should be kept at least 9 inches ($22,9 \mathrm{~cm}$) away from the axis of the mounts.
Fixing of mounts Attach mount to equipment with $\frac{1}{4}$ inch UNC non-magnetic screws fitting into tapped holes provided in mount body.
Connecting leads
Electrode leads 5-core PTFE insulated cable, leads colour-coded as shown in Figures 8, 11, 13, 15 and 17 (Note 9).
Interlock leads Twin cable, sleeve coloured blue.
Mechanical adjustment controls (Note 10)
Alignment Two pairs of external knobs.
Deflection One pair of external knobs.
R.F. matching Eight external screws or plungers.

Waveguide connections, input and output
WM110A mount Flanges 12A W/F for connection to waveguide WG12A. (See Figure 10.)

WM110B mount Flanges UG149A/U for connection to waveguide WR187 (WG12).
WM110C mount Special flanges for connection to waveguide WR187 (WG12). See Figure 10.
WM110CA mount Flanges CMR187 for straight entry waveguide WR187 (WG12).
WM110CB mount Flanges CMR229 for straight entry waveguide WR229 (WG11A).
Note 9.-In the near future a 6-core cable will be fitted: this will include a black earth lead to provide an additional earth path to that existing between the mount body and equipment chassis.
Note 10.-The positions of adjustment controls are shown in Figures 9, 12, 14, 16 and 18.

COOLING

The cooler is an integral part of each mount. Cooling takes place by convection and it is important that the planes of the cooler fins are vertical.

The air flow through the cooler requires a free space of 2 inches $(5 \mathrm{~cm})$ above and below the cooler with access to a free supply of air at ambient temperature. Normally, the cooler temperature is about $70^{\circ} \mathrm{C}$ above ambient.

If values of collector dissipation in excess of the maximum specified in the LIMIT RATINGS section are employed, the normal cooling must be supplemented by forced-air-cooling: as a general guide, an air flow of about $25 \mathrm{ft}^{3} / \mathrm{min}(707,5 \mathrm{I} / \mathrm{min})$ is required at 250 W collector dissipation.

ELECTRICAL DATA (Mounts)

Ratings

Heater to heater-cathode maximum voltage 1 kV
Heater and heater-cathode

| $\begin{array}{l}\text { Helix } \\ \text { Grid } 1\end{array}$ | to body of mount, maximum voltage | 4 |
| :--- | :--- | :--- | kV

Grid
Grid 2
Supervisory cable and interlock 240V a.c. 2 A
Lead resistance (including limiting resistors)
Grid 2
$4.7 \mathrm{k} \Omega$
Helix
1
Heater (Note 11)
0.07

Note 11.-At 0.7 A and heater line voltage drop of 0.05 V .

R.F. PERFORMANCE

Each mount will permit the specified performance of its associated tube to be achieved.
Frequency range

WM110A	3.6 to 4.2	GHz
WM110B	4.4 to 5.0	GHz
WM110C	3.7 to 4.2	GHz
WM110CA	4.4 to 5.0	GHz
WM110CB	3.7 to 4.2	GHz

R.F. leakage (Note 12)

Input or output waveguide level to free space
$>65 \quad \mathrm{~dB}$
Note 12.-Measured by using a 2 inch $\times 2$ inch ($5,08 \times 5,08 \mathrm{~cm}$) waveguide horn in a way such as to obtain a maximum reading.

ENVIRONMENTAL CONDITIONS

Ambient temperature range

Operating	-10	+60	${ }^{\circ} \mathrm{C}$
Storage	-30	+60	${ }^{\circ} \mathrm{C}$

OPERATIONAL DATA

Efficient operation of a travelling-wave tube in a periodic permanent magnet mount depends upon certain prime requirements being met during conditions of switch-on and continuous working. These requirements are such that satisfactory periodic focusing cannot be achieved with either low helix voltage or low cathode current.

The maximum helix current is likely to occur when the helix voltage is between 800 and 1600 volts, the actual value of current being dependent upon the setting of the grid 2 voltage relative to the helix voltage.

When switching on, it is essential that the helix current does not exceed the following safe values:

> 50 mA for not longer than 10 milliseconds
> 20 mA for not longer than 150 milliseconds
> 10 mA for not longer than 1 second
> 5 mA for not longer than 5 seconds

A suitable cathode current control circuit is shown in Figure 6. The grid 2 voltage is supplied from a potentiometer connected across the helix supply, the grid 2 voltage always being proportional to, but less than, the helix voltage. With the recommended setting at switch-on, corresponding to 1300 volts on grid 2 with respect to cathode when the helix supply is at 2500 volts, the maximum value of helix current during the rise of helix voltage may be of the order of 20 mA .

The peak current drawn from the helix supply may be minimised by delaying the rise of grid 2 voltage by means of capacitor C_{1} in Figure 6. The value of capacitance is dependent upon the rise time of the helix voltage and should be arranged to keep the grid 2 voltage below 300 volts until the helix voltage has risen to over 1600 volts. A suitable value for a helix supply with a rise time of 0.02 seconds from zero to 2500 volts is $C_{1}=0.04 \mu \mathrm{~F}$, the surge helix current being reduced to approximately 3 mA .

Towards the end of the life of the tube it is likely that the helix running current will rise to about 3 mA and the grid 2 voltage, which initially was between 1100 and 1800 volts, will increase to about 2000 volts.

SETTING-UP PROCEDURE

The following procedure is recommended for setting-up the W7/5 series of tubes in their mounts for operation.

1. Remove screwed lid of mount.
2. Ensure that the mechanical alignment and deflection control knobs on the mount are set to the middle of their travel and that the two-position retaining catch is in a position to allow the tube to be inserted.
3. Insert tube in mount. At the end of the travel of the tube, pressure needs to be exerted to overcome the resistance of the cooler contacts and the spring locating on the base ring before the tube meets the stop at the base end. A slight clockwise twist will help with this insertion. The black spot on the base of the tube should be aligned with the black mark on the seating; this is necessary for best matching but the adjustment is not critical, misalignment up to 20° is permissible.
4. Secure tube in the mount by rotating the two-position retaining catch to turn over the projection of the tube base ring (Note 13).
5. Connect colour-coded leads of the tube to appropriate terminals in the mount ensuring that the green and blue leads are not transposed.
6. Ensure that the mount is properly earthed. The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. In some mounts a black lead is included in the cableform carrying the terminal supply leads; one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.
7. Replace lid, making sure that the interlock two-pin plug is correctly fitted in its socket.
8. Apply heater voltage and allow one minute heating time.
9. Pre-set grid 1 voltage to the value specified on the data sheet supplied with each tube.
10. Satisfactory periodic focusing cannot be obtained with either low helix voltage or low cathode current. Accordingly it is necessary to make the following adjustments before switching on to ensure that the helix current will not exceed a safe value:
(a) Switch off any r.f. drive.
(b) Pre-set grid 2 voltage (cathode current control) to give about 1.3 kV when switched on; this corresponds to a cathode current of about 65 mA . At lower voltages the helix current may be excessive.
11. After the one minute cathode pre-heat, switch on collector at 1.8 kV . (See operation 12.) The collector is connected to the mount internally so that an earth must be provided.
12. Switch on simultaneously the helix voltage at 2.6 kV and the grid 2 voltage to the pre-set value. Operations 11 and 12 may be combined providing the collector supply rise time is not shorter than that of the helix supply.
13. Adjust alignment and deflection control knobs to give minimum helix current and repeat these adjustments as grid 2 voltage is increased until the appropriate collector current is achieved.
14. Ensure that all of the eight r.f. matching adjusters are retracted.
15. Apply an r.f. input of approximately -15 dbm and adjust the input and output r.f. matching for maximum output. The helix voltage also should be adjusted for maximum output if operation is required under synchronous conditions. Increase the r.f. input to obtain the required output level; it may be necessary to make slight readjustments to the control knobs to obtain minimum helix current and to the grid 2 voltage to maintain the appropriate collector current.
Note 13.-Once the tube is in its operating position in the mount and is secured by the two-position retaining catch, any undue pressure on the tube ejector lever will cause damage to the tube. Accordingly, care must be taken to ensure that the ejector lever is not knocked inadvertently, or, that when the tube is to be removed, no pressure is exerted on the lever until the two-position retaining catch has been turned to clear the tube base ring.

TUBE REMOVAL PROCEDURE

1. Switch off all h.t. voltages simultaneously.
2. Switch off heater voltage.
3. Remove mount lid.
4. Disconnect tube leads from terminals in mount.
5. Move adjusting knobs to mid-travel positions.
6. Rotate the two-position retaining catch to clear the tube base ring.
7. Support the base end of the tube and gradually apply pressure to the tube ejector lever to ease the tube from the mount.

Fig. 1.-Typical Power Output and Synchronous Helix Voltage versus Frequency (3.6 to 5.0 GHz)

STC

CONTINUED

Fig. 2.-Typical Power Output versus Power Input at 3.7 GHz (W7/5GA, W7/5GC)

Fig. 3.-Typical Power Output versus Power Input at $\mathbf{4 \cdot 2 G H z}$ (W7/5GA)

(M) 1 ח $\mathrm{d} \perp$ ค

W7/5GA
 Codes: W7/5GB W7/5GC

STC

CONTINUED

Fig. 4.-Typical Power Output versus Power Input at 4.4 GHz (W7/5GB, W7/5GC)

(M) 1กd 1 חO yヨMOd

Fig. 5.-Typical Power Output versus Power Input at 5 GHz (W7/5GB, W7/5GC)

W7/5GA
 Codes: W7/5GB
 W7/5GC

CONTINUED

Fig. 6.-Typical Gain at Synchronous (Low-level) Helix Voltage versus Frequency
(3.6 to 5 GHz)

Fig. 7.-Typical Cathode Current Control Circuit for W7/5GA

Fig. 8.-W7/5GA, W7/5GB and W7/5GC Outline

NOTE:- BASIC FIGURES ARE INCHES

DIM	MILLIMETRES	HCHES
A	376, 2 MAX.	$14^{13 / 16 ~ M A X}$.
B	36, 20£O;18	1.425 ± 0.007
C	73,0 MAX.	$27 / 8$ MAX.
D	9,27 MAX.	O.365 MAX.
E	$73,0 \pm 3 \cdot 2$	$27 / 8 \pm 1 / 8$

LEAD*	COLOUR	ELECTRODE
1	BLUE	GRID 2
2	GREEN	GRID 1
3	YELLOW	HEATER CATHODE
4	BROWN	HEATER
CONTACT		
5		HELIX
6		COLLECTOR

Fig. 9.-WM110A Dimensioned Outline

Code: WM110A

CONTINUED

Fig. 10.-Diagram showing Operational Controls of WM110A

VIEW OF END 'A' WITH COVER REMOVED

$$
\left.\begin{array}{l}
\text { W7/5GA } \\
\text { W7/5GB } \\
\text { W7/5GC }
\end{array}\right\}-20
$$

T.W.T. MOUNT

Code: WM110A

Fig. 11.-Outline of Waveguide Flange 12A.

DIM.	INCHES	MILLIMETRES
A	3.625 ± 0.005	$92,08 \pm 0,13$
B	1.531 ± 0.001	$38,89 \pm 0,03$
C	2.312 ± 0.005	$58,72 \pm 0,13$
D	0.859 ± 0.001	$21,82 \pm 0,03$
E	0.795 ± 0.001	$20,19 \pm 0,03$
F	2.128 ± 0.001	$54,05 \pm 0,03$
G	0.328 ± 0.005	$8,33 \pm 0,13$
H	0.281 ± 0.005	$7,14 \pm 0,13$
J	0.196 ± 0.001	$4,98 \pm 0,03$

BASIC DIMS. ARE INCHES
T.W.T. MOUNT

Code: WM110B

Fig. 12.-WM110B Dimensioned Outline

Code: WM110B

Fig. 13.-Diagram showing Operational Controls of WM110B

VIEW OF END 'A' WITH COVER REMOVED

Fig. 14.-WM110C Dimensioned Outline

CONTINUED

Fig. 15.-Diagram Showing Operational Controls of WM110C

VIEW OF END 'A' WITH COVER REMOVED

Fig. 16.-WM110CA Dimensioned Outline

[^2]Code: WM110CA

CONTINUED

Fig. 17.-Diagram showing Operational Controls of WM110CA

VIEW OF END 'A' WITH COVER REMOVED

Fig. 18.-WM110CB Dimensioned Outline

DIM. \times (WITHDRAWAL DISTANCE OF TUBE WITH LITERAL. MOVEMENT OF BASE) $121 / 2$ " MIN. DIM. Y (WITHDRAWAL DISTANCE OF TUBE WITHOUT LATERAL MOVEMENT OF BASE) $15^{\text {" } M I N \text {. }}$

* DENOTES: $4-1 /{ }^{4}$ U UNC TAPPED HOLES BOTH SIDES

LEAD	ELECTRODE
BLUE	GRID 2
YELLOW	HEATER CATHODE
GREEN	GRID 1
BROWN	HEATER
ORANGE	HELIX
COLLECTOR EARTHED	

T.W.T. MOUNT

Code: WM110CB

CONTINUED

Fig. 19.-Diagram showing Operational Controls of WM110CB

VIEW OF END 'A' WITH COVER REMOVED

- MEDIUM POWER TRAVELLING-WAVE AMPLIFIER TUBES
 CODES: W7/GGA; W7/6GC; W7/6GZ

These tubes are intended for use in microwave radio links in the frequency range 3.6 to $5 \cdot 0 \mathrm{GHz}$. The tubes operate in four types of periodic permanent magnet focus mounts, in which they will give the performances quoted in these data sheets. The codes of the mounts and their associated tubes are as follows:-
WM111A (W7/6GA): WM111CA (W7/6GC): WM111CB (W7/6GC): WM1112 (W7/6GZ)
Each type of mount differs from the others in respect of certain electrical and mechanical features, described later, which afford a choice of frequency range, mounting position and waveguide size. All mounts are designed to permit easy replacement of tubes under field conditions.
RADIO FREQUENCY PERFORMANCE (Note 1)

Operating frequency range
W7/6GZ
in
WM111Z

W7/6GA
in
WM111A
W7/6GC
W7/6GC in
in
WM1112
3.7 to 4.2

WM111CB
WM lit1CA
3.6 to 4.2
3.7 to 4.2
4.4 to $5 \cdot 0$

GHz
Saturated power output, typical across band
Gain at 20W output, across band

37 to 41
37 to 41
30 to 31
26 to 30
minimum
maximum
$10 \quad 30$

Goin at 10W output, across
band
minimum
Low-level-synch. saturated power output, minimum at 3.6 GHz
at 3.7 GHz
$45 \quad 14$
at $4 \cdot 2 \mathrm{GHz}$
at 4.4 GHz
at 5.0 GHz
Noise factor at working output, maximum
Reverse attenuation at working output, minimum
AM/PM conversion at working output, maximum
dib
(d)

9

		38	38	$d b$
		43	43	$d b$
24	24	16		W
24	24	16	16	W
24			W	
28	28	28	$d b$	
28	65	65	65	$d b$
65	2.5	2.5	2.5	$0 / \mathrm{db}$

43 db

Noise in any 4 kHz band from 0.5 MHz to 10 MHz from the carrier does not exceed that value equivalent to 30 db noise figure after 10 hours operation.

Matching

A VSWR of less than $1 \cdot 2: 1$ maximum over any 20 MHz band is obtainabie a! both input and output by means of stub tuners in each waveguide, tube voltages being applied. For W7/6GA in WM111A mount only, an r.f. input match of 1.5:1 maximum and an r.f. output match of $2: 1$ maximum is obtained over a 30 MHz band with the tube and mount optimised for a working power output of 20 W .
Note 1. For typical power output, gain, and helix voltage versus frequency graphs see Figures 1, 2 and 3: for typical power output versus power input graphs see Figures 4 and 5: for typical AM/PM conversion versus output power graph sce Figure 6.

May 1969	WT/6GA
W7/GGC	
W7/6GZ	

ITT Components Group Europe

Standard Telephones and Cables Limited Electron Device Product Group
Electron Tube Division, Brixham Road
Paignton, Devon. TQ4 7BE

TYPICAL OPERATING CONDITIONS (Note 2)

Frequency
Direct helix to cathode voltage (Note 3)
Direct grid 2 to cathode voltage (Note 4) W7/6GA, W7/6GZ W7/6GC
Direct collector (earth) to cathode voltage Direct grid 1 voltage (Note 5)
Direct helix current at working output
Direct grid 2 current
Direct cathode current
W7/6GA, W7/6GZ W7/6GC
Director collector current W7/6GA, W7/6GZ W7/6GC
Low level synch, gain at 20W output, approx. (Note 6)
W7/6GA
W7/6GZ
Low level synch. gain at 10 W output, approx. (Note 6) W7/6GC.
Saturated output at low level synch. helix voltage, approx. (Note 6)
W7/6GA, W7/6GZ
W7/6GC
Noise factor (Note 7)
Phase sensitivity (Note 7) $\mathrm{d} \Phi / \mathrm{d} V_{\text {he }} 1$ $d \Phi / d V_{g 2}$
Change in gain (Note 7)
for $\pm 1 \%$ change in helix voltage for $\pm 2 \%$ change in helix voltage for $\pm 2 \%$ change in grid 2 voltage

$2720^{3.7}$	$2680^{4 \cdot 2}$	$2640^{4 \cdot 7}$	GHz V
1520	1520		\checkmark
1340	1340	1340	V
1900	1900	1900	\checkmark
-15	-15	-15	V
0.5	0.5	0.5	mA
+2	+2	+2	$\mu \mathrm{A}$
80.5	$80 \cdot 5$		mA
65.5	65.5	65.5	mA
80	80		mA
65	65	65	mA
42	43		db
42.5	43.5		db
40	41.5	41	db
26	25		w
20	19.5	19	W
27	27	27	db
-1.3	-1.3	-1.3	o/v
+0.3	+0.3	+0.3	olv
1.0	1.0	1.0	db
2.5	2.5	$2 \cdot 5$	db
0.02	0.02	0.02	db

Note 2. Electrode voltages are referred to cathode potential. The collector is earthed.
Note 3. Adjusted to low level synchronous voltage.
Note 4. Adjusted to give required collector current.
Note 5. Preset value for switch-on. Adjusted for minimum helix current at required power levei.
1Note 6. As will be seen in Figures 4 and 5, an increase in output may be achieved by setting the helix voltage above the low level synchronous value with a resulting drop in low level gain.
For operation at outputs above the low level synchronous saturated values specified, an increase in collector volts to reduce helix current is recommended.
The matching adjusters must be optimised for each tube at the required operating frequency and power level.
Note 7. Measured at wórking power output and low level synchronous voltage.

CATHODE

Indirectly heated oxide-coated type

HEATER

Note 8. The heater is usually supplied by a d.c. voltage or an r.m.s. equivalent at a frequency of 45 Hz to 65 Hz . Other frequencies of supply may be used but it is recommended that the manufacturer be consulted beforehand. If the heater is operated with d.c. it is preferable to make the free heater lead negative with respect to the cathode.

LIMIT RATINGS

Voltages
Direct helix to cathode (Note 9)
Direct grid 2 to cathode
Direct collector (earth) to cathode (Note 9)
Direct grid 2 to helix
Direct grid 2 to collector
Direct grid 1 to cathode

Min. Max.
$2.4 \quad 3.5 \mathrm{kV}$
3.0 kV
3.0 kV
4.0 kV
4.0 kV
0.5 kV

Note 9. Minimum ratings are specified for continuous operation to avoid excessive helix current. Refer to Operational Data Section.

| Currents
 Cathode
 Helix | Absolute maximum to trip supplies with
 delay of less than 5 seconds | 100 | mA |
| :--- | :--- | :---: | :---: | :---: |
| | Switching transient | 4.5 | mA |
| | 50 mA for not longer than 10 ms | | |
| | 20 mA for not longer than 150 ms | | |
| | 10 mA for not longer than 1 sec. | | |

Direct grid 2
Power Dissipations
Grid 2
7.5 W

Helix
12 W

Collector (Note 10) W
Note 10. Higher values of collector dissipation are permissible if the normal convection cooling is supplemented by forced-air-cooling. As a general guide, an air flow of about $25 \mathrm{ft}^{3} / \mathrm{min}$. ($7081 / \mathrm{min}$.) is required for a collector dissipation of 175 W up to an altitude of 10000 ft (3048 m). (See page 6 COOLING).

D.C. SUPPL.Y VOLTAGES

The collector is connected to the body of the mount via the cooler. It is intended that the mount shall be operated at earth potential. Voltages must be applied in the correct sequence, as given in the "Setting-up Procedure" section of these data sheets.
Helix Voltage
Adjustable for required working conditions, range 2.4 to 3.2 kV
The synchronous helix voltage for individual tubes lies within the range
2.45 to 2.75 kV

- Ripple and regulation tolerance depend upon acceptable phàse and output amplitude variation. See Typical Operating Conditions.
Supply impedance, including resistance in mount, maximum (Note 11) $20 \mathrm{k} \Omega$
Note 11. This is required to avoid excessive voltaye drop at switch-on.
Collector Voltage
Set between working limits of
1.7 and 2.75 kV

For operation with depressed collector at 65 mA or 80 mA it is recommended that a nominal voltage of 1.9 kV be used. (See Note 6)

Grid 2 Voltage
Adjustable for required working conditions, range
1.1 to 2.0 kV

When adjusted to give stated collector current
$65 \mathrm{~mA} \quad 80 \mathrm{~mA}$
1.1 to $1.5 \quad 1.3$ to 1.7 kV
1.8
2.0 kV
-0.5 to -50 V

TUBE MECHANICAL DATA
Envelope
Glass and metal
Dimensions
Connection detail \quad As shown in Figure 9
Connection detail

TUBE LIFE

Shelf life
Operational life \quad Subject to guarantee
Life-end points
(a) Grid 2 voltage greater than 1.8 kV for 65 mA collector current, or 2.0 kV for 80 mA , or
(b) Helix current greater than 4.5 mA for 65 or 80 mA collector current, or
(c) Gain or power deteriorated by more than 2db from initial figures.

Tube storage temperature range (Note 12) Min. $-60 \quad$ Max. $+80{ }^{\circ} \mathrm{C}$
Note 12. See page 8 for operating conditions.

GENERAL DESCRIPTION

These approved mounts, in which W7/6G series tubes operate, incorporate a periodic permanent magnet focusing system, r.f. coupling and matching elements, mechanical tube focusing adjustments and a convection cooler.
They differ from one another in respect of various physical characteristics and r.f. performance: these differences are detailed in the MECHANICAL DATA, ELECTRICAL DATA and R.F. PERFORMANCE Sections, and in the relevant drawings given later in these data sheets.
A sheathed cable attached to the mount carries the electrode supplies, the collector connection being made to the body of the mount which must be at earth potential. The leads of this cable are effectively choked for microwave frequencies. Resistors are incorporated in the grid 2 and helix leads to limit surges on the WM111CA, WM111CB and WM1112 mounts.
A lid (detachable or hinged depending on mount type) provides access to the tube connections. It has attached to it a link which, when the lid is in place, is connected to a twinlead interlock cable attached to the mount. This cable may be wired into supervisory circuits to ensure that no voltage can be applied when the lid is off and the terminals inside the mount are exposed. The lid also provides microwave screening.
Optimum adjustment of focusing to allow for variations from tube to tube and in mount manufacture is achieved by the use of three pairs of mechanical positioning screws: two pairs align the tube and the other pair move a magnetic deflector plate. (See Figures 10, 12 14 and 16).
Fine adjustments to the matching are made by moveable stub tuners in the waveguides. (See Figures 10, 12, 14 and 16).
WM111A, WM111CA, WM111CB. The operation of closing the hinged lid automatically locates the tube in the mount longitudinally. Mating rings at the base end of the tube and mount and the collector cooler provide lateral location.
WM111Z. The tube is held firmly in the mount at the collector end by the cooler assembly and at the base end by a ring in the mount to which is attached a two-position retaining catch: the latter is turned over a projection of the tube base ring to lock the tube in position. (The position of the retaining catch is shown in Figures 10 and 12).
Each mount has a tube ejector mechanism, incorporated in the cooler assembly, which is operated by an external control at the collector end in the WM1112 (See Figures 10 and 12), and at the base end in the WM111A, WM111CA and WM111CB (See Figures 14 and 16). A two-position control on the WM111Z prevents inadvertent operation and possible damage to the tube.
The design of the mounts is such that tube alignment is unaffected by normal handling, and tubes can be easily replaced under field conditions.

R.F. LEAKAGE

Input waveguide level to free space

>65	db
>65	db

Output waveguide level to free space at 20W output power
db

MECHANICAL DATA (Mounts)
Dimeñsions As shown in Figures 9, 11, 13 and 15.
Mounting position That which allows correct operation of the collector cooler, see
Fixing of mounts Attach mounts to equipment with $1 / 4$ inch UNC non-magnetic screws fitting into $1 / 2$ inch deep tapped holes provided in mount bodies. (See Figures 9, 11, 13 and 15).
R.F. matching Four moveable stub tuners in each waveguide. (See Figures 10, 12, 14 and 16).
Waveguide connections input and output
WM111CB

WM111CA

WM111Z

WM111A Flanges as shown in Figures 17 and 18 for connection to wave-
Flanges as shown in Figure 19 for connection to waveguide WG11A (WR229). guide WG 12 (WR 187). Tin plated shims and screws, which are available if required, should be used for connection to brass waveguide flanges.
Flanges as shown in Figure 20 for connection to waveguide WG12A.

COOLING

The collector cooler is an integral part of the mount. Cooling takes place by convection and it is important that the mount is operated in the position intended. The WM111Z is designed for vertical mounting and the cooler is provided with a vertical duct. WM111A, WM111CA and WM111CB are for horizontal operation and the cooling fins must be vertical.
The air flow through the cooler requires a free space of 2 inches $(5 \mathrm{~cm})$ around the cooler slots with access to a free supply of air at ambient temperature; this is to ensure that the convection cooling is efficient. The cooler temperature under normal conditions of operation is about $135^{\circ} \mathrm{C}$ above ambient.
At altitudes up to 15000 ft , and within the maximum ambient temperatures specified in the next paragraph, free convection is adequate for dissipations up to the specified limit rating. Where it is required to exceed either the ambient temperature or the collector dissipation limits, forced-air-cooling is necessary and the manufacturer should be consulted to obtain the flow applicable to individual requirements. See also Note 10.

ENVIRONMENTAL CONDITIONS

Operating ambient temperature range and altitude for full specification performance.
$-10^{\circ} \mathrm{C}$ min. to $+65^{\circ} \mathrm{C}$ max. up to $5000 \mathrm{ft}(1524 \mathrm{~m})$
$+60^{\circ} \mathrm{C}$ max. up to $10000 \mathrm{ft}(3048 \mathrm{~m})$ $+.55^{\circ} \mathrm{C}$ max. up to $15000 \mathrm{ft}(4552 \mathrm{~m})$
Between $-10^{\circ} \mathrm{C}$ and $-30^{\circ} \mathrm{C}$ there will be satisfactory switch-on but some degradation of performance may occur.
Storage ambient temperature range and altitude
$-30^{\circ} \mathrm{C}$ min. to $+75^{\circ} \mathrm{C}$ max. up to $45000 \mathrm{ft}(13176 \mathrm{~m}$)

PROXIMITY OF MAGNETIC MATERIALS

Soft magnetic materials should be kept at least 1 inch ($2,5 \mathrm{~cm}$) away from the exterior of the mounts.

Permanent magnets in the vicinity of the mount must be positioned so that the helix current at fully saturated output does not increase by more than 0.1 mA . Assistance with focusing tests in the presence of permanent magnets and guidance concerning their position is always available from the manufacturer.

ELECTRICAL DATA

Ratings
Heater and heater-cathode I
Helix) to body of mount, maximum voltage 4.5 kV
Grid 2
)
Maximum voltage, supervisory cable and interlock to body of mount 500 V
Maximum current, supervisory cable and interlock to body of mount WM111CA, WM111CB, WM1112 WM111A

Lead Resistance (including limiting resistors)
Grid 2
WM111CA, WM111CB, WM1112 WM111A
Helix WM111CA, WM111CB, WM111Z $1 \mathrm{k} \Omega$ WM111A 0.055Ω
Heater (Note 14)
Note 14. Measured at 2A.

OPERATIONAL DATA FOR TUBE IN MOUNT

Efficient operation of a travelling-wave tube in a periodic permanent magnet mount depends upon certain prime requirements being met during conditions of switch-on and continuous working. These requirements are such that satisfactory periodic focusing cannot be achieved with either low helix voltage or low cathode current.
The maximum helix current is likely to occur when the helix voltage is between 1200 and 2000 volts, the actual value of current being dependent upon the setting of the grid 2 voltage relative to the helix voltage.
When switching on, it is essential that the helix current does not exceed the transient values given in the tube limit ratings.
A suitable cathode current control circuit is shown in Figure 7. The grid 2 voltage is supplied from a potentiometer connected across the helix supply, the grid 2 voltage always being proportional to, but less than, the helix voltage. The recommended setting for switchon, is 1300 volts on grid 2 with respect to cathode and the helix supply at 2600 volts, when the maximum transient value of helix current during the rise of helix voltage may be of the order of 30 mA .
The peak current drawn from the helix supply may be minimised by delaying the rise of grid 2 voltage, for example by means of capacitor C_{1} in Figure 7. The value of capacitance is dependent upon the rise time of the helix voltage but should be arranged to keep the grid 2 voltage below 250 volts until the helix voltage has risen to over 2000 volts.

SETTING-UP PROCEDURE

The following procedure is recommended for setting-up the tube in its mount for operation:

1. Ensure that the mechanical tube focusing control knobs on the mount are set to the middle of their travel. Ensure that the two-position retaining catch is in a position to allow the tube to be inserted (WM1112 only).
2. Ensure that the mount is properly earthed (Note 16).
3. WM111Z only.
(a) Insert tube in mount (Note 17). At the end of the travel of the tube pressure needs to be applied to overcome the resistance of the spring-loaded cooler fins and the spring located on the mount ring before the tube meets the stop at the base end. The yellow index line on the base of the tube should be aligned with the black mark on the seating: this is necessary for best matching, but the adjustment is not critical, misalignment up to 20° being permissible.
(b) Holding the tube in the fully home position against the pressure of the spring cooler fins, secure the tube in the mount by rotating the two-position retaining catch to turn over the projection of the tube base ring (Note 18).
(c) Connect colour-coded electrode leads of the tube to appropriate terminals in the mount.
(d) Replace lid. Ensure that the interlock two-pin plug is fitted correctly in its socket.
4. WM111A, WM111CA, WM111CB
(a) Unscrew the two captive locking screws in the hinged lid, disengage the spring catch and open the lid. Insert tube (See Note 17) far enough for the colour-coded electrode leads to be easily connected. No damage is caused by pushing the tube fully home; it simply tends to be partially ejected by the cooler on releasing the base.
The yellow line on the tube base cap should be aligned with the black index mark on the seating ring; this is necessary for best matching but the adjustment is not critical, misalignment up to 20° is permissible.
(b) Close lid, engage the spring catch and fully tighten both locking screws in the lid. This operation automatically moves the tube to its correct longitudinal position relative to the mount, completes the interlock circuit and prevents operation of the tube ejector mechanism.
5. Apply heater voltage and allow one minute heating time.
6. Preset grid 1 voltage to -15 volts.
7. Make the following adjustments before switching on to ensure that the helix current will not exceed a safe value:
(a) Switch off any r.f. drive.
(b) Pre-set grid 2 voltage (cathode current control) to give about 1.3 kV when switched on; this corresponds to a cathode current of about 65 mA . At lower voltages the helix current may be excessive.
8. After the one minute cathode pre-heat, switch on collector voltage at 1.9 kV .
9. Switch on simultaneously the helix voltage at 2.6 kV and the grid 2 voltage to the preset value. See Note 15.
10. Adjust focusing control knobs to give minimum helix current and repeat these adjustments as grid 2 voltage is increased until the required collector current is achieved.
11. Apply an r.f. input of approximately -15 dbm and adjust the input and output r.f. matching for maximum output. The helix voltage also should be adjusted for maximum output if operation is required under low level synchronous conditions. Increase the r.f. input to obtain the required output level; readjust focusing control knobs to minimise helix current, grid 2 voltage to maintain appropriate collector current and matching adjusters.
Note 15. Provided that the rise time of the collector voltage is not greater than that of the helix and grid 2 voltages, all three supplies may be switched on together.
Note 16. The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. A black lead is included in the cableform carrying the terminal supply leads: one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.
Note 17. The insertion of the tube requires a free space between the lid of the mount and extraneous equipment. The space required is specified for individual mounts in Figures 9, 11, 13 and 15.
Note 18. Once the tube has been secured by the retaining catch, it is important to ensure that the tube ejection mechanism is not operated inadvertently: failure . to observe this precaution will result in the tube being damaged. To minimise this risk the mechanism is designed so that the tube ejector knob (See Figures 15 and 16) must be pulled outward before the lever can be moved.

TUBE REMOVAL PROCEDURE

1. Switch off all h.t. voltages simultaneously.
2. Switch off heater voltage.
3. Move adjusting knobs to mid travel position.
4. WM1112 only
(a) Remove mount lid.
(b) Disconnect tube leads from terminals.
(c) Rotate the two-position retaining catch to clear the tube base ring and thus allow the spring loaded cooling fins to push the tube outwards.
(d) Lift and pull the tube ejuctor luver to frue the colluctor from the cooling fins and withdraw the tube.
5. WM111A, WM111CA, WM111CB
(a) Unscrew the two captive locking screws in the hinged lid, disengage the spring catch and lift lid and thus allow the spring-loaded cooling fins to push the tube outwards.
(b) Disconnect the tube leads from their terminals.
(c) Pull the tube ejector lever to free the collector from the cooling fins and withdraw the tube.

Fig. 1. Typical Power Output versus Frequency

Fig. 2. Typical Low-level-synchronous Gain versus Frequency

Fig. 3. Typical Low-level-synchronous Helix Voltage versus Frequency

Fig. 4. W7/6GA Typical Power Outpist versus Power Input at 3.7 GHz

Fig. 5. W7/6GA Typical Power Output versus Power Input at 4.2GHz

Fig. 6. Typical AM/PM Conversion versus Output Power at 3.9 GHz

Fig. 7. Typical Cathode Current Control Circuit for W7/6F Series Tubes

Fig. 8. W7/GGA, W7/6GC, W7/6GZ Outline

Dim.	Millimetres	Inches		
A	376,2	max.	$14 \frac{13}{16}$	max.
B	$36,20 \pm$	0,18	1.425	\pm
C	73,0	max.	$2 \frac{7}{8}$	
D	9,27	max.	0.365	max.
E	46.0	nom.	$1 \frac{13}{16}$	nam.

Flexible leads

Luad	Colour	Eluctrodu
1	GREEN	GRID 1
2	BLUE	GRID 2
3	BROWN	HEATER
4	YELLOW	HEATER CATHODE
Contact		
5	-	HELIX
6		COLLECTOR

Millimetre dimensions are derived from the original inch dimensions.

Fig. 9. WM111A Mount Outline
OIM. X (WITHDRAWAL DISTANCE OF TUBE WITH LATERAL MOVEMENT OF BASE) I2In. MIN.
DIM. Y (WITHDRAWAL DISTANCE OF TUBE WITHOUT LATERAL MOVEMENT OF BASE) 15 in . MIN.

* DENOTES:
4 sin . UNC TAPPED HOLES BOTH SIDES
幸 DENOTES:
PROTECTIVE COVERS FITTED OVER MATOHING ADJUSTERS

Cim.	Inches		Millimetres	
A	$16 \frac{7}{16}$	max.	417.5	max.
13	$8 \frac{15}{16}$	max.	227.0	mox.
C	$4 \frac{1}{8}$	$\pm \frac{1}{16}$	104,3 \pm	1.6
D	7.750	nom.	196,85	nom.
E	2\%	$\pm \quad \frac{1}{64}$	$57.2 \pm$	0,4
F	4	$\pm \quad \frac{1}{64}$	101,6 \pm	0,4
G	$4 \frac{3}{1}$	max.	111.1	max.
H	$4 \frac{1}{16}$	$\pm \quad \frac{1}{8}$	103,2 \pm	3,2
J	$2 \frac{5}{8}$	$\pm \frac{1}{16}$	$65.7 \pm$	1,6
K	$1 \frac{17}{32}$	$\pm \quad \frac{1}{13}$	$38.9 \pm$	0.8
L	6	$\pm \quad \frac{1}{32}$	$152.4 \pm$	0,8
M	3\%	$\pm \quad \frac{1}{8}$	95,3 \pm	3,2
N	11/2	$\pm \frac{1}{16}$	$31,8 \pm$	1,6
p	$3 \frac{9}{32}$	$\pm \quad \frac{1}{16}$	$83.3 \pm$	1,6
A	11/4	max.	31.8	max.
S	4\%	nom.	114.3	nom.
T	$2 \frac{5}{8}$	approx	66.7	approx
U	$4 \frac{3}{15}$	$\pm \quad \frac{1}{16}$	$111.1 \pm$	1,6
V	$2 \frac{1}{16}$	$\pm \quad \frac{1}{32}$	$52.4 \pm$	0,8
W	1	max.	25.4	max.

Metric dims. are dzrived from original inch dims.

Fig. 10. Diagram Showing Operational Controls of WM111A

Fig. 11. WM111CA Mount Outline

DIM. X (WITHDRAWAL DISTANCE OF TUBE
WITH LATERAL. MOVEMENT OF BASE) $12 / \mathrm{min}$. MIN.
DIM. Y (WITHDRAWAL DISTANCE
WITHOUT LATERAL MOVEMENT OF BASE)
15 in . MIN.

* DENOTES:
$\overline{4} \cdot 1 \operatorname{In}$. UNC TAPPED HOLES BOTH SIDES*

Lead	Electrode
BLUE	GRID 2
YELLOW	HEATER CATHODE
GREEN	GRID 1
BROWN	HEATER
ORANGE	HELIX
BLACK	COLLECTOR \& GROUND

Dim.	Inches		Millimetres	
A	$16 \frac{7}{16}$	max.	417.5	max.
B	$8 \frac{15}{16}$	max	227.0	max.
C	$4 \frac{1}{8}$	$\pm \frac{1}{16}$	$104.8 \pm$	1,6
D	7.750	nom.	196,85	nom.
E	2\%	$\pm \frac{1}{64}$	$57.2 \pm$	0.4
F	4	$\pm \frac{1}{64}$	101,6 \pm	0.4
G	$4 \frac{3}{8}$	max.	111.1	max.
H	$4 \frac{1}{16}$	$\pm \frac{1}{8}$	103,2 \pm	3,2
J	$2 \frac{5}{4}$	$\pm \frac{1}{16}$	$66.7 \pm$	1.6
K	$1 \frac{17}{32}$	$\pm \frac{1}{32}$	$38.9 \pm$	0.8
L	6	$\pm \frac{1}{32}$	$152,4 \pm$	0.8
M	3\%	$\pm \quad \frac{1}{8}$	$95.3 \pm$	3.2
N	1\%	$\pm \frac{1}{16}$	$31,8 \pm$	1.6
P	$3 \frac{0}{32}$	$\pm \frac{1}{16}$	$83,3 \pm$	1,6
R	1\%	max.	31.8	max.
5	4/2	nom.	114.3	nom.
T	$2 \frac{5}{8}$	approx.	66.7	approx.
\cup	$4 \frac{7}{16}$	$\pm \frac{1}{16}$	112,7 \pm	1.6
v	$2 \frac{1}{16}$	$\pm \frac{1}{32}$	$52,4 \pm$	0.8
W	1	max.	25.4	max.

Metric dims. are derived from original inch dims.

Fig. 12. Diagram Showing Operational Controls of WM111CA

Fig. 13. WM111CB Mount Outline

DIM. \times (WITHDPAWAL DISTANCE OF TUBE
WITH LATERAL MOVEMENT OF BASE)
$12^{\prime}-\mathrm{m}$. MIN.
DIM. Y (WITHDRAWAL DISTANCE OF TUBE WITHOUT LATERAL MOVEMENT OF BASE) 15in MIN.

* DENOTES
$4 \cdot \sin$. UNC TAPPED HOLES BOTH SIDES

Lead	Elcctrode
BLUE	GRID 2
YELLOW	HEATER CATHODE
GREEN	GRID 1
BROWN	HEATER
ORANGE	HELIX
BLACK	COLLECTOR \& GROUND

. 010	Inches		Millimetres	
A	$16 \frac{7}{16}$	max.	417.5	max.
${ }^{3}$	$8 \frac{15}{16}$	max.	227.0	max.
c	$4 \frac{1}{4}$	$\pm \frac{1}{16}$	$104.8 \pm$	1.6
D	7.750	nom.	196.85	nom.
E	2%	$\pm \quad \frac{1}{64}$	$57,2 \pm$	0,4
F	4	$\pm \frac{1}{64}$	101.6 \pm	0,4
G	$4 \frac{3}{8}$	max	111.1	max.
H	$3 \frac{15}{16}$	$\pm \frac{1}{8}$	$100,0 \pm$	3.2
\checkmark	$2 \frac{5}{8}$	$\pm \frac{1}{16}$	$66.7 \pm$	1.6
K	$1 \frac{13}{32}$	$\pm \frac{1}{32}$	35,7 \pm	0.8
L.	6	$\pm \frac{1}{12}$	$152.4 \pm$	0.8
M	3%	$\pm \frac{1}{8}$	$95.3 \pm$	3.2
H	1\%	$\pm \frac{1}{16}$	$31.8 \pm$	1.6
p	$3 \frac{9}{12}$	$\pm \frac{1}{16}$	$83.3 \pm$	1.6
म	1^{1}	max.	31.8	max.
S	4\%	nom.	114.3	nom.
T	$2 \frac{5}{8}$	approx.	66.7	approx
U	$4 \frac{9}{16}$	$\cdots \frac{1}{16}$	$115.9 \pm$	1.6
\checkmark	$2 \frac{1}{16}$	$\pm \frac{1}{32}$	$52.4 \pm$	0,8
w	1	max	25.4	max.

Mettic dims. are iterivad from original inch dims.

Fig. 14. Diagram Showing Operational Controls of WIM111CB

Fig. 15. WM1112. Mount Outline

Nett Weight apo.	24 lbs	2	$3 / 2$	\pm	$\frac{1}{18}$	88,9	$\pm 1,6$
	$10,9 \mathrm{kgs}$	$A A$	1	\pm	$\frac{1}{32}$	25,4	$\pm 0,8$

Metric dims. are cierived Ircm original inch dims.

Fig. 16. Diagram Showing Operational Controls of WM111Z

TUBE ALIGNMENT INDE X LINE ON RING \& TERMINAL BLOCK COVER

VIEW OF END 'A' WITH COVER REMOVED

CODES: WM111A; WM111CA

FIG. 17 OUTLINE OF FLANGE WGI2 FOR WM11IA

Blin.	Malimetice	Inches
A	63.88 Tr	2.750 TP
B	50.80 TF	2.000 TP
c	63,50 $+0,40$	25
0	22,15 $\quad 0.10$	0.872 10004
ז	47.55×0.18	1.872 1 0007
F	$82.55 \geq 0.40$	3\% 12 立
6	$5.84 \quad 20.76$	0.230 ± 0030
H	4.70	$0.193: \quad 0031$ 18001
J	47.85 tP	1 687 TP
k	20.98 \#P	1062 TP.
L	$3.18 \quad 10.40$	$\frac{1}{1}+\frac{1}{k \pi}$
M	$\begin{aligned} & 0.71 \\ & 0.01 \mathrm{Mase} \quad \times 45 \mathrm{O} \end{aligned}$	$\begin{array}{ll} 0.015 & \text { Min. } \\ 0072 \mathrm{Max}_{0} & \times 450 \end{array}$

ANGL: OF IACT \vee TO \& OF WAVEGUDE APIRIURE $90^{\circ}{ }^{\prime \prime}$.

FIG. 18 OUTLINE OF FLANGE WC12 FOR WM11ICA

ANCLF OF FACE V TO \& OF WAVE GUDE APERTURE $90^{\circ} \%$

Dim.	Milliontice			Incher
A	61,72 TP		2.430 TP	
B	36.32 TP		1430 TP	
c	45,74 +0.17		$1 \frac{75}{17} \pm \frac{1}{61}$	
D	27,15 $\quad 0.80$		$0-812 \pm 0004$	
\pm	47.55 + 018		1.872 ± 0007	
F	70.64	- 040		
6	5.3n $\quad 0.75$		0230 t 0 0า9	
1	3,73 10.157		(0147: $\begin{aligned} & 0003 \\ & 0 \\ & 0 \\ & 0\end{aligned}$	
J	41.15 Tr		1.670 TP	
$*$	29.57 TP		0810 TP	
1	$3,18 \quad 18,40$		$1 \pm \frac{1}{\text { हो }}$	
M	$\begin{aligned} & 0.38 \\ & 0, n 1 \text { man } \times 440 \end{aligned}$		$\begin{aligned} & 0016 \min _{0} \\ & 0033 \operatorname{man} \times 150 \end{aligned}$	
\wedge			, 19317	
p	6,77 19		0.747 TP	
The mibimeve durnention x-skrived toom the oripinal uch divertanms				
Geomentic laterexers				
Chme	rinere	loieranc		Catum
Symmery		noms Winte		$\begin{gathered} \text { Winth E } \\ \quad A M E \end{gathered}$
Syminetry		n \times N, wide		Wedth 0 MMC
Poutional		O,004 thaz AMAC		-
Ftarners		nomp wis		-

Description

This tube is intended for use in microwave systems in the frequency range $4,7 \mathrm{GHz}$ to $5,45 \mathrm{GHz}$. It operates in a periodic permanent magnet mount type WM111LF in which it will give the performance quoted in these data sheets.

The mount is designed to permit easy replacement of tubes under field conditions and is fitted with a convection cooler.

The r.f. input is through a type N coaxial connector; the output is in WG12(WR187).

Radio Frequency Performance

```
f, range (GHz)4,7 to 5,45
Po(sat) at optimum
    Vhel, min.(Nate 1)(W) }2
Po(wkg) (W) 10
Gmax at Po(wkq) (dB) 40 to 48
Gmax variatioñ
    at }\mp@subsup{P}{0}{\prime}(wkg) acros
    band, max. (dB) 3,0
N at Po(wkg) (dB) 20
Modulation noise peaks
    noise in any 20kHz band from
    0,5MHz to 10MHz from the carrier
    does not exceed that value equiv-
    alent to N = 30dB after 10 hours
    operation
Reverse attenuatiion
    at Po(wkg), min. (dB)65
AM/PM conversion
    at }\mp@subsup{P}{0}{\prime}(wkg), max. (o/dB) 2,
Fixed broadband match
    input VSWR (cold), max.
    output VSWR (hot), max. 2,3:1
```

January 1973

Typical Operating Conditions

f	(GHz)	5,25
Vhel/k (Notes 1,2)	(kV)	2,85
$V_{\text {g } 2 / k}$ (Note 3)	(kV)	1,65
$V_{\text {g1/k }}$ (Note 4)	(V)	-10
V col/k	(kV)	2,1
$\mathrm{I}_{\mathrm{g} 2}$	$(\mu \mathrm{A})$	10
$I_{\text {hel }}$ at $P_{o}(w k g)$	(mA)	0,25
$I_{\text {col }}$	(mA)	90
I_{k}	(mA)	90,25
$G_{\text {max }}$ at $P_{o}(w k g)$	(dB)	45
N at $P_{0}(w k g)$	(dB)	27
```Po(sat) at optimum Vhel```	(W)	30
$V_{h}$	(V)	6,3
$I_{h}$, nom.	(mA)	1,0

## Environmental Conditions

Operating temperature ranges
up to $1500 \mathrm{~m}(5000 f t)$ ( ${ }^{\circ} \mathrm{C}$ ) -10 to +55
up to $3000 m(10000 f t)(a c)-10$ to +50
up to 4500m(15000ft)( $\left.{ }^{\circ} \mathrm{C}\right)-10$ to +40
Storage temperature range
up to 14000 m (45000ft) ( $\left.{ }^{\circ} \mathrm{C}\right)-30$ to +75
Satisfactory switch-on and performance to a relaxed specification is achieved at $-30^{\circ} \mathrm{C}$
Humidity 95\% at $35^{\circ} \mathrm{C}$
Note 1. Vhel optimised for minimum $G_{\max }$ at $P_{o}(w k g)$ across band.

Note 2. Electrode voltages are referred to cathode potential. The collector is earthed.
Note 3. Adjusted for required I col.
Note 4. Adjusted for optimum focussing at $P_{o}(w k g)$.

W7/6GLF-1

[^3]Fig. 1 Typical Power Output versus Power Input.


Fig. 2 Plot of Typical Gain at 10 W Output versus Frequency.
( $V_{\text {hel }}$ optimised for max. gain flatness across band, as specified on data sheet supplied with each tube)


Fig. 1. W7/GGLF Tube Outline


Dimensions

	mm		in.	
$A$	$376,2 \quad \max$.	14,813 max.		
$B$	$36,20 \pm 0,18$	$1,425 \pm 0,007$		
$C$	$73,0 \quad \max$.	2,875 max.		
$D$	$9,27 \max$.	0,365 max.		
$E$	46,0	nom.	1,813 nom.	

```
Note 1. Flexible leads as follows:
Green 91
Blue \(\quad 92\)
Brown h
Yellow h/k
```



Fig. 2. WM111LF Mount Operational Controls


Leqend

1. Focus adjustment knobs.
2. Cover securing screws.
3. Cover securing catch.
4. Yellow h/k tube connection terminal.
5. Green g1 tube connection terminal.
6. Blue $g_{2}$ tube connection terminal.
7. Brown h tube connection terminal.
B. Tube ejector arm.
8. Tube alignment index line on terminal block.
9. Supervisory interlock.

Fig. 3. WM111LF Mount Dutline


End view at arrow Z


Fig. 3. WM111LF Mount Dutline - continued
Dimensions

	mm	in.
A	417,5 max.	16,438 max.
B	280,1 max.	11,063 max.
C	104,8 士 1,6	4,125 $\pm 0,063$
D	196,85 nom.	7,750 nom.
E	$57,2 \pm 0,4$	2,25 $\pm 0,031$
F	101,6 $\pm 0,4$	4,0 $\pm$ 0,031
G	111,1 max.	4,375 max.
H	103,2 $\pm 3,2$	$4,063 \pm 0,125$
$J$	$66,7 \pm 1,6$	2,625 $\pm 0,063$
K	56,4 $\pm$-, 8	2,438 $\pm 0,031$
L	123,8 $\pm 1,6$	4,875 $\pm 0,063$
M	95,3 $\pm$ 3,2	3,750 $\pm 0,125$
N	31,8 $\pm 1,6$	1,250 $\pm 0,063$
P	83,3 $\pm$ 1,6	3,281 $\pm 0,063$
R	85,7 $\pm 1,6$	3,375 $\pm 0,063$
5	114,3 nom.	4,50 nom.
T	66,7 approx.	2,625 approx.
U	111,1 nom.	4,375 nom.
V	$52,4 \pm 0,8$	$2,063 \pm 0,031$
W	25,4 max.	1,00 max.
X	317,5 min.	12,50 min.
$\left(\begin{array}{ll} (\text { Note } & \text { ) } \\ Y & \\ (\text { Note } \end{array}\right)$	$381,0 \mathrm{~min}$.	15,00 min.

Notes

1. Tube ejector arm (shown extended) when cover open.
2. Type $N$ female connector.
3. Flange WG12 (5985-99-083-0042).
4. Asterisks denote four $1 / 4$ in. UNC tapped holes both sides of mount.
5. Female jackscrew.
6. Cable length $30,5 \mathrm{~cm}$ (10ft) approx.
7. 26P-JTC2-H1D (Pye Connectors)
with pins MRAC 62P.

Pin	Connector	Pin	Connector
L	-h	W	hel
F	+h/k	b	col/earth
¢	91	c	interlock
T	92	d	interlo

8. Dimension $X$ is the withdrawal distance of the tube with lateral movement of the base.
9. Dimension $Y$ is the withdrawal distance of the tube without lateral movement of the base.

## SPECIAL VALVES

## S-Band Low Noise <br> Travelling-Wave Amplifier Tube

Code: W9/2E (CV6090)

The W9/2E is a low noise wide-band travelling-wave amplifier tube for use in the frequency band 2.5 to $4.1 \mathrm{Gc} / \mathrm{s}$.

The tube is operated in solenoid mounts type 495-LVA-005, 495-LVA-005B or 495-LVA-005C in which it will give the performance quoted in these data sheets.

The design of these mounts permits easy replacement of tubes under field conditions.

RADIO FREQUENCY PERFORMANCE		
Operating frequency range	2.5 to $4 \cdot 1$	$\mathrm{Gc} / \mathrm{s}$
Saturated power output, minimum	3	mW
maximum	4.8	dbm
	12	mW
Gain with input less than -40 dbm	$10 \cdot 8$	dbm
minimum		
maximum	38	db
The gain over the frequency range does not vary by more than	50	db
Noise factor at small signal levels	6	db
Reverse attenuation	$<10$	db
Ren	$>75$	db

## Matching

No adjustments are necessary over the recommended frequency band. The match at all frequencies will be less than $2 \cdot 5: 1$ and less than $2: 1$ at $3 \cdot 3 \mathrm{Gc} / \mathrm{s}$.

Graphs showing gain, noise factor and V.S.W.R. as functions of frequency are shown in figures $1 \mathrm{~A}, 1 \mathrm{~B}$ and 2.

## Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333 Telex: 21836
C O M P O N E N T S $\quad$ I

## Code: W9/2E (CV6090)

TYPICAL OPERATING CONDITIONS (Note 1)

Frequency	$3 \cdot 3$	$\mathrm{Gc} / \mathrm{s}$
Direct grid 1 voltage	$-2 \cdot 5$	V
Direct helix voltage (Note 2)	400	V
Direct collector voltage	600	V
	or $\mathrm{V}_{\text {hel }}+200$	V
Direct grid 2 voltage (Note 3)	30	V
Direct grid 3 voltage (Note 4)	100	V
Direct grid 4 voltage (Note 4)	200	V
Direct helix current	$0 \cdot 7$	$\mu \mathrm{~A}$
Direct collector current (Note 5)	400	$\mu \mathrm{~A}$
Grid currents are negligible	8	mW
Saturated output at synchronous helix voltage	9	dbm
Gain with input at less than -40 dbm	46	db
Noise figure	7.4	db

Note 1. Electrode voltages are referred to cathode potential.
Note 2. Adjusted to synchronous voltage.
Note 3. Adjusted to give required collector current.
Note 4. Adjusted to give minimum noise factor.
Note 5. The collector should be at earth potential but to facilitate monitoring of collector current it is isolated from the circuit.

## CATHODE

Indirectly heated, oxide coated.

## HEATER

Heater voltage (Note 6)
Heater current min. 0.45
Pre-heating time
nom. 0.55

$5 \pm 3 \%$	$V$
$\max .0 .65$	A

Note 6. The heater is usually supplied by a d.c. voltage or an r.m.s. equivalent at a frequency of $50 \mathrm{cycles} / \mathrm{sec}$. Other frequencies may be used but it is recommended that the manufacturer be consulted beforehand.

## LIMIT RATINGS (Note 7)

Tube damage may result if any one of these ratings is exceeded.

Direct collector voltage	1	kV
Direct helix voltage	750	V
Direct grid 1 voltage	100	V
Direct grid 2 voltage	100	V
Direct grid 3 voltage	250	V
Direct grid 4 voltage	500	V
Direct helix current	150	$\mu \mathrm{~A}$
Direct cathode current	1	mA

Note 7. All voltages are relative to cathode.

## Code: W9/2E (CV6090)

## D.C. SUPPLY VOLTAGES

Collector connection is made by 'Unitor' socket. Other electrode connections are made by a shrouded B9A socket plugging on to the base of the valve.

Collector voltage range (Note 8)	550 to 650	V
Synchronous helix voltage for individual valves   lies within the range	350 to 450	V
Grid 2 voltage is adjustable to the required		
working conditions within the range (Note 9)	12 to 55	V
Grid 1 voltage range (Note 10)	0 to -75	V
Grid 3 voltage range	50 to 150	V
Grid 4 voltage range	150 to 300	V

Note 8. The collector voltage must be equal to $\mathrm{V}_{\text {hel }}+200 \mathrm{~V}$.
Note 9. When adjusted to $400 \mu \mathrm{~A}$ collector current the initial range is 12 to 40 V . The end of life limit is 55 V .
Note 10. The range of grid 1 voltage for minimum noise is 0 to -10 V . For cut-off of the electron beam a bias of about -50 volts is suitable.

MECHANICAL DATA (W9/2E)
Envelope
Glass and metal
Dimensions
Connection details $\}$ As shown in figure 4.

## GENERAL DESCRIPTION

These approved mounts in which W9/2E tubes operate, incorporate an aluminium foil solenoid system which contains r.f. matching cavities fed from rigidly mounted $50 \Omega$ coaxial connectors. Both matching and mechanical alignment are pre-set and no adjustment is necessary.

Two pairs of deflector coils in the mounts enable the tube helix current to be optimised. A circuit diagram of the necessary potentiometer connections for these coils is shown in figure 3. The voltage to energise the coils may be taken from the solenoid voltage supply.

The 495-LVA-005C circuit is screened to minimise the interference of external magnetic fields with t.w.t. operation.

The 495-LVA-005 and 495-LVA-005B differ only in the type of coaxial connectors fitted.
A sheathed cable attached to the mount carries the electrode supplies. The leads of this cable are effectively choked for microwave frequencies. A Belling-Lee 'Unitor' 8 -pin plug and socket on the mount carries the collector lead, solenoid supply, deflector coil supply and tappings for deflector coil potentiometer.

A hinged lid provides access to the tube connections (excluding collector) which are made by a shrouded B9A socket plugging on to the base of the valve. The lid also provides additional microwave screening.

The tube is held firmly at both ends in the mount by toroidal springs with an additional wide-headed locking screw at the base. Alignment marks are provided on both mount and tube to ensure correct positioning on fitting.
The mounts are designed so that circuit alignment is unaffected by normal handling, and tubes can be easily replaced under field conditions.

A mounting bracket is provided at both ends of the solenoid. These brackets contain elongated holes to accept fixing screws. When fixing, allowance should be made for slight longitudinal expansion during running.

MECHANICAL DATA-MOUNTS		
Dimensions	As shown in Figures 5, 6 and 7.	
Weight	23 lb	10,4
Fixing	Six elongated clearing holes $\frac{1}{4} \mathrm{in}$. diameter	

Connections

Solenoid d.c. supply Collector
Deflector coils
\}Bellin Lee 8-pin 'Unitor' L654 plug and socket
Screened 7-core P.T.F.E. covered cable of length 3 ft . approx. ( $91,44 \mathrm{~cm}$ )
Focusing adjustments Non-mechanical
Matching adjustments Pre-set
R.F. connections

Mount 495-LVA-005 Input and output Type C Jack (UG704/U)
Mount 495-LVA-005B Input and output Type $N$ Jack
Mount 495-LVA-005C Input and output Type $N$ Jack
Mounting position Any which allows free circulation of air
Proximity of ferrous materials
(a) 495-LVA-005 and 495-LVA-005B

Ferrous materials should be kept at least $7 \mathrm{in} .(17,78 \mathrm{~cm})$ away from the mount during operation, magnetic materials at least 14 in . $(35,6 \mathrm{~cm}$ ) away.
(b) 495-LVA-005C

Ferrous materials should be kept at least $3 \mathrm{in} .(7,62 \mathrm{~cm})$ away from the mount during operation, magnetic materials at least 8 in . away.

## COOLING

Sufficient space should be allowed around the circuit to permit free circulation of air to cool the solenoid. The temperature of the mounts when stabilised is approximately $70^{\circ} \mathrm{C}$ above ambient.

## ELECTRICAL DATA

Solenoid current 9 A
The solenoid voltage supply should be adjustable between 15 and 26 volts to give a current of 9 A throughout the recommended ambient temperature range.
The solenoid voltage between pins 1 and 9 of the Unitor socket provided for operation of the deflector coils will be between 12 and 20 volts at normal temperature and will provide sufficient current through the deflector coils, 80 mA per pair minimum, to focus all good tubes.

## ENVIRONMENTAL CONDITIONS

Ambient temperature
Operating, maximum $+50 \quad{ }^{\circ} \mathrm{C}$
Vibration
When mounted horizontally the mount will satisfy the requirements of DEF5011 Severity VI.
Damp heat, long-term
The mount will satisfy the requirements of DEF5011 Severity H3.

## OPERATIONAL DATA FOR TUBE AND MOUNT

A data sheet giving optimum electrode voltages, etc., is provided with each tube.
The gain is very sensitive to helix voltage which, for narrow band applications, should be set for maximum gain at the required frequency. For wide band applications the helix voltage should be set for maximum gain at the arithmetic mean frequency. To maintain the gain within $\pm 1 \mathrm{db}$, the helix voltage must be held within $\pm 2$ volts of the optimum value.
Minimum noise factor is obtained by adjustment of grids 3 and 4 for minimum noise output, and adjustment of deflector coils for minimum helix current.
The voltages specified for grids 3 and 4 in the test data sheet are related to optimum noise factor at mid-band $(3.3 \mathrm{Gc} / \mathrm{s})$. Improvement in noise factor at other frequencies may be obtained by adjusting the voltages for minimum noise output at those frequencies.
Towards the end of life of the tube it is likely that the grid 2 voltage will increase.

## SETTING-UP PROCEDURE

The following procedure is recommended for setting up the W9/2E tube in its mount for operation:-

1. Hold the tube at the base end and insert it in the mount sufficiently to permit the tube supply socket to be fitted (Note 11).
2. Holding the socket gently but firmly push the tube home. At the end of the travel of the tube pressure needs to be applied to overcome the resistance of the gun and collector toroids. A slight clockwise twist will help with this insertion. The black line on the base of the tube should be aligned with the black mark on the solenoid end plate. This is necessary for best matching.
3. Secure tube in mount by rotating the retaining screw over the tube base ring (Note 12).
4. Close screening box lid and secure.
5. Apply solenoid voltage to give 9A solenoid current (Note 13).
6. Apply heater voltage and allow three minutes heating time.
7. Set deflector coil currents to zero, i.e. adjust controls to mid-position.
8. Apply grid 1 voltage as on test data sheet.
9. Apply helix, collector, grid 4 and grid 3 voltages as on test data sheet.
10. Raise grid 2 voltage to give required collector current, adjusting deflector coils during operation to minimise helix current.
Note 11. The insertion of the tube requires a free space between the lid end of the mount and extraneous equipment of $15 \frac{1}{2} \mathrm{in}$. minimum.
Note 12. Once the tube is in its operating position in the mount, any undue pressure on the tube ejector ring at the rear of the solenoid may cause damage to the tube. Accordingly care must be taken to ensure that the ejector is not knocked or that when the tube is to be removed, no pressure is exerted on the ejector until the screening box lid is opened and the retaining screw has been turned to clear the tube base ring.
Note 13. Application of tube electrode voltages before the solenoid voltage will cause severe damage to the tube.
The resistance of the solenoid mount will take four hours to stabilise and adjustment of the solenoid supply will be necessary during this time. Some excess voltage may be applied to the solenoid on switching on to avoid adjustment but best focusing of the tube is only obtained with 9A solenoid current.
Should it be necessary to insert the tube with the solenoid energised care should be taken to resist attraction of ferrous portions of the tube to the mount which may cause damage to the tube.

## TUBE REMOVAL PROCEDURE

1. Reduce grid 2 control to zero.
2. Switch off all voltages.
3. Open screening box lid and unscrew retaining screw.
4. Lightly holding valve socket press ejector ring.
5. Withdraw ejected tube until tube base can be reached.
6. Remove socket.
7. Withdraw tube. Note that the base ring may be hot.

## Code: W9/2E (CV6090)

CONTINUED

Figs. 1A, 1B and 2. Typical Characteristics




## Code: W9/2E (CV6090)

Fig. 3. Circuit showing the connexion of potentiometers to solenoid type 495-LVA-005 terminals for the control of deflector coil current.

DOTTED SCHEMATIC DENOTES NECESSARY


POTENTIOMETERS RELIANCE TYPE TW/I DUAL GANGED TROPICAL.

## Code: W9/2E (CV6090)



DIM.	MILLIMETRES	INCHES	DIM.	MILLIMETRES	INCHES
A	366,90 $\pm 0,89$	$14.445 \pm 0.035$	G	5,99 $\pm 0,18$	$0.236 \pm 0.007$
B	23,24 MAX.	0.915 MAX.	H	19,1 MIN.	$\frac{3}{4}$ MIN.
C	9,27 MAX.	0.365 MAX.	J	$315,60 \pm 0,63$	$12.425 \pm 0.025$
D	25,30 $\pm 0,18$	$0.996 \pm 0.007$	K	7,62 $\pm 0,76$	$0.300 \pm 0.030$
E	$76,83 \pm 0,38$	$3.025 \pm 0.015$	L	1,59 MAX.	0.063 MAX.
F	10,16 $\pm 0,63$	$0.400 \pm 0.025$	M	$7,62+0,10$ $-0,00$	0.300 +0.004

## Code: 495-LVA-005

Fig. 5. 495-LVA-005 Outline
*DENOTES:-
OVERALL HT. INCLUDING SCREW HEADS

$\left.\begin{array}{r}\text { INPUT JACK } \\ \text { OUTPUT JACK }\end{array}\right\}$
R.F. CONNECTOR TYPE 'C' (FEMALE)


VIEW IN DIRECTION OF ARROW 'A'


UNITOR CONNECTIONS


## Code: 495-LVA-005B

Fig. 6. 495-LVA-005B Outline


## T.W.T. Mount

## Code: 495-LVA-005C

Fig. 7. 495-LVA-005C Outline


# SPECIAL VALVES 

S-Band Travelling-Wave<br>Tube Limiter

Code: W9/3E (CV6127)

The W9/3E is a wide band travelling-wave tube limiter intended for use in the frequency band 2.5 to $4.1 \mathrm{Gc} / \mathrm{s}$.

The tube is operated in solenoid mounts type 495-LVA-007A or 495-LVA-007E in which it will give the performance quoted in these data sheets.
The design of these mounts permits easy replacement of tubes under field conditions.
RADIO FREQUENCY PERFORMANCE
Operating frequency range
Saturated power output, minimum
maximum
Gain with input less than -40 dbm
minimum
maximum
The gain over the frequency range does not vary by more than
Noise factor at small signal levels
Reverse attenuation

## Matching

No adjustments are necessary over the recommended frequency band.
Graphs showing typical amplification characteristic as a function of frequency with fixed electrode potentials and power output versus power input characteristic are shown in figures 1 and 2.
Improved limiting characteristics can be obtained by the use of two W9/3E stages in series.

## Code: W9/3E (CV6127)

TYPICAL OPERATING CONDITIONS (Note 1)

Frequency	$3 \cdot 3$	$\mathrm{Gc} / \mathrm{s}$
Direct helix voltage (Note 2)	200	V
Direct grid 2 voltage (Note 3)	50	V
Direct collector voltage	300	V
Direct collector current (Note 4)	i.e. $\mathrm{V}_{\text {hel }}+100$	V
Direct helix current	125	$\mu \mathrm{~A}$
Direct grid 2 current	10	$\mu \mathrm{~A}$
Saturated output at synchronous helix voltage	negligible	
Gain with input at less than -40 dbm	-6	dbm
Wha	15	db

The tube can be operated at a cathode current of up to $320 \mu \mathrm{~A}$ to give a greater gain of not less than 23 db . A higher grid 2 voltage will be required, but its value will not exceed the helix voltage.
Note 1. Electrode voltages are referred to cathode potential.
Note 2. Adjusted to synchronous voltage.
Note 3. Adjusted to give required collector current.
Note 4. The collector should be at earth potential but to facilitate monitoring of collector current it is isolated from the circuit.

## CATHODE

Indirectly heated, oxide-coated

## HEATER

Heater voltage (			$6 \cdot 3 \pm 3 \%$	V
Heater current	min. $0 \cdot 37$	nom. 0.45	max. 0.63	A
Pre-heating time			120	

Note 5. The heater is usually supplied by a d.c. voltage or an r.m.s. equivalent at a frequency of $50 \mathrm{cycles} / \mathrm{sec}$. Other frequencies may be used but it is recommended that the manufacturer be consulted beforehand.

LIMIT RATINGS (Note 6)
Tube damage may result if any one of these ratings is exceeded.
Direct collector voltage 1
Direct helix voltage 1
Direct grid 2 voltage 1 kV
Direct helix current $150 \quad \mu \mathrm{~A}$
Direct cathode current 500
Note 6. All voltages are relative to cathode.

## Code: W9/3E (CV6127)

## CONTINUED

## D.C. SUPPLY VOLTAGES

Collector connection is made by 'Unitor' socket. Other electrode connections are made by a shrouded B9A socket plugging on to the base of the valve.

Collector voltage range (Note 7)
260 to 330
Synchronous helix voltage for individual valves lies within the range (Note 8) 160 to 230 V
Grid 2 voltage is adjustable to the required working conditions within'the range (Note 9)

18 to 230 V
Note 7. The collector voltage must be equal to $\mathrm{V}_{\text {hel }}+100 \mathrm{~V}$
Note 8. Because of the low voltage used, the gain of the valve is dependent to a marked extent upon the correct value of helix voltage being set carefully and regulated to $0.1 \%$
Note 9. When adjusted to $125 \mu \mathrm{~A}$ collector current the initial range is 20 to 100 V . The end of life limit is 230 V . Grid 2 voltage must never exceed helix voltage

## MECHANICAL DATA (W9/3E)

Envelope
Glass and metal
Dimensions
Connection details $\}$
As shown in Figure 5

## ENVIRONMENTAL CONDITIONS

Vibration
Acceleration gg
Frequency range 6 to $30 \quad \mathrm{c} / \mathrm{s}$
Under the vibration conditions specified above the tube gain will not vary by more than 110 db

## Shock

The tube will withstand impact pulses of 6 ms duration with peak acceleration 20 g .

## Code: 495-LVA-007A <br> 495-LVA-007E

## GENERAL DESCRIPTION

These approved mounts in which W9/3E tubes operate, incorporate an aluminium foil solenoid system which contains r.f. matching cavities fed from rigidly mounted $50 \Omega$ coaxial connectors. Both matching and mechanical alignment is pre-set and no adjustment is necessary. The mounts are screened to minimise the interference of external magnetic fields with t.w.t. operation.

The 495-LVA-007A and 495-LVA-007E differ only in the type of coaxial connectors fitted.
A sheathed cable attached to the mount carries the electrode supplies. The leads of this cable are effectively choked for microwave frequencies. A Belling-Lee 'Unitor' 4 -pin plug and socket on the mount carries the collector lead and the solenoid supply.

A hinged lid provides access to the tube connections (excluding collector) which are made by a shrouded B9A socket plugging on to the base of the valve. The lid also provides additional microwave screening.

The tube is held firmly at both ends in the mount by toroidal springs with an additional wide-headed locking screw at the base. Alignment marks are provided on both mount and tube to ensure correct positioning on fitting.

The mounts are designed so that circuit alignment is unaffected by normal handling, and tubes can be easily replaced under field conditions.

A mounting bracket is provided at both ends of the solenoid. These brackets contain elongated holes to accept fixing screws. When fixing, allowance should be made for slight longitudinal expansion during running.

## MECHANICAL DATA-MOUNTS

Dimensions
Weight
Fixing

## Connections

$\left.\begin{array}{l}\text { Solenoid d.c. supply } \\ \text { Collector }\end{array}\right\}$

Other electrodes

Focusing adjustments
Matching adjustments

As shown in Figures 3 and 4

$$
12 \cdot 25 \mathrm{lb} \quad 5,5 \quad \mathrm{~kg}
$$

Four elongated clearing holes $\frac{3}{16} \mathrm{in}$. diameter

Belling-Lee 4-pin 'Unitor' L653 plug and socket
Screened 4-core P.T.F.E. covered cable,
length $3 \mathrm{ft} \quad 91,44 \mathrm{~cm}$

Pre-set
Pre-set
R.F. connections

Mount 495-LVA-007A Input and output Type C Jack (UG704/U)
Mount 495-LVA-007E Input and output Type $N$ Jack
Mounting position Any which allows free circulation of air
Proximity of ferrous materials
Ferrous materials should be kept at least $4 \mathrm{in} .(10,2 \mathrm{~cm})$ away from the mount during operation, magnetic materials at least $18 \mathrm{in} .(45,7 \mathrm{~cm})$ away.
Proximity of other mounts
If a second mount and tube are used in series they should be positioned with at least a 6 -inch ( $15,2 \mathrm{~cm}$ ) gap between mounts and preferably facing in the same direction.

## Codes: 495-LVA-007A 495-LVA-007E

## COOLING

Sufficient space should be allowed around the circuit to permit free circulation of air to cool the solenoid. The temperature of the mount when stabilised is approx. $60^{\circ} \mathrm{C}$ above ambient.

## ELECTRICAL DATA

## Solenoid current

10
The solenoid voltage supply should be adjustable between 6 and 13 volts to give a current of 10 A throughout the recommended ambient temperature range.

## ENVIRONMENTAL CONDITIONS

## Ambient temperature

Operating, maximum $+60 \quad{ }^{\circ} \mathrm{C}$
Vibration
When mounted horizontally the mount will satisfy the requirements of DEF5011 Severity VI.

Damp heat, long-term
The mount will satisfy the requirements of DEF5011 Severity H3.

## OPERATIONAL DATA FOR TUBE AND MOUNT

A data sheet giving optimum electrode voltages, etc., is provided with each tube.
Because of the low voltage, the gain of the valve is dependent to a marked extent upon the correct value helix voltage being set carefully and regulated to $0.1 \%$.

If two tubes are operated in series, independent adjustment of grid 2 and helix voltages will be required.

Towards the end of life of the tube it is likely that the grid 2 voltage will increase. It must not be allowed to exceed helix voltage.

## CONTINUED

## SETTING-UP PROCEDURE

The following procedure is recommended for setting up the $W 9 / 3 E$ tube in its mount for operation:-

1. Hold the tube at the base end and insert it in the mount sufficiently to permit the tube supply socket to be fitted (Note 10).
2. Holding socket gently but firmly push tube home. At the end of the travel of the tube pressure needs to be applied to overcome the resistance of the gun and collector toroids. A slight clockwise twist will help with this insertion. The black line on the base of the tube should be aligned with the black mark on the solenoid end plate. This is necessary for best matching.
3. Secure tube in mount by rotating the retaining screw over the tube base ring (Note 11).
4. Close screening box lid and secure.
5. Apply solenoid voltage to give 10A solenoid current (Note 12).
6. Apply heater voltage and allow two minutes' heating time.
7. Apply collector and helix voltages as indicated on the tube data sheet and then the grid 2 voltage to give required collector current.
Note 10. The insertion of the tube requires a free space between the lid end of the mount and extraneous equipment of 8 in . minimum.
Note 11. Once the tube is in its operating position in the mount, any undue pressure on the tube ejector ring at the rear of the solenoid may cause damage to the tube. Accordingly care must be taken to ensure that the ejector is not knocked or that when the tube is to be removed, no pressure is exerted on the ejector until the screening box lid is opened and the retaining screw has been turned to clear the tube base ring.
Note 12. Application of tube electrode voltages before the solenoid voltage will cause severe damage to the tube.
The resistance of the solenoid mount will take four hours to stabilise and adjustment of the solenoid supply will be necessary during this time. Some excess voltage may be applied to the solenoid on switching on to avoid adjustment but best focusing of the tube is only obtained with 10A solenoid current.
Should it be necessary to insert the tube with the solenoid energised care should be taken to resist attraction of ferrous portions of the tube to the mount which may cause damage to the tube.

## TUBE REMOVAL PROCEDURE

1. Reduce grid 2 control to zero.
2. Switch off all voltages.
3. Open screening box lid and unscrew tube retaining screw.
4. Lightly holding valve socket press ejector ring.
5. Withdraw ejected tube until valve base can be reached.
6. Remove socket.
7. Withdraw tube. Note that base ring may be hot.

## Code: W9/3E (CV6127)

CONTINUED

Fig. 1.-Amplification Characteristic.


Fig. 2.-Saturation Characteristic.
POWER INPUT (dBm)


## Code: W9/3E (CV6127)

CONTINUED

Fig. 3.-W9/3E Outline


DIM.	MILLIMETRES	INCHES	DIM.	MILLIMETRES	INCHES
A	$177,34 \pm 0,63$	$6.982 \pm 0.025$	G	$5,99 \pm 0,18$	$0.236 \pm 0.007$
B	$23,24 \mathrm{MAX}$.	0.915 MAX.	H	$24,13 \mathrm{MAX}$.	0.950 MAX.
C	$9,27 \mathrm{MAX}$.	0.365 MAX.	J	$149,86 \pm 0,38$	$5.900 \pm 0.015$
D	$25,30 \pm 0,18$	$0.996 \pm 0.007$	K	$7,62 \pm 0,76$	$0.300 \pm 0.030$
E	$48,26 \pm 0,89$	$1.900 \pm 0035$	L	$27,56 \mathrm{MAX}$.	1.085 MAX.
F	$10,16 \pm 0,63$	$0.400 \pm 0.025$	M	$9,60 \mathrm{MAX}$.	0.378 MAX.
P	$22,22 \mathrm{MIN}$.	0.875 MIN.	N	$1,59 \mathrm{MAX}$.	0.063 MAX.

NOTE: BASIC FIGURES ARE INCHES

## Codes: 495-LVA-007A

CONTINUED

Fig. 4. 495-LVA-007A Outline


## CODE: 495-LVA-007E

CONTINUED

Fig. 5. 495-LVA-007E Outline


## SPECIALVALVES

## S-Band Low-Noise Travelling-Wave Tube Amplifier

## Code: W10/3E

The $\mathrm{W} 10 / 3 \mathrm{E}$ is a wide-band low-noise travelling-wave tube amplifier intended for use in the frequency band 2.7 to $3.7 \mathrm{Gc} / \mathrm{s}$.
The tube is operated in solenoid mounts type 495-LVA-003, 495-LVA-006 or 495-LVA-006S in which it will give the performance quoted in these data sheets. The design of these mounts permits easy replacement of tubes under field conditions.

RADIO FREQUENCY PERFORMANCE

Circuits	495-LVA-003	495-LVA-006 or 495-LVA-006S	
Operating frequency range	2.7 to 3.3	2.8 to 3.7	$\mathrm{Gc} / \mathrm{s}$
Saturated power output, nominal	3	3	mW
Gain with input less than -40 dbm ,			
Minimum	20	20	db
Maximum	25	26	db
Noise factor at small signal levels, maximum	7.75	$7 \cdot 5$	db
Reverse attenuation	$>75$	$>75$	db
Match at all frequencies,			
Input	$<2: 1$	$<2 \cdot 5: 1$	
Output	$<2 \cdot 4: 1$	$<2 \cdot 5: 1$	
Match at $3.3 \mathrm{Gc} / \mathrm{s}$,			
Input		$<2: 1$	
Output		$<2: 1$	

No matching adjustments are necessary over the recommended frequency band.
Typical gain and noise factor characteristics are shown in Figure 1 and optimum anode voltage characteristics are given in Figure 2.

```
C O M P O N E N T S
G R
 ROUP
```


## Code: W10/3E

CONTINUED

TYPICAL OPERATING CONDITIONS (Note 1)			
	495-LVA-003	$\begin{aligned} & \text { 495-LVA-006 or } \\ & \text { 495-LVA-006S } \end{aligned}$	
Frequency	3	$3 \cdot 3$	$\mathrm{Gc} / \mathrm{s}$
Direct grid 1 voltage	-0.5	-0.5	V
Direct helix voltage (Note 2)	450	450	
Direct collector voltage	700	700	
or $\mathrm{V}_{\text {hel }}+250$ or $\mathrm{V}_{\text {hel }}+250$			
Direct grid 2 voltage (Note 3)	26	26	
Direct grid 3 voltage (Note 4)	50	50	
Direct grid 4 voltage	250	250	
Direct helix current	$0 \cdot 4$	$0 \cdot 4$	$\mu \mathrm{A}$
Direct collector current (Note 5)	400	400	$\mu \mathrm{A}$
Grid currents are negligible			
Saturated output at synchronous helix voltage	2	2	mW
Gain with input at less than 40 dbm	23	23	db
Noise factor	6.8	6.8	db

Note 1. Electrode voltages are referred to cathode potential.
Note 2. Adjusted to synchronous voltage.
Note 3. Adjusted to give required collector current.
Note 4. Adjusted to give minimum noise factor.
Note 5. The collector should be at earth potential.

## CATHODE

Indirectly heated, oxide coated

## HEATER

Heater voltage (Note 6)
Heater voltage tolerance Long term average
Short term fluctuations up to 2 minutes' duration
Heater current
Pre-heating time
Interruption time for zero pre-heat

Min. Nom. Max.
$5 \quad V$

Note 6. The heater is usualy frequency of 50 cycles $/ \mathrm{sec}$.
Other frequencies may be used but it is recommended that the manufacturer be consulted beforehand.

## Code: W10/3E

## CONTINUED

LIMIT RATINGS (Note 7)Tube damage may result if any one of these ratings is exceeded.
Direct collector voltage ..... 1 ..... kV
Direct helix voltage ..... 750 ..... V
Direct grid 1 voltage ..... 100
Direct grid 2 voltage ..... 100v
Direct grid 3 voltage ..... 250 ..... V
Direct grid 4 voltage ..... 500
Direct helix current ..... 150VPeak pulse power input250V
C.W. power input ..... 1W
Note 7. All voltages are relative to cathode.
D.C. SUPPLY VOLTAGES
Collector connection is made through the frame of the mount. Other electrodeconnections are made by a shrouded B9A socket plugging on to the base of the valve.
Collector voltage range (Note 8)650 to 750V
Synchronous helix voltage for individual valves lies within the range 400 to 500 ..... V
Grid 2 voltage is adjustable to the requiredworking conditions within the range (Note 9)20 to 55 V
Grid 1 voltage ..... $-0.5$ ..... V
Grid 3 voltage range ..... 40 to 110 ..... V
Grid 4 voltage ..... 250 ..... VNote 8. The collector voltage must be equal to $\mathrm{V}_{\text {hel }}+200 \mathrm{~V}$.Note 9. When adjusted to $400 \mu \mathrm{~A}$ collector current the initial range is 20 to 40 volts.The end of life limit is 55 V .
MECHANICAL DATA (W10/3E)
EnvelopeGlass and metal$\left.\begin{array}{l}\text { Dimensions } \\ \text { Connection details }\end{array}\right\}$ As shown in Figure 4$\left.\begin{array}{l}\text { Dimensions } \\ \text { Connection details }\end{array}\right\}$ As shown in Figure 4

## Codes: 495-LVA-003 <br> 495-LVA-006 <br> 495-LVA-006S

## GENERAL DESCRIPTION

These approved solenoid mounts in which W10/3E tubes operate have both matching and mechanical alignments preset and no adjustment is neccessary.

Two pairs of deflector coils in the mounts enable the tube helix current to be optimised. A circuit diagram of the necessary potentiometer connections for these coils is shown in Figure 3. The voltage to energise the coils may be taken from the solenoid voltage supply through a tap connection on the mounts.

The 495-LVA-003 mount incorporates a copper foil solenoid system and has standard rectangular waveguides, WG10 for r.f. input and output. The circuit is fitted with magnetic screening laminations to minimise the interference of external fields with t.w.t. operation.

The 495-LVA-006 and 495-LVA-006S mounts incorporate an aluminium foil solenoid system which contains r.f. matching cavities fed from rigidly mounted $50 \Omega$ coaxial connectors. The 495-LVA-006S is fitted with mild steel tubular magnetic screening.

A sheathed cable attached to the mounts carries the electrode supplies. The leads of this cable are effectively choked for microwave frequencies. On the 495-LVA-006S mount this cable is taken to a 12 way ' CINCH ' barrier terminal strip on the front face. On the 495-LVA-003 and 495-LVA-006S mounts a 'CINCH' barrier terminal strip carries the solenoid supply, deflector coil supply and tappings for deflector coil potentiometer. On the 495-LVA-006 mount a Belling-Lee 'Unitor' 8-pin plug and socket carries these supplies.

The method of collector connection for each circuit is as follows:-
495-LVA-003 The collector is connected to mount frame.
495-LVA-006 The collector is connected to the Belling-Lee 'Unitor' plug and socket.
495-LVA-006S The collector is connected to the electrode terminal strip.
On all three mounts a hinged lid provides access to the tube connections (excluding collector) which are made by a shrouded B9A socket plugging on to the base of the valve. The lid also provides additional microwave screening.

The tube is held firmly at both ends in the mount by toroidal springs with an additional wide-headed locking screw at the base. Alignment marks are provided on both mount and tube to ensure correct positioning on fitting.

The mounts are designed so that circuit alignment is unaffected by normal handling and tubes can be easily replaced under field conditions.

A mounting bracket is provided at both ends of the solenoids. These brackets contain elongated holes to accept fixing screws. When fixing, allowance should be made for slight longitudinal expansion during running.

# T.W.T. Mounts <br> Codes: 495-LVA-003 <br> 495-LVA-006 <br> 495-LVA-006S 

MECHANICAL DATA-MOUNTS		
495-LVA-003		
Dimensions	As shown in Figure 5	
Weight	$50 \mathrm{lb} \quad 22 \cdot 6$	
Fixing	Two elongated $\frac{1}{4}$ UNC clearing holes in each top and bottom bracket at either end	
Connections		
Solenoid d.c. supply $\}$	7-way "Cinch" T.F.S.	
Deflector coils $\}$	Red Mikacin terminal strip	
Collector	Earthed through frame	
Other electrodes	Screened 7-core P.T.F.E. covered cable	
Focusing adjustments	Non-mechanical	
Matching adjustments	Pre-set	
R.F. connections	Input and output, WG10 rectangular waveguide	
Mounting position	Any which allows free circulation of air	
495-LVA-006S		
Dimensions as shown in Figure 6		
Weight	approx. $25 \mathrm{lb} \quad 11,3$	
Fixing	Two elongated $\frac{1}{4}$ UNC clearing holes in feet at either end of the mount	
Connections		
$\left.\begin{array}{l}\text { Solenoid supply } \\ \text { Deflector coils } \\ \text { Frame earth } \\ \text { All electrodes } \\ \text { including collector }\end{array}\right\}$	2 to 12-way "Cinch" T.F.S. Red Mikacin terminal strips	
Focusing adjustments Matching adjustments	Non-mechanical Pre-set	
R.F. connections-		
Input	Coaxial connector Type 'C', Jack (UG704/U)Coaxial connector Type 'C' Plug	
Output		
Mounting position	Any which allows free circulation of air	
495-LVA-006		
Dimensions as shown in Figure 7		
Weight	(19 lb 8,6	
Fixing holes	Three elongated $\frac{1}{4}$ UNC clearing holes in brackets at either end of the mount	
Connections		
	Belling-Lee 8-pin "Unitor" L654 plug and socket	
Other electrodes	Screened 7-core P.T.F.E. covered cable of	
Focusing adjustments	length 3 ft approx. ( $91,44 \mathrm{~cm}$ )	
R.F. connections-		
Input Output	Coaxial connector Type ' C ' Jack (UG704/U)	
Mounting position	Any which allows free circulation of air	

## MECHANICAL DATA-MOUNTS (Cont.)

Proximity of ferrous materials
(a) 495-LVA-003 and 495-LVA-006S

Ferrous materials should be kept at least $2 \mathrm{in} .(5,08 \mathrm{~cm})$ away from the mount during operation, magnetic materials at least $6 \mathrm{in} .(15,2 \mathrm{~cm})$ away.
(b) 495-LVA-006

Ferrous materials should be kept at least $7 \mathrm{in} .(17,78 \mathrm{~cm})$ away from the mount during operation, magnetic materials at least $14 \mathrm{in} .(35,56 \mathrm{~cm})$ away.

## COOLING

Sufficient space should be allowed around the circuit to permit free circulation of air to cool the solenoids. The temperature of the mounts above ambient when stabilized is approximately $80^{\circ} \mathrm{C}$ (495-LVA-003 and 495-LVA-006S) and $70^{\circ} \mathrm{C}$ (495-LVA-006).

## ELECTRICAL DATA

$\begin{array}{llll}\text { Solenoid current } & \text { 495-LVA-003 } & 6.5 & \text { A } \\ & \text { 495-LVA-006 } & 7 & \text { A }\end{array}$
495-LVA-006S 7 A

The solenoid voltage supplies should be adjustable between the following limits to maintain these currents throughout the recommended ambient temperature range.

$$
\begin{array}{lll}
\text { 495-LVA-003 } & \left.\begin{array}{l}
34 \text { to } 63 \\
\text { 495-LVA-006S } \\
\text { 495-LVA-006 }
\end{array}\right\} & 17 \text { to } 33
\end{array} \begin{aligned}
& \text { V }
\end{aligned}
$$

The solenoid tap voltage provided for operation of the deflector coils will provide sufficient current through the deflector coils, 80 mA per pair minimum, to focus all good tubes.

## ENVIRONMENTAL CONDITIONS

Ambient temperature
Operating, maximum
${ }^{\circ} \mathrm{C}$

## OPERATIONAL DATA FOR TUBE AND MOUNT

A data sheet giving optimum electrode voltages, etc., is provided with each tube.
The gain is very sensitive to helix voltage which, for narrow band applications, should be set for maximum gain at the required frequency. For wide band applications the helix voltage should be set for maximum gain at the arithmetic mean frequency. To maintain the gain within $\pm 1 \mathrm{db}$ the helix voltage must be held within $\pm 5 \mathrm{~V}$ of the optimum value.

Minimum noise factor is obtained by adjustment of grid 3 for minimum noise output and adjustment of deflector coils for minimum helix current.

The voltage specified for grid 3 in the test data sheet is related to optimum noise factor at mid-band ( $3 \mathrm{Gc} / \mathrm{s}$ ). Improvement in noise factor at other frequencies may be obtained by adjusting the voltage for minimum noise output at those frequencies.

Towards the end of life of the tube it is likely that the grid 2 voltage will increase.

## SETTING-UP PROCEDURE

The following procedure is recommended for setting-up the W10/3E tube in its mount for operation:-

1. Hold the tube at the base end and insert it in the mount sufficiently to permit the tube supply socket to be fitted (Note 10).
2. Holding the socket gently but firmly, push the tube home. At the end of the travel of the tube pressure needs to be applied to overcome the resistance of the gun and collector toroids. A slight clockwise twist will help with this insertion. The black line on the base of the tube should be aligned with the black mark on the solenoid end plate. This is necessary for best matching.
3. Secure tube in mount by rotating the retaining screw over the tube base ring (Note 11).
4. Close screening box lid and secure.
5. Apply solenoid voltage to give requisite solenoid current.
6. Apply heater voltage and allow three minutes heating time.
7. Set deflector coil currents to zero, i.e. adjust controls to mid-position.
8. Apply grid 1 voltage as on test data sheet.
9. Apply helix, collector, grid 4 and grid 3 voltages as on test data sheet.
10. Raise grid 2 voltage to give required collector current, adjusting deflector coils during operation to minimise helix current.
Note 10. The insertion of the tube requires a free space between the lid end of the mount and extraneous equipment of $12 \frac{3}{4} \mathrm{in}$. minimum.
Note 11. Once the tube is in its operating position in the mount, any undue pressure on the tube ejector at the rear of the solenoid may cause damage to the tube. Accordingly care must be taken to ensure that the ejector is not knocked or that when the tube is to be removed, no pressure is exerted on the ejector until the screening box lid is opened and the retaining screw has been turned to clear the tube base ring.
Note 12. Application of tube electrode voltages before the solenoid voltage will cause severe damage to the tube.
The resistance of the solenoid mount will take four hours to stabilize and adjustment of the solenoid supply will be necessary during this time. Some excess voltage may be applied to the solenoid on switching on to avoid adjustment but best focusing of the tube is only obtained with stated solenoid current.
Should it be necessary to insert the tube with the solenoid energised care should be taken to resist attraction of ferrous portions of the tube to the mount which may cause damage to the tube.

## TUBE REMOVAL PROCEDURE

1. Reduce grid 2 control to zero.
2. Switch off all voltages.
3. Open screening box lid and unscrew retaining screw.
4. Lightly holding valve socket press ejector ring.
5. Withdraw ejected tube until tube base can be reached.
6. Remove socket.
7. Withdraw tube. Note that the base ring may be hot.

## Code: W10/3E

CONTINUED

Fig. 1. Typical Gain and Noise Factor Characteristics


Fig. 2. Optimum Anode Voltage Characteristics

## Code: W10/3E

CONTINUED

Fig. 3. Circuit showing the connexion of ganged potentiometers to solenoid type 495-LVA-003 terminals for the control of deflector coil current.

*DENOTES:-THIS MAY BE
OBTAINED FROM THE SOLENOID SUPPLY THROUGH A SUITABLE DROPPING RESISTOR

## Code: W10/3E

## CONTINUED

Fig. 4. W10/3E Outline


DIM.	MILLIMETRES	INCHES	DIM.	MILLIMETRES	INCHES
A	$316,10 \pm 0,89$	$12.445 \pm 0.035$	G	$5,99 \pm 0,18$	$0.236 \pm 0.007$
B	$23,24 \mathrm{MAX}$.	0.915 MAX.	H	$19,1 \mathrm{MIN}$.	$3 / 4 \mathrm{MIN}$.
C	$9,27 \mathrm{MAX}$.	0.365 MAX	J	$265,53 \pm 0,63$	$10.413 \pm 0.025$
D	$25,30 \pm 0,18$	$0.99 \pm 0.007$	K	$7,62 \pm 0,76$	$0.300 \pm 0.030$
E	$76,52 \pm 0,38$	$3.013 \pm 0.015$	L	$1,59 \mathrm{MAX}$.	0.063 MAX.
F	$10,16 \pm 0,63$	$0.400 \pm 0.025$	M	$7,62+0,10$	$0.300+0.004$
				N	$22,22 \mathrm{MIN}$.

## T.W.T. Mount

## Code: 495-LVA-003

Fig. 5. 495-LVA-003 Outline


## T.W.T. Mount

## Code: 495-LVA-006S

Fig. 6. 495-LVA-006S Outline


TERMINALS


WITHDRAWAL DISTANCE REQUIRED FOR VALVE


2-12 WAY 'CINCH' BARRIER TERMINAL STRIPS 79/593M/I2


VERTICAL


OUTPUT (BLUE) R.F. CONNECTOR TYPE 'C' PLUG


## T.W.T. Mount

## Code: 495-LVA-006

Fig. 7. 495-LVA-006 Outline


## SPECIAL VALVES

Travelling-Wave Amplifier Tube

## Code: W10/4G

The W10/4G is a travelling-wave amplifier tube intended for use in radar applications in the frequency range 2.6 to 3.6 GHz . The tube is operated in a periodic permanent magnet type mount 495-LVA-106A, in which it will give the performance quoted in these data sheets. The design of the mount permits easy replacement of tubes under field conditions.

## RADIO FREQUENCY PERFORMANCE

Operating frequency range
Maximum power output
Gain at 6W output
Minimum
Maximum
Noise factor at small signal levels
Reverse attenuation
Phase sensitivity
$d \Phi / d V_{\text {he }}$
$\mathrm{d} \Phi / \mathrm{dV}_{\mathrm{g}_{2}}$
AM/PM conversion at 6 W output
Modulation noise peaks
Measured in any 4 kHz band 0.5 to 10 MHz from carrier are less than 3 db above tube noise after 10 hours and will continue to improve to less than 1 db above tube noise.

Matching: Pre-set, no adjustment provided.
Graphs showing typical power output, helix voltage and gain as functions of frequency are shown in Figure 1 and a graph of typical output power versus input power is given in Figure 2. Figure 3 shows typical maximum power output and gain at 6 W versus helix voltage.

Synchronous helix voltage is that which gives maximum gain at low signal levels.

# Standard Telephones and Cables Limited 

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333 Telex: 21836
C O M P O $\quad$ M $\quad$ E $N$ T T S $\quad G \quad R \quad O \quad U \quad P$

## Code: W10/4G

## CONTINUED

TYPICAL OPERATING CONDITIONS (Note 1)

Frequency	3.1	GHz
Direct helix to cathode voltage (Note 2)	3.1	kV
Direct grid 2 to cathode voltage (Note 3)	2	kV
Direct collector (earth) to cathode voltage	2	kV
Direct grid 2 current	0.01	mA
Direct helix current	0.5	mA
Direct collector current	40	mA
Direct cathode current	41	mA
Gain at 6W output, approx.	38	db
Saturated output at synchronous helix voltage, approx.	12	W
Band of output impedance match to 5\% voltage reflection	$>15$	GHz

Note 1. Electrode voltages are referred to cathode potential. The collector is earthed.
Note 2. Adjusted to synchronous voltage.
Note 3. Adjusted to give required collector current.

## CATHODE

Indirectly heated, oxide-coated type.

HEATER	Min	Nom	Max	
Heater voltage (Note 4)		6.3		
Heater voltage tolerance				
$\quad$ Long-term average				$\%$
$\quad$ Short-term fluctuations up to	0.65	0.73	0.85	A
$\quad 2$ minutes' duration	60		10	s
Heater current			s	

Note 4. The heater is usually supplied by a d.c. voltage or an r.m.s. equivalent at a frequency of 50 Hz . Other frequencies of supply up to 10 kHz may be used but it is recommended that the manufacturer be consulted beforehand.

## Code: W10/4G

## CONTINUED

## LIMIT RATINGS

Voltages	Min	Max	
Direct helix to cathode (Note 5)	2.8	3.5	kV
Direct grid 2 to cathode		2.8	kV
Direct collector (earth) to cathode (Note 5)	1.6	3.5	kV
Direct grid 2 to helix		3.5	kV
Direct grid 2 to collector		3.5	kV

Note 5. Minimum ratings are specified for continuous operation to avoid excessive helix current. Refer to Operational Data Section.

Currents	Nom	Max	
Cathode	40	50	mA
Helix			
$\quad$ Absolute maximum to trip supplies with		4	mA
$\quad$ delay of less than 5 seconds	5	45	mA
$\quad$ Switching transient	0.01	0.5	mA
Direct grid 2			
		2	W
Power Dissipations	12	W	
Grid 2	100	W	

Note 6. Higher values of collector dissipation are permissible if the normal convection cooling is supplemented by forced-air-cooling.

## Code: W10/4G

CONTINUED

## D.C. SUPPLY VOLTAGES

The collector is connected to the body of the mount via the cooler. It is intended that the mount shall be operated at earth potential. Voltages must be applied in the correct sequence, as given in the "Setting-up Procedure" section of these data sheets.

Helix Voltage		
Adjustable for required working conditions, range   The synchronous helix voltage for individual tubes   lies within the range	2.8 to 3.3	kV
Ripple and regulation tolerance depend upon		
acceptable phase and output amplitude		
variation, typically:		
$2 \%$ change in helix voltage causes a fall of gain of   $1 \%$ change in helix voltage causes a phase change   of approximately	2.8 to 3.1	kV
Supply impedance, including resistance in   mount, maximum (Note 7)	0.5	db

Note 7. This is required to avoid excessive voltage drop at switch-on.
Collector Voltage
Set between absolute limits of 1.6 and 3.5 kV
For operation with depressed collector it is usual to choose a nominal voltage of 2 kV
A minimum collector voltage of 1.6 kV may be used up to 5 W output power.

## Grid 2 Voltage

Adjustable for required working conditions, range	1.7 to 2.6	kV
When adjusted to give 40 mA collector current		
Initial range is    End of life limit is 1.8 to 2	kV	
	2.6	kV

## Code: W10/4G

## CONTINUED

## MECHANICAL DATA (W10/4G)

Envelope Glass and metal
Dimensions
Connection detail $\}$ As shown in Figure 6.

## LIFE

$\left.\begin{array}{l}\text { Shelf life } \\ \text { Operational life } \\ \text { Life-end points }\end{array}\right\}$ Subject to guarantee
Life-end points
(a) Grid 2 voltage greater than $2 \cdot 6 \mathrm{kV}$ for 40 mA collector current, or
(b) Helix current greater than 3 mA for 40 mA collector current, or
(c) Gain or power deteriorated by more than 2 db from initial figures.

## ENVIRONMENTAL CONDITIONS

	Min	Max	
Storage temperature	-60	+80	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	-10	+60	${ }^{\circ} \mathrm{C}$

# T.W.T. Mount Code: 495-LVA-106A 

## GENERAL DESCRIPTION

This approved mount in which the W10/4G tube operates, incorporates a periodic permanent magnet system, r.f. coupling and matching elements, mechanical deflection and alignment adjustments and a convector cooler.

A sheathed cable attached to the mount carries the electrode supplies, the collector connection being made to the body of the mount which must be at earth potential. The leads of this cable are effectively choked for microwave frequencies and resistors are incorporated in the grid 2 and helix leads to limit surges in the unlikely event of a momentary breakdown in the tube.

A detachable lid provides access to the tube connections and has attached to it a link which, when the lid is in place, is connected to a twin lead interlock cable attached to the mount. This cable may be wired into supervisory circuits to ensure that no voltage can be applied when the lid is off and the terminals inside the mount are exposed. The lid also provides additional microwave screening.

Optimum adjustment of focusing to allow for variations from tube to tube and in mount manufacture is achieved by the use of two pairs of mechanical positioning screws: one pair align the tube and the other pair move a magnetic trimming plate.
The r.f. matching is pre-set and no adjustment is provided.
The tube is held firmly in the mount at the collector end by spring contacts in the cooler assembly and at the base end by a ring in the mount to which is attached a two-position retaining screw: the latter is turned over a projection of the tube base ring to lock the tube in position. (The position of the retaining screw is shown in Figure 8.)

The mount has a tube ejector mechanism, incorporated in the cooler assembly, which is operated by an external knob fitted to the cooler (see Figure 8). If required, a mount can be supplied with tube ejection control at the lid end.
The design of the mount is such that circuit alignment is unaffected by normal handling, and tubes can be easily replaced under field conditions.

The mount should be secured by the threaded holes using $\frac{1}{4}$ inch UNC non-magnetic screws.

## Code: 495-LVA-106A

## CONTINUED

MECHANICAL DATA-MOUNT			
Dimensions	As shown in Figure 7.		
Weight, maximum	24 lb	10,9	kg
Fixing	Four tapped holes, $\frac{1}{4}$ inch UNC		
Connections			
Electrode leads			
Type	4-core PTFE insulated cable		
Colour coding	As shown in Figure 7.		
Length of leads	18 in.	45,5	cm
Interlock leads			
Type	Twin cable		
Length of leads	18 in.	45,5	cm
Sleeve colour	Blue ${ }^{\text {cm }}$		
Mechanical alignment and deflection adjustments			
Alignment	Two external knobs (Note 8)		
Deflection	Two external knobs (Note 8)		
R.F. Matching	Pre-set		
Waveguides, input and output	Plug UG536A/U		
Mounting position	For maximum efficiency of cooler mount horizontal with waveguides in vertical plane.		
Proximity of magnetic materials			
Magnetic materials should b the mount, particularly arou at least 9 inches $(22,5 \mathrm{~cm})$ aw	kept at least 1 inch $(2,5 \mathrm{~cm})$ aw nd the waveguides: permanent from the axis of the mount.	m th ts sh	or of kept

Note 8. Positions of adjustment controls on mount are shown in Figure 8.

## COOLING

The cooler is an integral part of each mount. Cooling takes place by convection and it is important that a mount is installed in the plane recommended.
The air flow through the cooler requires a free space of 2 inches $(5 \mathrm{~cm})$ above and below it with access to a free supply of air at ambient temperature; this is to ensure that the convection cooling is efficient. The cooler temperature under normal conditions of operation is about $70^{\circ} \mathrm{C}$ above ambient temperature.

If values of collector dissipation in excess of the specified limit rating are employed, the normal convection cooling must be supplemented by forced-air-cooling. (See Note 6 in Limit Ratings Section.)

## Code: 495-LVA-106A

CONTINUED

## ELECTRICAL DATA

Ratings		
Heater to heater-cathode maximum voltage	1	kV
Helix $\quad\}$ to body of mount, maximum voltage	4	kV
Grid 2 J		
Supervisory cable and interlock 240V a.c.	2	A
Lead Resistance (including limiting resistors)		
Grid 2	47	k $\Omega$
Helix	$7 \cdot 5$	k $\Omega$
Heater (Note 9)	0.07	$\Omega$

Note 9. At 0.7 A and heater line voltage drop of 0.05 V .

## R.F. PERFORMANCE

Frequency range	2.6 to $3.6 \mathrm{Gc} / \mathrm{s}$	
Each mount will permit the specified performance of the		
W10/4G tube to be achieved.	$>65$	db
R.F. leakage	$>65$	db

Matching
The pre-set matching will give a VSWR less than 2 over the specified frequency band.
ENVIRONMENTAL CONDITIONS

Ambient temperature range	Min	Max	${ }^{\circ} \mathrm{C}$
Operating	-10	+60	${ }^{\circ} \mathrm{C}$

# Code: W10/4G 

## CONTINUED

## OPERATIONAL DATA

Efficient operation of a travelling-wave tube in a periodic permanent magnet mount depends upon certain prime requirements being met during conditions of switch-on and continuous working. These requirements are such that satisfactory periodic focusing cannot be achieved with either low helix voltage or low cathode current.

The maximum helix current is likely to occur when the helix voltage is between 1200 and 2000 volts, the actual value of current being dependent upon the setting of the grid 2 voltage relative to the helix voltage.

When switching on, it is essential that the helix current does not exceed the following safe values:

$$
\begin{aligned}
& 50 \mathrm{~mA} \text { for not longer than } 10 \text { milliseconds } \\
& 20 \mathrm{~mA} \text { for not longer than } 150 \text { milliseconds } \\
& 10 \mathrm{~mA} \text { for not longer than } 1 \text { second } \\
& 4 \mathrm{~mA} \text { for not longer than } 5 \text { seconds }
\end{aligned}
$$

A suitable cathode current control circuit is shown in Figure 4. The grid 2 voltage is supplied from a potentiometer connected across the helix supply, the grid 2 voltage always being proportional to, but less than, the helix voltage. With the recommended setting, corresponding to 1700 volts on grid 2 with respect to cathode when the helix supply is at 3000 volts, the maximum value of helix current during the rise of helix voltage may be of the order of 10 mA .

The peak current drawn from the helix supply may be minimised by delaying the rise of grid 2 voltage by means of capacitor $\mathrm{C}_{1}$ in Figure 4. The value of capacitance is dependent upon the rise time of the helix voltage and should be arranged to keep the grid 2 voltage below 500 volts until the helix voltage has risen to over 2000 volts. A suitable value for a helix supply with a rise time of 0.02 seconds from zero to 2500 volts is $C_{1}=0.04 \mu \mathrm{~F}$, the surge helix current being reduced to approximately 2 mA .

Towards the end of the life of the tube it is likely that the helix current will rise to about 2.5 mA and the grid 2 voltage, which initially was between 1800 and 2000 volts, will increase to about 2500 volts.

## Code: W10/4G

## CONTINUED

## SETTING-UP PROCEDURE

The following procedure is recommended for setting up the W10/4G tube in its mount for operation:-

1. Ensure that the mechanical alignment and deflection control knobs on the mount are set to the middle of their travel and that the two-position retaining screw is in a position to allow tube to be inserted.
2. Insert tube in mount (Note 11). At the end of the travel of the tube, pressure needs to be applied to overcome the resistance of the cooler contacts and the spring locating on the base ring before the tube meets the stop at the base end. A slight clockwise twist will help with this insertion. The blue spot on the base of the tube should be aligned with the black mark on the seating. This is necessary for best matching, but the adjustment is not critical, misalignment up to $20^{\circ}$ being permissible.
3. Secure tube in mount by rotating the two-position retaining screw to turn over the projection of the tube base ring (Note 12).
4. Connect colour-coded leads of the tube to appropriate terminals in the mount and ensure that mount is properly earthed.
5. Replace lid making sure that the interlock two-pin plug is fitted correctly in its socket.
6. Apply heater voltage and allow one minute heating time.
7. It is necessary to make the following adjustments before switching on to ensure that the helix current will not exceed a safe value:-
(a) switch off any r.f. drive
(b) pre-set grid 2 voltage (cathode current control) to give about 1.7 kV when switched on; this corresponds to a cathode current of about 35 mA . At lower voltages the helix current may be excessive.
8. After the one minute cathode pre-heat, switch on collector voltage at 2 kV .
9. Switch on simultaneously the helix voltage at 3 kV and the grid 2 voltage to the pre-set value.
10. Adjust alignment and deflection control knobs to give minimum helix current and repeat these adjustments as grid 2 voltage is increased until a collector current of 40 mA is achieved.
11. Apply r.f. input and adjust helix voltage for optimum performance; a slight readjustment of the control knobs may be necessary to obtain minimum helix current, and of grid 2 voltage to maintain a collector current of 40 mA .
Note 11. The insertion of the tube requires a free space between the lid end of the mount and extraneous equipment. When the tube is inserted in the same plane as the longitudinal axis of the mount, a minimum free space of 18 inches $(45,7 \mathrm{~cm})$ is needed. By presenting the tube at an angle of $45^{\circ}$ to the main axis of the mount a minimum free space of 14 inches $(35,6 \mathrm{~cm})$ is required.
Note 12. Once the tube has been secured by the retaining screw, it is important to ensure that the tube ejection mechanism is not operated inadvertently. Failure to observe this precaution may result in the tube being damaged.

## Code: W10/4G

## CONTINUED

## TUBE REMOVAL PROCEDURE

1. Switch off all h.t. voltages simultaneously.
2. Switch off heater voltage.
3. Remove mount lid.
4. Disconnect tube leads from terminals.
5. Move adjusting knobs to mid-travel positions.
6. Rotate the two-position retaining screw to clear the tube base ring.
7. Support the base end of the tube and gradually apply pressure to the tube ejector knob to ease the tube from the mount. A slight clockwise twist applied to the tube will assist removal.

## Code: W10/4G

CONTINUED

Fig. 1.-Typical Frequency Characteristics


Code: W10/4G
CONTINUED

Fig. 2.-Typical Power Output versus Power Input


Code: W10/4G

CONTINUED

Fig. 3.-Typical Helix Voltage Characteristics (Measured at $3.1 \mathrm{Gc} / \mathrm{s}$ )



## Code: W10/4G

CONTINUED

Fig. 4.-Typical Cathode Current Control Circuit


## Code: WIO/4G

CONTINUED

Fig. 6.-W10/4G Dimensional Outline

INDEX MARKS \& PIN NO. 1 WILL NOT DEVIATE FROM A COMMON \& BY MORE THAN $15^{\circ} \mathrm{IN}$ EITHER DIRECTION

LEAD	COLOUR	ELECTRODE
1	BLUE	GRID 2
2	YELLOW	HEATER, CATHODE,GRID I
3	BROWN	HEATER
CONTACT		
4		HELIX
5		COLLECTOR

NOTE: - BASIC FIGURES ARE INCHES

DIM	MILLIMETRES	INCHES
$A$	465,43 MAX	18.324 MAX
$B$	$36,20 \pm 0.18$	$1.425 \pm 0.007$
$C$	70,62 MAX.	2.780 MAX
$D$	13,46 MAX.	0.530 MAX
$E$	$57,2 \pm 3,2$	$21 / 4 \pm 1 / 8$

## T.W.T. Mount

## Code: 495-LVA-106A

Fig. 7.-495-LVA-106A Dimensional Outline

DIM-X (WITHDRAWAL DISTANCE OF TUBE WITH LATERAL MOVEMENT OF BASE) 14 MIN. DIM-Y( WITHDRAWAL DISTANCE OF TUBE WITHOUT Lateral movement of base) is min.
NOTE-BASIC DIMENSIONS ARE INCHES.

DIM	MILUME TRES	INCHES
A	514, 4 MAX	201/4 MAX
B	171.4 MAX	$63 / 4$ MAX
C	127.0 MAX	5 MAX
0	286.26 $\pm 0.51$	$11.270 \pm 0.020$
E	$57,2 \pm 0.8$	$2^{1 / 4} \pm 1 / 32$
F	238.1 $\pm 0.8$	$93 / \mathrm{B} \pm 1 / 32$
G	98,4 MAX	$37 / 8 \mathrm{MAX}$
H	$84,1 \pm 2,4$	$35 / 16 \pm 3 / 32$
$J$	54.0 MAX	21/8 MAX
$K$	$23,8 \pm 1,6$	$15 / 16 \pm 1 / 16$
L	$117,5 \pm 3,2$	$45 / 8 \pm 1 / 8$
M	97,6 $\pm 3,2$	327/32-1/8
N	$34.9 \pm 1.6$	$13 / 8 \pm 1 / 16$
P	$136,5 \pm 4,8$	53/8 $\pm 3 / 16$
Q	$68,3 \pm 3,2$	$211 / 16 \pm 1 / 8$

The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. In some mounts a black lead is included in the cableform carrying the terminal supply leads: one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.

## T.W.T. Mount

## Code: 495-LVA-106A

Fig. 8.-Diagram Showing Operational Controls of 495-LVA-106A


VIEW OF END 'A' WITH COVER REMOVED
(c) 1965 Standard Telephones \& Cables Ltd.

## SPECIAL VALVES

## High Power <br> Travelling-Wave Amplifier Tube

Code: W45B/5E

The W45B/5E is a forced-air-cooled high power travelling-wave tube intended for use in Bands IV and $V$ u.h.f. television transmitters and transposers, f.m. sound transmitters and link amplifiers. The tube operates in the 470 to 960 MHz frequency band and provides 200 watts for transmitter service, or 50 watts for common sound and vision transposer service. The saturation output of 500 W can be obtained in pulsed service with duty ratios up to 10 per cent.

The tube is operated in permanent magnet mounts types WM455A and WM455B in which it will give the performance quoted in these data sheets. The mounts are designed to have a low external magnetic field and to permit easy replacement of tubes under field conditions.

A feature of this tube is that all power supplies, including that for the heater, may be switched on simultaneously: this is very desirable when remote switching is employed.

## RADIO FREQUENCY PERFORMANCE

Frequency range	470 to 960	MHz
Pulse saturated power output at 700 MHz , nominal	550	W
Gain at 200 W c.w. and 700 MHz , nominal	33	dB
Cold VSWR (Note 1)		
Nominal	1.35	
Maximum	1.85	

Cold attenuation, nominal
Note 1. Measured at tube input and output in the frequency range 470 to 960 MHz .

# Standard Telephones and Cables Limited 

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: 01-300 3333 Telex: 21836


## Code: W45B/5E

CONTINUED

VIDEO TRANSMITTER SERVICE. BANDS IV AND V
Maximum Ratings (Absolute Values)

Direct collector voltage	$3 \cdot 1$	kV
Direct helix voltage	$3 \cdot 3$	kV
Direct positive grid 1 voltage	0	V
Direct negative grid 1 voltage	-200	V
Direct grid 2 voltage	1	kV
Direct helix current	30	mA
Direct helix current, peak (Note 2)	40	mA
Direct cathode current	750	mA
Mean power output	275	W
Collector dissipation	2.5	kW
Reflected c.w. power	20	W

Note 2. During switch-on or as a result of a mains surge.

Typical Operation (Note 3)

Television band	IV	V	
Video carrier frequency	550	700	MHz
Peak synch. power output	170	210	W
Gain	30	33	dB
Direct collector voltage (Note 4)	3	2.9	kV
Direct helix voltage	3.2	3.1	kV
Direct grid 2 voltage, approx.	550	600	V
Direct grid 1 voltage	-100	-100	V
Direct helix current	15	15	mA
Direct grid 2 current	0.5	0.5	mA
Direct cathode current	700	700	mA
Linearity from 10 to 65 per cent peak amplitude	$\geqslant 0.95$	$\geqslant 0.95$	
Differential phase of colour sub-carrier	$\leqslant 3$	$\leqslant 3$	0
Gain variation within channel	$\leqslant 1$	$\leqslant 0.5$	dB

Note 3. Graphs showing typical values of gain, peak power output and helix voltage as functions of frequency are shown in Figure 2.

Note 4. The collector voltage must always be 200 V less than that of the helix.

## Code: W45B/5E

## CONTINUED

## TELEVISION TRANSPOSER SERVICE WITH COMMON VISION AND SOUND TRANSMISSION

## Maximum Ratings (Absolute Values)

Direct collector voltage (Note 4)	$3 \cdot 1$	kV
Direct helix voltage	$3 \cdot 3$	kV
Direct positive grid 1 voltage	0	V
Direct negative grid 1 voltage	-200	V
Direct grid 2 voltage	1	kV
Direct helix current	20	mA
Direct helix current, peak (Note 2)	30	mA
Direct cathode current	800	mA
Collector dissipation	$2 \cdot 5$	kW
Reflected c.w. power	20	W

## Typical Operation (Note 5)

Video carrier frequency	700	MHz
Peak synchronous power output (Note 6)	53	W
Intermodulation ratio relative to peak sync. (Note 7)		
By 3-tone test	-51	dB
By 2-tone test	-43	dB
Gain	35	dB
Direct collector voltage	$2 \cdot 9$	kV
Direct helix voltage	$3 \cdot 1$	kV
Direct grid 2 voltage	700	V
Direct grid 1 voltage	-100	V
Direct helix current, approx.	8	mA
Direct grid 2 current	0.5	mA
Direct cathode current	750	mA

Note 5. Graphs showing typical gain, peak power output and helix voltage as functions of frequency are shown in Figure 3. Figure 4 shows graphs of typical peak power outputs versus helix voltage.

Note 6. A peak sync. power output of more than 100 W may be obtained without significant reduction of picture quality.
Note 7. For definitions of the 3 -tone and 2 -tone tests applied, see Figure 11.

## Code: W45B/5E

## CONTINUED

## CATHODE AND HEATER

## Cathode

Indirectly heated, metal capillary dispenser type
Heater (Note 8)
Heater voltage, 50 Hz , r.m.s. (Note 9) 6.3
Heater voltage tolerance, absolute value (Note 10)
Heater current, r.m.s.
$+2$
2.8
$V$
$\%$
A

Note 8. The heater and cathode are at a potential of approximately -3 kV d.c. with respect to earth. The insulation of the heater transformer must be designed accordingly.
Note 9. When setting the heater voltage, account should be taken of the voltage drop in the supply cable and connecting plug. When using the standard $3.6 \mathrm{ft}(1,1 \mathrm{~m})$ supply cable and connector socket the voltage drop is 0.25 V .
Note 10. If this tolerance is exceeded the operational performance and life of the tube may be impaired.

## SUPPLY VOLTAGES

The cathode is connected inside the tube to one side of the heater (Note 11).
The helix is connected internally to the metal body of the tube which, together with the mount body, is earthed.
The collector, which is isolated electrically from the rest of the tube, is supplied via a flying lead, attached to the focus mount.

Supply voltages to all electrodes other than the collector and helix are applied by means of a connector socket and 6 -core cable. The cable leads are colour-coded as follows:

Brown   Brown/Yellow   Yellow	Heater   Heater/cathode   Cathode
Green	Grid 1
Blue	Grid 2
Red	Not to be connected
Black	Earth (screening)

The following values of d.c. voltage, all of which are with reference to cathode, are recommended for use:

Helix Voltage
Adjustable for required working conditions, range 2.7 to 3.3 kV
Collector Voltage (see Note 4)
Set between absolute limits of
Grid 1 Voltage
Derived from cathode resistor and set to $\quad-100$ V
Grid 2 Voltage
Adjustable for working conditions, range
350 to 1000 V
Note 11. To avoid hum, it is advisable to connect to the cathode via the yellow lead of the 6 -core connector cable. The heater voltage is then applied via the brown and brown/yellow leads. If it is necessary for the heater and cathode to be connected again outside the tube, this must be done only by connecting the brown/yellow and the yellow leads together.

W45B/5E

## Code: W45B/5E

## CONTINUED

## MECHANICAL DATA-TUBE

Dimensions
Base
R.F. input and output terminals

As shown in Figure 6.
Special 8-pin. Pin connections are shown in Figure 6. Coaxial connector mating with adaptors to type N supplied with focus mount.

Mounting position
Weight $\quad 6.6 \mathrm{lb} \quad 3 \quad$ kg

## OPERATING TEMPERATURES

Absolute maximum temperature of collector (Note 12)
$200{ }^{\circ} \mathrm{C}$
Minimum operating ambient temperature
$-20 \quad{ }^{\circ} \mathrm{C}$
Note 12. Measured at the outer edge of the last collector cooling fin.

## COOLING REQUIREMENTS

The collector temperature must not exceed $200^{\circ} \mathrm{C}$.
An air flow of approximately $106 \mathrm{ft}^{3} / \mathrm{min}(3000 \mathrm{I} / \mathrm{min})$ should be sufficient for the purpose ; pressure drop 30 mm of water.

The cooling system should be included in the protection circuit so that the power supplies, including that for the heater, are switched off if the air flow fails.

## LIFE

$\left.\begin{array}{l}\text { Shelf life } \\ \text { Operational life }\end{array}\right\}$ Subject to guarantee

## GENERAL DESCRIPTION OF MOUNTS

The approved mounts, WM455A and WM455B, in which the W45B/5E tube operates, are of the permanent magnet type. They have the same electrical characteristics but differ in respect of certain mechanical features, described later, intended to facilitate equipment design.

The mounts are of hinged construction. When an external securing clip is released, the body of the mount opens to give access to the field straightener and the travelling-wave tube. A view of an opened WM455A mount is shown in Figure 5 from which it will be seen that the complete magnet system divides into two main sections.

The field straightener is an important part of the magnet system, its function being to reduce the transverse magnetic field. It consists of a slotted tube, made up of soft iron laminations and aluminium spacers, to one end of which is attached a focus adjustment ring unit.

Around the outside of the field straightener are two slotted soft iron rings. The one at the collector end is locked in a pre-set position to give optimum field adjustment for different tubes. The ring at the gun end is linked mechanically to the focus adjustment ring so that it may be moved from outside the closed magnet system; movement of the gun end ring adjusts the axial field in the vicinity of the gun to reduce the helix current to a minimum in operating conditions.

The field straightener assembly is held in position by a metal clamp, adjacent to the focus ring assembly, which is attached to the r.f. input connector by a securing screw.
The travelling-wave tube is mounted inside the field straightener; its base or gun end lies within the focus ring assembly and the base pins protrude outside the mount. The tube collector end-cap bears on a brass contact spring to which is connected the collector supply cable. The two apertures in the cowling surrounding the collector cooling fins are aligned with two cooling system ports in the mount casing.

At the time of insertion of the tube in the mount, the r.f. input and output type $N$ adaptors are attached by screws to the tube r.f. terminals. The tube is fixed in position by two studs and knurled nuts which clamp the r.f. terminals to a metal bar attached to the mount. The point at which the r.f. output terminal is clamped is connected by a lead to an earth terminal on the mount casing; this ensures that when an external earth is connected to the terminal, the tube envelope, and thus the helix, is at earth potential.

The external supplies to all the tube electrodes, excepting the helix and collector, are made via an external 6 -core cable and connector socket which are supplied with the mount as a complete assembly. The connector plug is mated with the tube base pins and is fixed in position by a threaded locking ring. In order that equipment designers may arrange for the connector cable to be brought to the mount from alternative directions, five types of plug are available, details being given in the Mechanical Data-Mounts section.

On an outer face of the mount there are six tapped fixing holes by which the mount is attached to main equipment. The fixing holes of the WM455A and WM455B are on diametrically opposite sides of the respective mounts. It will be seen from Figures 7 and 9 that, when the two mounts are viewed in a vertical position with the supply connector plug downwards and the r.f. connectors pointing towards one, the fixing holes of the WM455A are on the left-hand side, so that the mount opens to the right, whereas the WM455B has its fixing holes on the right-hand side and opens to the left.

Both types of mount are so constructed that, when they are opened, the field straightener assembly, the tube with its associated fittings, the external earth terminal and the collector cable entry hole are incorporated in the fixed portion of the mount.

## Codes: WM455A WM455B

## CONTINUED

## MECHANICAL DATA—MOUNTS (Note 13)

Dimensions	As shown in figures 7 and 9   Weight   Fixing
Six tapped holes each with 8 mm standard metric   thread and 11 mm deep	
External connections   Collector supply   Helix supply   Earth   Supplies to other electrodes.	Flying lead attached to mount
Connected to earth terminal on outside of mount	
By connector socket and attached 6-core screened	
cable, supplied with the mount.	

In order that the supply connector cable may be brought to the mount from alternative directions, five mechanically different variants of the connector socket are available: these allow the cable to be brought in axially or from one of four other directions at right angles to the axial plane, as shown in Figures 7 and 9.

The five types of socket are available under the following codes:
CN45A
CN45B
CN45C
CN45D
CN45E
The standard length of connector cable supplied is $3.6 \mathrm{ft}(1,1 \mathrm{~m})$, but if specified by the customer, other lengths can be provided.
$\begin{array}{llll}\text { R.F. connections } & \text { Type } N \text { (female jack) } & 50 & \Omega \\ \text { Mounting position } & \text { Unrestricted } & & \end{array}$
Note 13. Diagrams showing salient external mechanical features of the mounts are given in Figures 8 and 10.

## PROXIMITY OF MAGNETIC MATERIALS

When installed, the mounts should be kept at least 2.5 inches ( 60 mm ) away from large ferro-magnetic objects such as mounting supports and at a minimum distance of 1.2 inches ( 30 mm ) from small items.

Adjacent mounts should be separated by at least 3.6 inches ( 90 mm ).

## Codes: WM455A <br> WM455B

## CONTINUED

## OPERATING TEMPERATURES

$$
\begin{array}{lrr}
\text { Absolute maximum operating temperatures of mounts (Note 14) } & 55 & { }^{\circ} \mathrm{C} \\
\text { Absolute minimum ambient temperature } & -20 & { }^{\circ} \mathrm{C}
\end{array}
$$

Note 14. Measured at the magnet system near the r.f. input and output terminals, as shown in Figures 7 and 9.

## COOLING REQUIREMENTS

The forced-air supply system for cooling the tube collector is connected to the inlet and outlet ports in the mount casing and must be capable of providing an air flow of approximately $106 \mathrm{ft}^{3} / \mathrm{min}(3000 \mathrm{I} / \mathrm{min})$. A pressure drop of 30 mm water occurs between the ports.

The cooling air system should be included in the protection circuit so that the power supplies, including that for the heater, are switched off if the air flow fails.

## Code: W45B/5E

## CONTINUED

## OPERATIONAL DATA

A typical power supply circuit is shown at Figure 1.
When setting the heater voltage to the specified value, the voltage drop in the supply leads should be taken into consideration; in the $3.6 \mathrm{ft}(1,1 \mathrm{~m})$ connector cable normally supplied the voltage drop is 0.25 V .

It is recommended that the supply voltages for grid 2 , helix and collector be taken from a common source: where the tube application requires high helix voltage stability a regulated helix voltage supply of low current capacity can be used in conjunction with an unregulated collector supply.

Permissible ripple levels depend upon the application: further information may be obtained from the manufacturer.

Grid 1 voltage may be derived from the cathode resistor $\mathrm{R}_{\mathrm{k}}$.
Grid 2 voltage is taken from the potential divider $R_{1}$, the total resistance of which should not exceed $100 \mathrm{k} \Omega$.

The collector voltage is lower than the helix voltage by 200 V , corresponding to the voltage drop across $\mathrm{R}_{2}$.

It is necessary that a protection relay be incorporated in the helix supply line so that if the value of helix current exceeds the permitted maximum all voltage supplies are switched off.

Grid 1 and grid 2 should be protected by resistances of $10 \mathrm{k} \Omega$ inserted in the supply leads.
As the heater and cathode are at a potential of approximately 3 kV with respect to earth, the insulation of the heater transformer must be designed accordingly.

## Code: W45B/5E

## CONTINUED

## SETTING-UP PROCEDURE

The following procedure is recommended for setting-up the $\mathrm{W} 45 \mathrm{~B} / 5 \mathrm{E}$ in its mount for operation.

1. Release the mount body securing clip and carefully allow the mount to open. It should be noted that the mutual repulsion of the two portions of the split magnet system is such that the mount will fly open if the movement is not controlled by the operator.
2. Slide the tube into the field straightener.
3. Screw the field straightener clamping arm to the input r.f. terminal assembly.
4. Place the field straightener and tube in the mount. The tube collector end-cap should be pressed firmly against its contact spring as the r.f. terminal fittings are positioned over the two clamping studs and are secured with nuts.
5. Fit the r.f. input and output adaptors to the tube r.f. terminals by the screws provided, and connect r.f. input and output cables.
6. Move the focus ring so that the adjustable soft iron ring at the gun end of the field straightener is positioned midway between the two red setting marks.
7. Close the mount and fasten the securing clip.
8. Mate the power supply connector socket with the tube base pins and lock in position with the securing cap on the socket.

## Code: W45B/5E

## CONTINUED

9. Make the following connections:
(a) The collector supply cable to the collector voltage supply;
(b) The helix voltage supply and the external earth to the earthing terminal on the mount;
(c) The individual colour-coded leads of the 6-core screened connector cable to the points indicated in the SUPPLY VOLTAGES section.
10. Activate the air-cooling system.
11. Switch on simultaneously all operating voltages, including that for the heater, ensuring that they are of the values specified previously in these data sheets. (Note 15).
12. Adjust cathode current to the specified value by varying grid 2 voltage.
13. Adjust the helix current to a minimum by adjusting the focus ring setting.
14. Apply an r.f. input signal and readjust the focus ring to obtain minimum helix current.

Note 15. When initially put into service or after very long non-operational periods, the tube should be operated with a zero grid 2 voltage for at least 20 minutes. After non-operational periods of about a month the tube should be run under that condition for 10 minutes.

## Code: W45B/5E

## CONTINUED

## PROCEDURE FOR TUBE REMOVAL

1. Switch off all power supplies to the tube.
2. Unscrew the securing cap of the supply connector socket and withdraw the socket from the tube base and mount.
3. Disconnect the r.f. input and output cables and unscrew the adaptors.
4. Open mount by releasing the outside clip.
5. Remove the circular nuts from the two studs which position the tube in the mount and carefully lift the tube and field straightener off the studs and remove from the mount.
6. Unscrew the bolt fastening the field straightener to the r.f. input terminal assembly.
7. Slide the tube out of the field straightener.

## Code: W45B/5E

Fig. 1.-Typical Power Supply Circuit


Code: W45B/5E

## CONTINUED

Fig. 2.-Typical Gain, Peak Power Output and Helix Voltage versus Frequency. Video Transmitter Service



## Code: W45B/5E

## CONTINUED

Fig. 3.-Typical Gain, Peak Power Output and Helix Voltage versus Frequency. Common Sound and Vision Transmission



## Code: W45B/5E

CONTINUED

Fig. 4.-Typical Peak Power Output versus Helix Voltage. Common Sound and Vision Transmission


## Code: W45B/5E

## CONTINUED

Fig. 5.-View of WM455A Mount in Opened Position.

A. Earth terminal
B. R.F. output connector
C. Collector supply lead
D. Field straightener
E. R.F. input connector
F. Focus ring assembly
G. Tube base pins
H. Clamping studs and nuts
J. Magnet system
K. Collector cooling fins
L. Case fastening clip
M. Hinge
N. Fixed soft iron ring
O. Adjustable iron ring

Code: W45B/5E

Fig. 6.-W45B/5E Dimensioned Outline



2

PIN	ELECTRODE
1	HEATER
2	HEATER (I.C.
3	I.C. PIN 2
4	GRID. I
5	CATHODE (I.C.
6	I.C. PIN 5
7	GRID 2


BODY $X$	HELIX
CAP $Y$	COLLECTOR


DIM	MILLIMETRES	INCHES
A	733,0	28.86
B	109,0	4.29
C	52,5	2.07
D	31,2	1.23
E	81,5	3.21
F	28,0	1.10
G	116,5	4.59
H	384,0	15.12
J	168,0	6.61

BASIC DIMS ARE MILLIMETRES

## Code: WM455A

## CONTINUED

Fig. 7.-WM455A Mount Dimensioned Outline


Fig. 8.-Diagram showing Operational Features of WM455A Mount


## Code: WM455B

## CONTINUED

Fig. 9.-WM455B Mount Dimensioned Outline


## Code: WM455B

## CONTINUED

Fig. 10.-Diagram showing Operational Features of WM455B Mount


## Code: W45B/5E

## CONTINUED

Fig. 11.-Definitions of 3 -tone and 2 -tone Tests

(b) 2 TONE TEST


# MEDIUM POWER TRAVELLING-WAVE AMPLIFIER TUBES Codes: W3MC/3A: W3MC/3B: W3MC/3C: W3MC/5A: W3MC/6A. 

These tubes are intended for use in microwave radio links operating in the $10 \cdot 7$ to $13 \cdot 25 \mathrm{GHz}$ frequency band.

Each type comprises a travelling-wave tube packaged in its periodic permanent magnet focusing mount; all types are basically similar in outline.

The W3MC/3A, W3MC/3B and W3MC/3C differ from one another in respect of certain minor electrical and mechanical features specified later.
Other variants of the W3MC series with the frequency range extended downwards to $9.0 G H z$ can be supplied if required.

Facilities are available for re-tubing packages by the manufacturer at the end of tube life.

RADIO FREQUENCY PERFGRMANCE (Note 1)

	W3MC/3A-3B-3C	W3MC/5A	W3MC/6A	
Operating frequency range	10.7 to 11.7	$11 \cdot 7$ to $12 \cdot 7$	12.7 to 13.25	GHz
Saturated output power, minimum	15	10	10	W
Working power output	10	$7 \cdot 5$	$7 \cdot 5$	W
Gain at working output (Note 2)				
minimum	40	38	38	dB
maximum	45	45	45	dB
Noise factor at working output, maximum				
Reverse attenuation at working output, minimum	65	65	65	dB
AM/PM conversion at working output, maximum	$2 \cdot 5$	$2 \cdot 5$	$2 \cdot 5$	$0 / \mathrm{dB}$
Phase sensitivity at working output, maximum				
$\mathrm{d} \Phi / \mathrm{d} \mathrm{V}_{\text {hel }}$	-2	-2	-2	$0 / \mathrm{V}$
$\mathrm{d} \Phi / \mathrm{d} \mathrm{V}_{\mathrm{g}}$ ?	$+0 \cdot 5$	+0. 5	$+0.5$	O/V
Change in gain with $V_{\text {hel }}$ at working output, maximum				
$\Delta G$ for $\pm 1 \%$ change	$0 \cdot 4$	D.4	$0 \cdot 4$	dB
$\Delta G$ for $\pm 2 \%$ change	-1.0	-1.0	-1.0	dB
Change in gain with $\mathrm{V}_{\mathrm{g}} 2$ at working output for up to $\pm 2 \%$ change in				
VSWR, maximum (Note 3)				
input	1-5:1	1-5:1	1-5:1	
output	2-0:1	2.0:1	2•0:1	

## ITT Components Group Europe Standard Telephones and Cables Limited

## RADID FREQUENCY PERFORMANCE (continued)

Modulation noise at working output
The noise in any 4 kHz band from 0.5 MHz to 10 MHz from the carrier does not exceed that value equivalent to $30 d B$ noise figure after 10 hours operation.

Note 1. Typical power output, gain and helix voltage versus frequency graphs are shown in Figures 1, 2 and 3; AM/PM conversion versus output power is shown in Figure 4 and output power versus input power in Figure 5.

Note 2. With helix voltage optimised for maximum gain at working output.
Note 3. The input and output match is pre-set; the figures quated apply across the frequency band for any specified tube.

## TYPICAL OPERATING CONDITIONS (Note 4)

Frequency	$10 \cdot 7$		$11 \cdot 7$		$13 \cdot 25$		GHz
Direct helix to cathode voltage (Note 2)							
at 10W working output power	4	320	4	270			V
at $7 \cdot 5 \mathrm{~W}$ working output power			4	250	4	180	V
Direct grid 2 to cathode voltage	1	910	1	910	1	910	V
Direct collector (earth) to cathode voltage	2	400	2	400	2	400	V
Direct grid 1 valtage (Nate 5)		-15		-15		-15	V
Direct helix current at working output		0.4		0.4		0.4	mA
Direct grid 2 current		+2		+2		+2	$\mu A$
Direct cathode current		$36 \cdot 4$		36.4		$36 \cdot 4$	mA
Synchronous gain (Note 2)							
at 10W working output, approx.		$43 \cdot 5$		42.8			dB
at 7.5W working output, approx.				44		$39 \cdot 7$	dB
Saturated output, approx.		$17 \cdot 5$		$16 \cdot 0$		$11 \cdot 5$	W

Note 4. Electrode voltages are referred to cathode potential. The collector is earthed.

Note 5. Adjusted to optimum value for focusing at the required power level. Switch-on and test figures are quoted in the data sheets supplied with each tube. A change in grid 1 voltage may necessitate readjustment of grid 2 voltage.
CATHODE
Indirectly-heated, oxide coatéd type.

HEATER
Heater voltage (Note 6)
Heater voltage tolerance long term average short term fluctuations of up to 2 min . duration
Heater current
Heater pre-heat time
Interruption time for zero ore-heat

Min. Nom. Max.

	6.3		$V$
		$\pm 3$	$\%$
0.7	0.82	$\pm 5$	$\%$
60		1	A
		10	s
			s

Note 6. With exception of W3MC/3C, the heaters of all tubes are usually supplied from a d.c. voltage or an r.m.s. equivalent at a frequency between 45 and 65 Hz ; other frequencies may be used but the manufacturer should be consulted beforehand. If a heater is operated with d.c., it is preferable to make the free heater lead negative with respect to cathode.
The W3MC/3C heater must be operated from a d.c. supply with the free heater lead negative with respect to cathode; this is to enable the time elapsed meter to operate correctly.


## ENVIRONMENTAL CONDITIONS

Operating ambient temperature ranges and altitudes for full specification performance are:
-100 C min. to $+65^{\circ} \mathrm{C}$ max. up to 5000 ft . (1 524m)
$-10^{\circ} \mathrm{C}$ min. to $+60^{\circ} \mathrm{C}$ max. up to 10000 ft . ( 3 O 48 m )
$-10^{\circ} \mathrm{C}$ min. to +500 C max. up to 15000 ft . ( 4552 m )
Operation down to $-30^{\circ} \mathrm{C}$ is possible with a slight degradation of performance. Storage ambient temperature range and altitude are:
-350 Cmin . to $+75^{\circ} \mathrm{C}$ max. up to 45000 ft . (13 656m)
Humidity $95 \%$ max. at $+65^{\circ} \mathrm{C}$

## TUBE LIFE

Shelf life
Operational life
Life-end points
(a) grid 2 voltage greater than $2 \cdot 8 \mathrm{kV}$ for 36 mA collector current
(b) helix current greater than 2 mA for 36 mA collector current, or
(c) change in power output or gain by more than 2 dB from initial values

## GENERAL DESCRIPTION DF TUBE PACKAGES

The W3MC series are assemblies in which the travelling-wave tube is encapsulated in its mount. The mount incorporates a periodic permanent magnet focusing system, r.f. coupling waveguides with the matching elements pre-set and non-adjustable, pre-set and non-adjustable tube focusing, and a convection collector cooler.
Types W3MC/3A, W3MC/5A and W3MC/6A cover consecutive portions of the overall operating frequency band of the tube series. The code suffices $A, B$ and $C$ of the three W3MC/3 tubes denote small differences in electrical and mechanical specifications, referred to in this section and shown in the drawings at Figures 7 and 8 .

A screened cable attached to the mount carries the electrode supplies; it also earths the mount body. The leads of this cable are effectively choked for microwave frequencies. Certain mounts, detailed later, incorporate resistors in the grid 2 and helix leads to limit surges.
Tapped holes are provided in the sides of the mounts for use in installation in equipment.

The mounts are intended for horizontal positioning which allows correct operation of the convection cooler. The cooler will operate efficiently in any horizontal orientation of the mount.
The W3MC/3C contains an elapsed time meter which operates off the d.c. heater supply: it is provided to record tube life up to 10000 hours.

## MECHANICAL DATA

Dimensions	As shown in Figures 7 and 8.
Fixing of mounts	Attach mounts to main equipment with $1 / 4$ UNC non-
	magnetic screws locating in tapped holes $5 / 8$ inch
deep provided in sides of mounts.	
Waveguide connexions (input and output)	
	All mounts are fitted with flanges as shown in
	Figure 9 for connection to WG17 (WR75). Tin-
	plated shims and screws, which are available if
required, should be used for connection to brass	
	waveguide flanges.

## ELECTRICAL DATA

Ratings (all mounts)			
Heater and heater-cathode Helix   Grid 2	to body of mount, max	mum volta	- 9
Lead resistance (including limiting resistors)			
	W3MC/3A-5A-6A	W3MC/3B	W3MC/3
Grid 2	$0 \cdot 03 \Omega$	$47 \mathrm{k} \Omega$	$47 \mathrm{k} \Omega$
Helix	$0.03 \Omega$	$0.03 \Omega$	$4.7 \mathrm{k} \Omega$
Heater (Note 8)	$0.05 \Omega$	$0.05 \Omega$	0.05

Note 8. At current of 2 A . Heater line voltage drop 0.04V.

## D.C. SUPPLY REQUIREMENTS

The callector is connected to the body of the mount through the coaler. It is intended that the mount shall be operated at earth potential. Voltages must be applied in the correct sequence as shown in the SETTING-UP PROCEDURE section of this data.

Helix Voltage
The helix voltage should be adjustable to obtain the required working conditions. Voltage ranges are:
for 7.5 W and 10 W working 3.9 to 4.4 kV
for saturation 4.0 to 4.6 kV
Ripple and regulation tolerances depend on acceptable phase and output amplitude variation (refer to RADIO FREQUENCY PERFORMANCE section).
The use of a protective series resistor, value $4.7 \mathrm{k} \Omega$, in the power supply line, is recommended: this resistor is already fitted in some mount types before delivery (refer to ELECTRICAL DATA section).
The power supply impedance, including that of the protective resistor, should not exceed $20 k \Omega$. This is required to avoid excessive voltage drop at switch-on.
A trip circuit set to operate at 2 mA must be incorporated in the helix supply to prevent burn-out of the tube by the passage of excessive helix current.
Collector Voltage
For operation with depressed collector at 36 mA the recommended collector
voltage is 2.4 kV at which value optimum life will be obtained. Under power supply fault conditions the tube will not be damaged by operation at $2 \cdot 0 \mathrm{kV}$.

Grid 2 Voltage
This should be adjustable for required working conditions. For 36 mA collector current voltage ranges are:

```
throughout tube life 1.8 to 2.8kV
for new tube 1.8 to 2.5kV
```

Grid 2 current Negative values of up to $50 \mu \mathrm{~A}$ may occur
The use of a protective series resistor, value $47 k \Omega$, in the power supply line is recommended (see ELECTRICAL DATA section).

## Grid 1 Voltage

Adjustable for minimum helix current, range 0 to -35 V .

Efficient operation of the W3MC series of tubes depends upon certain prime requirements being met during conditions of switch-on and continuous warking.

These requirements are such that satisfactory periodic focusing cannot be achieved with low helix voltages.
If the tube is operated with helix voltages below the minimum limit of 3900 volts, the helix current will be excessive, the actual value of current being dependent upon the setting of the grid 2 voltage relative to helix voltage.
When switching on, it is imperative that the helix current does not exceed the transient values given in the tube limit ratings.

A suitable cathode control circuit is shown in Figure 6. The grid 2 voltage is supplied from a potentiometer connected across the helix supply, the grid 2 voltage always being proportional to, but less than, the helix voltage. The recommended setting for switch-an is 1800 volts on grid 2 with respect to cathode, and a helix supply of 4350 volts. The switch-on of grid 2 voltage should be delayed until helix voltage has reached 3900 volts.

The delaying device, for example a reed relay, should also operate to cut off the grid 2 voltage in the event of the helix trip being operated; this is to prevent excessive grid 2 current being passed.

The $10 M \Omega$ bleed resistor prevents build-up of the static charge on grid 2 during the period when the helix and collector voltages only are applied.
On final switch-off, the grid 2 voltage should precede the helix voltage on a time scale such that the grid 2 valtage drops below 500 volts before the helix voltage falls to 3900 volts.

## CODLING

The air flow through the cooler requires a free space of 2 inches ( 5 cm ) around the cooler slots with access to a free supply of air at ambient temperature. The cooler temperature under normal conditions of operation is about $180^{\circ} \mathrm{C}$ above ambient.

At altitudes up to 15000 feet ( 4552 m ), and within the maximum ambient temperature specified, free convection is adequate for dissipations up to the specified limit rating. When it is required to exceed either the ambient temperature or the collector dissipation limits, or to mount the package in a plane other than that specified, forced-air-cooling is necessary and the manufacturer should be consulted regarding the air flow applicable to particular requirements.

## PROXIMITY OF MAGNETIC MATERIALS

Saft magnetic materials should be kept at least 2 inches (5cm) away fram the exterior of mounts.
Magnetised materials in the vicinity of the mounts must be positioned so that the helix current at fully saturated output does not increase by more than 0.05 mA .

Assistance with focusing tests in the presence of permanent magnets, and guidance concerning their position is readily available from the manufacturer.

## SETTING-UP PROCEDURE

1. Apply heater voltage and allow 1 minute heating time.
2. Apply grid 1 voltage as specified in data sheet supplied with tube.
3. Make the following adjustments before switching on to ensure that the helix current will not exceed that value which causes the trip to operate:
(a) switch-off any r.f. drive.
(b) pre-set grid, 2 valtage (cathode current control) to give about 1800 volts at switch on; this corresponds to a cathode current of about 30 mA .
4. After the 1 minute cathode pre-heat, switch on collector voltage at $2 \cdot 4 \mathrm{kV}$.
5. Switch on the helix voltage at 4350 volts and, using the automatic delay, apply the grid 2 voltage at the pre-set value. (See Note 8).
6. Increase the grid 2 voltage to give a collector current of 36 mA .
7. Adjust grid 1 voltage to minimise helix current. Re-adjust grid 2 voltage if necessary, to maintain collector current.
8. Apply r.f. input and adjust helix voltage to give maximum power output.
9. Re-adjust grid 1 voltage and then grid 2 voltage if necessary.

Note 8. Provided that the rise time of the collector voltage is not greater than that of the helix voltage, these supplies may be switched on together.

## W3MC Series

Fig. 1. Typical Saturated Output versus Frequency


Fig. 2. Typical Synch. Gain at Working Output versus Frequency


Fig. 3. Typical Synch. Helix Voltage at Working Power Output versus Frequency


Fig. 4. Typical AM/PM Conversion versus Power Output


Fig. 5. Typical Power Output versus Power Input


Fig. 6. Typical Cathode Current Control Circuit


## W3MC Series

Fig. 7. Outline of W3MC/3A, W3MC/3B, W3MC/5A, W3MC/6A


TERMINAL SUPPLY CONNECTIONS

LEAD	ELECTRODE
GREEN	GRID I
BLUE	GRID 2
YELLOW	HEATER-CATHODE
BROWN	HEATER
ORANGE	HELIX
BLACK	COLLEC TOR


DIM	INCHES
A	$33 / 4 \pm 1 / 16$
B	$131 / 4 \pm \frac{1}{4}$
C	$47 / 64 \pm 1 / 16$
D	$35 / 8 \pm 1 / 32$
$E$	$3 \frac{3}{4} \pm \frac{1}{16}$
F	5 MAX
G	$3 \pm 1 / 8$
H	$27 / 8 \pm 1 / 8$
J	3.900 AUX
K	$5.590 \pm .020$
L	$33 / 4 \pm 1 / 8$
M	$21 / 8 \pm 1 / 32$

Fig. B. Dutline of W3MC/3C


TERMINAL SUPPLY CONNECTIONS

LEAD	ELECTRODE
GREEN	GRID I
BLUE	GRID 2
YELLOW	HEATER = CATHODE
BROWN	HEATER
ORANGE	HELIX
BLACK	COLLECTOR


DIM	INCHES
A	$3 \frac{3 / 4 \pm 1 / 16}{}$
$B$	$13 / 4 \pm 1 / 4$
$C$	$47 / 64 \pm 1 / 16$
$D$	$3 \frac{5}{8} \pm 1 / 32$
$E$	$3 \frac{3}{4} \pm 1 / 16$
$F$	5 MAX
$G$	$3 \pm 1 / 8$
$H$	$27 / 8 \pm 1 / 8$
$J$	3.900 AUX
$K$	$5.590 \pm .020$
$L$	$3^{3 / 4} \pm 1 / 8$
$M$	$2 \frac{1}{8} \pm 1 / 32$

Fig. 9. Flange Outline


The millimetre dimensions are derived
from the original inch dimensions

Dim	Millimetres	Inches
A	$13.21 \pm 0.03$	$0.520 \pm 0.001$
B	$14.25 \pm 0.03$	$0.561 \pm 0.001$
C	$38.10 \pm 0.13$	$1.500 \pm 0.005$
D	$9.53 \pm 0.05$	$0.375 \pm 0.002$
E	$19.05 \pm 0.05$	$0.750 \pm 0.002$
G	$4.75 \pm 0.25$	$0.187 \pm 0.010$
H	$3.56 \pm 0.05$	$0.1405 \pm 0.002$
J	$7.93 \pm 0.13$	$0.312 \pm 0.005$


Geometric Tolerances			
Feature	Characteristic	Tolerance	Datum
FaceV	Flatness	0.002 Wide	

ANGLE OF FACE $V$ TO $\&$ OF WAVEGUIDE
APERTURE $90^{\circ} \pm 1 / 4^{\circ}$


# LOW-NOISE X-BAND TRAVELLING WAVE TUBES CODES: W3MQ/1A W3MQ/1B 

These travelling-wave tubes are supplied completely packaged in a single reversal permanent magnet mount. The W3MQ/1A has waveguide connectors to WG16 and the W3MQ/IB has coaxial transducers added. The devices are designed for operation as wide-band amplifiers over the frequency range 7 to $11.5 \mathrm{Gc} / \mathrm{s}$ or for use over narrower frequency ranges in the same band. Where narrow band operation is required by the customer, the tube will be optimised for the particular band specified.

## CATHODE

Indirectly heated, oxide coated

Heater voltage	6.3	V
Nominal current	0.5	A
Minimum pre-heat time	120	s
Maximum heater interruption time	5	s

## R.F. CHARACTERISTICS *

Gain, small signal, minimum 35 db
Noise factor, maximum, wide-band operation ( 7 to $11.5 \mathrm{Gc} / \mathrm{s}$ ) 11 db
Power output 2 to 15 mW

* Typical broad-band performance curves are shown in Figure 1.


## Continued

## ELECTRICAL CHARACTERISTICS

Electrode Voltages and Effect on Phase Change


## MECHANICAL DATA

Dimensions	As shown in outline drawings		
Weight, approx.	21 lb	9,5	kg

## OPERATIONAL PROCEDURE

1. Connect waveguide transitions to the mount; this should be done with a nonmagnetic screwdriver.
2. Connect colour coded leads to the power supply as follows :-

$$
\begin{array}{lll}
\text { Cathode - Yellow } & \text { Grid } 3 & \text { - Grey } \\
\text { Heater - Brown } & \text { Grid } 4 & \text { - White } \\
\text { Grid 1 - Green } & \text { Helix }- \text { Orange } \\
\text { Grid } 2 \text { - Blue } & \text { Collector - Red }
\end{array}
$$

3. Switch on heater supply and allow two minutes cathode pre-heat time.
4. Apply the voltages specified on the mount label to the collector, helix, grid 4 and grid 3 either in this order or simultaneously. Either the collector or the cathode may be run at earth potential.
5. Set the grid 2 voltage and then the grid 1 voltage to the specified values. As the collector current increases, the helix current may rise to as much as $30 \mu \mathrm{~A}$ but should drop to a few microamps as the operating current is reached.
6. To obtain optimum focusing, slight adjustment of grid 3 and grid 4 voltages may be necessary.
7. With the voltages specified, optimum broadband noise performance should be obtained, but to optimise over a narrow frequency band within the normal operating band the helix voltage should be adjusted. Normally, the optimum voltage will be found between 15 V below and 10 V above that specified for broadband operation, with the lower voltages applying to the lower frequencies. When the helix voltage is changed, the grid 3 and grid 4 voltages should be adjusted again; normally the best noise figure is found close to the optimum focusing condition.
8. The broadband gain is flattest when using the specified voltages and rises at lower frequencies when the helix voltage is reduced. Should lower overall gain be required, the collector current may be reduced by decreasing the grid 2 voltage but the noise figure may then deteriorate.
9. Care must be taken to avoid bringing magnetic materials close to the mount as this may permanently affect the focusing. It is essential that non-magnetic screws be used in the mount body fixing holes.
10. A plot of the magnetic field for the mount in the absence of magnetic screening is shown in Figure 2.

W3MQ/IA
W3MQ/IB

CODES: W3MQ/1A
W3MQ/1B
Continued

Fig. 1. Typical R.F. Performance




FEBRUARY, 1965
$\left.\begin{array}{l}\text { W3MQ/IA } \\ \text { W3MQ/IB }\end{array}\right\}-4$

Fig. 2. Plot of External Magnetic Field


W3MQ/IA
CODES: W3MQ/1A
W3MQ/1B

## W3MQ/IA OUTLINE



DIM	INCHES	MILLIMETRES
A	$15 / 4 \mathrm{MAX}$	387.4 MAX
B	$33 / 8 \mathrm{MAX}$	85,7 MAX
C	$31 / 4$ MAX	82,6 MAX
D	$8 \pm 1 / 32$	203,2 $\pm 0.8$
E	$43 / 4 \pm 1 / 8$	$120.7 \pm 3.2$
F	$21 / 2 \pm 1 / 32$	$63.5 \pm 0.8$
G	$1 \pm 1 / 16$	25,4 $\pm 1,6$
H	$7.830 \pm 0.060$	$198.88 \pm 1.52$
$J$	$5 / 8 \pm 1 / 16$	$15,9 \pm 1.6$

NOTE :-BASIC DIMENSIONS ARE INCHES

W3MQ/IB OUTLINE



CONNECTIONS

LEAD	ELECTRODE
BROWN	HEATER
YELLOW	h.K.
GREEN	GI
BLUE	G 2
GREY	G3
WHITE	G4
ORANGE	HELIX
RED	COLL


DIM	INCHES	MILLIMETRES
A	$151 / 4 \mathrm{MAX}$	387,4 MAX
B	$3^{3} / 8 \mathrm{MAX}$	$85,7 \mathrm{MAX}$
C	$4^{5 / 8 \mathrm{MAX}}$	$117,5 \mathrm{MAX}$
D	$8 \pm 1 / 32$	$203.2 \pm 0.8$
E	$4^{3 / 4} \pm 1 / 8$	$120.7 \pm 3.2$
F	$2^{1 / 2} \pm 1 / 32$	$63.5 \pm 0.8$
G	$1 \pm 1 / 16$	$25.4 \pm 1.6$
H	$7.830 \pm 0.060$	$198.88 \pm 1.52$
J	$5 / 8 \pm 1 / 16$	$15.9 \pm 1.6$

NOTE:-BASIC DIMENSIONS ARE INCHES

C) 1965 Standard Telephones and Cables Limited

Printed by STC Paignton, Englar Standard Telephones and Cables Limited COMPONENTS GROUP

VALVE DIVISION
LONDON SALES OFFICE
PAIGNTON . DEVON
Telephone: Paignton 58685
Telex:

- KENT

Z/Gen.

## SPECIAL VALVES

## Klystrons

## General Information

## REFLEX KLYSTRONS

Reference	Code	Frequency Range (MHz)	Min.   Power   Output   (W)	Resonator Voltage (V)	Collector or Reflector Voltage (V)	Beam Current (mA)
Z237/1KW	Z237/1KW	3505 to 3535	$0 \cdot 125$	300	$\begin{gathered} -90 \text { to } \\ -140 \end{gathered}$	55

POWER KLYSTRONS

Reference	Code	Frequency Range (MHz)	Min. Power Output (kW)	Min. Power Gain (db)	Beam Voltage (kV)	Beam Current (A)	Heater Voltage (V)
Z154/100Q	4KM100LA	470 to 610	25	40	18	4.8	26
Z165/100Q	4KM100LF	590 to 720	25	40	17.5	4.5	26
Z180/100Q	4KM100LH	720 to 890	25	40	19	4.9	26
Z211/1G (CV5314)	Z211/1G	950 to 1213	7	34	15	2 (peak)	$12 \cdot 6$

## $\square$

These klystrons are intended for use as final amplifiers in the vision and sound sections of u.h.f. t.v. transmitters: they are also suitable for t.v. transposer service.
The tubes are of the four-integral cavity type and are magnetically focussed. Incorporated is a modulating anode for beam current control which enables the tubes to be operated at lower power levels in sound transmitters whilst using the same beam voltage supply as the vision amplifier klystrons: in addition, the electrode may be used as a protective device for vision operation.
Each tube operates in an approved focus mount assembly, incorporating the focus electromagnet system in which the klystron will give the performance specified in these data sheets.
Whilst the three tubes have similar electrical characteristics and performances, each covers a different frequency range, as follows:

Klystron	Mount	Frequency   range (MHz)
Z153/50Z	ZM153	470 to 598
Z163/50Z	ZM163	598 to 710
Z173/50Z	ZM173	710 to 854

In transmitters using a third klystron for combined vision and sound signals as an emergency reserve, the tubes are suitable for operation at $2,5 \mathrm{~kW}$ peak sync. power output, where the vision/ sound powers ratio is 5:1.
If required, the tubes can be supplied already broadband tuned for vision operation in specified channels.

A special feature of these tubes is that they are designed to fit into the existing sockets of the following ITT external-cavity klystrons, or the sockets of similar tubes of other manufacturers which use the same types of mourt assemblies:

Z151/50Z used in ZM151 mount Z161/50Z used in ZM161 mount Z171/50Z used in ZM171 mount
The conversion of existing mounts to accept the $Z 153 / 50 Z$ series of tubes can be effected very simply by the use of available small kits of accessories.(See page 10).

## Abridged Data

Power output, saturated (kW) 15 Power gain, typical (dB) 43 Bandwidth (MHz) 8,0 Beam voltage (kV) 13 Dutput connection special quick-fit for EIA 1,625 inch rigid coaxial line (50 )
Cooling

collector	o
	,

## Cathode/Heater

Cathode indirectly heated Heater voltage, min.
(Note1) (V) 5,0

Heater current range (A) 38 to 44 Heater starting
current, peak, max. (A) 84
Cathode heating time (min) 5,0
Note 1. New tubes should be operated at $5,0 V$. Heater voltage may have to be increased to $5,5 \mathrm{~V}$ max. as life progresses.

July 1972

MAXIMUM (ABSOLUTE) RATINGS (No individual rating should be exceeded)

Beam voltage, continuous	(kV)	14	Collector dissipetion (kW) 45
Beam current, mean	(A)	3,5	Load VSWR (Note 2) 1,5:1
Body current with zero input power at saturated power	(mA)	50	Notee 2. Tubes will operate at this figure without damage but satisfactory t.v. operation can
output	(mA)	150	be assured only if load VSWR does
Fower output, saturated	(kW)	45	not exceed 1,1:1

TYPICAL OPERATING CONDITIONS - Television Vision Amplifier Service
(For T.V. transmitter giving sync. power output of $12,5 \mathrm{~kW}$ )
Z153/50Z in ZM153 Mount

Frequency range	( MHz )	470-478	526-534	590-598
Channel		21	28	36
Beam voltage	(kV)	1.3	13	13
Beam current	(A)	3,0	3, 0	3,0
Modulating anode voltage	(kV)	13	13	13
Modulating anode current	(mA)	1,0	1,0	1,0
Electromagnet current (Note 3)	(A)	12,2	11,8	11,5
Bandwidth (Notes 4,5)	( MHz )	8,0	8,0	8,0
Body current (Note 6)				
with zero input power	(mA)	15	14	13
black level, +sync. (11kW)	(mA)	24	23	21
frequency	(mA)	30	34	36
Drive power (Notes 7,8)				
at $12,5 \mathrm{~kW}$ output	( W)	0,45	0,35	0,35
at 10kW output	(W)	0,32	0,27	0,27
Power gain (Note 8)	(dB)	44,4	45,5	45,5
Differential gain (Notes 4,9)	(\%)	74	72	70
Differential phase (Notes 4,10)	(0)	6,5	4,5	5,0
AM noise (Note 11)	(dB)	60	60	60
Linearity (Notes 4,12)	(\%)	74	73	72
Power output, saturated (Note 8)	( kW )	16	15,5	15
Efficiency (Notes 8,13)	(\%)	32	32	32

( Notes are given on pages 8 and 9 )
Z163/50Z in ZM163 Mount
Frequency range
Channel
Beam voltage
Beam current
Modulating anode voltage
Modulating anode current
Electromagnet current (Note 3)
Bandwidth (Notes 4,5)

$(\mathrm{MHz})$	$598-606$
	37
$(\mathrm{kV})$	13
$(\mathrm{~A})$	3,0
$(\mathrm{kV})$	13
$(\mathrm{~mA})$	1,0
$(\mathrm{~A})$	11
$(\mathrm{MHz})$	8,0


$654-662$	$702-710$
44	50
13	13
3,0	3,0
13	13
1,0	1,0
11,2	11,4
8,0	8,0

## Z163/50Z in ZM163 Mount - continued

Body current (Note 6)

with zero power input	(mA)	14	15	15
black level, +sync. (11kw)	(mA)	23	24	25
at $12,5 \mathrm{~kW}$ c.w. output, vision frequency	(mA)	30	32	36
```Drive power (Notes 7,8) at 12,5kW output```	(W)	0,45	0,35	0,34
at 10 kW output	(W)	0,33	0,28	0,27
Power gain (Nate 8)	(dB)	44,4	45,5	45,6
Differential gain (Notes 4,9)	(\%)	73	76	74
Differential phase (Notes 4,10)	(0)	7,0	4,5	5,6
AM noise (Note 11)	(dB)	60	60	60
Linearity (Notes 4,12)	(\%)	75	77	76
Power output, saturated (Note 8)	(kW)	16	16,5	16
Efficiency (Notes 8,13)	(\%)	32	32	32

Z173/50Z in ZM173 Mount

Frequency range	(MHz)	710-718	782-790	846-854
Channel		51	60	68
Beam voltage	(kV)	13	13	13
Beam current	(A)	3,0	3,0	3,0
Modulating anode voltage	(kV)	13	13	13
Modulating anode current	(mA)	1,0	1,1	0,8
Electromagnet current (Note 3)	(A)	$1 i$	11,2	11,2
Bandwidth	(MHz)	8,0	8, 0	8,0
Body current (Note 6)				
with zero input power	(mA)	12	14	15
black level, +sync. (11kW)	(mA)	17	21	24
at $12,5 \mathrm{~kW}$ c.w. output, vision frequency	(mA)	30	33	34
Drive power (Notes 7,8)				
at $12,5 \mathrm{~kW}$ output	(W)	0,4	0,35	0,3
at 10 kW output	(W)	0,32	0,27	0,23
Power gain (Nate 8)	(dB)	44,9	45,5	46,1
Differential gain (Notes 4,9)	(\%)	70	70	72
Differential phase (Notes 4,10)	(0)	5,0	4,5	6,5
AM noise (Note 11)	(dB)	61	60,7	61
Linearity (Notes 4,12)	(\%)	70	70	75
Power output, saturated (Note 8)	(kW)	14,5	14,5	16
Efficiency (Notes 8,13)	(\%)	32	32	32

(Notes are given on pages 8 and 9)

TYPICAL OPERATING CONDITIONS - Television Sound Amplifier Service

 (For T.V. transmitter giving 2,5kW power output) (Note 16)
Z153/502 in ZM153 Mount

Frequency range	(MHz)	470-478	526-534	590-598
Channel		21	28	36
Beam voltage	(kV)	13	13	13
Beam current	(A)	0,65	0,65	0,65
Modulating anode voltage	(kV)	4,6	4,6	4,6
Modulating anode current	(mA)	0	0	0
Electromagnet current (Note 3)	(A)	10	10,1	10,3
Bandwidth to $1, \mathrm{OdB}$ points (Note 14)	(MHz)	0,5	0,5	0,5
Body current (Note 15) with zero power input at $2,5 \mathrm{~kW}$ power output,	(mA)	5,0	5,4	5,0
sound frequency	(mA)	7,0	7,5	7,3
Drive power (Note 7) at $2,5 \mathrm{~kW}$ power output	(W)	0,08	0,10	0,09
Efficiency, min.	(\%)	30	30	30

(Notes 3 to 15 are given on pages 8 and 9).
Z163/50Z in ZM163 Mount
Frequency range
Channel
Beam voltage
Beam current
Modulating anode voltage
Modulating anode current
Electromagnet current (Note 3)
Bandwidth (Note 14)
Body current (Note 15)
with zero input power
at 2,5KW output, sound
\quad frequency
Drive power (Note 7)
at 2,5kW output
Efficiency, min.
(MHz)
(kV)
(A)
(kV)
(mA)
(A)
$(M H z)$
$(m A)$
$(m A)$
(W)
$(\%)$

Z173/50Z in ZM173 Mount

Frequency range
Channel
Beam voltage
Beam current
Modulating anode voltage
Modulating anode current
Electromagnet current (Note 3)
Bandwidth (Note 14)

July 1972

(MHz)	$710-718$	$782-790$	$846-854$
(kV)	51	60	68
$(\mathrm{~A})$	13	13	13
(kV)	0,65	0,65	0,65
$(\mathrm{~mA})$	4,6	4,5	4,55
$(\mathrm{~A})$	0	0	0
(MHz)	10,4	10,5	10,7
	0,5	0,5	0,5

Z173/50Z in ZM173 Mount - continued				
Bady current (Note 15) with zero input power at 2,5kW input power, sound frequency	(mA)	4,0	4,5	3,0
Drive power (Note 7) at 2,5kW power ou put	(mA)	8,0	9,5	8,7
Efficiency, min.	(W)	0,11	0,14	0,13

TYPICAL OPERATING CONDITIONS - Television Combined Vision and Sound Service (For T.V. transmitter giving power outputs of $2,25 \mathrm{~kW}$ vision and $0,45 \mathrm{~kW}$ sound)
Information regarding operation at reduced power levels is available on request from the manufacturer.
2153/50Z in ZM153 Mount

Frequency	(MHz)	470-478	526-534	590-598
Channel		21	28	36
Beam voltage	(kV)	12,5	12,5	12,5
Beam current	(A)	2,9	2,9	2,9
Modulating anode voltage	(kV)	12,5	12,5	12,5
Modulating anode current	(mA)	1,0	1,0	1,0
Electromagnet current (Note 3)	(A)	10,8	11,2	11,4
Bandwidth (Note 17)	(MHz)	8,0	8,0	8,0
Body current				
with zero input power	(mA)	10	11	12,5
at $2,5 \mathrm{~kW}$ output, vision frequency	(mA)	11,5	13	14
Drive power (Notes 8,18) at $2,5 \mathrm{~kW}$ power output	(w)	0,1	0,12	-,11
Intermodulation products (Note	(dB)	-50,5	-51	-51,5

Z163/50Z in ZM163 Mount

Frequency	(MHz)	598-606	654-662	702-710
Channel		37	44	50
Beam voltage	(kV)	12,5	12,5	12,5
Beam current	(A)	2,9	2,9	2,9
Modulating anode voltage	(kV)	12,5	12,5	12,5
Modulating anode current	(mA)	1,0	1,0	1,0
Electromagnet current (Note 3)	(A)	10,8	10,4	10,7
Bandwidth (Note 17)	(MHz)	8, 0	8,0	8,0
Body current				
with zero input power	(mA)	11	12	11,5
at $2,5 \mathrm{~kW}$ output, vision frequency	(mA)	12	13,5	12,8
Drive power (Notes 8,18) at $2,5 \mathrm{~kW}$ power output	(W)	0,1	0,13	0,13
Intermodulation products (Note	(dB)	-50,5	-51	-51,5

(Notes are given on pages 8 and 9)

TYPICAL OPERATING CONDITIONS - Television Combined Vision and Sound -
Z173/50Z in ZM173 Mount

Frequency	(MHz)	710-718	782-790	846-854
Channel		51	60	68
Beam voltage	(kV)	12,5	12,5	12,5
Beam current	(A)	2,9	2,9	2,9
Modulating anode voltage	(kV)	12,5	12,5	12,5
Modulating anode current	(mA)	1,0	1,2	1,5
Electromagnet current (Note 3)	(A)	10,4	10,8	11,2
Bandwidth	(MHz)	8,0	8,0	8, 1
Body current				
with zero input power	(mA)	11	12,5	13
at $2,5 \mathrm{~kW}$ output, vision frequency	(mA)	13	14	13,9
Drive power (Notes 8, 18) at $2,5 \mathrm{~kW}$ power output	(W)	0,1	0,09	0,095
Intermodulation products (Note 19)	(dB)	-51,5	-51	-50,5

RANGE OF CHARACTERISTICS FOR EQUIPMENT DESIGN

Z153/50Z in ZM153 Mount - Vision Amplifier Service

Test Conditions
$\begin{array}{llr}\text { Heater voltage } & (\mathrm{V}) & 5,0 / 5,5 \\ \text { Electromagnet current }(\mathrm{A}) & 9,0 / 13 \\ \text { Frequency range } & (\mathrm{MHz}) & 470-598 \\ \text { Bandwidth (Note 5) } & (\mathrm{MHz}) & 8,0 \\ \begin{array}{llr}\text { Power output } \\ \quad(\text { Note 23) }\end{array} & & \\ & (\mathrm{kW}) & 12,5\end{array}$

Range of Characteristics

		min.	max.
Heater current	(A)	38	44
Beam voltage	(kV)	-	14
Body current (Note 6)	(mA)	-	150
Mod. anode current	(mA)	-	5,0
R.F. drive power (Note 7)	(w)	-	1,25
Efficiency(Note 13)	(\%)	32	-

Z163/50Z in ZM163 Mount - Vision Amplifier Service

Test Conditions
Heater voltage (V) 5,0/5,5
Electromagnet current(A) 9,0/13
Frequency range (MHz)598-710
Bandwidth (Note 5) (MHz) 8,0
Power output
(Note 23,

Range of Characteristics

		min.	max.
Heater current	(A)	38	44
Beam voltage	(kV)	-	14
Body current			
Mod. anode current	(mA)	-	5,0
R.F. drive power (Note 7)	(w)	-	1,25
Efficiency(Note 13)	(\%)	32	-

(Notes are given on pages 8 and 9)

Notes

Note 3. Individual tubes should be operated at the value specified in the test data sheet supplied with the tube.

Note 4. For the purpose of defining bandwidth, differential gain and differential phase, the following carrier output amplitude levels are assumed:
Peak sync. level
100\%
Black level
76%
Peak white level 20\%
Note 5(a). The klystron broadband response will be adjusted by using a c.w. swept input signal corresponding to mid-grey output level (42% of carrier amplitude) so that the portion of the band $3,0 \mathrm{MHz}$ either side of the band centre at $f_{V}+2,0 M H z$ shall be level to within $\pm 0,5 d B$ of the level at f_{v}. Band edges at $f_{v}-2,0 M H z$ and $f_{v}+$ $6,0 \mathrm{MHz}$ shall be within the range $0,5 \mathrm{~dB}$ to $-1,0 \mathrm{~dB}$ of the level at f_{v}. Note 5(b). As the amplitude of the swept input is varied between the levels corresponding to white and sync. level at the output of the klystron, the portion of the band $3,0 \mathrm{MHz}$ either side of the band centre shall remain within ± 1, OdB of the level at f_{v}.
Note 6. When vision and sound klystrons are operated from a common h.t. supply a combined body current max. value of 150 mA applies. However, for normal operation with a composite programme signal consisting of peak sync. pulses, blanking level and picture information, the combined body currents should be less than 50mA; if it is greater than this, operating conditions should be carefully checked to detect abnormal adjustments.

Note 7. Defined as the power delivered to a matched load substituted for the input terminal of the klystron.

Note 8. For full specified performance at $12,5 \mathrm{~kW}$, saturated output power is typically 14 kW . If the klystron is required to be used as a c.w. amplifier, the maximum permitted output power is 8, 0kW.

Note 9. With a test wave-form similar to that described in Note 12, but with sine waves of $4,43 \mathrm{MHz}$ and peak-to-peak amplitude of 10% of black to white separation, superimposed on each step of the staircase from black level to peak white, the ratio of the minimum to maximum amplitude of the sine waves, after passing the demodulated waveform at the output of the klystron through a suitable band-pass filter, shall not be less than 0,7 . The results obtained from these tests will be in the form of a smooth curve of varying slope and without inflections greater than 3%.
Note 10. Phase response. With the test wave-form described in Note 9 above, the phase of the $4,43 \mathrm{MHz}$ sine wave signal on any step shall not differ. by more than 10% from the $4,43 \mathrm{MHz}$ signal at black level. The results obtained from this test will be in the form of a smooth curve of varying slope and without inflections greater than 2°.

Note 11. A.M. noise. There shall be no random or periodic noise generated within the klystron and having a level greater than -60dB as measured as a peak-to-peak voltage referred to the rectified
level of the peak sync. signal. With the focus current adjusted for minimum noise, the -60dB performance will hold over a range of $\pm 5 \%$ of the focus current optimum value.

Note 12. Linearity. The linearity of the klystron, when operating at a peak sync. output power level of $12,5 \mathrm{~kW}$, will be such that a video test waveform consisting of a 10-step staircase from black to white level occurring on each line, the ratio of the minimum step amplitude to maximum step amplitude measured at the output of the klystrons, will not be less than 0,65 . The results obtained from these tests will be in the form of a smooth curve of varying slope and with no inflections greater than 3%. The linearity of the output characteristic, measured as above, shall not vary by more than 1% for any setting of the focus current within $\pm 2 \%$ of the recommended current.

Note 13. Minimum efficiency at $12,5 \mathrm{~kW}$ output under typical conditions.

Note 14. Output shall be level to $\pm 0,5 \mathrm{~dB}$ for 250 kHz either side of the carrier.

Note 15. See Note 6. 50mA applies to a single sound klystron.

Note 16. In order to economically operate vision and sound klystrons from a common h.t. supply, but with sound output at one fifth of the vision output, it is usual to operate the sound klystron with its beam current reduced to approx. one fifth that of the
vision klystron. This is accomplished by operating the modulating anode at reduced voltage. Any potential divider network used to supply the modulating anode must allow for a possible variation in modulating anode current between 0 and $1,5 \mathrm{~mA}$.

Note 17. The klystron response will be adjusted as in Note 5(a), but additionally the response at $f_{V}+6,0 M H z$ will be within $\pm 0,5 d B$ of the level at f_{v}. Variation of the response with swept level will be as in Note 5(b), but additionally the response at $f_{V}+6,0 M H z$ will be within $\pm 1,0 d B$ of the level at f_{v}.

Note 18. Drive power for $2,5 \mathrm{~kW}$ peak sync. vision signal.

Note 19. The intermodulation products are measured by using a test signal comprising three c.w. tones at the following levels:
Vision frequency $f_{V} \quad-8,0 d B$
Sound frequency $\mathrm{f}_{\mathrm{V}}+6,0 \mathrm{MHz} \quad-7,0 \mathrm{~dB}$
Colour sub-carrier

$$
f_{\mathrm{V}}+4,43 \mathrm{MHz}
$$

-17dB
The signal is adjusted to give the above levels at the klystron output. The levels are referred to the $2,25 \mathrm{~kW}$ peak sync. power level.

The maximum level of $-50 d B$ applies to all I.P.'s in the frequency range $\mathrm{f}_{\mathrm{v}}-1,75 \mathrm{MHz}$ to $\mathrm{f}_{\mathrm{v}}+6,0 \mathrm{MHz}$.

Note 20. New tubes should be operated at 5, OV. Heater voltage may require to be increased as life progresses.

Note 21. Cooling air must be filtered to reduce precipitation of dust.
(continued)

July 1972	Z153/50Z
	Z163/50Z-9
	Z173/50Z

Notes-continued

Note 22. The klystron is so tuned that for constant input power the variation in output power is less than 1, DdB over the specified bandwidth at all power levels between $-2, \mathrm{OdB}$ and -14 dB with respect to the specified output.

Note 23. Input frequency is set to $2,75 \mathrm{MHz}$ below the centre of the $\mathrm{B}, \mathrm{OMHz}$ channel, and the input and beam powers adjusted to give the specified output.

Note 24. The magnet supply should
be current regulated so that as the magnet coils warm up, the magnet current remains constant to within 2% of the value specified for the individual tube on the test data sheet supplied with each tube.

Note 25, Cooling air must be filtered to reduce precipitation of dust...

Note 26. Measured at input to mount assembly.

Retrofit Conversion Kits

When, in existing equipment, it is desired to substitute the $\mathrm{Z1} 53 / 50 \mathrm{Z}$, Z163/50Z or Z173/50Z for ITT types Z151/50Z, Z161/50Z and Z171/50Z respectively, (or tubes of similar type of other manufacturers), the associated mount assemblies can be quickly adapted for the purpose by

```
the use of the following available
conversion kits:
Z-CON153 - For substitution of
    Z151/50Z by Z153/50Z
Z-CON163 - For substitution.of
    Z161/50Z by Z163/50Z
Z-CON173 - For substitution of
    Z171/50Z by Z173/50z
```

U.H.F. Power Amplifier Klystrons

Z163/50Z
Z173/50Z

Fig. 1 Typical Beam Characteristic

Fig. 2 Z173/50Z Klystron Outline

Fig. 2 Z173/50Z Klystron Outline - continued
Plan view at arrow X

Detail W

Note 15

Notes

1. Three holes tapped 6-32 UNC-2F 0,312in. deep equispaced on D p.c.d., typical position tolerance 0,005in. dia.
2. Input cavity tuner adjuster.
3. Second cavity tuner adjuster.
4. Penultimate cavity tuner adjuster.
5. Dutput cavity tuner adjuster.
6. Air inlet.
7. Air inlet
B. Heater lead (red). Length 15in. min. Lug 0,25in. diameter.
8. Heater/cathode lead (black). Length 15 in . min. Lug 0,312in. diameter.
9. R.F. input socket, type N (UG-21D/U).
10. R.F. load socket, type N (UG-21D/U).
11. R.F. output line.
12. Collector lead (green). Length 36in. min. 2BA terminal.
13. '0' ring, size No. 428 to BS1806.
14. Slot N wide $\times R$ deep (cavity tuning screw).
15. Connecting lug, V diameter.

Dimensions

	mm	in.
A	203,2 max.	8,00 max.
B	142,87 $\pm \square, 51$	$5,625 \pm 0,02$
C	1018,5 max.	40,10 max.
D	60,33 t.p.	2,375 t.p.
E	179,3	7,05
F	590,8	23,26
G	508, 3	20,01
H	165,1	6,50
J	111,13 $\pm 0,51$	$4,375 \pm 0,02$
K	$44,45 \pm \square, 25$	1,750 \pm-, 01
L	216,0	8,50
M	$38,23 \pm 0,76$	1,505 $\pm 0,03$
N	2,44 + 0, 000	$0,096+0,004$ - 0,000
P	1,8 max.	0,03 max.
Q	$38,05+0,00$ $-0,05$	$1,498+0,000$ $-0,002$
R	3,68 $\pm 0,25$	0,145 $\pm 0,010$
5	9,52 $\pm 0,40$	0,375 $\pm 0,015$
T	$19,05+0,13$	$\begin{array}{r}0,750 \\ +0,005 \\ \hline 0,000\end{array}$
U	3,18 max.	0,125 max.
V	4,17 max.	0,164 max.

U.H.F. Power Amplifier Klystrons

Fig. 3 Z173/50Z Klystron in ZM173 Mount Assembly

A. Magnet interlock connector.
D. R.F. output.
B. Cavity tuner panel.
E. Steam outlet.
C. Level trip.

SPECIAL VALVES

Water-Cooled
 L-Band Power Amplifier Klystron
 Code: 4KM100LA

The 4KM100LA is a water-cooled, magnetically focused power amplifier klystron which operates in the frequency range 470 to 610 MHz . The valve is intended primarily for use in television visual service but is also suitable for television sound or for tropospheric-scatter communications service.

In television visual service the 4 KM 100 LA will provide a minimum of 25 kW of peak synchronising power with a power gain of 40 dB and a 1 dB bandwidth of 8 MHz . Random amplitude modulation noise is more than 60 dB below black level.

Tuning is effected by means of four resonant cavities which are external to, but enclose, the cylindrical ceramic windows of the klystron. Load couplers are provided to permit external loading of these cavities for extreme wide-band operation.

The electron gun utilises a semi-confined flow field which minimises focusing adjustments and produces a very stable beam. The cathode loading of only $100 \mathrm{~mA} / \mathrm{cm}^{2}$ at a beam voltage of 19 kV is conservative in the interest of long life.

Effective protection from internal arcs is provided by a special modulating anode. Both input and output r.f. couplings are fixed. The valve incorporates a built-in vacuum pump in the form of a titanium getter which should be energised whenever heater power is applied. The normal getter operating current is 20A at approximately 3.7 V .

A focusing electromagnet and klystron supporting structure, to be supplied as an additional accessory, is available.

RADIO FREQUENCY PERFORMANCE

Frequency range	470 to 610	MHz
Output power minimum (Note 1)	25	kW
Power gain, minimum (Note 1)	40	dB

NOTE 1.-In television visual service.

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333 Telex: 21836

TYPICAL OPERATING CONDITIONS

Television Visual Amplifier Service

Frequency	550	MHz
Direct beam voltage	18	kV
Direct beam current	4.8	A
Beam power efficiency (Note 2)	29	$\%$
Driving power (Note 2)	1.2	W
1 dB bandwidth	8	MHz
Power gain (Note 2)	43	dB
Output power (saturation drive) (Note 2)	25	kW
Electromagnet current	9.5	A

NOTE 2.-Peak synchronous value. The saturated output power is 0.5 dB higher.

MAXIMUM RATINGS

Direct beam voltage	23	kV
Direct beam current	6	A
Direct body current	150	mA
Collector dissipation	100	kW

CATHODE

Matrix, unipotential type

HEATER

Heater voltage	26	V
Heater current, nominal	11	A
Heater starting current, maximum	23	A
Cathode heating time, minimum	15	min.

GETTER

Getter voltage, a.c.
$3 \cdot 7 \pm 5 \%$
V
Getter current
20
A

ELECTROMAGNET POWER SUPPLY

Voltage (adjustable)
Current, maximum
0 to 150
V
12

Code: 4KM100LA

CONTINUED

COOLING REQUIREMENTS

The maximum temperature of any part of the klystron must not be allowed to exceed $175^{\circ} \mathrm{C}$.

The collector, klystron body and electromagnet are water-cooled by means of integral water jacket systems.

The cathode and cavities are cooled by forced-air.
Recommended cooling data are as follows:

Collector

Water flow	30	$\mathrm{gal} / \mathrm{min}$
	136,4	1/min
At water pressure drop of	20	$\mathrm{lb} / \mathrm{in}^{2}$
	1,4	$\mathrm{kg} / \mathrm{cm}^{2}$
Body and Electromagnet		
Water flow	2	$\mathrm{gal} / \mathrm{min}$
	9,1	1/min
At a pressure drop of	45	$\mathrm{lb} / \mathrm{in}^{2}$
	3,2	$\mathrm{kg} / \mathrm{cm}^{2}$
Cathode		
Air flow (Note 3)	5	$\mathrm{ft}^{3} / \mathrm{min}$
	0,142	$\mathrm{m}^{3} / \mathrm{min}$
Cavities		
Air flow	50	$\mathrm{ft}^{3} / \mathrm{min}$
	1,4	$\mathrm{m}^{3} / \mathrm{min}$

NOTE 3.-Required only if ambient air temperature exceeds $25^{\circ} \mathrm{C}$.

MECHANICAL DATA

Mounting position Main axis vertical, collector downwards
Dimensions As shown in outline drawing
R.F. Coupling

Input Type "N""coaxial fitting
Output $\quad 3 \frac{1}{8}$ inch $(79,375 \mathrm{~mm}) 50 \Omega$ line
Weights, approximately
Klystron $119 \mathrm{lb} 54 \quad$ kg

Electromagnet and supporting assembly $\quad 1800 \mathrm{lb} \quad 816,5 \quad \mathrm{~kg}$

Code: 4KM100LA

CONTINUED

4KM100LA Outline

DIMȘ.	NOM.
A	60.875
B	45.150
C	41.900
D	34.467
E	31.341
F	22.499
G	14.999
H	15.707
J	8.124
K	0.453
L	6.000
M	0.625
N	0.636
P	1.124
Q	0.875
R	1.443
S	0.375
T	0.250
U	0.812
\checkmark	5.125
W	2.563
AA	8.125
3 A	3.000
33	3.500
CA	3.000
CB	3.500
DA	3.000
DB	3.500
FA	3.000
EB	10.000
EC	3.500
FA	9.160
FB	6.670
FC	3.125

DIMENSIONS ARE INCHES

May 1967

SPECIAL VALVES

Water-Cooled
 L-Band Power Amplifier Klystron

Code: 4KM100LF

The 4KM100LF is a water-cooled, magnetically focused power amplifier klystron which operates in the frequency range 590 to 720 MHz . The valve is intended primarily for use in television visual service but is also suitable for television sound or for tropospheric-scatter communications service.

In television visual service the 4 KM 100 LF will provide a minimum of 25 kW of peak synchronising power with a power gain of 40 dB and a 1 dB bandwidth of 8 MHz . Random amplitude modulation noise is more than 60 dB below black level.

Tuning is effected by means of four resonant cavities which are external to, but enclose, the cylindrical ceramic windows of the klystron. Load couplers are provided to permit external loading of these cavities for extreme wide-band operation.

The electron gun utilises a semi-confined flow field which minimises focusing adjustments and produces a very stable beam. The cathode loading of only $100 \mathrm{~mA} / \mathrm{cm}^{2}$ at a beam voltage of 19 kV is conservative in the interest of long life.

Effective protection from internal arcs is provided by a special modulating anode. Both input and output r.f. couplings are fixed. The valve incorporates a built-in vacuum pump in the form of a titanium getter which should be energised whenever heater power is applied. The normal getter operating current is 20 A at approximately 3.7 V .

A focusing electromagnet and klystron supporting structure, to be supplied as an additional accessory, is available.

RADIO FREQUENCY PERFORMANCE

Frequency range	590 to 720	MHz
Output power minimum (Note 1)	25	kW
Power gain, minimum (Note 1)	40	dB

NOTE 1.-In television visual service.

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333 Telex: 21836
C $\begin{array}{llllllllllllll} & \mathrm{O} & \mathrm{P} & \mathrm{O} & \mathrm{N} & \mathrm{E} & \mathrm{N} & \mathrm{T} & \mathrm{S} & G & R & O & U & P\end{array}$

Code: 4KM100LF

CONTINUED

TYPICAL OPERATING CONDITIONS

Television Visual Amplifier Service		
Frequency	660	MHz
Direct beam voltage	$17 \cdot 5$	kV
Direct beam current	4.5	A
Beam power efficiency (Note 2)	31	$\%$
Driving power (Note 2)	$2 \cdot 5$	W
1 dB bandwidth	8	MHz
Power gain (Note 2)	43	dB
Output power (saturation drive) (Note 2)	25	kW
Electromagnet current	8.9	A

NOTE 2.-Peak synchronous value. The saturated power output is 0.5 dB higher.

MAXIMUM RATINGS

Direct beam voltage	23	kV
Direct beam current	6	A
Direct body current	150	mA
Collector dissipation	100	kW

CATHODE

Matrix, unipotential type

HEATER

Heater voltage	26	V
Heater current, nominal	11	A
Heater starting current, maximum	23	A
Cathode heating time, minimum	15	min.

GETTER

Getter voltage, a.c.
Getter current
$3.7 \pm 5 \%$
20

A

ELECTROMAGNET POWER SUPPLY

Voltage (adjustable) 0 to 120
Current, maximum

V
A

Z165/100Q

Code: 4KM100LF

CONTINUED

COOLING REQUIREMENTS

The maximum temperature of any part of the klystron must not be allowed to exceed $175^{\circ} \mathrm{C}$.

The collector, klystron body and electromagnet are water-cooled by means of integral water jacket systems.

The cathode and cavities are cooled by forced-air.
Recommended cooling data are as follows:

Collector

Water flow	30	$\mathrm{gal} / \mathrm{min}$
At a water pressure drop of	136,4	$\mathrm{I} / \mathrm{min}^{2}$
	20	$\mathrm{lb} / \mathrm{in}^{2}$

Body and Electromagnet

Water flow
At a pressure drop of
$2 \mathrm{gal} / \mathrm{min}$
9,1 $\quad 1 / \mathrm{min}$
$45 \quad \mathrm{lb} / \mathrm{in}^{2}$
$3,2 \quad \mathrm{~kg} / \mathrm{cm}^{2}$

Cathode

Air flow (Note 3) $\quad 5 \quad \mathrm{ft}^{3} / \mathrm{min}$
$0,142 \mathrm{~m}^{3} / \mathrm{min}$

Cavities

Air flow $50 \quad \mathrm{ft}^{3} / \mathrm{min}$
$1,4 \quad \mathrm{~m}^{3} / \mathrm{min}$
NOTE 3.-Required only if ambient air temperature exceeds $25^{\circ} \mathrm{C}$.

MECHANICAL DATA

Mounting position Main axis vertical, collector downwards
Dimensions As shown in outline drawing
R.F. coupling

Input Type " N " coaxial fitting
Output $\quad 3 \frac{1}{8}$ inch $(79,375 \mathrm{~mm}) 50 \Omega$ line
Weights, approximately
Klystron
$119 \mathrm{lb} \quad 54$
kg
Electromagnet and supporting assembly
$1800 \mathrm{lb} 816,5$

Code: 4KM100LF

CONTINUED

4KM100LF Outline

DIM	NOM.
A	60.875
B	45.150
C	41.900
D	34.467
E	29.087
F	20.987
G	13.500
H	15.707
J	7.625
K	0.421
L	5.000
M	1.967
N	1.543
P	1.016
Q	1.235
R	0.907
S	0.375
T	0.250
U	0.812
V	5.125
W	2.563
AA	8.125
BA	3.500
BB	3.000
CA	3.500
CB	3.500
DA	3.500
DB	3.000
EA	3.500
EB	3.000
EC	10.000
FA	9.160
FB	6.670
FC	3.125

DIMENSIONS ARE INCHES

SPECIAL VALVES

Water-Cooled

L-Band Power Amplifier Klystron

Code: 4KM100LH

The 4KM100LH, which has four integral cavities, is a magnetically focused power amplifier klystron designed for use in the frequency range 720 to 890 MHz . Intended primarily for television visual service, it is also suitable for television sound or for tropospheric communications service.

In television visual service the 4 KM 100 LH will provide a minimum of 25 kW of peak synchronising power with a power gain of 40 dB and a 1 dB bandwidth of 8 MHz . Random amplitude modulation noise is more than 60 dB below black level.

The electron gun utilises a semi-confined flow field which minimises focusing adjustments and produces a very stable beam. The cathode loading of only $100 \mathrm{~mA} / \mathrm{cm}^{2}$ at a beam voltage of 19 kV is conservative in the interest of long life.

Effective protection from internal arcs is provided by a special modulating anode. Both input and output r.f. couplings are fixed. The valve incorporates a built-in vacuum pump in the form of a titanium getter which should be energised whenever heater power is applied. The normal getter operating current is 20 A at approximately 3.7 V .

A focusing electromagnet and klystron supporting structure for use with the $4 \mathrm{KM100LH}$ is available.

RADIO FREQUENCY PERFORMANCE

Frequency range	720 to 890	MHz
Power gain, minimum (Note 1)	40	dB
Output power minimum (N)	25	kW

Output power minimum (Note 1) 25 kW
NOTE 1.-In television visual service.

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333 Telex: 21836
C
M P
O N
E N T S
G R O
U P

Code: 4KM100LH

CONDITIONS

TYPICAL OPERATING CONDITIONS

Television Visual Amplifier Service

Frequency	816	MHz
Direct beam voltage	19	kV
Direct beam current	4.9	A
Beam power efficiency (Note 2)	27	$\%$
Driving power (Note 2)	2	W
1 dB bandwidth	8	MHz
Power gain (Note 2)	41	dB
Output power (saturation drive) (Note 2)	25	kW
Electromagnet current	12	A

NOTE 2.-Peak synchronous value. The saturated power output is 0.5 dB higher.

MAXIMUM RATINGS

Direct beam voltage
20
Direct beam current
Direct body current
Collector dissipation

CATHODE

Matrix, unipotential type

HEATER

Heater voltage 26
Heater current, nominal
11
Heater starting current, maximum
23
Cathode heating time, minimum

GETTER

Getter voltage, a.c.
$3.7 \pm 5 \%$
Getter current20

ELECTROMAGNET POWER SUPPLY

$\begin{array}{lr}\text { Voltage (adjustable) } & 120 \\ \text { Current, maximum } & 12\end{array}$

Code: 4KM100LH

CONTINUED

COOLING REQUIREMENTS

The maximum temperature of any part of the klystron must not be allowed to exceed $175^{\circ} \mathrm{C}$.

The collector and klystron body are water-cooled by means of integral water jacket systems.

The cathode and cavities are cooled by forced air.
Recommended cooling data are as follows:

Collector

Water flow $\quad 30 \mathrm{gal} / \mathrm{min}$
At a pressure drop of
$20 \mathrm{lb} / \mathrm{in}^{2}$
$1,4 \quad \mathrm{~kg} / \mathrm{cm}^{2}$

Body

Cooling water flow $3 \mathrm{gal} / \mathrm{min}$
Typical pressure drop (Note 3)
NOTE 3.-The body cooling water system is connected in series with the focusing coils cooling system. Typical pressure drop through body and focusing coils is $40 \mathrm{lb} / \mathrm{in}^{2}$ $\left(2,81 \mathrm{~kg} / \mathrm{cm}^{2}\right)$. Maximum body pressure not to exceed $60 \mathrm{lb} / \mathrm{in}^{2}\left(4,2 \mathrm{~kg} / \mathrm{cm}^{2}\right)$.

Cathode

Air flow (Note 4)
$\begin{array}{ll}5 & \mathrm{ft}^{3} / \mathrm{min} \\ 0,142 & \mathrm{~m}^{3} / \mathrm{min}\end{array}$

Cavities
Air flow
$100 \quad \mathrm{ft}^{3} / \mathrm{min}$
$2,8 \quad \mathrm{~m}^{3} / \mathrm{min}$
NOTE 4.-Required only if ambient air temperature exceeds $25^{\circ} \mathrm{C}$.

MECHANICAL DATA

Mounting position Main axis vertical, collector downwards
Dimensions As shown in outline drawing
R.F. coupling

Input Type " N " coaxial fitting
Output (Note 5) $3 \frac{1}{8}$ inch $(79,375 \mathrm{~mm}) 50 \Omega$ line
Weights, approximately
Klystron $180 \mathrm{lb} 81,65 \quad$ kg

Electromagnet and supporting assembly $\quad 1800 \mathrm{lb} 816,5 \quad \mathrm{~kg}$
NOTE 5.-When the klystron output window and the aerial feeder are to be connected, any physical misalignment between then must be adjusted by a flexible coupling or other means to ensure that the output window is not subjected to any mechanical strain.

Code: 4KM100LH

CONTINUED

4KM100LH Outline

special valves

Vapour-Cooled
 L-Band Power Amplifier Klystron
 Code: Z181/150 Z

This is a vapour-cooled, magnetically focused power amplifier klystron which operates in the frequency range 720 to 890 MHz . It has four integral cavities. The valve is intended primarily for use in television visual service but is also suitable for television sound or for tropospheric-scatter communications service.
In television visual service the klystron I will provide a minimum of 40 kW of peak synchronising power with a power gain of 40 dB and a 1 dB bandwidth of 8 MHz . Random amplitude modulation noise is more than 60 dB below black level.
The electron gun utilises a semi-confined flow field which minimises focusing adjustments and produces a very stable beam. The cathode loading of only $125 \mathrm{~mA} / \mathrm{cm}^{2}$ at a beam voltage of 21 kV is conservative in the interest of long life.

Effective protection from internal arcs is provided by a special modulating anode. Both input and output r.f. couplings are fixed. The valve incorporates a built-in vacuum pump in the form of a titanium getter which should be energised whenever heater power is applied. The normal getter operating current is 20 A at approximately 3.7 V .

A focusing electromagnet and klystron supporting structure, to be supplied as an additional accessory, is available.

RADIO FREQUENCY PERFORMANCE

Frequency range	720 to 890	MHz
Output power minimum (Note 1)	40	kW
Power gain minimum (Note 1)	40	dB
NOTE 1.-In television visual service.		

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333 Telex: 21836 C O M P O N E N T S G R O U P

Code: Z181/150 ZI,

CONTINUED

TYPICAL OPERATING CONDITIONS

Television Visual Amplifier Service

Frequency	726	MHz
Direct beam voltage	$21 \cdot 5$	kV
Direct beam current	$6 \cdot 2$	A
Beam power efficiency (Note 2)	30	$\%$
Driving power (Note 2)	$3 \cdot 2$	W
1 dB bandwidth	8	MHz
Power gain (Note 2)	41	dB
Output power (saturation drive) (Note 2)	40	kW
Electromagnet current		

NOTE 2.-Peak synchronous value. The saturated output power is 0.5 dB higher.

MAXIMUM RATINGS		
Direct beam voltage	23	kV
Direct beam current	7	A
Direct body current	150	mA
Collector dissipation	$\mathbf{1 5 0}$	kW

CATHODE

Matrix, unipotential type

heater

Heater voltage	26	V
Heater current, nominal	11	A
Heater starting current, maximum	23	A
Cathode heating time, minimum	15	min.

GETTER

Getter voltage, a.c.
 Getter current

$3.7 \pm 5 \%$

ELECTROMAGNET POWER SUPPLY

$\begin{array}{lr}\text { Voltage (adjustable) } & 120 \\ \text { Current, maximum } & 12\end{array}$

Code: Z181/150Z

CONTINUED

COOLING REQUIREMENTS

The maximum temperature of any part of the klystron must not be allowed to exceed $175^{\circ} \mathrm{C}$.

The collector is vapour-cooled by means of a boiler of the upward steam exit type intended for use with an external condenser. The boiler is an integral part of the klystron.

The cathode and cavities are cooled by forced-air and the klystron body and focusing coils by water circulated through a common system.

Recommended cooling data are as follows:

Collector

Volume of steam produced by collector dissipation
Volume of water converted into steam

Cathode

Air flow	5	$\mathrm{ft}^{3} / \mathrm{min}$
	0,14	$\mathrm{~m}^{3} / \mathrm{min}$
Cavities		
Air flow	100	$\mathrm{ft}^{3} / \mathrm{min}$
		2,8
$\mathrm{~m}^{3} / \mathrm{min}$		

Body

Cooling water flow
Typical pressure drop (Note 3)

1.5	$\mathrm{ft}^{3} / \mathrm{min} / \mathrm{kW}$
0,043	$\mathrm{~m}^{3} / \mathrm{min} / \mathrm{kW}$
0.006	$\mathrm{gal} / \mathrm{min} / \mathrm{kW}$
0,027	$\mathrm{l} / \mathrm{min} / \mathrm{kW}$

0,027 $\quad \mathrm{I} / \mathrm{min} / \mathrm{kW}$

100
$\mathrm{m}^{3} / \mathrm{min}$

3	$\mathrm{ga} / / \mathrm{min}$
13,6	$1 / \mathrm{min}^{2}$
20	$\mathrm{lb} / \mathrm{in}^{2}$
1,4	$\mathrm{~kg} / \mathrm{cm}^{2}$

NOTE 3.-The body cooling water system is connected in series with the focusing coils cooling system. Typical pressure drop through the body and focusing coils is $40 \mathrm{lb} / \mathrm{in}^{2}\left(2,81 \mathrm{~kg} / \mathrm{cm}^{2}\right)$. Maximum body pressure not to exceed $60 \mathrm{lb} / \mathrm{in}^{2}$ $\left(4,2 \mathrm{~kg} / \mathrm{cm}^{2}\right)$.

MECHANICAL DATA

Mounting position Main axis vertical, collector uppermost
Dimensions As shown in outline drawing
R.F. coupling

Input Type "N" coaxial fitting
Output (Note 4) $3 \frac{1}{8}$ inch $(79,375 \mathrm{~mm}) 50 \Omega$ line
Weights, approximately

	210 lb	95,3	kg
Klystron	1800 lb	816,5	kg

NOTE 4.-When the klystron output window and the aerial feeder are to be connected, any physical misalignment between them must be adjusted by a flexible coupling or other means to ensure that the output window is not subjected to any mechanical strain.

Code: Z181/150Z

CONTINUED

Z211/1G

Forced-Air-Cooled, Pulse Modulated Three-Cavity Klystron

Code: Z211/1G (CV5314)

The Z211/1G is a three-cavity klystron amplifier intended for pulsed operation at a duty cycle of 3 per cent in the frequency range 950 to 1213 MHz .

CATHODE

Indirectly heated, BN type		
Heater voltage	12.6	V
Heater current, nominal	1.9	A
Cathode heating time, minimum	2	min
Maximum peak cathode current	2.5	A

CHARACTERISTICS

Gain, approx.

MECHANICAL DATA

$\begin{array}{ll}\text { Dimensions } & \text { As shown in Figure } 2 . \\ \text { Mounting position (Note 1) } & \text { Vertical, collector upwards. }\end{array}$
Net weight $\quad 9.37 \mathrm{lb} \quad 4.26 \quad \mathrm{~kg}$
Note 1.-A field coil system, cavities and mounting assembly are available under code 326-LRU-20A.

COOLING REQUIREMENTS

Forced-air-cooling of the collector is required.
For a collector dissipation of 1 kW
Air flow, minimum
$35 \mathrm{ft}^{3} / \mathrm{min}$
990
$1 / \mathrm{min}$
At a pressure drop of $0 \cdot 3$ inch $(7,6 \mathrm{~mm})$ of water.

April 1967
Z211/1G-1

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333 Telex: 21836
C Olllllllllllll

Code: Z211/1G (CV5314)

CONTINUED

MAGNETIC FIELD

A magnetic field is required for focusing the electron beam: this is provided by the field coil system of the $326-$ LRU-20A assembly which is operated from a 340 V d.c. supply. The field coil current should be $2 \cdot 2 \mathrm{~A} \pm 3 \%$. A suitable distribution of field intensity relative to the klystron is shown in Figure 1.

The 326-LRU-20A system must be assembled so that, when closed the input (bottom) cavity is concentric with the steel rings at the top and bottom of the assembly. This should be checked with the lining-up jig provided.

When inserting the klystron, the second and output cavities must not be screwed down into position until the contact fingers on all three cavities have closed on the klystron.

It is important to ensure, by the use of a magnet or magnetometer, that each field coil produces a magnetic field of the same polarity. If this condition is not established, the klystron will suffer serious damage as soon as the h.t. is applied.

LIMIT RATINGS (Note 2)

Maximum collector voltage	16	kV
Maximum collector dissipation	1	kW
Maximum resonator voltage	16	kV
Maximum resonator dissipation for any single drift tube section	3	W
Modulator voltage		
\quad Maximum peak pulse	5.5	kV
\quad Minimum negative bias for hold-off	-150	V
Maximum value of modulator resistor	250	$\mathrm{k} \Omega$
Maximum modulator dissipation	12	W
Maximum average cathode current	70	mA
Maximum duty cycle for peak cathode current of 2.5A	3.5	$\%$

Note 2. Electrode potentials are given relative to cathode potential.

Code: Z211/1G (CV5314)

CONTINUED

TYPICAL OPERATING CONDITIONS

Collector and resonator voltage	15	kV
Modulator bias voltage	-150	V
Modulator peak pulse voltage	5	kV
Modulator pulse duration, half height (Note 3)	3.75	$\mathrm{\mu s}$
Average cathode current	60	mA
C.W. input power to first cavity	3	W
Peak power output (final cavity)	7	kW
Frequency range	960 to 1213	MHz
Duty cycle, approx.	3	$\%$

Note 3. Spectrum controlled pulse as used in TACAN equipment.

OPERATING NOTES

Normally the collector and cavity resonators are earthed and negative e.h.t. is applied to the cathode. Under these conditions, high voltage insulation of the heater supply and modulator circuits is essential.

It should be arranged that
(a) any fault in the field coils or power supply circuit removes both the modulator pulse and e.h.t. supplies;
(b) a failure of the e.h.t. supply will remove the modulator pulse.

It is essential that the valve envelope be kept clean and free of dust.

Code: Z211/1G (CV5314)

Fig. 1.-Typical Magnetic Focusing Field

Code: Z211/1G (VC5314)

Fig. 2.-Z211/1G Outline

G. SQUARE

DIM.	MILLIMETRES	INCHES	DIM.	MILLIMETRES	INCHES
A	584,2 MAX.	23 MAX.	M	359,70 $\pm 2,03$	14.161 ± 0.080
B	504,8 MAX.	197 M MAX.	N	320,30 $\pm 2,03$	12.611 ± 0.080
C	61,46 MAX.	2.420 MAX.	P	239,29 $\pm 2,29$	9.421 ± 0.090
D	127,0 $\pm 0,8$	$5 \pm \frac{1}{12}$	Q	199,92 $\pm 2,29$	7.871 ± 0.090
E	$76,2)_{-0,10}^{+0,00}$	$3.000_{-0.000}^{+0.004}$	R	118,90 $\pm 2,29$	4.681 ± 0.090
F	54,0 MAX.	21 MAX.	S	79,53 $\pm 2,03$	3.131 ± 0.080
G	104,0 MAX.	43, ${ }^{3} \mathrm{MAX}$.	T	$3,2 \pm 0,4$	$\frac{1}{8} \pm \frac{1}{64}$
H	9,5 APP.	$\frac{3}{8}$ APP.	u	31,8 APP.	$1 \frac{1}{4}$ APP.
J	63,5 $\pm 1,6$	$2 \frac{1}{2} \pm \frac{1}{16}$	\checkmark	71,12 $\pm 0,10$	2.800 ± 0.004
K	$450,9 \pm 3,2$	173 ${ }^{\frac{1}{4} \text { 旡 }}$	W	7,37 MIN.	0.290 MIN .
L	$469,9 \pm 3,2$	181 $\frac{1}{2}$ - $\frac{1}{6}$	X	9,5 $\pm 0,4$	$\frac{3}{8} \pm \frac{1}{64}$

SPECIAL VALVES

Reflex Klystron

Code: Z237/1KW (CV5437)

The $Z 237 / 1 \mathrm{KW}$ is a reflex klystron developed for use as a frequency-modulated oscillator in multi-channel radio-telephony systems where high linearity is required. The following data refer specifically to its operation at $3520 \pm 15 \mathrm{Mc} / \mathrm{s}$, at which frequency it is currently used.

CATHODE

Indirectly heated, oxide coated
Heater voltage $\quad 6.3 \mathrm{~V}$
$\begin{array}{ll}\text { Heater current, nominal } & 0.65 \text { A }\end{array}$
Cathode heating time $\quad 60$ s

MECHANICAL DATA

Dimensions As shown in outline drawing
Base B9A
Net weight $1.4 \mathrm{oz} 40 \quad \mathrm{~g}$
Mounting
The valve is mounted by means of the disc seals, in a waveguide cavity.

CIRCUIT

The $Z 237 / 1 \mathrm{KW}$ should be used in the waveguide cavity shown on page 3 . The valve is designed to operate into a 2 inch $\times \frac{2}{3}$ inch $(50,8 \mathrm{~mm} \times 16,9 \mathrm{~mm})$ waveguide, the iris giving correct coupling into this waveguide. The tuning piston allows the frequency to be set accurately to $3520 \mathrm{Mc} / \mathrm{s}$.

MAXIMUM RATINGS

Maximum direct resonator voltage	350	V
Maximum direct resonator current	55	mA
Maximum direct reflector voltage	-200	V
Maximum direct grid voltage	-150	V
Maximum total dissipation for all electrodes except heater*	18	W
\quad *This rating may be increased if forced-air-cooling is used.		

Standard Telephones and Cables Limited

COMPONENTS GROUP

Code: Z237/1KW (CV5437)

CONTINUED

TYPICAL OPERATING CONDITIONS

Direct resonator voltage	300	V
Direct reflector voltage*	-90 to -140	V
Direct grid voltage \dagger	-10 to -150	V
Direct resonator current	50	mA

*This is adjusted to give maximum output power at a frequency of $3520 \mathrm{Mc} / \mathrm{s}$. \dagger This is adjusted to give a resonator current of 50 mA .

PERFORMANCE

With the operating conditions previously specified, the following performance should be obtained

Power output, minimum	125	mW
Modulation sensitivity	0.85 to $1.7 \mathrm{Mc} / \mathrm{s} / \mathrm{V}$	

MODULATION

Frequency modulation is achieved by variation of the reflector voltage with respect to cathode. The direct reflector current will not exceed $2 \mu \mathrm{~A}$. For a typical valve the second and third harmonics are, respectively, 80 db and 110 db down on the fundamental over a range of $5 \mathrm{Mc} / \mathrm{s}$ for a deviation of $125 \mathrm{kc} / \mathrm{s}$ r.m.s.

MODULATION LINEARITY

With the reflector voltage adjusted for optimum linearity, the slope change for a $\pm 5 \mathrm{Mc} / \mathrm{s}$ deviation will not exceed 2%.

Waveguide Cavity

Code: 495-LVA-451

495-LVA-451 Outline

DIM	MILLIMETRES	INCHES	DIM	MILLIMETRES	INCHES
A	141,3 MAX.*	$59 / 16 \mathrm{MAX}$. 米	H	25,4 $\pm 0,8$	$1 \pm 1 / 32$
B	112,7 MAX.	$47 / 16$ MAX	J	31,8 MAX.	$11 / 4$ MaX
C	61,9 MaX.	$27 / 16$ Max	K	17, $5 \pm 0,8$	$11 / 16 \pm 1 / 32$
D	8,7 MaX.	$11 / 32$ max.	L	$41,3 \pm 0,8$	$15 / 8 \pm 1 / 32$
E	54,17 $\pm 0,38$	2.133 ± 0.015	M	92,1 $\pm 0,4$	$35 / 8 \pm 1 / 64$
F	60,3 $\pm 0,4$	$23 / 8 \pm 1 / 64$	N	58,7 $\pm 0,4$	$25 / 16 \pm 1 / 64$
G	$39,7 \pm 0,4$	$19 / 16 \pm 1 / 64$	P	4,0 MAX.	$5 / 32 \mathrm{MAX}$.

Code: Z237/1KW (CV5437)

CONTINUED

Z237/1KW Outline

BASING
I. CATHODE
2. RESONATOR
3. HEATER
4. N.C.
5. RESONATOR
6. N.C.
7. HEATER.
8. RESONATOR
9. GRID.

1O. RESONATOR
II. RESONATOR
T.C. REFLECTOR

DIM	MILLIMETRES	INCHES	DIM	MILLIMETRES	INCHES
A	76.2 ± 7.9	$3 \pm 5 / 16$	F	4.8 ± 0.4	$3 / 16 \pm 1 / 64$
B	31.8 ± 4.0	$11 / 4 \pm 5 / 32$	G	8.13 ± 0.25	0.320 ± 0.010
C	20.6 ± 2.4	$13 / 16 \pm 3 / 32$	H	3.81 MIN.	0.150 MIN.
D	21.7 MAX	0.855 MAX	NOTE:-		
E	20.57 ± 0.13	$1.164+0.005$	BASIC FIGURES ARE INCHES.		

(C) 1965 Standard Telephones \& Cables Ltd.

SPECIAL VALVES

Power Indicator Tubes

Codes: NE17 (CV359)

NE18 (CV360)

The NE17 and NE18 are neon gas filled power indicator tubes for use in waveguides to measure peak power. The tubes are of similar physical dimensions: type NE18 is more sensitive than type NE17.

MECHANICAL DATA

Overall length, approximately	4.7 in	120	mm
Maximum diameter, approximately	0.5 in	12,7	mm
ELECTRICAL DATA	NE17	NE18	
Peak power range	100 to 200	100 to 200	kW
Frequency range	2.8 to 10	2.8 to 10	Gc / s
Glow height*	>3	>4.5	cm

* Measured at approximately 175 kW peak power of $1 \mu \mathrm{sec}$ duration and repetition rate of 600 p.p.s.

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333 Telex: 21836
C O M P O N E N T S \quad O \quad G R O U P

NE17 and NE18 Outline

NOTES:-

* THIS DIMENSION IS MEASURED OVER THE LABEL AND TROPICAL VARNISH.
- DIMENSION WITH SPRING FREE.
- DIMENSION WITH SPRING COMPRESSED.

DIMENSIONS J\&N TOGETHER WITH CONE SEMI-ANGLE MEAN THAT THE DIAMETER OF THE HOLE IN THE WAVE-GUIDE SHOULD BE IN THE RANGE $0.200-0.330$ INCHES
5,08-8,32 MM.

SPECIAL VALVES

Power Indicator Tube

Code: NE19 (CV263)

The NE19 is a gas-filled indicating tube which is suitable for measuring peak r.f. power up to 1 kW within the frequency range 2.8 to $11 \mathrm{Gc} / \mathrm{s}$.

ELECTRICAL DATA		
Peak power range	Up to 1	kW
Frequency range	2.8 to 11	Gc / s
TYPICAL OPERATING CONDITIONS*	9.4	Gc / s
Frequency	850	W
Peak power	2000	$\mathrm{P} . \mathrm{p} . \mathrm{s}$.
Pulse recurrence frequency	0.5	$\mu \mathrm{~s}$
Pulse width	45	mm
Glow height		

MECHANICAL DATA

Dimensions As shown in outline drawing

* Tube mounted in Wattmeter Absorption Type 2 (A.M. reference 10AF/525).

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333

$$
C \quad O \quad M \quad P \quad O \quad N \quad E \quad N \quad T \quad S \quad G \quad R \quad O \quad U \quad P
$$

Code: NE19 (CV263)

CONTINUED

NE19 Outline

(TO FULL DEPTH OF SHOULDER)

Code: NE19 (CV263)

CONTINUED

NE19 Concentricity Gauge (Sheet 3.3)

NOTES HOLES INDICATED THUS \ddagger MUST
BE CONCENTRIC TO WITHIN $0-001$
MATERIAL:-BRASS

VARACTOR DIODES

General Information

INTRODUCTION

The varactor diodes described in this publication are hermetically encapsulated epitaxial types with gold-bonded internal leads.

Four basic types of encapsulation are used for compatibility with type of circuit employed and frequency of operation. Inquiries are invited for alternative encapsulation to meet special requirements or for varactor diodes other than those on which data is given.

Diodes can be tested in customers' approved circuits where required.

VARACTOR DIODES

General Information

CLASSIFICATION OF TYPES

The basic categories of varactor diodes, described as stud, cartridge and pill types respectively, are produced with a ceramic insulator. In addition, there is a sub-category of the stud type, which has a glass insulator, and a type with wire ends and a glass-metal encapsulation.

Within each main category there are one or more series of diodes, all of which have a common physical outline but different electrical characteristics. These series are classified as follows:

VA Series Stud type with glass insulator.
VB Series Stud type with ceramic insulator.
VH Series Cartridge type with ceramic insulator.
VJ Series Cartridge type with ceramic insulator. (Alternative version).
VM Series Wire-ended with glass-metal encapsulation.
VS Series Pill type with ceramic insulator.

Var/Gen B

VARACTOR DIODES

General Information

PHYSICAL OUTLINES

Outline of VA Series

Millimetre dimensions are derived from original inch dimensions

ACTUAL SIZE

10-32 UNF THREAD 2A

General Information

CONTINUED

Outline of VB Series

Millimetre dimensions are derived from original inch dimensions

ACTUAL SIZE

10-32 UNF THREAD 2A

General Information

CONTINUED

Outline of VH Series

Note. Dimensions are subject to minor changes to comply with International standardisation now in progress.

DIM.	MILLIMETRES		INCHES	
	Min		Max	Min
Aax				
A	5,944	6,147	0.234	0.242
B	5,207	5,461	0.205	0.215
C	19,4	20,17	0.764	0.794
D	2,36		0.093	
E	4,572	4,826	0.180	0.190
F	2,237	2,413	0.092	0.095

Millimetre dimensions are derived from original inch dimensions

ACTUAL SIZE

Var/Gen B-3

General Information

CONTINUED

Outline of VJ Series

Note. Dimensions are subject to minor changes to comply with International standardisation now in progress.

DIM	MILLIMETRES	INCHES
A	$5,97 \mathrm{MAX}$.	0.235 MAX.
B	$4,06 \pm 0,13$	0.160 ± 0.005
C	$19,79 \pm 0,38$	0.779 ± 0.015
D	$3,05 \mathrm{MIN}$.	0.120 MIN.
E	$4,70 \pm 0,13$	0.185 ± 0.005
F	$2,39 \pm 0,5$	0.094 ± 0.002
G	$3,43 \mathrm{MIN}$.	0.135 MIN.

Millimetre dimensions are derived from original inch dimensions

ACTUAL SIZE

General Information

Outline of VM Series

DIM	MILLIMETRES	INCHES	
A	54,0 MAX.	21 $\frac{1}{8}$	MAX.
B	6,10 MAX.	0.240	MAX.
C	27,0 APPROX.	$1{ }_{16}^{1 /}$	APPROX.
D	25,4 APPROX.	1	APPROX.
E	0,76 MIN.	0.030	MIN.
F	0,64 MAX.	0.025	MAX.
G	3,18 MAX.	0.125	MAX.
H	$\begin{aligned} & 0.46 \mathrm{MIN} . \\ & 0,56 \mathrm{MAX} . \end{aligned}$	$\begin{aligned} & 0.018 \\ & 0.022 \end{aligned}$	MIN. MAX.
J	3,43 MAX.	0.135	MAX.
K	4,32 MAX.	0.170	MAX.

Millimetre dimensions are derived from original inch dimensions

ACTUAL SIZE

General Information

CONTINUED

Outline of VS Series

Note. Dimensions are subject to minor changes to comply with International standardisation now in progress.

DIM.	MILLIMETRES	INCHES
A	$3,2 \mathrm{MAX}$.	$0.125 \mathrm{MAX}$.
B	$2,4 \mathrm{MAX}$.	0.093 MAX.
C	$5,33 \pm 0,25$	0.215 ± 0.010
D	$1,57 \pm 0,08$	0.062 ± 0.003
E	$1,57 \pm 0,08$	0.063 ± 0.003

Millimetre dimensions are derived from original inch dimensions

ACTUALL SIZE

Var/Gen C

VARACTOR DIODES

General Information

REFERENCE CODING SYSTEM

Each varactor diode is allotted an individual reference code which is related to its basic structure, semi-conductor material and electrical characteristics. The first three letters of the code correspond to one of the basic series referred to in CLASSIFICATION OF TYPES Section. (Var/Gen A.)

The example and table given below illustrate the coding system.
EXAMPLE

Table 1

CODE	V_{B} min. (V)
3	18
4	30
5	48
6	60
7	90
8	120
9	150
10	180
11	200
12	250

Table 2

	$C_{i(-6)}($ Note 2)	
CODE	MIN.	
	(pF)	MAX.
1	0.12	0.25
2	0.25	0.50
3	0.5	1
4	1	2
5	2	4
6	4	8
7	8	16
8	16	32
9	32	64

Note 1. The quality level is indicated by a letter A, B, C, etc., and is expressed as f_{c} min for cartridge and pill types and as R_{s} max for stud types. The significance of the letter is shown in individual data sheets. In the example shown above the letter C indicates a quality level of $R_{s}=5 \Omega$.
Note 2. Approximate value for coding purposes. See data sheets for precise individual tolerances.

Var/Gen D

VARACTOR DIODES

General Information

CHARACTERISTICS

(a) Equivalent Circuit

At high frequencies the conductance of a $p-n$ junction becomes negligible and the equivalent circuit is simply the junction capacitance in series with the semiconductor resistance.

The encapsulation introduces parasitic series inductance and shunt capacitance so that the equivalent circuit of the complete varactor diode is as follows:

SYMBOL
EQUIVALENT CIRCUIT

Typical values of L_{s} and C_{p} are given in the following table

Encapsulation	Type	Insulation	$\begin{gathered} L_{s} \\ (\mathrm{nH}) \end{gathered}$	$\begin{aligned} & \mathrm{c}_{\mathrm{p}} \\ & (\mathrm{pF}) \end{aligned}$
Stud	VA	Glass	4	0.75
Stud	VB	Ceramic	4	0.55
Cartridge	VH	Ceramic	2	0.4
Cartridge	VJ	Ceramic	2	0.6
Metal-glass (wire-ended)	VM	Glass	-	0.5
Pill	VS	Ceramic	0.8	0.25

General Information

CONTINUED

(b) Typical Capacitance Characteristics

For low bias voltages, the capacitance is given by:

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathrm{C}_{\mathrm{j}(\mathrm{v})}= & \mathrm{C}_{\mathrm{i}}(-6)\left\{\frac{\phi+6}{\phi-\mathrm{V}}\right\}^{\gamma} \\
\text { where: } \quad \mathrm{V} & =\text { bias } \\
\phi & =0.6 \mathrm{~V} \text { approx. } \\
\gamma & =0.4 \text { approx. }
\end{aligned} \\
& \text { For example, } \mathrm{C}_{\mathrm{j}}(-4)=1.3 \mathrm{C}_{\mathrm{i}}(-6) .
\end{aligned}
$$

VARACTOR DIODES

General Information

PARAMETERS OF VARACTOR DIODES

Parameter	Symbol/Formula	Condition of Measurement
Junction capacitance Breakdown voltage Series resistance Cut-off frequency (Notes 1 and 2) Thermal resistance Junction temperature ($175^{\circ} \mathrm{C}$ maximum)	$\begin{gathered} \begin{array}{c} \mathrm{C}_{\mathrm{j}(\mathrm{y})} \\ \mathrm{C}_{\mathrm{i}(-6)} \\ \mathrm{V}_{\mathrm{B}} \end{array} \\ \mathrm{f}_{\mathrm{c}}=\frac{1}{2 \pi \mathrm{R}_{\mathrm{s}} \mathrm{C}_{\mathrm{j}(\mathrm{VB})}} \\ \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{h} \cdot \mathrm{~s} .}^{\theta}+\theta \mathrm{P}_{\mathrm{i}} \\ \text { where } \mathrm{T}_{\mathrm{h} \cdot \mathrm{~s}}=\text { heat sink } \\ \text { temperature } \end{gathered}$	15 mV .1 MHz signal at bias V . 15 mV .1 MHz signal at -6 V bias. $10 \mu \mathrm{~A}$ reverse current. 600 MHz at zero bias for stud type. Measured at nominal breakdown voltage V_{B} and f_{c} determined from Q measurement at 800 MHz , approx. R_{s} applies to cartridge or pill. Measured on infinite heat sink.

Note 1. Cut-off frequency is defined as the frequency at which $\mathrm{Q}=1$.
Note 2. Cut-off frequencies at other bias voltages can be quoted on request.

VARACTOR DIODES

General Information

VARACTOR DIODES AVAILABLE IN ALTERNATIVE ENCAPSULATIONS

Capacitance Code	Voltage Code							
	4	5	6	7	8	9	10	11
2	PC	PC	PC	PC	PCS	PCS	PCS	PCS
3	PC	PC	PC	PC	PCS	PCS	PCS	PCS
4	PCS							
5	PCS							
6	PCS							
7	PCS	PCS	PCS	PCS	PCS	CS	CS	CS
8	PCS	PCS	PCS	${ }^{*}$ PCS	CS	CS		
							CS	
9	PCS	PCS	PCS	CS	CS	CS	CS	$\stackrel{*}{\text { CS }}$

Legend
P = Pill types (VS series).
$\mathrm{C}=$ Cartridge and wire-ended metal-glass types (VH, VJ and VM series).
$S=$ Stud types (VA and VB series).
Diode types within the shaded area are preferred types.

* Letters surmounted by an asterisk indicate diodes available to special order only.

VARACTOR DIODES

General Information

APPLICATIONS

The more usual applications of varactor diodes are:
Harmonic generators.
Up-converters.
Tuning devices.
Use as parametric amplifiers.
For the first class of application, the capacitance-voltage law is not of great significance, but the series resistance (or cut-off frequency) and the ability of a diode to generate harmonics of the input frequency are important. Diodes in the present STC range are designed primarily for this class of operation, to which, therefore, the applications information given here relates.

Frequency Multipliers

(a) Shunt Diode

A basic circuit of a frequency multiplier incorporating a varactor diode is shown below.

This is the basic shunt connection of the varactor diode and since one electrode is earthed a good heat sink can be provided.

An essential feature of all varactor frequency multiplier circuits is that the diode forms part of every resonant circuit in the stage.

$M_{1}=$ Input impedance matching circuit.
$M_{0}=$ Output impedance matching circuit.
$\mathrm{F}_{1}=$ Band-pass filter to pass input frequency.
$\mathrm{F}_{0}=$ Band-pass filter to pass output frequency.
$\mathrm{R}=$ Resistor to develop diode bias. In practice, values range from $10 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$. It is best to start with $100 \mathrm{k} \Omega$ and to adjust to optimum when all other circuit adjustments have been made.
$\mathrm{R}_{\mathrm{L}}=$ Load.
I = Idler circuit tuned to an intermediate frequency for use in triplers, etc.
$\mathrm{f}_{\mathrm{in}}=$ Input frequency.

General Information

CONTINUED

(b) Series Diode

The alternative basic circuit to that just described is given below.
This circuit is sometimes useful at low power levels but its use entails the following disadvantages:

It is not easy to provide a good heat sink for the diode because neither terminal is earthed.

The unwanted harmonic currents have to flow through the filter resistances.

$\mathrm{F}_{1}=$ Filter circuit, resonant at input frequency.
$\mathrm{F}_{\circ}=$ Filter circuit, resonant at output frequency.
$M_{I}=$ Input impedance matching circuit.
$M_{0}=$ Output impedance matching circuit.
$\mathrm{R}_{\mathrm{L}}=$ Load.
$\mathrm{f}_{\mathrm{in}}=$ Input frequency.

Var/Gen H

VARACTOR DIODES

General Information

TYPICAL PERFORMANCE DATA

The following tables show the typical measured performance, including circuit losses, of a representative selection from the range of varactor diodes. Junction temperatures do not exceed $110^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$ ambient.

Frequency		Power		Efficiency$(\%)$	Attenuation (dB)	Varactor Types
$\begin{aligned} & \text { Input } \\ & (\mathrm{MHz}) \end{aligned}$	Output (MHz)	Input (W)	Output (W)			
Frequency Doublers						
125	250	25	19	76	$1 \cdot 1$	VBC108C: VBC118D
250	500	20	16	80	1	VBC107C
250	500	15	12	80	1	VBC77C
500	1000	5	$3 \cdot 4$	68	1.7	VJC75D
500	1000	5	3	60	$2 \cdot 2$	VBC75B
500	1000	15	9	60	2.2	VBC86C: VBC87C
500	1000	15	10	66	1.8	VJC87D
500	1000	20	13	65	1.9	VBC107C
500	1000	30	19	63	2	VJC87D
500	1000	30	18	60	$2 \cdot 2$	VBC98C
500	1000	45	25	56	2.5	VBC108C
1000	2000	10	6	60	1.7	VSE66M: VJE66M
2000	4000	3	1.8	60	$2 \cdot 2$	VHC65D: VSC65D
Frequency Triplers						
150	450		$3 \cdot 2$	64	1.9	VBC78B
150	450	10	6	60	$2 \cdot 2$	VBC87D
150	450	10	$6 \cdot 5$	65	1.9	$\begin{cases}\text { VBC98C: } & \text { VBC107C } \\ \text { VBC89C: } & \text { VBC88C }\end{cases}$
150	450	20	$12 \cdot 5$	$62 \cdot 5$	2	$\left\{\begin{array}{l}\text { VBC98C: } \\ \text { VBC108C: } \\ \text { VBC1107C }\end{array}\right.$
150	450	30	18	60	$2 \cdot 2$	$\left\{\begin{array}{l}\text { VBC108C: } \\ \text { VBC }\end{array}\right.$
150	450	50	30	60	$2 \cdot 2$	VBC119D
240	720	15	8	53	2.8	VBC77C
3000	9000	0.4	$0 \cdot 15$	37.5	4.3	VHC64E
Frequency Quadruplers						
60	240	$0 \cdot 9$	$0 \cdot 5$	55	$2 \cdot 9$	VMC77M
250	1000	4	2	50	3	VJE66M: VJC76D
High Order Multipliers						
40	400	0.5	0.1	20	7	VMC86
800	4000	0.5	0.1	20	7	VHC64 (selected)
800	6400	1	$0 \cdot 1$	10	10	VHC64 (selected)
800	6400	0.05	0.004	8	13	VHC43 (selected)

VARACTOR DIODES

General Information

USE OF DIODE PERFORMANCE TABLES AND GRAPHS

This section contains instructions for using the three diode performance tables and graphs comprising Section K.

It should be noted that:
(a) The majority of the types of diodes referred to in the performance tables have a γ characteristic approximately equal to 0.42 . Compared with these types, diodes which have the same $\mathrm{C}_{\mathrm{o}}, \mathrm{V}_{\mathrm{B}}$ and Rs characteristics, but with γ greater than 0.42 , will handle less power and be more efficient at lower powers; that is, maximum efficiency will be greater and will occur at a lower power level.

Correspondingly, diodes with γ less than 0.42 will handle more power and have a lower maximum efficiency.
(b) The efficiency at the tabulated input power corresponds to unity on the power ratio axis of the appropriate graph.
(c) The input and output resistances are proportional to Rs.
(d) Generally, the variation of input and output resistance follows the efficiency curve.

Selection of Varactor Diodes

(a) When input power and frequency data are known.

Step 1. Determine the multiplying factor to achieve the required output frequency and postulate a single stage or series of stages, for example doubler, tripler or quadrupler. Take each stage successively but at each stage allow for about 15% circuit loss; that is, assume that only about 85% of the determined output power is available for the next stage.
Step 2. Look at the table appropriate to the stage class and select the column giving the input frequency nearest to that required. If the frequency in the selected column is substantially different from that required, use the frequencies given in the columns on each side of it for two calculations and interpolate the final results; take input power directly proportional to frequency.
Step 3. Run down the appropriate column(s) until the power shown is between 1.1 and 0.25 times that available. (This is the reciprocal of the power ratio in Step 4 below.)
Step 4. Select a diode type and determine the power ratio $\frac{P_{\text {in }}}{P_{\text {table }}}$. Read from the appropriate curve (indicated in the table by letters A, B or C followed by a numeral) the efficiency corresponding to this power ratio. Normally, for maximum efficiency the power ratio is in the region 1 to $1 \cdot 5$. By knowledge of the power input, determine the theoretical output.
Step 5. The difference between the power input and theoretical output will be the diode loss; the product of power loss and thermal resistance (found in data sheets) yields the junction temperature rise.
Step 6. In most practical cases the actual power output will be approximately 85% of the theoretical value, due to circuit losses.
Examples of the use of this selection procedure are given at the end of this Section.

General Information

CONTINUED

(b) When Output Power and Frequency Data are known.

The performance of a diode for a given multiplying factor may be found by roughly estimating the efficiency and then using the procedure given under (a) to obtain successive approximations.

Examples.
Example 1. Frequency Doubler Selection.
It is required to choose, for frequency doubling, a diode with the following parameters:

Input frequency 125 MHz Power input 25 W Output frequency 250 MHz Diode efficiency 80%
Step 2. Any diode with a tabulated power of at least a quarter of 25 W at 125 MHz may be considered.

Referring to Table 1 the nearest reference frequency is 100 MHz .
Step 3. At 100 MHz the following diodes have a suitable power handling capacity, 119C, 109B, 118D, 118A, 108C, 108A and, possibly, 98C.
Step 4. Taking the 119C diode with a tabulated power of 16 W ,
Power ratio $\frac{P_{\text {in }}}{P_{\text {table }}}=\frac{25}{16} \simeq 1.6$.
From curve A5 of the doubler efficiency graph,
Diode efficiency $=87 \%$.
Allowing for 15% loss of power in the circuit and a diode efficiency of 87%,
Power output $\simeq 25 \mathrm{~W} \times 0.85 \times 0.87=18.5 \mathrm{~W}$.
Since the 109B, 118A and 108A diodes each have a smaller tabulated power than that of the 119 C , their efficiency, determined from the common efficiency curve, is also lower.

Considering type 118D, with a tabulated power of 8 W ,
Power ratio $\simeq 3.2$.
Efficiency from curve A4 $=84 \%$.
Power output $\simeq 25 \mathrm{~W} \times 0.85 \times 0.84=17.8 \mathrm{~W}$.
For type 108 C , with a tabulated power of 6.8 W ,
Power ratio $\simeq 3.7$.
Efficiency from curve A4 $=78 \%$.
Power output $\simeq 25 \mathrm{~W} \times 0.85 \times 0.78=16.6 \mathrm{~W}$.
Step 5. In the case of type 119C the diode power loss is 6.5 W . The thermal resistance of the stud version of this diode, the VBC119C, as shown in its data sheet is $4^{\circ} \mathrm{C} / \mathrm{W}$. Thus,

Junction temperature rise $=6.5 \times 4=26^{\circ} \mathrm{C}$

General Information

CONTINUED

Example 2. Frequency Tripler Selection

It is required to choose, for frequency tripling, a diode with the following parameters:

Input frequency 150 MHz Input power 1 W
Output frequency $450 \mathrm{MHz} \quad$ Diode efficiency 70%
Step 2. Since a large number of diodes listed in Table 2 have a power handling capacity of 1 W , choose from the table a type with a tabulated power of 1 W at 150 MHz : by direct proportion with frequency this corresponds to 0.67 W at 100 MHz and 1.33 W at 200 MHz .

Step 3. On the bases above, the table shows that the most suitable types are 86C, 86E, 76C and 76E.
Step 4. To determine diode efficiency over the range of diodes initially selected, types 86 C and 76 C are assessed, as follows:
Diode Efficiency at 100 MHz
Type 86C: Power ratio $=\frac{0.67}{0.76} \simeq 0.88$.
Efficiency from curve B3 $=94 \%$.
Type 76C Power ratio $=\frac{0.67}{0.49} \simeq 0.88$.
Efficiency from curve $\mathrm{B} 3=94 \%$.
Thus at 100 MHz all diodes will have an efficiency greater than 94%.
Diode Efficiency at 200 MHz
Type 86C Power ratio $=\frac{1.33}{1.55} \simeq 0.88$.
Efficiency from curve B4 $=86 \%$.
Type 76C Power ratio $=\frac{1.33}{0.98} \simeq 1.36$.
Efficiency from curve B4 $=87 \%$.
Therefore at 200 MHz all diodes will have an efficiency greater than 86%.
Diode Efficiency at 150 MHz
By interpolation, at 150 MHz , all diodes will have an efficiency of about 90%.
Step 5. Diode loss will be approximately 100 mW : the product of this and the thermal resistance for the particular diode chosen (obtained from the appropriate data sheet) will give the junction temperature rise.
Step 6. Approximate overall circuit efficiency will be 85% of $90 \%=76 \%$ and approximate output power will be 760 mW for a 1 W input.

Var/Gen K

VARACTOR DIODES

General Information

VARACTOR DIODE SELECTION TABLES AND GRAPHS

The following Tables 1, 2 and 3 contain approximate performance data in respect of varactor diodes which are suitable for use as frequency doublers, triplers and quadruplers respectively.

Tabulated data are arranged in descending order of input power. Each table is followed by a complementary graph showing curves of diode efficiency versus power ratio. The curves to be used in connexion with a particular diode are indicated in the input frequency columns of the tables.

The codes given to the diode types in the tables are basic: when these types are associated with specific encapsulations they carry a commercial reference code which will be found in the appropriate data sheets.

General Information

CONTINUED

Table 1.-Diode Performance. Frequency Doublers

General Information

CONTINUED

Table 1．－Diode Performance．Frequency Doublers （continued）

	¢	$\frac{\sum}{2}$	$\begin{array}{lllll} \grave{<} & < & < & < & < \\ \dot{\sim} & \stackrel{\circ}{<} & \dot{0} & \dot{0} & \dot{\circ} \end{array}$
	－	$\frac{\sum_{3}^{0}}{3}$	ざ されなも くれなも
	\％	$\frac{\stackrel{0}{2}}{\substack{3}}$	 óOOOOOOOOOOOÓO
	\％		
	\％	$\frac{\sum_{i}^{\infty}}{\substack{3}}$	 \qquad
	O	$\frac{\begin{array}{l} 0 \\ \vdots \\ \vdots \end{array}}{\qquad i=\S}$	
	은	$\frac{\left\lvert\, \begin{array}{l} 0 \\ \vdots \\ \vdots \\ U \end{array}\right.}{\qquad i=\xi}$	 か్ల్లు ○́óóóóóóóóó
	은	$\frac{\left\lvert\, \begin{array}{l} 0 \\ \vdots \\ \vdots \\ u \end{array}\right.}{i E \S}$	 óo ó ó ó ó ó ó
	느N	$\frac{\left\lvert\, \begin{array}{l} 0 \\ \vdots \\ u \end{array}\right.}{\frac{5}{i}}$	
	$\stackrel{\sim}{\sim}$		
		哭	

General Information

CONTINUED

Efficiency Curves. Frequency Doublers

(To be used in conjunction with Table 1)

General Information

CONTINUED

Table 2.-Diode Performance. Frequency Triplers

General Information

CONTINUED
Table 2.-Diode Performance. Frequency Triplers (continued)

General Information

CONTINUED

> Efficiency Curves. Frequency Triplers
> (To be used in conjunction with Table 2)

General Information

CONTINUED

Table 3.-Diode Performance. Frequency Quadruplers

General Information

CONTINUED
Table 3.-Diode Performance. Frequency Quadruplers
(continued)

		$\begin{array}{lllll} \because & \ddots & \ddots & \ddots & \ddots \end{array}$
		ชัช ชั ชษ ชั ชั oo oo oo ó ó
		 สสสnnnffFFFF: mom m - ooooooooooóoo
	$\frac{8}{\square} \frac{0}{2}$	 -0000000000000
	$\frac{\mathrm{A}}{\mathrm{O}} \mathrm{O}$	 -
	$\therefore \frac{0}{2}$	 оо்о்о்о்о்о்о்
	$\text { io } \frac{10}{\substack{0 \\ 0}}$	ఫ゙す ○ْ
	N	
	\%	

General Information

CONTINUED

Efficiency Curves. Frequency Quadruplers
(To be used in conjunction with Table 3)

Var/Gen L

VARACTOR DIODES

General Information

DATA SHEETS

This Section comprises the following data sheets:
$\left.\begin{array}{l}\begin{array}{l}\text { VAC70 } \\ \begin{array}{l}\text { VBC70 }\end{array} \\ \left.\begin{array}{l}\text { Series }\end{array}\right\} \\ \text { VAC80 } \\ \text { VBC80 }\end{array} \text { Series }\end{array}\right\}$

VARACTOR DIODES
VAC70 VBC70

VAC70 Series. Stud type with glass seal
VBC70 Series. Stud type with ceramic seal

Note.-Preferred types are shown in shaded areas.

Characteristic	Symbol	Units	VAC70 Series	VBC70 Series
Case capacitance, approximate Internal lead inductance, approximate	C $\mathrm{L}_{\text {s }}$	$\mathrm{pr}_{\mathrm{n}} \mathrm{H}$	${ }_{4}^{0.75}$	$\begin{aligned} & 0.55 \\ & 4 \end{aligned}$

VAC80 Series. Stud type with glass seal VAC80 Series. Stud type with ceramic seal

Note.-Preferred types are shown in shaded areas.

Characteristic	Symbol	Units	VAC80 Series	VBC80 Series
Case capacitance, approximate Internal lead inductance, approximate	C_{p}	L_{s}	pF nH	0.75 4

VARAUTUR DIODES
VACYU
VBC90
VAC90 Series. Stud type with glass seal VBC90 Series. Stud type with ceramic seal

Note.-Preferred types are shown in shaded areas.

Characteristic	Symbol	Units	VAC90 Series	VBC90 Series
Case capacitance, approximate Internal lead inductance, approximate	C_{p}	pF L_{s}	0.75 4 nH	0.55 4

VAC100 Series．Stud type with glass seal VBC100 Series．Stud type with ceramic seal

Note．－Preferred types are shown in shaded areas．

Characteristic		Units	Value					Condi－ tions
			VAC105 VBC105	$\begin{aligned} & \text { VAC106 } \\ & \text { VBC106 } \end{aligned}$			$\begin{aligned} & \text { VAC109 } \\ & \text { VBC109 } \end{aligned}$	
	Symbol							
Junction capacitance at -6 V bias	$\mathrm{C}_{\mathrm{j}(-6)}$	pF	2 to 4	4 to 8	案 8 to 16	$16 \text { to } 32$	32 to 64	Measured at $\mathrm{f}_{\mathrm{in}}=$ 1 MHz
Junction capacitance at zero bias	$\mathrm{C}_{\mathrm{j}(\mathrm{o})}$	pF	5 to 10	10 to 20	$\text { 笿 } 20 \text { to } 40$		80 to 160	
Reverse break－ down voltage， minimum	$\mathrm{V}_{\mathrm{B} \text {（min．})}$	V	180	180	落 180	180 診	180	At $10 \mu \mathrm{~A}$ reverse current
Thermal resis－ tance，typical	θ（typ．）	${ }^{\circ} \mathrm{C} / \mathrm{W}$	9	7		5	4	
Series resistance at zero bias， maximum	Rs（o）	Ω						Measured at $\mathrm{fin}_{\mathrm{in}} \simeq$ 600 MHz
			$\begin{aligned} & \text { VAC105A } \\ & \text { VBC105A } \end{aligned}$	$\begin{aligned} & \text { VAC106A } \\ & \text { VBC106A } \end{aligned}$	$\begin{aligned} & \text { VAC107A } \\ & \text { VBC107A } \end{aligned}$	$\begin{aligned} & \text { VAC108A } \\ & \text { VBC108A } \end{aligned}$		
＂A＂Quality			8	5	3.5	2.5		
			$\begin{aligned} & \text { VAC105B } \\ & \text { VBC105B } \end{aligned}$	$\begin{aligned} & \text { VAC106B } \\ & \text { VBC106B } \end{aligned}$	$\begin{aligned} & \text { VAC107B } \\ & \text { VBC107B } \end{aligned}$	VAC108B VBC108B	VAC109B VBC109B	
＂B＂Quality		Ω	6	4	$2 \cdot 5$	1.5	1.2	
			VAC105C VBC105C	VAC106C VBC106C		 VBC108C		
＂C＂Quality		Ω	5	$3 \cdot 5$	$\text { 㭥 } 2$	1.2		
＂D＂Quality		Ω						
＂E＇＇Quality		Ω						

Characteristic	Symbol	Units	VAC100 Series	VBC100 Series
Case capacitance，approximate Internal lead inductance，approximate	C_{p} L_{s}	pF nH	0.75 4	0.55

VAC110 Series．Stud type with glass seal VBC110 Series．Stud type with ceramic seal

Note．－Preferred types are shown in shaded areas．

Characteristic		Units	Value					Condi－ tions
			VAC115 VBC115	VAC116 VBC116	VAC117 VBC117		VACyVBC119VB	
	Symbol							
Junction capacitance at -6 V bias	$\mathrm{C}_{\mathrm{j}(-6)}$	pF	2 to 4	4 to 8	8 to 16	弱 16 to 32		Measured at $\mathrm{fin}=$ 1 MHz
Junction capacitance at zero bias	$\mathrm{C}_{\mathrm{j}(\mathrm{o})}$	pF	5 to 10	10 to 20	20 to 40	资 40 to 80	$80 \text { to } 160$	
Reverse break－ down voltage， minimum	$\mathrm{V}_{\mathrm{B} \text {（min．})}$	\checkmark	200	200	200	䜌 200 －	200	At $10 \mu \mathrm{~A}$ reverse current
Thermal resis－ tance，typical	${ }^{\theta}$（typ．）	${ }^{\circ} \mathrm{C} / \mathrm{W}$	9	7	6	㐱 5		
Series resistance at zero bias， maximum	Rs（o）	Ω						Measured at $\mathrm{fin}^{\sim} \simeq$ 600 MHz
			$\begin{aligned} & \text { VAC115A } \\ & \text { VBC115A } \end{aligned}$	VAC116A VBC116A	VAC117A VBC117A	$\begin{aligned} & \text { VAC118A } \\ & \text { VBC118A } \end{aligned}$		
＂ A^{\prime}＂Quality			10	6	4	$2 \cdot 5$		
			$\begin{aligned} & \text { VAC115B } \\ & \text { VBC115B } \end{aligned}$	VAC116B VBC116B	$\begin{aligned} & \hline \text { VAC117B } \\ & \text { VBC117B } \end{aligned}$	$\begin{aligned} & \text { VAC118B } \\ & \text { VBC118B } \end{aligned}$		
＂B＂Quality		Ω	8	5	$3 \cdot 5$	2		
			VAC115C VBC115C	VAC116C VBC116C	VAC117C VBC117C	拸 VAC118C VBC118C		
＂C＂Quality		Ω	6	4	3	毅 1.5		
			$\begin{aligned} & \text { VAC115D } \\ & \text { VBC115D } \end{aligned}$					
＂D＂Quality		Ω	5					

Characteristic	Symbol	Units	VAC110 Series	VBC110 Series
Case capacitance，approximate Internal lead inductance，approximate	C_{p} L_{s}	pF nH	0.75 4	0.55 4

VHC40 Series. Cartridge type with ceramic seal VJC40 Series. Cartridge type with ceramic seal

Note.-Preferred types are shown in shaded areas.

Characteristic	Symbol	Units	VHC40 Series	VJC40 Series
Case capacitance, approximate Internal lead inductance, approximate	C_{p} L_{s}	pF nH	$\mathbf{0 . 4}$ $\mathbf{2}$	0.6 2

VARACTOR DIODES

VHC50 Series．Cartridge type with ceramic seal
VJC50 Series．Cartridge type with ceramic seal

Note．－Preferred types are shown in shaded areas．

Characteristic		Units	Value					Conditions
				$\begin{gathered} 90 \% \\ \text { VHC53 } \\ \text { VJC53 } \\ \hline \end{gathered}$	VK才才VHC54VJC54	$\begin{aligned} & \text { VHC55 } \\ & \text { VJC55 } \end{aligned}$	$\begin{aligned} & \text { VHC56 } \\ & \text { VJC56 } \end{aligned}$	
	Symbol							
Junction capacitance at -6 V bias	$\mathrm{C}_{\mathrm{i}}(-6)$	pF	$\text { 㔇0.25 to } 0.5$	0.5 to 1	$1 \text { to } 2$	2 to 4	4 to 8	Measured at $\mathrm{fin}_{\mathrm{in}}=1 \mathrm{MHz}$
Reverse breakdown voltage，minimum	$V_{B(\text { min．}}$ ）	V		48	48	48	48	At $10 \mu \mathrm{~A}$ reverse current
Thermal resistance， typical	${ }^{\theta}$（typ．）	${ }^{\circ} \mathrm{C} / \mathrm{W}$	詮65	33 		17	13	
Cut－off frequency， minimum	fc_{c}（min．）	GHz						Determined from Q at nominal VB measured at 1 GHz
			$\begin{aligned} & \text { VHC52A } \\ & \text { VJC52A } \end{aligned}$	$\begin{aligned} & \text { VHC53A } \\ & \text { VJC53A } \end{aligned}$	VHC54A VJC54A	VHC55A VJC55A	VHC56A VJC56A	
＂${ }^{\text {＇}}$＂Quality			40	40	40	25	15	
			$\begin{aligned} & \text { VHC52B } \\ & \text { VJC52B } \end{aligned}$	VHC53B VJC53B	VHC54B VJC54B	VHC55B VJC55B	VHC56B VJC56B	
＂B＇Quality		GHz	60	60	60	40	25	
				$\begin{aligned} & \text { VKC53 } \\ & \text { VJC53C } \\ & \text { VJC53C } \end{aligned}$	$\begin{aligned} & \text { VVOK K } \\ & \text { VHC54C } \\ & \text { VJC54C } \end{aligned}$	$\begin{aligned} & \text { VHC55C } \\ & \text { VJC55C } \end{aligned}$	$\begin{aligned} & \text { VHC56C } \\ & \text { VJC56C } \end{aligned}$	
＂C＇Quality		GHz		90	90 氬	60	40	
			笣VHC52D	VHC53D VJC53D	$\begin{aligned} & \text { VHC54D } \text { VJC54D } \end{aligned}$	$\begin{aligned} & \text { VHC55D } \\ & \text { VJC55D } \end{aligned}$	$\begin{aligned} & \text { VHC56D } \\ & \text { VJC56D } \end{aligned}$	
＂D＂Quality		GHz	豿 120	120	120 颗	90	60	
			$\begin{aligned} & \text { VHC52E } \\ & \text { VYJC52E } \end{aligned}$	VHC53E VJC53E		$\begin{aligned} & \text { VHC55E } \\ & \text { VJC55E } \end{aligned}$	VHC56E VJC56E	
＂E＂Quality		GHz	150	150		120	90	
			$\begin{aligned} & \text { VHC52F } \\ & \text { VJC52F } \end{aligned}$	VHC53F VJC53F				
＂F＇Quality		GHz						

Characteristic	Symbol	Units	$\begin{aligned} & \text { VHC50 } \\ & \text { Series } \end{aligned}$	$\begin{aligned} & \text { VJC50 } \\ & \text { Series } \end{aligned}$
Case capacitance，approximate Internal lead inductance，approximate	${ }_{\text {c }}^{\text {c }}$	$\stackrel{\mathrm{pF}}{\mathrm{nH}}$	$\begin{aligned} & 0.4 \\ & 2 \end{aligned}$	${ }_{2}^{0.6}$

VHC60 Series. Cartridge type with ceramic seal VJC60 Series. Cartridge type with ceramic seal

Note.-Preferred types are shown in shaded areas.

Characteristic	Symbol	Units	VHC60 Series	VJC60 Series
Case capacitance, approximate Internal lead inductance, approximate	C_{p}	pF	$\mathbf{0 . 4}$	$\mathbf{0 . 6}$ nH

VHC70 Series．Cartridge type with ceramic seal VJC70 Series．Cartridge type with ceramic seal

Note．－Preferred types are shown in shaded areas．

Characteristic		Units	Value		Conditions
	Symbol				
Junction capacitance at -6 V bias	$\mathrm{C}_{\mathrm{j} \text {（－6）}}$	pF	第 2 to 4	4 to 8 緆	Measured at $\mathrm{fin}=1 \mathrm{MHz}$
Junction capacitance at zero bias	$C_{i}(0)$	pF	後 5 to 10	10 to 20 詻	
Reverse breakdown voltage， minimum	$\mathrm{V}_{\mathrm{B}(\text { min．})}$	V	夈 90	90	At $10 \mu A$ reverse current
Thermal resistance，typical	θ（typ．）	${ }^{\circ} \mathrm{C} / \mathrm{W}$			
Series resistance at zero bias， maximum	R $\mathrm{s}_{(0)}$	Ω			Measured at $\mathrm{f}_{\mathrm{in}} \simeq$ 600 MHz
			VHC75A VJC75A	VHC76A VJC76A	
＂ A^{\prime}＇Quality			3.5	3	
			$\begin{aligned} & \text { VHC75B } \\ & \text { VJC75B } \end{aligned}$	VHC76B VJC76B	
＂B＂Quality		Ω	3	2.5	
		Ω			
＂C＂Quality			豯 2.5	2	
			貉 VHC75D	VHC76D VJC76D	
＂D＂Quality＂E＂Quality		Ω	$\text { 䇨 } 2$	1.5	
			VHC75E VJC75E	VHC76E VJC76E	
		Ω			

Characteristic	Symbol	Units	$\mathrm{VHC70}$ Series	VJC70 Series
Case capacitance，approximate Internal lead inductance，approximate	$\begin{aligned} & C_{p} \\ & L_{s} \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{nH} \end{aligned}$	$\begin{aligned} & 0.4 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 2 \end{aligned}$

VHC80 Series．Cartridge type with ceramic seal VJC80 Series．Cartridge type with ceramic seal

Note．－Preferred types are shown in shaded areas．

Characteristic		Units	Value		Conditions
	Symbol				
Junction capacitance at -6 V bias	$\mathrm{C}_{\mathrm{j}(-6)}$	pF	笉 4 to 8	8 to 16 韵	Measured at $\mathrm{fin}_{\text {in }}=1 \mathrm{MHz}$
Junction capacitance at zero bias	$\mathrm{C}_{\mathrm{j}(0)}$	pF	紾 10 to 20	20 to 40 緆	
Reverse breakdown voltage， minimum	$\mathrm{V}_{\mathrm{B}(\text { min．})}$	V		120	At $10 \mu A$ reverse current
Thermal resistance，typical	$\theta_{\text {（typ．}}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$			
Series resistance at zero bias， maximum	Rs（0）	Ω			$\begin{aligned} & \text { Measured at } \mathrm{fin} \simeq \\ & 600 \mathrm{MHz} \end{aligned}$
			VHC86A VJC86A	$\begin{aligned} & \text { VHC87A } \\ & \text { VJC87A } \end{aligned}$	
＂ A ＂Quality			3	$2 \cdot 5$	
			VHC86B VJC86B	$\begin{aligned} & \text { VHC87B } \\ & \text { VJC87B } \end{aligned}$	
＂B＂Quality		Ω	$2 \cdot 5$	2	
		Ω		VHC87C VJC87C	
＂C＇Quality			聄 2	1.5	
			$\begin{aligned} & \text { VHC86D } \\ & \text { 资 VJC86D } \\ & \hline \end{aligned}$		
＂D＂Quality＂E＇Quality		Ω	$\text { 多 } 1.5$	$1 \cdot 2$	
				VHC87E VJC87E	
		Ω	$\frac{1.2}{102}$		

Characteristic	Symbol	Units	$\begin{aligned} & \text { VHC80 } \\ & \text { Series } \end{aligned}$	$\begin{aligned} & \text { VJC80 } \\ & \text { Series } \end{aligned}$
Case capacitance，approximate Internal lead inductance，approximate	C $L_{\text {p }}$	pF nH	${ }_{4}^{0.75}$	$\begin{aligned} & 0.55 \\ & 4 \end{aligned}$

VHC100 Series．Cartridge type with ceramic seal VJC100 Series．Cartridge type with ceramic seal

Note．－Preferred types are shown in shaded areas．

Characteristic		Units	Value	Conditions
	Symbol			
Junction capacitance at -6 V bias	$\mathrm{C}_{\mathrm{j}(-6)}$	pF		Measured at $\mathrm{f}_{\mathrm{in}}=1 \mathrm{MHz}$
Junction capacitance at zero bias	$\mathrm{C}_{\mathrm{j}(\mathrm{o})}$	pF	診 20 to 40 圽	
Reverse breakdown voltage， minimum	$V_{B(\text { min．}}$ ）	V		At $10 \mu \mathrm{~A}$ reverse current
Thermal resistance，typical	$\theta($ typ．$)$	${ }^{\circ} \mathrm{C} / \mathrm{W}$		
Series resistance at zero bias， maximum ＂A＂Quality ＂B＇Quality	R $\mathrm{s}_{(0)}$	Ω		Measured at $\mathrm{f}_{\mathrm{in}} \simeq 600 \mathrm{MHz}$
			$\begin{aligned} & \text { VHC107A } \\ & \text { VJC107A } \end{aligned}$	
			3.5	
			$\begin{aligned} & \text { VHC107B } \\ & \text { VJC107B } \end{aligned}$	
		Ω	2.5	
＂B＂Quality		Ω		
＂C＂Quality			俢 2	
			VHC107D VJC107D	
＂D＂Quality＂E＂Quality		Ω	1	
			VHC107E VJC107E	
		Ω	\mid	

Characteristic	Symbol	Units	VHC100 Series	VJC100 Series
Case capacitance，approximate Internal lead inductance，approximate	C_{p} L_{s}	pF nH	0.75 4	0.55

PROVISIONAL DATA

VHE66M (Cartridge Type)
 Codes: VJE66M (Cartridge Type) VSE66M (Pill Type)

These epitaxial type varactor diodes are designed for high power, high frequency harmonic generation.

The suffix letter M in the codes of these types indicates that the diodes have been tested to a specified harmonic multiplier performance.

ELECTRICAL CHARACTERISTICS (At $25^{\circ} \mathrm{C}$ ambient temperature)

Characteristic	Symbol	Units	Value			Conditions
			VHE66M	VJE66M	VSE66M	
Junction capacitance at -6 V bias	$\mathrm{C}_{\mathrm{i}}(-6)$	pF	4 to 8	4 to 8	4 to 8	Measured with signal ($\mathrm{fin}_{\mathrm{in}}$) of 1 MHz
Reverse breakdown voltage, minimum	$V_{B(\text { min. })}$	V (d.c.)	70	70	70	Reverse current $=10 \mu \mathrm{~A}$
Series resistance at -6 V bias, typical	Rs(-6)	Ω	0.5	0.5	0.5	Measured with signal (fin) of 600 MHz
Thermal resistance, typical	θ	${ }^{\circ} \mathrm{C} / \mathrm{W}$	12	12	15	
Case capacitance, approx.	$C_{\text {p }}$	pF	$0 \cdot 4$	0.6	0.25	
Internal lead inductance, approx.	$\mathrm{L}_{\text {s }}$	nH	2	2	0.8	
Power output typical minimum	$\begin{aligned} & \mathrm{P}_{\mathrm{o}(\text { typ. })} \\ & \mathrm{P}_{\mathrm{o}(\text { min. })} \end{aligned}$	$\begin{aligned} & w \\ & w \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \cdot 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \cdot 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \cdot 5 \end{aligned}$	$\begin{aligned} & \text { Doubler test } \\ & \text { circuit } \\ & P_{\text {in }}=10 \mathrm{~W} \end{aligned}$
Diode efficiency, typical	η	\%	60	60	60	$\int \begin{aligned} & \mathrm{f}_{\mathrm{in}}=1 \mathrm{GHz} ; \\ & \mathrm{f}_{\text {out }}=2 \mathrm{GHz} \end{aligned}$

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333 Telex: 21836
C O $\quad \mathrm{M} \quad \mathrm{P} \quad \mathrm{O} \quad \mathrm{N} \quad \mathrm{E} \quad \mathrm{N} \quad \mathrm{T} \quad \mathrm{S}$

LIMIT RATINGS

Characteristic	Symbol	Units	Value			Conditions
			VHE66M	VJE66M	VSE66M	
Junction temperature, maximum	$\mathrm{T}_{\mathrm{j}(\text { max. })^{*}}$	${ }^{\circ} \mathrm{C}$	175	175	175	$\begin{aligned} & * \mathrm{~T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{h} . \mathrm{s} .} \\ & +\theta \mathrm{p}_{\mathrm{i}} \\ & \mathrm{~Wh} \text { ere: } \\ & \mathrm{T}_{\mathrm{h} . \mathrm{s} .} \text { = Heat sink } \\ & \text { temperature } \\ & \mathrm{P}_{\mathrm{j}}=\text { Dide loss } \end{aligned}$
Storage temperature	$\mathrm{T}_{\text {(stg.) }}$	${ }^{\circ} \mathrm{C}$	-65 to +200	-65 to +200	-65 to +200	

TYPICAL PERFORMANCE IN QUADRUPLER APPLICATION (250 to 1000 MHz)
R.F. power input (P_{in})
R.F. power output (Pout)

4 W
2.2 W

Harmonic Doubler Test Circuit

Code: VHE66M

CONTINUED

VHE66M Outline

Note. Dimensions are subject to minor changes to comply with International standardisation now in progress.

PROVISIONAL DATA

Code: VJE66M

CONTINUED

VJE66M Outline

Note. Dimensions are subject to minor changes to comply with International standardisation now in progress.

DIM	MILLIMETRES	INCHES
A	5,97 MAX.	0.235 MAX..
B	$4,06 \pm 0,13$	0.160 ± 0.005
C	$19,79 \pm 0,38$	0.779 ± 0.015
D	$3,05 \mathrm{MIN}$.	0.120 MIN.
E	$4,70 \pm 0,13$	0.185 ± 0.005
G	$2,39 \pm 0,5$	0.094 ± 0.002
G	$3,43 \mathrm{MIN}$.	0.135 MIN.

Millimetre dimensions are derived from original inch dimensions

ACTUAL SIZE

Code: VSE66M

CONTINUED

VSE66M Outline

Note. Dimensions are subject to minor changes to comply with International standardisation now in progress.

DIM.	MILLIMETRES	INCHES
A	3,2 MAX.	0.125 MAX.
B	2,4 MAX.	0.093 MAX.
C	$5,33 \pm 0,25$	0.215 ± 0.010
D	$1,57 \pm 0,08$	0.062 ± 0.003
E	$1,57 \pm 0,08$	0.063 ± 0.003

Millimetre dimensions are derived from original inch dimensions

ACTUAL SIZE

VARACTOR DIODES

PROVISIONAL
D A T A

Code: VMC77M (Wire-ended)

This epitaxial type varactor diode is designed for low power harmonic generation.
The suffix letter M of the VMC77M code indicates that the diode has been tested to a specified harmonic multiplier performance.
ELECTRICAL CHARACTERISTICS (at $25^{\circ} \mathrm{C}$ ambient temperature)

Characteristic	Symbol	Units	Value	Conditions
Junction capacitance at -6 V bias	$\mathrm{C}_{\mathrm{j}}(-6)$	pF	8 to 16	```Measured with signal (fin) of }1\textrm{MHz```
Reverse breakdown volage, min.	$\mathrm{V}_{\mathrm{B} \text { (min.) }}$	V (d.c.)	90	Reverse current $=10 \mu \mathrm{~A}$
Thermal resistance, typical	θ	C/W	220	Measured with lead lengths of $\frac{3}{8}$ in.
		C/W	165	Measured with lead lengths of $\frac{1}{8} \mathrm{in}$.
Case capacitance, approx.	C_{p}	pF	0.5	
Power output: typical minimum Diode efficiency, typical	Po(typ.) Po (min. η	W \%	$\begin{gathered} 0.52 \\ 0.49 \\ 58 \end{gathered}$	$\begin{array}{\|l} \text { Quadrupler test circuit } \\ P_{\text {in }}=0.9 \mathrm{~W} ; \\ \text { fin }^{2}=60 \mathrm{MHz} ; \\ f_{\text {fout }}=240 \mathrm{MHz} \\ \hline \end{array}$

LIMIT RATINGS (at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise stated)

Characteristic	Symbol	Units	Value	Conditions
Junction temperature, max.	$\mathrm{T}_{\mathrm{j} \text { (max.) }}{ }^{*}$	C	$175{ }^{\circ}$	${ }^{*} T_{j}=T_{\text {h.s. }}+\theta P_{j}$ Where: $T_{\text {h.s. }}=$ Heat sink temp. $\mathrm{P}_{\mathrm{j}} \quad=$ Diode loss
Storage temperature	$\mathrm{T}_{\text {stg }}$.	${ }^{\circ} \mathrm{C}$	$\begin{gathered} -65 \text { to } \\ +200 \end{gathered}$	

TYPICAL PERFORMANCE IN QUADRUPLER APPLICATION (60 MHz to 240 MHz)

$$
\begin{array}{ll}
\text { R.F. power input (} \mathrm{P}_{\mathrm{in}} \text {) } & 900 \mathrm{~mW} \\
\text { R.F. power output (} \mathrm{Pout}^{\prime} \text {) } & 520 \mathrm{~mW}
\end{array}
$$

Standard Telephones and Cables Limited

Valve Division, Brixham Road, Paignton, Devon
Telephone: Paignton 50762 Telex: 4230
London Sales Office, Telephone: Footscray 3333 Telex: 21836
C $\begin{array}{lllllllllllllll}\mathrm{O} & \mathrm{M} & \mathrm{P} & \mathrm{O} & \mathrm{N} & \mathrm{E} & \mathrm{N} & \mathrm{T} & \mathrm{S} & \mathrm{G} & \mathrm{R} & \mathrm{O} & \mathrm{U} & \mathrm{P}\end{array}$

Code: VMC77M

CONTINUED

Harmonic Quadrupler Test Circuit

$L_{1} 5$ TURNS. 16 SWG. WOUND 픕 IN DIA. SPACED.
$\mathrm{L}_{2} 2$ TURNS. 16 SWG. WOUND $\frac{1}{4}$ IN DIA. SPACED TAPPED 1 TURN.
$L_{3} 4$ TURNS. 16 SWG.
WOUND $\frac{1}{4}$ IN DIA. SPACED.

Code: VMC77M

CONTINUED

VMC77M Outline

DIM	MILLIMETRES	INCHES	
A	54,0 MAX.	$2 \frac{1}{8}$	MAX.
B	6,10 MAX.	0.240	MAX.
C	27,0 APPROX.	$1 \frac{1}{16}$	APPROX.
D	25,4 APPROX.	1	APPROX.
E	0,76 MIN.	0.030	MIN.
F	0,64 MAX.	0.025	MAX.
G	3,18 MAX.	0.125	MAX.
H	$\begin{aligned} & 0.46 \text { MIN. } \\ & 0,56 \mathrm{MAX} . \end{aligned}$	$\begin{aligned} & 0.018 \\ & 0.022 \end{aligned}$	$\begin{aligned} & \text { MIN. } \\ & \text { MAX. } \end{aligned}$
J	3,43 MAX.	0.135	MAX.
K	4,32 MAX.	0.170	MAX.

Millimetre dimensions are derived
from original inch dimensions

ACTUAL SIZE

VARACTOR DIODES

VSC40 Series．Pill type with ceramic seal

Note．－Preferred types are shown in shaded areas．

Characteristic		Units	Value					Conditions
					VSC44	VSC45	VSC46	
	Symbol							
Junction capacitance at -6 V bias	$C_{i}(-6)$	pF	$\begin{aligned} & \text { 镍0.25 to } \\ & 0.5 \end{aligned}$	$0.5 \text { to }$ 1	1 to 2	2 to 4	4 to 8	Measured at $\mathrm{f}_{\mathrm{in}}=1 \mathrm{MHz}$
Reverse breakdown voltage，minimum	$V_{B(\text { min．})}$	v		30 俢	30	30	30	At $10 \mu \mathrm{~A}$ reverse current
Thermal resistance， typical	${ }^{\theta}$（typ．）	${ }^{\circ} \mathrm{C} / \mathrm{W}$	彦 100		36	26	20	
Cut－off frequency， minimum	$\mathrm{f}_{\mathrm{c} \text {（min．）}}$	GHz						Determined from Q at nominal V_{B} measured at 1 GHz
			VSC42A	VSC43A	VSC44A	VSC45A	VSC46A	
＂A＂Quality			40	40	40	25	15	
			VSC42B	VSC43B	VSC44B	VSC45B	VSC46B	
＂B＂Quality		GHz	60	60	60	40	25	
			訪VSC42C		VSC44C	VSC45C	VSC46C	
＇＇C＇＇Quality		GHz	診90	90 診	90	60	40	
			渇VSC42D	VSC43D弱	VSC44D	VSC45D	VSC46D	
＂D＂Quality		GHz	䇙 120	120 誢	120	90	60	
			弱VSC42E	VSC43E落	VSC44E	VSC45E	VSC46E	
＂E＂Quality		GHz	䇙 150		150	120	90	
			翏VSC42F	VSC43F				
＂F＂Quality		GHz		$\begin{array}{r} 180 \\ \text { 沟汤汤沟 } \end{array}$				

Characteristic	Symbol	Units	Value
Case capacitance，approximate Internal lead inductance，approximate	C_{p}	pF	0.25 $\mathrm{~L}_{5}$
nH	0.8		

VARACTOR DIODES

VSC50 Series．Pill type with ceramic seal

Note．－Preferred types are shown in shaded areas．

Characteristics		Units	Value					Conditions
			䜌VSC52			VSC55	VSC56	
	Symbol							
Junction cadacitance at -6 V bias	$\mathrm{C}_{\mathrm{j}}(-6)$	pF	$\left\lvert\, \begin{array}{ll} \text { 媵 } & 0.25 \text { to } \\ \text { 皦 } & 0.5 \end{array}\right.$	0.5 to 1	1 to 2 䛬	2 to 4	4 to 8	Measured at $\mathrm{f}_{\mathrm{in}}=1 \mathrm{MHz}$
Reverse breakdown voltage，minimum	$\mathrm{V}_{\mathrm{B} \text {（min．）}}$	V		48	48	48	48	Ac $10 \mu \mathrm{~A}$ reverse current
Thermal resistance， typical	${ }^{\theta}$（typ．）	${ }^{\circ} \mathrm{C} / \mathrm{W}$				24	19	
Cut－off frequency， minimum	fc （min．）	GHz						Determined from Q at nominal V_{B} measured at 1 GHz
			VSC52A	VSC53A	VSC54A	VSC55A	VSC56A	
＂ A ＂Quality			40	40	40	25	15	
			VSC52B	vSC53B	VSC54B	VSC55B	VSC56B	
＂B＂Quality		GHz	60	60	60	40	25	
					VSC54C䊽	vSC55C	VSC56C	
＂C＂Quality		GHz	90	90	90 胗	60	40	
			VSC52D	VSC53D	VSC54D	VSC55D	VSC56D	
＂D＂Quality		GHz	釤 120	120	120 烸	90	60	
			俢VSC52E	VSC53E	VSC54E絡	VSC55E	VSC56E	
＇＇E＂Quality		GHz	150	150	150 診	120	90	
			毅VSC52F	VSC53F	VSC54F			
＂F＇Quality		GHz		$\frac{180}{\square}$				

Characteristic	Symbol	Units	Value
Case capacitance，approximate Internal lead inductance，approximate	C_{p} L_{5}	pF nH	0.25 0.8

VARACTOR DIODES

VSC60 Series．Pill type with ceramic seal

Note．－Preferred types are shown in shaded areas．

Characteristic		Units	Value					Conditions
			VSC62				VSC66	
	Symbol							
Junction capacitance at -6 V bias	$\mathrm{C}_{\mathrm{j}}(-6)$	pF	$\begin{aligned} & 0.25 \text { to } \\ & 0.5 \end{aligned}$	$\text { 發 } 0.5 \text { to } 1$	1 to 2	$2 \text { to } 4$	4 to 8	Measured at $\mathrm{fin}_{\mathrm{in}}=1 \mathrm{MHz}$
Reverse breakdown voltage，minimum	$V_{B(\text { min．})}$	V	60		60		60	At $10 \mu \mathrm{~A}$ reverse current
Thermal resistance， typical	$\theta^{(\text {typ．})}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	86				17	
Cut－off frequency， minimum	$\mathrm{f}_{\mathrm{c} \text {（min．})}$	GHz						Determined from Q at nominal V_{B} measured at 1 GHz
			VSC62A	VSC63A	VSC64A	VSC65A	VSC66A	
＂${ }^{\text {＂}}$＇Quality			40	40	40	25	15	
			VSC62B	VSC63B	VSC64B	VSC65B	VSC66B	
＂B＇Quality		GHz	60	60	60	40	25	
			VSC62C	茙VSC	$\begin{gathered} \text { VKNy } \\ \text { Vsc64c } \end{gathered}$		VSC66C	
＂C＇Quality		GHz	90	90	90	60 綧	40	
			VSC62D	\|落VSC63D	VSC64D	VSC65D 気	VSC66D	
＂D＂Quality		GHz	120	䊽 120	120	90 敉	60	
			VSC62E	緵VSC63E	VSC64E	VSC65E氡	VSC66E	
＇${ }^{\text {E＇Quality }}$		GHz	150	診150	150	120 俢	90	
			VSC62F	椮VSC63F	VSC64F	VSC65F沕	VSC66F	
＂F＇Quality		GHz	180				120	

Characteristic	Symbol	Units	Value
Case capacitance，approximate Internal lead inductance，approximate	C_{p}	pF	0.25 $\mathrm{~L}_{\mathrm{s}}$
nH	0.8		

U.H.F. Thermocouples

Code: T2H/60JA \& B

These thermocouples are suitable for monitoring within the frequency range $300 \mathrm{Mc} / \mathrm{s}$ to $6000 \mathrm{Mc} / \mathrm{s}$ and are designed for building into the walls of resonators, wave-guides, and coaxial-lines, without leakage or appreciable loss.

They are small disc-seal tubes with an end cap. On one side of the disc is the R.F. pick-up loop of which the thermo-junction of manganin and constantan form a part.

The loop is incomplete for D.C. but the H.F. circuit is completed to the disc through a decoupling capacitor of approximately 35 pF . At the lower frequency end of the range an additional decoupling capacitance may be required.

The JA types are so connected that the output is positive at the end cap. The JB types have the end cap negative to the disc. The disc is notched on its periphery to provide location of the plane of the loop with respect to the mounting.

DIMENSIONS

Maximum overall length	54	mm
Maximum disc diameter	22.65	mm
Maximum bulb diameter	10.3	mm

CHARACTERISTICS

Type	Nominal Resistance of couple	Maximum safe heater current	Heater current required to produce in couple an open circuit e.m.f. of 15 mV
T2H/60JA \& B	6Ω	60 mA	38 mA

U.H.F. Thermocouples

Code: T2H/60JA \& B

TOP CAP CTI SKIRTED

CONNECTIONS
 DISC. ELEMENT
 T.C. ELEMENT

DIM.	MILLMETRES	INCHES
A	49.2 ± 4.8	$115 / 16 \pm 3 / 16$
B	22.23土 0.20	0.875 ± 0.008
C	6.0 MIN.	0.24 MIN.
	8.5 MAX.	0.33 MAX.
D	0.30 MAX.	0.012 MAX.
* E	15.87 MIN.	0625 MIN.
F	$\begin{array}{cl} & +0.13 \\ 1.57 & -0.00 \end{array}$	$\begin{array}{\|r\|} \hline+0.005 \\ 0.062 \\ \hline 0.000 \end{array}$
G	$\begin{aligned} 2.36 & +0.13 \\ & -0.00 \end{aligned}$	$\begin{array}{r} \hline 0.093+0.005 \\ -0.000 \end{array}$

NOTE: BASIC FIGURES ARE INCHES
*DENOTES MIN. CLAMPING DIAMETER

[^0]: * STD code 02796 26811. † STD code 0803 50762. \ddagger STD code 013003333.

[^1]: \ddagger The collector is connected to the body of the mount and its earth path is via the mount body and the chassis to which the mount is attached. In some mounts a black lead is included in the cableform carrying the terminal supply leads: one end of this lead is connected to the body of the mount and the other may be earthed to provide an additional earth path.

[^2]: BASIC DIMENSIONS ARE INCHES

[^3]: (C) 1973 International Telephone and Telegraph Corporation

