PHILIPS

DATA HANDBOOK

SEMICONDUCTORS AND INTEGRATED CIRCUITS

$$
\text { PART } 5 \text { MARCH } 1971
$$

Digital Integrated Circuits

Linear Integrated Circuits

SEMICONDUCTORS AND INTEGRATED CIRCUITS

Part 5
 March 1971

General

D T L
 FC family

T T L
FJ family
MOS
FD family
Linear integrated circuits

DATA HANDBOOK SYSTEM

To provide you with a comprehensive source of information on electronic components, subassemblies and materials, our Data Handbook System is made up of three series of handbooks, each comprising several parts.
The three series, identified by the colours noted, are:

ELECTRON TUBES (9 parts) BLUE
 SEMICONDUCTORS AND INTEGRATED CIRCUITS (5 parts) RED

COMPONENTS AND MATERIALS (5 parts)

GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued annually; the contents of each series are summarized on the following pages.
We have made every effort to ensure that each series is as accurate, comprehensive and up-to-date as possible, and we hope you will find it to be a valuable source of reference. Where ratings or specifications quoted differ from those published in the preceding edition theywill be pointed out by arrows. You will understand that we can not guarantee that all products listed in any one edition of the handbook will remain available, or that their specifications will not be changed, before the next edition is published. If you need confirmation that the pusblished data about any of our products are the latest available, may we ask that you contact our representative. He is at your service and will be glad to answer your inquiries.

ELECTRON TUBES (BLUE SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1

Transmitting tubes (Tetrodes, Pentodes)

Part 2

Tubes for microwave equipment

Part 3

Special Quality tubes

Part 4

Receiving tubes

Part 5

Cathode-ray tubes
Photo tubes
Camera tubes

Part 6

Photomultiplier tubes
Scintillators
Photoscintillators

Part 7

Voltage stabilizing and reference tubes
Counter, selector, and indicator tubes
Trigger tubes
Switching diodes

Part 8

T.V. Picture tubes

Part 9

January 1971
Associated accessories

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Diodes and Thyristors

General
Signal diodes
Tunnel diodes
Variable capacitance diodes
Voltage regulator diodes

Part 2 Low frequency; Deflection

General
Low frequency transistors (low power)
Low frequency power transistors

Part 3 High frequency; Switching

General

High frequency transistors

Part 4 Special types

General

Transmitting transistors
Microwave devices
Field effect transistors
Dual transistors
Microminiature devices for thick- and thin-film circuits

Part 5 Integrated Circuits

General
Digital integrated circuits
DTL (FC family)
TTL (FJ family)
MOS (FD family)

September 1970
Rectifier diodes
Thyristors, diacs, triacs
Rectifier stacks
Accessories
Heatsinks
October 1970
Deflection transistors
Accessories

November 1970
Switching transistors
Accessories

December 1970

Beam lead devices for thick- and thin-film circuits
Photo devices
Accessories

COMPONENTS AND MATERIALS (GREEN SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Circuit Blocks, Input/Output Devices

September 1970

Circuit blocks 100 kHz Series
Circuit blocks 1 -Series
Circuit blocks 10 -Series
Circuit blocks 20 -Series
Circuit blocks 40 -Series
Counter modules 50 -Series
Norbits 60-Series, 61-Series

Part 2 Resistors, Capacitors

Circuit blocks 90-Series
Circuit blocks for ferrite core
memory drive
Input/output devices

Fixed resistors
Variable resistors
Non-linear resistors
Ceramic capacitors
Part 3 Radio, Audio, Television
FM tuners
Coils
Piezoelectric ceramic resonators and filters
Loudspeakers
Audio and mains transformers

December 1970
Polyester, polycarbonate, polystyrene, paper capacitors Electrolytic capacitors
Variable capacitors

Television tuners
Components for black and white television Components for colour television Deflection assemblies for camera tubes

Part 4 Magnetic Materials, White Ceramics

March 1970

Ferrites for radio, audio and television
Ferroxcube potcores and square cores Microchokes

Ferroxcube transformer cores
Piezoxide
Permanent magnet materials

Part 5 Memory Products, Magnetic Heads, Quartz Crystals, Microwave Devices, Variable Transformers, Electro-mechanical Components

June 1970

Ferrite memory cores
Matrix planes, matrix stacks
Complete memories
Magnetic heads

Quartz crystal units, crystal filters
Isolators, circulators
Variable mains transformers
Electro-mechanical components

Technology relating to the products described in this publication is shared by the following companies.

Argentina

FAPESA I.y.C.
Melincué 2594
Tel. 50-9941/8155
BUENOS AIRES

Australia

Philips Industries Ltd.
Miniwatt Electronics Division
20, Herbert St
Tel 43-2171
ARTARMON, N.S.W.

Austria

WIVEG
Zieglergasse 6
Tel. 932622
1072 WIEN

Belgium

M.B.L.E.

80, rue des Deux Gares
Tel. 230000
1070 BRUSSELS

Brazil

IBRAPE S.A.
Av. Paulista, 2073-S/Loja
Tel. 93-5141
SAO PAULO

Canada

Philips Electron Devices
116, Vanderhoof Ave.
Tel. 425-5161
TORONTO 17, Ontario

Chile

Philips Chilena S.A.
Av. Santa Maria 0760
Tel. 394001
SANTIAGO

Colombia

SADAPE S.A.
Calle 19, No.5-51
Tel. 422-175
BOGOTA D.E. 1
Denmark
Miniwatt A/S
Emdrupvej 115A
Tel. (01) 691622
DK-2400 K \emptyset BENHAVN NV

Finland

Oy Philips A.B.
Elcoma Division
Kaivokatu 8
Tel. 10915
HELSINKI 10

France

R.T.C.

La Radiotechnique-Compelec
Avenue Ledru Rollin 130
Tel. 797-99-30
PARIS 11

Germany

VALVO G.m.b.H.
Valvo Haus
Burchardstrasse 19
Tel. (0411) 339131
2 HAMBURG 1

Greece

Philips S.A. Hellénique
Elcoma Division
52, Av. Syngrou
Tel. 915.311
ATHENS

Hong Kong
Philips Hong Kong Ltd.
Components Dept.
St. George's Building 21st F1.
Tel. K-42 8205
HONG KONG
India
INBELEC Div. of
Philips India Ltd.
Band Box Building
254-D, Dr. Annie Besant Road
Tel. 4533 86, 4564 20, 452986
Worli, BOMBAY 18 (WB)
Indonesia
P.T. Philips-Ralin Electronics

Elcoma Division
Djalan Gadjah Mada 18
Tel. 44163
DJAKARTA
Ireland
Philips Electrical (Ireland) Pty.
Newstead, Clonskeagh
Tel. 693355
DUBLIN 6
Italy
Philips S.p.A.
Sezione Elcoma
Piazza IV Novembre 3
Tel. 6994
MILANO
Japan
NIHON PHILIPS
32nd Fl., World Trade Center Bldg. 5, 3-chome, Shiba Hamamatsu-cho Minato-ku,
Tel. (435)5204-5
TOKYO

Mexico

Electrónica S.A. de C.V
Varsovia No. 36
Tel. 5-33-11-80
MEXICO 6, D.F.

Netherlands

Philips Nederland N.V.
Afd. Elonco
Boschdijk, VB
Tel (040) 433333
EINDHOVEN
New Zealand
EDAC Ltd.
70-72 Kingsford Smith Street
Tel. 873159
WELLINGTON

Norway

Electronica A/S
Middelthunsgate 27
Tel. 463970
OSLO 3
Peru
CADESA
Av. Abancay 1176
Offs. 606-607
Tel. 77317
LIMA

Portugal

Philips Portuguesa S.A.R.L.
Rua Joaquim Antonio de Aguiar 66
Tel. 68 31 21/9
LISBOA

South Africa
EDAC (Pty) Ltd.
P.O. Box 23131

Tel. 24/6701
JOHANNESBURG

Spain

COPRESA S.A.
Balmes 22
Tel. 2320300
BARCELONA 7

Sweden

ELCOMA A.B.
Lidingovägen 50
Tel. 08/67 9780
10250 STOCKHOLM 27

Switzerland

Philips A.G.
Edenstrasse 20
Tel. 051/44 2211
CH-8027 ZUERICH

Taiwan

Philips Taiwan Ltd.
Elcoma Div.
Plastic Building, 10th Fl.
No. 1, section 2, Nanking East Rd.
Tel. 559742
TAIPEI

Turkey

Turk Philips Ticaret A.S.
EMET Department
Gumussuyu Cad. 78-80
Tel. 45.32.50
Beyoglu, ISTANBUL
United Kingdom
Mullard Ltd.
Mullard House
Torrington Place
Tel. 01-580 6633
LONDON WC1E 7HD
United States
Amperex Electronic Corp.
Electron Tubes Div.
Tel. 516 WE 1-6200
HICKSVILLE N.Y.
Sem. and Microcircuits Div.
Tel. 401-762-9000
SLATERSVILLE R.I. 02876
Electronic Components Div.
Tel. 516-234-7000
HAUPPAGE N.Y.

Uruguay

Luzilectron S.A.
Rondeau 1567, piso 5
Tel. 94321
MONTEVIDEO

Venezuela

C.A. Philips Venezolana

Elcoma Department
Colinas de Bello Monte
Tel. 72.01.51
CARACAS

General

Preface

Type designation
Package outlines
Graphical symbols
Ratings
Letter symbols

PREFACE TO DATA OF INTEGRATED CIRCUITS

1. General

The published data comprise particulars needed by designers of equipment in which integrated circuits are to be incorporated, and criteria on which to base acceptance testing of such circuits. For ease of reference, the data on each circuit are grouped according to the several headings discussed below.
The limiting values quoted under the headings Characteristics and Package Outline may be taken as references for acceptance testing.
Values cited as typical are given for information only.
For an explanation of the type designation code, see the section Type Designation. For an explanation of the letter symbols used in designating terminals and performance of integrated circuits, and the electrical and logic quantities pertaining to them, see the section Letter Symbols.

2. Quick Reference Data

The main properties of the integrated circuit summarized for quick reference
3. Ratings

Ratings are limits beyond which the serviceability of the integrated circuit may be impaired. The ratings given here are in accordance with the Absolute Maximum System as defined in publication no. 134 of the International Electrical Commission; for further details see item 2 of the section Rating Systems.
If a circuit is used under the conditions set forth in the sections Characteristics and Additional System Design Data, its operation within the ratings is ensured.
4. Circuit diagram

Circuit diagrams and logic symbols are given to illustrate the circuit function. The diagrams show only essential elements, parasitic elements due to the method of manufacture normally being omitted. The manufacturer reserves the right to make minor changes to improve manufacturability.
5. System Design Data and Additional System Design Data

System Design Data normally derived from the Characteristics and based on worst-case assumptions as to temperature, loading and supply voltage, are quoted for the guidance of equipment designers. Supplementary information derived from measurements on large production samples may be given under Additional System Design Data.
6. Application information

Under this heading, practical circuit connections and the resulting performance are described. Care has been taken to ensure the accuracy and completeness of the information given, but no liability therefor is assumed, nor is licence under any patent implied.
7. Characteristics

Characteristics are measurable properties of the integrated circuit described. Under a specific set of test conditions compliance with limit values given under this heading establishes the specified performance of the circuit; this can be used as a criterion for acceptance testing.
Values cited as typical are given for information only and are not subject to any form of guarantee.
8. Logic symbols (digital circuits)

Graphical logic symbols accord with MIL standard 806B.
Supplementary drawings correlate logic functions with pin locations as a help to laying out printed circuit boards.
9. Outline drawing and pin 1 identification

Dimensional drawings indicate the pin numbering of circuit packages. Dual in-line packages have a notch at one end to identify pin 1.
Take care not to mistake adventitious moulding marks for the pin 1 identification. Flat packs identify pin 1 by a small projection on the pin itself and/or by a dot on the body of the package. Metal can encapsulations identify pin 1 by a tab on the rim of the can.

PRO ELECTRON TYPE DESIGNATION CODE

The type number consists of three letters followed by three figures (sometimes followed by a version letter*)
For the purpose of type designation integrated circuits are divided in four groups:

- Digital family circuits
- Digital solitary circuits
- Analogue (including linear) circuits
- Mixed digital/analogue circuits

DIGITAL FAMILY TYPES

First two letters: family
Third letter: circuit function
First two figures: serial number
Third figure: operating ambient temperature range

DIGITAL SOLITARY TYPES

First letter: "S"
Second letter: extension of serial number Third letter: circuit function
First two figures: serial number
Third figure: operating ambient temperature range

ANALOGUE (LINEAR) TYPES

First letter: "T"

Second and third letter: extension of serial number
First two figures: serial number
Third figure: operating ambient temperature range

MIXED DIGITAL/ANALOGUE TYPES

First letter: "U"
Second and third letter: extension of serial number
First two figures: serial number
Third figure: operating ambient temperature range

[^0]
FUNCTION

H = Combinatorial circuit
J = Bistable or multistable sequential circuit
$\mathrm{K}=$ Monostable sequential circuit
L = Level converter
$\mathrm{N}=$ Bimetastable or multimetastable sequential circuit
$Q=$ Read/write memory circuit
$R=$ Read-only memory circuit
S = Sense amplifier
Y = Miscellaneous
OPERATING AMBIENT TEMPERATURE RANGE
$1=0$ to $+70{ }^{\circ} \mathrm{C}$ or wider
$2=-55$ to $+125{ }^{\circ} \mathrm{C}$ or wider
$3=-10$ to $+85^{\circ} \mathrm{C}$ or wider
$4=+15$ to $+55^{\circ} \mathrm{C}$ or wider
$5=-25$ to $+70 \circ \mathrm{C}$ or wider
$6=-40$ to $+85{ }^{\circ} \mathrm{C}$ or wider
$0=$ Open

PACKAGE OUTLINES

14 LEAD PLASTIC DUAL IN-LINE (type A) Dimensions in mm

A) Centre-lines of all leads are within $\pm 0.254 \mathrm{~mm}$ of the nominal positions shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0.51 \mathrm{~mm}$.
B) Lead spacing tolerances apply from seating plane to the line indicated.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.
2. By dip or wave
$260^{\circ} \mathrm{C}$ is the maximum allowable temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the allowable limit.
3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

14 LEAD PLASTIC DUAL IN-LINE (type B)

Dimensions in mm

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for more than 5 seconds.
2. By dip or wave
$260^{\circ} \mathrm{C}$ is the maximum allowable temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the allowable limit.
3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

16 LEAD PLASTIC DUAL IN-LINE (type A)

Dimensions in mm

top view
A) Centre-lines of all leads are within $\pm 0.254 \mathrm{~mm}$ of the nominal positions shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0.51 \mathrm{~mm}$.
B) Lead spacing tolerances apply from seating plane to the line indicated.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.
2. By dip or wave
$260^{\circ} \mathrm{C}$ is the maximum allowable temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the allowable limit.
3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

16 LEAD PLASTIC DUAL IN-LINE (type B)

Dimensions in mm

SOLDERING

1. By hand

Apply the soldering ir on below the seating plane (or not more than 2 mm above it). If itstemperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.
2. By dip or wave
$260^{\circ} \mathrm{C}$ is the maximum allowable temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the allowable limit.
3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

14 LEAD METAL-CERAMIC DUAL IN-LINE

1. Leads on opposite sides are designed to fit in holes 7.62 mm apart. They are given positive misaligment so that they grip after insertion.
2. Pin 1 is normally marked by a dot.

16 LEAD METAL-CERAMIC DUAL IN-LINE

Dimensions in mm

1. Leads on opposite sides are designed to fit in holes 7.62 mm apart. They are given positive misaligment so that they grip after insertion.
2. Pin 1 is normally marked by a dot.

24 LEAD METAL-CERAMIC DUAL IN-LINE Dimensions in mm

Notes

1. Leads on opposite sides are designed to fit in holes 15.24 mm apart.
2. Pin 1 is marked by a notch and connected to the metal lid on the bottom of the package.
40 LEAD METAL-CERAMIC DUAL IN-LINE

TO-99 METAL ENVELOPE

TO-100 METAL ENVELOPE

GATE SYMBOLS

Symbols taken from MIL-STD-806B published 26-2-1962 together with the explanation given in the MIL-STD are framed (the number in brackets refers to the section of the MIL-STD from which the extract has been made).
Other symbols and explanations are unframed.
A. LOGIC SYMBOLS (5 partial)*)

AND The symbol shown below represents the AND function (5.1).

OR The symbol shown below represents the OR function (5.2).

EXCLUSIVE-OR The symbol shown below represents the Exclusive-OR function (5.6).

STATE INDICATOR (Active) (5.3). The presence of the small circle symbol at the input(s) or output(s) of a function indicates:
(a) Input Condition. The electrical condition at the input terminal(s) which control the active state of the respective function.
(b) Output Condition. The electrical condition existing at the output terminal(s) of an activated function.

(5.3.1) A small circle(s) at the input(s) to any element (logical or non-logical) indicates that the relatively LOW (L) input signal activates the function. Conversely, the absence of a small circle indicates that the relatively HIGH (H) input signal activates the function.
(5.3.2) A small circle at the symbol output indicates that the output terminal of the activated function is relatively LOW (L), the absence indicates that the output terminal is relatively HIGH (H).
This small circle shall never be drawn by itself on a diagram.
On pages 4 and 5 the terms HIGH and LOW and the translation of logic notations " 0 " and " 1 " into HIGH and LOW will be elucidated.

[^1]
EXAMPLES

AND (5.1.1)

A	B	X
L	L	L
H	L	L
L	H	L
H	H	H

The output is HIGH if and only if all inputs are HIGH.

OR (5.2.1)

A	B	X
L	L	L
H	L	H
L	H	H
H	H	H

The output is HIGH if and only if any one or more of the inputs are HIGH.

EXCLUSIVE -OR (5.6.1)

A	B	X
L	L	L
H	L	H
L	H	H
H	H	L

The output is HIGH if and only if any one input is HIGH and all other inputs are LOW.
(5.4)

The output is LOW if and only if all inputs are HIGH
(5.5)

The output is LOW if and only if any one or more of the inputs are HIGH.

The output is LOW if and only if any one input is HIGH and all other inputs are LOW.

Table I, (5.7) of MIL-STD-806B, shows two-input AND and OR gate symbols with all the possible combinations of terminals with or without state indicator. It will be noted that the AND-gate symbol in the 1st column has the same function table as the OR-gate symbol in the 2nd column.

Table I

AND	OR	Function Table A B \quad X	
	$x-0>0-x$		H L L L
$B-x$	$B=-x$	H H H L L H L L	$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{~L} \end{gathered}$
$B-0-x$	$B-0-x$		$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$
$x-0 \square-x$		H H H L L H L L	$\begin{aligned} & \hline L \\ & L \\ & L \\ & H \end{aligned}$
$\begin{aligned} & A-0 \\ & B-0 \\ & 0 \end{aligned}$	$B \square$	H H H L L H L L	H H H L
$0-x$	$A-0$		$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
$x-0-x$	$B-x$	$\begin{array}{cc} H & H \\ H & L \\ L & H \\ L & L \end{array}$	$\begin{gathered} \mathrm{H} \\ \mathrm{H} \\ \mathrm{~L} \\ \mathrm{H} \end{gathered}$
	$x-0 \square x$		$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$

Note 1. In literature often described as NOR .
Note 2. In literature often described as NAND.
Although the MIL-STD-806B does not use the expression NAND and NOR they are referred to becaused these terms are commonly used.

Although MIL-STD-806B shows the EXCLUSIVE-OR symbol only without state indicator, for the sake of completeness Table II shows it with all the possible combinations of terminals with or without state indicator. It will be noted from the table that one function table (3rd column) is applicable to four symbols.

Table II

Symbol

Symbol

Function Table

A	B	X
H	H	L
H	L	H
L	H	H
L	L	L

Note 3. In literature described as BINARY COMPARATOR

HIGH AND LOW

The terms relatively HIGH and relatively LOW are explained with reference to the following three examples

$$
\begin{aligned}
&+5 \text { volts }=\text { HIGH } \\
&+0.5 \text { volts }=\text { LOW }+0.5 \text { volts }=\text { HIGH } \\
&-5 \text { volts }=\text { LOW }-5 \text { volts }=\text { HIGH } \\
&-10 \text { volts }=\text { LOW }
\end{aligned}
$$

It can be seen that the more positive voltage is termed relatively HIGH and the less positive is termed relatively LOW. These terms are abbreviated to HIGH (H) and LOW (L) respectively and are used throughout MIL-STD-806B.

LOGICAL " 1 " AND "0"

In deviation from MIL-STD-806B Appendix B, which for the sake of fully general systems applicability (page 17, fig.5) refrains from establishing any fixed relations between "active-nonactive" and "logical 0-1", we have in the following rules chosen to relate "active" to " 1 " and "non-active" to " 0 ", as being most suitable when regarding each gate function separately.
" 0 " at the input always symbolizes the non-activating signal or, at the output, the signal from a non-activated gate;
" 1 " at the input always symbolizes the activating signal or, at the output, the signal from an activated gate. (The expression activated does not mean that current must flow at the respective terminal(s) but refers to the influence of inputs upon the output(s) of the respective gates.)
The translation from the logic notation into the electrical levels HIGH and LOW is explained with the aid of two examples, one without state indicators and one with. In each case a two-input AND gate truth table is drawn up, and a function table corresponding to the symbol is given so that a direct comparison can be made.

For inputs or outputs without state indicator

Logic $1=$ HIGH (H)	with state indicator
Logic $0=$ LOW (L)	Logic $1=$ LOW (L) Logic $0=$ HIGH (H)

EXAMPLE

Truth Table		
Inputs		Output
A	B	X
0	0	0
1	0	0
0	1	0
1	1	1

Symbol
Function Table

Inputs		Output
A	B	X
L	L	L
H	L	L
L	H	L
H	H	H

Inputs		Output
A	B	X
0	0	0
1	0	0
0	1	0
1	1	1

Inputs		Output
A	B	X
H	L	H
L	L	H
H	H	H
L	H	L

B. DRAWING PRACTICE

Any of the symbols from Tables I and II may be used in diagrams, bearing in mind the following general rule.
Every signal line shall preferably have at each end
either a state indicator circle,
or no state indicator circle.
An example showing how compliance with this rule can be achieved is given in the following sketch.

fig. 1
should be
drawn as

fig. 2

A further advantage of drawing the symbol of gate 3 as in fig. 2 is that it is more apparent that it behaves as an OR function than when drawn as in fig. 1 (cf. table I).

When state indicators are not used no more than four input lines should be drawn at the input side of the symbol (see fig. 3).

When state indicators are used no more than three input lines should be drawn at the input side (see fig.4).
Following these rules will help to avoid unnecessary crowding of lines in the drawing. When more input lines are needed the input side of the symbol can be extended in any of the ways indicated in fig. 5.

Equidistant
lines
fig. 3

fig. 4

fig. 5

EXTENDED INPUTS

If the number of inputs to an expandable gate is extended by means of an expander circuit, the output line(s) of the expander is (are) connected to the specific expansion input(s) of the gate as drawn below.
The expander symbol shall be drawn to the same dimensions as the gate symbol; however, two filled arrows shall be drawn on each connection line, one arrow close to the expander symbol and another close to the gate symbol.

f = gate
$\mathrm{E}=$ expander
A signal line provided with arrows need not imply the usual logic levels. Generally it should not be connected to "normal" inputs or outputs of gates.

C. OUTPUT COMBINATIONS (6.3)

Where functions have the capability of being combined according to the AND (or OR) function, simply by having the outputs connected, that capability shall be shown by enveloping the branched connection with a smaller sized AND or OR symbol .

Dot "AND"

Dot "OR"

Note: These connections of outputs are often described in the literature as "WIREDOR".

EXAMPLES

The function Z is activated on its input by a HIGH level (because a state indicator is not applied there) if and only if both outputs of functions X and Y are HIGH.
The branched connection shall therefore be enveloped by a small-sized AND symbol.

The function Z is activated on its input by a LOW level (because a state indicator is applied there) if and only if one or both outputs of the functions X and Y are LOW .
The branched connection shall therefore be enveloped by a small-sized OR symbol.
It should be noted that it would seem necessary to use state indicators on all terminals of the Dot "OR" symbol for correct interpretation of the circuit. However it is not usual to use state indicators on Dot symbols.

APPENDIX

DRAWING DIMENSIONS

Ratio of dimensions of symbols may be derived from the drawings shown.

AND

Symbols enveloping a branched connection shall have half the dimensions of the fundamental symbols.

OR

EXCLUSIVE-OR

STATE INDICATOR

FLIP-FLOP SYMBOLS

1. GENERAL SYMBOL

2. DEFINITIONS

Active or "1" state of an input signal.
That state (either a level or a transition from one level to the other) which causes, directly or indirectly, a change of the output state. Conversely, the inactive or " 0 " state of an input signal is that state which does not cause an output change.

Output state.
There may be one output terminal (Q) or two $\left(Q_{1}\right.$ and $\left.Q_{2}\right)$. If there are two, the "output state" refers to the states of the signals at Q_{1} and Q_{2}; since these are normally complementary, the state at Q_{1} is usually considered to represent the output state.

Preparatory input terminal (e.g. J, K, D)

An input terminal to which application of an active signal does not directly cause a change of the output state but prepares the circuit for such a change.

Cemmand input terminal (T)
An input terminal to which application of an active signal causes the output to as sume the state corresponding to the preparatory inputs. It is also known as the "clock input terminal".

Toggle input terminal (T)

An input terminal at which an active transition from one level to the other directly causes a change of the output state.

Forcing input terminal ($\mathrm{S}_{1}=$ "direct set", $\mathrm{S}_{2}=$ "direct reset" $)$
An input terminal af which application of an active signal directly causes the output to assume a specific state, irrespective of the states of other input terminals.

3. LOCATION OF TERMINALS AND USE OF POLARITY STATE INDICATOR,SHOWN BY EXAMPLES

Legend: $\quad H=$ HIGH level
$\mathrm{L}=$ LOW level
$\mathrm{L} \rightarrow \mathrm{H}=$ transition from LOW level to HIGH level
$\mathrm{H} \rightarrow \mathrm{L}=$ transition from HIGH level to LOW level
$\mathrm{X}=$ state (level or transition) has no influence
? = indeterminate, unless exact timing of relevant input signals (e.g. S_{1} and S_{2}) is known.
3.1. JK flip-flop without forcing inputs

An active (" 1 ") signal at J, together with an inactive ("0") signal at K and an active signal transition at T, causes the " 1 " state at Q_{1} and the " 0 " state at Q_{2}.

Symbol	Function table			
	J	K	T	Q1 Q2
	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \rightarrow \mathrm{H} \\ & \mathrm{~L} \rightarrow \mathrm{H} \\ & \mathrm{~L} \rightarrow \mathrm{H} \\ & \mathrm{~L} \rightarrow \mathrm{H} \\ & \mathrm{H} \rightarrow \mathrm{~L} \end{aligned}$	$\begin{array}{ll}\mathrm{H} & \mathrm{L} \\ \mathrm{L} & \mathrm{H}\end{array}$ reversed no change no change
	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{~L} \\ & \mathrm{~L} \rightarrow \mathrm{H} \end{aligned}$	H L L H reversed no change no change
	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{~L} \\ & \mathrm{~L} \rightarrow \mathrm{H} \end{aligned}$	H L L H reversed no change no change

3.2. JK flip-flop with forcing inputs

Symbol	Function table					
	J	K	T	S_{1}	S_{2}	Q1 Q_{2}
	$\begin{aligned} & \text { X } \\ & \text { X } \\ & \text { X } \\ & H \\ & L \\ & H \\ & \text { L } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { X } \\ & \text { X } \\ & \text { X } \\ & \text { L } \\ & \text { H } \\ & \text { H } \\ & \text { L } \\ & \text { X } \end{aligned}$	$\begin{gathered} X \\ X \\ X \\ L \rightarrow H \\ L \rightarrow H \\ L \rightarrow H \\ L \rightarrow H \\ H \rightarrow L \end{gathered}$	H L H L L L L L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	H L L H $?$ $?$ H L L H reversed no change no change
	X X X H L H L X	X X X L H H L X	$\begin{gathered} \mathrm{X} \\ \mathrm{X} \\ \mathrm{X} \\ \mathrm{H} \rightarrow \mathrm{~L} \\ \mathrm{H} \rightarrow \mathrm{~L} \\ \mathrm{H} \rightarrow \mathrm{~L} \\ \mathrm{H} \rightarrow \mathrm{~L} \\ \mathrm{~L} \rightarrow \mathrm{H} \end{gathered}$	L H L H H H H H H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	H L L H $?$ $?$ H L L H reversed no change no change

3.3. T flip-flop ("Toggle")

An active (" 1 ") signal transition at T causes the complementary states at Q_{1} and Q_{2} to reverse.

3.4. Edge-triggered D flip-flop

An active ("1") signal transition at T causes Q_{1} to assume the same state as D. I.e., if D is in the " 1 " state during the active transition at $T, Q 1$ also assumes the " 1 " state: if D is " 0 ", Q1 also becomes " 0 ". The output state will remain unchanged until the next active transition at T occurs.

Symbol	Function table			
	D	T		Q1 Q_{2}
		level	transition	
$\underbrace{}_{1254657}-a_{2}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X	$\begin{aligned} & \mathrm{L} \rightarrow \mathrm{H} \\ & \mathrm{~L} \rightarrow \mathrm{H} \\ & \mathrm{H} \rightarrow \mathrm{~L} \end{aligned}$	H L L H no change no change
	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{~L} \\ & \mathrm{H} \rightarrow \mathrm{~L} \\ & \mathrm{~L} \rightarrow \mathrm{H} \end{aligned}$	$\begin{array}{ll} \mathrm{H} & \mathrm{~L} \\ \mathrm{~L} & \mathrm{H} \end{array}$ no change no change
	L H X X	X	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{~L} \\ & \mathrm{H} \rightarrow \mathrm{~L} \\ & \mathrm{~L} \rightarrow \mathrm{H} \end{aligned}$	H L L H no change no change

3.5. Level-operated ("gated") D flip-flop, or "Bistable latch".

(Graphical symbol equal to 3.4.)

As long as the signal at T is at its active (" 1 ") level, the signal at Q_{1} follows the signal at D . When the signal at T changes to its inactive (" 0 ") level, the signal at Q1 latches (Subsequent changes in D cause no change in Q_{1}). Q_{1} unlatches when the signal at T returns to its active level.

Symbol	Function table			
	D	T		Q1 Q_{2}
		level	subsequent transition	
$\underbrace{}_{27546}-a_{2}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{~L} \\ & \mathrm{H} \rightarrow \mathrm{~L} \end{aligned}$	$$
	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\mathrm{L} \rightarrow \mathrm{H}$ $\mathrm{L} \rightarrow \mathrm{H}$	$$
	L L H H X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$L \rightarrow H$ $L \rightarrow H$	$\begin{array}{cc} \mathrm{H} & \mathrm{~L} \\ \mathrm{H} & \mathrm{~L} \\ \mathrm{~L} & \mathrm{H} \\ \mathrm{~L} & \mathrm{H} \\ \text { no change } \end{array}$

4. MULTIPLE INPUTS

Where inputs are functionally combined by an input gate, the connecting line between the gate symbol and the flip-flop symbol may conveniently be omitted, as shown in the drawing.

5. TIME DELAY CIRCUIT

The following time delay symbol (MIL-STD-806 B, 5.15) is used in some logic flip-flop block diagrams:

6. DRAWING DIMENSIONS(to MIL-STD-806 B)

The ratio of dimensions is given in the drawing above.
For dimensions of gates and state-indicators see "Appendix", page 8.

RATING SYSTEMS

ACCORDING TO I.E.C. PUBLICATION 134

1. DEFINITIONS OF TERMS USED

1.1 Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note: This definition excludes inductors, capacitors, resistors and similar components.
1.2 Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.
1.3 Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.
1.4 Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of envirnnment and operation, and may be stated in any suitable terms.
Note: Limiting conditions may be either maxima or minima.
1.5 Rating system. The set of principles upon which ratings are established and which determine their interpretation.
Note: The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

2. ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.
p.t.o.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.
3. DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

4. DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.
The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

NOTE

It is common use to apply the Absolute Maximum System in semiconductor published data.

LETTER SYMBOLS FOR DIGITAL INTEGRATED CIRCUITS

(Additional symbols for MOS circuits on page 4)

1. General

The voltages and currents are related to the terminals to which they are applied or at which they appear. Each terminal is indicated by a letter relating to the function of the device or the function of the pertinent signal.
In order to avoid confusion by any ambiguity in logical conventions, signal levels are indicated by $\mathrm{H}(=\mathrm{HIGH}$, for the more positive potential) and (= LOW, for the less positive potential). Where circuit functions or logical equations are involved, the logical convention is mentioned specifically (for positive logic: $\mathrm{H}=1$, and for negative logic: $\mathrm{H}=0$).
2. Terminal designations
$\mathrm{D}=\mathrm{D}$ input of D type latch flip-flops
$\mathrm{E}=$ expander input (if necessary, this letter may be followed by an index, e.g. E_{1} or E_{2} or by one of the input letters, such as $E G=$ gate expander input)
$\mathrm{G}=$ gate input
$\mathrm{J}, \mathrm{K}=\mathrm{J}, \mathrm{K}$ input of JK flip-flops
$\mathrm{N} \quad=$ negative supply
$\mathrm{P}=$ positive supply
$\mathrm{Q}=$ output
$\mathrm{S}=$ direct SET input
$\mathrm{T}=$ trigger (or toggle) input
$\emptyset \quad=$ common supply return and voltage reference

3. Subscript sequence for voltages and currents

First subscript : terminal designation letter.
Second subscript: H (for HIGH) or L (for LOW), if applicable.
Third subscript : min or max, if applicable.
Examples: Vp, $\mathrm{I}_{\mathrm{QL}}, \mathrm{V}_{\mathrm{QHmin}}$, I_{PH} (in the latter case H denotes that the output level is HIGH).
4. Polarity of current and voltage

A current is defined as positive when its conventional direction of flow is into the device.
Unless otherwise specified, a voltage is measured with respect to the reference terminal (\varnothing). Its polarity is defined as positive when the potential is higher than that of the reference terminal.

5. Time designations

If required for reasons of unambiguity, the related terminals may be included in the designations given below (e.g. $\mathrm{t}_{\mathrm{f} Q 1}$).
$\mathrm{t}_{\mathrm{f}}=$ fall time (transition from HIGH to LOW, see Fig. 1)
${ }^{t_{H}}=$ signal HIGH duration (Fig.1)
${ }^{\mathrm{t}} \mathrm{L}_{\mathrm{L}}=$ signal LOW duration (Fig. 1)
${ }^{t_{p d}}=$ average propagation delay time, defined as $\frac{{ }^{t_{p d r}+{ }^{t}} \frac{{ }^{\mathrm{p} d f}}{}}{2}$
$t_{\text {pdf }}=$ fall propagation delay time (output voltage falling, see Fig. 2)
$t_{\text {pdr }}=$ rise propagation delay time (output voltage rising, see Fig. 2)
$\mathrm{t}_{\mathrm{r}}=$ rise time (transition from LOW to HIGH, see Fig. 1)
$\mathrm{t}_{\mathrm{Sc}}=$ duration of short circuit (from relevant terminal to common return terminal)
$\mathrm{V}_{\mathrm{pd}}=$ reference voltage level for propagation delay measurement

Fig. 1.

Fig. 2.
$v_{\text {input }}$

6. Other designations

i.c.	= internally connected Terminals with this indication should be left open. Otherwise correct working cannot be ensured; the device may even be damaged
n.c.	= not connected internally It is recommended not to use these terminals for any connection
I_{P}	= supply current The logic state of the device indicated by H or L is normally referred to the output level, unless otherwise specified
IPmax	$\begin{aligned} = & \text { supply current } \\ & \text { Maximum d.c. value under defined conditions } \end{aligned}$
M	= d.c. noise margin
M_{L}	= d.c. noise margin, signal level LOW (defined as: $\mathrm{M}_{\mathrm{L}}=\mathrm{V}_{\text {GLmax }}-\mathrm{V}_{\text {QLmax }}$ under defined loading, temperature and supply voltage conditions)
M_{H}	```= d.c. noise margin, signal level HIGH (calculated from: }\mp@subsup{M}{H}{}=\mp@subsup{V}{QHmin}{}-\mp@subsup{V}{\textrm{GHmin}}{}\mathrm{ under definedloading,tem- perature and supply voltage conditions)```
N_{a}	$=$ availabled.c. fan-out (defined as: $\mathrm{N}_{\mathrm{a}}=\frac{\mathrm{QLmax}}{\mathrm{I}_{\text {GLmax }}}$ under defined temperature and supply voltage conditions)
P_{H},	= power consumption, defined as the product of the supply current(s) and of the corresponding supply voltage(s). The logical state of the device, indicated by a letter index H or L , is normally referred to the output level, unless otherwise specified
P_{av}	$=$ average power consumption at 50% duty cycle, unless otherwise specified. It is defined as: $\mathrm{P}_{\mathrm{av}}=\mathrm{V}_{\mathrm{P}} \cdot \frac{\mathrm{IPH}+\mathrm{IPL}}{2}$
$\mathrm{P}_{\text {tot }}$	= power dissipation, defined as the total power dissipated by the device. It is the sum of the products of all currents and voltages at each of the input, output and supply terminals, their polarities being taken into account. The logical state of the device indicated by a letter index H or L is normally referred to the output level, unless otherwise specified
$\mathrm{T}_{\mathrm{amb}}$	$=$ operating ambient temperature, i.e. the temperature of the free air in which the normally operating device is placed without external heat conduction, unless otherwise specified
$\mathrm{T}_{\text {Stg }}$	$=$ storage temperature, i.e. the temperature of the ambient medium in which the non-operating device is stored

$\mathrm{V}_{\mathrm{GLmax}}=$ input voltage LOW at terminal G . With the specified level applied to the input of an inverting gate the output level will not be lower than the specified value $\mathrm{V}_{\mathrm{QH} \text { min }}$ at given I_{QH}.
$\mathrm{V}_{\mathrm{GHmin}}=$ input voltage HIGH at terminal G . With the specified level applied to the input of an inverting gate the output level will not exceed the specified value $V_{Q L m a x}$ at given $I_{Q L}$.
$\Delta V_{\mathrm{Q}} \quad=$ change of output voltage caused by a specified change of output current

ADDITIONAL SYMBOLS FOR MOS CIRCUITS

2a. Terminal designations
I = shift register input
$\mathrm{A}=$ address input or decode matrix input
$\phi=$ clock input
WC = write control input
D = data input
$C D=$ chip disable input
$\mathrm{Q}=$ output
$\mathrm{C}=$ chip inhibit input
$\mathrm{P}_{\mathrm{O}}=$ common supply return and voltage reference
P_{1}, P_{2}, etc. = supply input

3a. Subscript sequence for voltages
First (with or without second) subscript: terminal designation
Second or third subscript: H (HIGH) or L (LOW) if applicable
5a. Time designations
Details are described in the data sheets
6a. Other designations
$\mathrm{M}_{\mathrm{L}}=\mathrm{d} . \mathrm{c}$. noise margin LOW $\left(\mathrm{M}_{\mathrm{L}}=\mathrm{V}_{\text {input }} \mathrm{L} \max -\mathrm{V}_{\text {output }} \mathrm{L} \max \right)$
$\mathrm{M}_{\mathrm{H}}=\mathrm{d} . \mathrm{c}$. noise margin $\operatorname{HIGH}\left(\mathrm{M}_{\mathrm{H}}=\mathrm{V}_{\text {output }} \mathrm{H}\right.$ min $\left.-\mathrm{V}_{\text {input }} \mathrm{H} \min \right)$
$\mathrm{R}_{\mathrm{QH}}=$ output resistance HIGH
$\mathrm{R}_{\mathrm{QL}}=$ output resistance LOW
$\mathrm{P}_{\mathrm{av}}=$ average power consumption

LETTER SYMBOLS FOR LINEAR INTEGRATED CIRCUITS

General

The voltages and currents are normally related to the terminals to which they are applied or at which they appear. Each terminal is indicated by a number. In appropriate cases voltages, currents etc. pertinent to one or more of the circuit elements (transistors, diodes) are given in which case symbols are based on the recommendations as published in I.E.C. Publication 148.

Quantity symbols

1. Instantaneous values of current, voltage and power, which vary with time are represented by the appropriate lower case letter.

Examples: i, v, p
2. Maximum (peak), average, d.c. and root-mean-square values are represented by the appropriate upper case letter.

Examples: I, V, P
Polarity of current and voltage
A current is defined to be positive when its conventional direction of flow is into the device.
A voltage is measured with respect to the reference terminal, which is indicated by the subscripts. Its polarity is defined to be positive when the potential is higher than that of the reference terminal.

Subscripts
For currents the number behind the quantity symbol indicates the terminal carrying the current.

Examples: $\mathrm{I}_{2}, \mathrm{i}_{14}$
For voltages normally two number subscripts are used, connected by a hyphen. The first number indicates the terminal at which the voltage is measured and the second subscript the reference terminal. Where there is no possibility of confusion the second subscript may be omitted.

Examples: V_{2-12}, $\mathrm{v}_{14-2}, \mathrm{~V}_{5}, \mathrm{v}_{8}$

To distinguish between maximum (peak), average,d.c.and root-mean-square values the following subscripts are added:

For maximum (peak) values : M or m
For average values : AV or av
For root-mean-square values: (RMS) or (rms)
For d.c. values : no additional subscripts
The upper case subscripts indicate total values.
The lower case subscripts indicate values of varying components:

$$
\text { Examples: } \mathrm{I}_{2}, \mathrm{I}_{2} A V, \mathrm{I}_{2}(\mathrm{rms}), \mathrm{I}_{2}(\mathrm{RMS})
$$

If in appropriate cases quantity symbols are pertinent to single elements of a circuit (transistors or diodes), the normal subscripts for semiconductor devices can be used.

$$
\begin{gathered}
\text { Examples: } \begin{array}{c}
\mathrm{V}_{\mathrm{CBO}}, \mathrm{~V}_{\mathrm{be}}, \mathrm{~V}_{\mathrm{CES}}, \mathrm{I}_{\mathrm{C}} \\
\\
\mathrm{~V}_{\mathrm{DSS}}, \mathrm{~V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}
\end{array}
\end{gathered}
$$

List of subscripts:
E, e $\quad=$ Emitter terminal
$\mathrm{B}, \mathrm{b}=$ Base terminal for bipolar transistors, Substrate for MOS devices
C, c $\quad=$ Collector terminal
D, d $\quad=$ Drain terminal
G, g $\quad=$ Gate terminal
S, s $\quad=$ Source terminal for MOS devices Substrate for bipolar transistor circuits
(BR) $\quad=$ Break-down
$\mathrm{M}, \mathrm{m}=$ Maximum (peak) value
AV, av $\quad=$ Average value
(RMS), (rms) $=$ R.M.S. value

Electrical Parameter Symbols

1. The values of four pole matrix parameters or other resistances, impedances, admittances, etc,, inherent in the device, are represented by the lower case symbol with appropriate subscript.

$$
\text { Examples: } \mathrm{h}_{\mathrm{i}}, \mathrm{z}_{\mathrm{f}}, \mathrm{y}_{\mathrm{o}}, \mathrm{k}_{\mathrm{r}}
$$

Subscripts for Parameter Symbols

1. The static values of parameters are indicated by upper case subscripts.

$$
\text { Examples: } \mathrm{h}_{\mathrm{FE}}, \mathrm{~h}_{\mathrm{I}}
$$

2. The small signal values of parameters are indicated by lower case subscripts.

Examoles: h_{i}, z_{0}
3. The first subscript, in matrix notation identifies the element of the four pole matrix.
i $($ for 11$)=$ input
o $($ for 22$)=$ output
f (for 21) $=$ forward transfer
$r($ for 12$)=$ reverse transfer

$$
\text { Examples: } \begin{aligned}
\mathrm{V}_{1} & =\mathrm{h}_{\mathrm{i}} \mathrm{I}_{\mathrm{l}}+\mathrm{h}_{\mathrm{r}} \mathrm{~V}_{2} \\
\mathrm{I}_{2} & =\mathrm{h}_{\mathrm{f}} \mathrm{I}_{1}+\mathrm{h}_{\mathrm{o}} \mathrm{~V}_{2}
\end{aligned}
$$

The voltage and current symbols in matrix notation are indicated by a single digit subscript.
The subscript $1=$ input; the subscript $2=$ output.
The voltages and currents in these equations may be complex quantities.
4. A second subscript is used only for separate circuit elements (e.g. transistors) to identify the circuit configuration:
$\mathrm{e}=$ common emitter
$b=$ common base
$c=$ common collector
5. If it is necessary to distinguish between real and imaginary parts of the four pole parameters, the following notation may be used:
R-e (h_{i}) etc. . . . for the real part
$I_{m}\left(h_{i}\right)$ etc. ... for the imaginary part

LIST OF LETTER SYMBOLS IN ALPHABETICAL ORDER

Letter symbol	Definition
B	Bandwidth
$\mathrm{b}_{\mathrm{i}}, \mathrm{b}_{\mathrm{O}}$	Input, respectively output susceptance
$\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{O}}$	Input, respectively output capacitance
CMMR	Common-mode rejection ratio
d	Distortion
F	Noise figure
f	Frequency
f_{C}	Cut-off frequency
f_{0}	Centre frequency, intermediate frequency
fm	Modulation frequency
f_{T}	Transition frequency
$\mathrm{g}_{\mathrm{i}}, \mathrm{g}_{\mathrm{o}}$	Input, respectively output conductance
G_{p}	Power gain
$\mathrm{G}_{\text {tr }}$	Transducer gain
G_{V}	Voltage gain
$h_{F}, h_{F B}, h_{F C}, h_{F E}$	DC current gain (output voltage held constant)
$\mathrm{h}_{\mathrm{f}}, \mathrm{h}_{\mathrm{fb}}, \mathrm{h}_{\mathrm{fc}}, \mathrm{h}_{\mathrm{fe}}$	Small signal current gain (output short-circuited to a.c.)
$\mathrm{I}_{3}, \mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{E}}, \mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{Q}}, \mathrm{I}_{\mathrm{S}}$	Total d.c. current
$\mathrm{i}_{3},{ }^{i_{B}},{ }^{i_{C}},{ }^{i_{E}},{ }^{i_{D}},{ }^{i}{ }_{G}, i_{S}$	Instantaneous total value of the current
$\mathrm{I}_{3 A V}, \mathrm{I}_{\mathrm{BAV}}, \mathrm{I}_{\text {CAV }}, \mathrm{I}_{\text {EAV }}$	Total average current
$\mathrm{I}_{3 \mathrm{M}}, \mathrm{I}_{\mathrm{BM}}, \mathrm{I}_{\mathrm{CM}}, \mathrm{I}_{\mathrm{EM}}$	Maximum (peak) value of the total current
$\mathrm{I}_{3 \mathrm{~m}}, \mathrm{I}_{\mathrm{bm}}, \mathrm{I}_{\mathrm{cm}}, \mathrm{I}_{\mathrm{em}}$	Maximı..'. 'eak) value of the varying component of the curreni
$\mathrm{I}_{\mathrm{CBO}}$	Collector cut-off current (open emitter)
I_{CS}	Collector-substrate leakage current
$\mathrm{I}_{\text {DSS }}$	Drain cut-off current (source short-circuited to gate)

Letter symbol	Definition
$\mathrm{I}_{\text {EBO }}$	Emitter cut-off current
$\mathrm{I}_{\mathrm{I}}, \mathrm{I}_{\mathrm{i}}$	Input current of a specified circuit
$\mathrm{I}_{\text {io }}$	Input offset current
$\mathrm{I}_{\mathrm{O}}, \mathrm{I}_{\mathrm{o}}$	Output current of a specified circuit
IOM	Peak value of output current
$\mathrm{I}_{\mathrm{O}}(\mathrm{p}-\mathrm{p})$	Peak to peak value of output current
$\mathrm{I}_{\text {tot }}$	Total supply current
K_{f}	Small signal voltage gain
K_{o}	Output impedance (see K parameters)
K_{r}	Reverse current transfer ratio
M	Modulation depth
$\mathrm{P}_{\mathrm{i}}, \mathrm{P}_{\mathrm{o}}$	Input, respectively output power of a specified circuit
$\mathrm{P}_{\text {tot }}$	Total power dissipation in the device
$\mathrm{R}_{\mathrm{i}}, \mathrm{R}_{\mathrm{o}}$	Input, respectively output resistance of a specified circuit
R_{L}	Load resistance
R_{S}	Source resistance
$\mathrm{R}_{\text {th }}$	Thermal resistance
SVRR	Supply voltage rejection ratio
$\mathrm{T}_{\mathrm{amb}}$	Ambient temperature
$\mathrm{T}_{\text {case }}$	Case temperature
$\mathrm{T}_{\text {stg }}$	Storage temperature
$\mathrm{V}_{3}, \mathrm{~V}_{3-4}, \mathrm{~V}_{\mathrm{BE}}, \mathrm{V}_{\mathrm{CB}}$	Total value of the voltage (d.c.)
$\mathrm{v}_{3}, \mathrm{v}_{3}-4, \mathrm{v}_{\text {BE }}, \mathrm{v}_{\text {CB }}$	Instantaneous value of the total voltage
$\mathrm{V}_{\text {BEsat }}, \mathrm{V}_{\text {CEsat }}$	Saturation voltage at specified bottoming conditions
$\begin{aligned} & \mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}, \mathrm{~V}_{(\mathrm{BR}) \mathrm{CEO}}, \\ & \mathrm{~V}_{(\mathrm{BR}) \mathrm{EBO}} \end{aligned}$	Breakdown voltage between the terminal of the first subscript and the reference terminal (second subscript) when the third terminal is open circuited
$V_{\text {(BR) }}$ CS	Collector to substrate breakdown voltage
$\begin{aligned} & \mathrm{v}_{\mathrm{CBO}}, \mathrm{v}_{\mathrm{CEO}}, \mathrm{v}_{\mathrm{EBO}}, \mathrm{v}_{\mathrm{CS}}, \\ & \mathrm{v}_{1-3} \end{aligned}$	Voltage of the terminal indicated with respect to the reference terminal (second subscript)

Letter symbol	Definition
$\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{o}}$	Input, respectively output voltage of a specified cir-
cuit	
V_{io}	Input offset voltage
V_{i} lim	Input voltage at which limiting starts
V_{N}	Negative supply voltage
V_{P}	Positive supply voltage
V_{n}	Noise voltage
$\mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{f}}, \mathrm{y}_{\mathrm{O}}, \mathrm{y}_{\mathrm{r}}$	Input, transfer, output and feedback admittance
$\mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{O}}$	Input,respectively output impedance
η	Efficiency
$\varphi_{\mathrm{i}}, \varphi_{\mathrm{f}}, \varphi_{\mathrm{o}}, \varphi_{\mathrm{r}}$	Phase angle of input, transfer, output and feed-
	back admittance

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

NAND GATES

	non-R	R_{C}
Single 8-input NAND gate	FCH101	FCH111
Dual 4-input NAND gate	FCH121	FCH131
Triple 3-3-2-input NAND gate	FCH141	FCH161
Triple 3-input NAND gate	FCH151	FCH171
Quadruple 2-input NAND gate	FCH181	FCH191
Sextuple inverter	FCH201	FCH211

QUICK REFERENCE DATA		
Supply voltage	V_{P}	$6.0 \pm 5 \% \mathrm{~V}$
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to $+75{ }^{\circ} \mathrm{C}$
Average propagation delay time $\mathrm{N}=6, \mathrm{C}_{\mathrm{W}}=60 \mathrm{pF}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	${ }^{\text {tpd }}$	typ. 30 ns
Available d.c. fan out $\mathrm{T}_{\mathrm{amb}}=0 \text { to }+75^{\circ} \mathrm{C}$	Na_{a}	$\geqslant 8$
D.C. noise margin $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	M_{L}	typ. 1.2 V
Power consumption per gate 50% duty cycle, $\mathrm{T}_{\mathrm{amb}}=250 \mathrm{C}$ non- R_{c} gate R_{c} gate	$\begin{aligned} & \mathrm{P}_{\mathrm{av}} \\ & \mathrm{P}_{\mathrm{av}} \end{aligned}$	$\begin{aligned} & \text { typ. } \quad 7 \mathrm{~mW} \\ & \text { typ. } \quad 11 \mathrm{~mW} \end{aligned}$

The FC family includes twelve NAND packages offering a wide selection of circuit configurations. It includes gate types with as well as without a collector resistor, ensuring optimum equipment design.
The fan-in of the circuits can easely be expanded by means of a diode array.
The outputs of these gates may be interconnected to perform the AND-OR-NOT function.

PACKAGE OUTLINE: 14 lead plastic dual in-line (type A). (See General Section)

FCH101 (non- R_{C})
FCH111 (R_{C})

FCH121 (non-R R_{C})
FCH131 (R_{C})

FCH141 (non- R_{C})
FCH161 (R_{C})

FCH151 (non-R R_{C})
FCH171 (R_{C})

FCH181 (non-R R_{C}) FCH191 (R_{C})

FCH201 (non-R ${ }_{C}$)
FCH211 (R_{C})

CIRCUIT DIAGRAMS

FCH111

FCH121

FCH131

CIRCUIT DIAGRAMS (continued)

FCH141

FCH151

FCH161

FCH171

FC family

standard temperature range

CIRCUIT DIAGRAMS (continued)

LOGIC FUNCTION

1. Individual gate operation

7255196
$Q=\overline{G_{i} \cdot G_{j}}$ for positive logic

Function table | G_{i} | G_{j} | Q |
| :---: | :---: | :---: |
| L | X | H |
| X | L | H |
| H | H | L |

2. Commoned gate operation

Function table | G_{i} | G_{j} | G_{k} | G_{l} | Q |
| :---: | :---: | :---: | :---: | :---: |
| L | X | L | X | H |
| L | X | X | L | H |
| X | L | L | X | H |
| X | L | X | L | H |
| H | H | X | X | L |
| X | X | H | H | L |

$\mathrm{Q}=\left(\overline{\mathrm{G}} \mathrm{i} \cdot^{\mathrm{G}} \mathrm{j}\right) \cdot\left({\overline{\mathrm{G}} \mathrm{k} \cdot \mathrm{G}_{\mathrm{l}}}\right)=\left(\overline{\left.\mathrm{G}_{\mathrm{i}} \cdot \mathrm{G}_{\mathrm{j}}\right)+\left(\mathrm{G}_{\mathrm{k}} \cdot \mathrm{G}_{\mathrm{l}}\right)}\right.$ for positive logic
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
RATINGS (Limiting values) ${ }^{1}$)

Supply voltage
Output voltage
Input voltage
Output current ${ }^{2}$)
Input current ${ }^{3}$)
Voltage difference between any two inputs
Expander input voltages
with respect to supply
with respect to other inputs
Expander input current
Storage temperature
Operating ambient temperature

V_{P}	max.	8.0	V
V_{Q}	max.	8.0	V
V_{G}	max.	8.0	V
${ }^{-1} \mathrm{I}_{\mathrm{Q}}$	max.	20	mA
${ }^{-1} \mathrm{I}_{\mathrm{G}}$	max.	20	A
	max.	8.0	V
$\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{E}}$	max.	8.0	V
$\mathrm{V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{E}}$	max.	8.0	V
I_{E}	max.	5.0	mA
$\mathrm{T}_{\text {stg }}$	-55 to	-125	${ }^{\circ} \mathrm{C}$
Tamb	0 to	+75	${ }^{\circ} \mathrm{C}$

[^2]SYSTEM DESIGN DATA (both non $-\mathrm{R}_{\mathrm{c}}$ and R_{c})

Uniform system temperature		$\mathrm{T}_{\mathrm{amb}}$	0 to +75		${ }^{\circ} \mathrm{C}$
Uniform system supply voltage		V_{P}	5.7 to	6.3	V
Available d.c. fan out		Na_{a}	\geq	8	
D.C. noise margin		$\begin{aligned} & \mathrm{M}_{\mathrm{L}} \\ & \mathrm{M}_{\mathrm{H}} \end{aligned}$	min. min.	$\begin{aligned} & 0.4 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Average propagation delay time		${ }^{\text {t }}$ pd	max.	75	ns
Equivalent input capacitance		C_{G}	typ.	4	pF
Equivalent output capacitance		C_{Q}	typ.	10	pF
Supply current per gate (duty cycle 50\%)	$\begin{aligned} & \text { non- } \mathrm{R}_{\mathrm{c}} \\ & \mathrm{R}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & \text { I Pav } \\ & \text { IPav }^{2} \end{aligned}$	$\begin{aligned} & \text { typ. } \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & 1.20 \\ & 1.75 \end{aligned}$	mA mA
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$ (each gate)	$\begin{aligned} & \text { non- } \mathrm{R}_{\mathrm{C}} \\ & \mathrm{R}_{\mathrm{C}} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\text {tot }} \\ & \mathrm{P}_{\text {tot }} \end{aligned}$	max. max.	$\begin{array}{r} 17.5 \\ 22 \end{array}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

CHARACTERISTICS of non $-\mathrm{R}_{\mathrm{c}}$ gates

[^3]CHARACTERISTICS of R_{C}-gates

CHARACTERISTICS (continued)
DYNAMIC DATA

Waveforms and loading circuits, illustrating measurement of $t_{p d r}$ and $t_{p d f}$.
Equivalent load for $\mathrm{N}=1$ and $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$ when $\mathrm{R}=4 \mathrm{k} \Omega$

$$
\mathrm{N}=6 \text { and } \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF} \text { when } \mathrm{R}=670 \Omega
$$

$\overline{1}$) Including probe and jig capacitance.

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

DUAL 3-INPUT LINE DRIVER NAND GATE

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V
Operating ambient temperature range	Tamb	0 to +75	${ }^{\circ} \mathrm{C}$
Average propagation delay time $\mathrm{N}=15, \mathrm{C}_{\mathrm{w}}=250 \mathrm{pF}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	${ }^{t} \mathrm{pd}$	typ. 35	ns
Available d.c. fan-out $\mathrm{T}_{\mathrm{amb}}=0 \text { to }+75^{\circ} \mathrm{C}$	N_{a}	$\geqslant 14$	
D.C. noise margin $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	M_{L}	typ. 1.2	V
Power consumption per gate 50% duty cycle, T amb $=25^{\circ} \mathrm{C}$	P_{av}	typ. 11	mW

The FCH221 comprises two independent NAND gates incorporating bi-directional output circuitry for achieving high fan-out and for driving large capacitive loads. Typical applications are in parallel setting of registers, shift pulse driving and driving of long lines.

PACKAGE OUTLINE : 14 lead plastic dual in-line (type A). (See General Section)

CIRCUIT DIAGRAM

LOGIC FUNCTION

G_{1}	G_{2}	G_{3}	Q_{1}
G_{4}	G_{5}	G_{6}	Q_{2}
L	X	X	H
X	L	X	H
X	X	L	H
H	H	H	L

$\left.\begin{array}{l}Q_{1}=\overline{G_{1} \cdot G_{2} \cdot G_{3}} \\ Q_{2}=\overline{G_{4} \cdot G_{5} \cdot G_{6}}\end{array}\right\}$ for positive logic
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
RATINGS (Limiting values) ${ }^{1}$)
Supply voltage
Output voltage
Input voltage
Output current ${ }^{2}$)
Input current ${ }^{3}$)
Voltage difference between any two inputs
Storage temperature
Operating ambient temperature
Output short-circuit duration; duty cycle 10% (either output, or both)

V_{P}	max.	8.0	V
$\mathrm{~V}_{\mathrm{Q}}$	max.	8.0	V
$\mathrm{~V}_{\mathrm{G}}$	max.	8.0	V
$-\mathrm{I}_{\mathrm{Q}}$	max.	20	mA
$-\mathrm{I}_{\mathrm{G}}$	max.	20	mA
	max.	8.0	V
$\mathrm{~T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	0 to +75	o^{oC}	

[^4]
SYSTEM DESIGN DATA

Uniform system temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Uniform system supply voltage	V_{P}	5.7 to 6.3	V
Available d.c. fan out	Na_{a}	$\geqslant \quad 14$	
D.C. noise margin	$\begin{aligned} & \mathrm{M}_{\mathrm{L}} \\ & \mathrm{M}_{\mathrm{H}} \end{aligned}$	$\begin{array}{lc} \min . & 0.4 \\ \mathrm{~min} . & 1.1 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Average propagation delay time	${ }^{\text {p }}$ d	max. 113	ns
Equivalent input capacitance	C_{G}	typ. 7	pF
Supply current (duty cycle 50%) ${ }^{\text {l }}$)	$\mathrm{I}_{\text {Pav }}$	typ. 3.6	mA
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=75{ }^{\circ} \mathrm{C}{ }^{1}$)	$\mathrm{P}_{\text {tot }}$	\max. 65	mW

${ }^{1}$) Both gates together; outputs not short-circuited.

CHARACTERISTICS

		Tamb $\left.{ }^{(0}{ }^{\circ} \mathrm{C}\right)$				Conditions and references	
		0	+25			$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{P}} \\ (\mathrm{~V}) \end{array}$	
STATIC DATA							
Output voltage LOW	$\mathrm{V}_{\mathrm{QL} \text { max }}$		0.4	0.4		$\begin{aligned} & \text { and } \\ & 6.3 \end{aligned}$	
at: Output current LOW	$\mathrm{I}_{\text {QLmax }}$	$\begin{aligned} & 25 \\ & 28 \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5.7 \\ & 6.3 \end{aligned}$	
and at: Input voltage HIGH	$\mathrm{V}_{\mathrm{GHmin}}$					$\begin{aligned} & 5.7 \\ & \text { and } \\ & 6.3 \end{aligned}$	
Output voltage HIGH	$\mathrm{V}_{\mathrm{QHmin}}$	$\begin{aligned} & 3.4 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 2.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.7 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=-30 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{Q}}=-5 \mathrm{~mA} \end{aligned}$
at: Input voltage LOW	$\mathrm{V}_{\text {GLmax }}$					$\begin{aligned} & 5.7 \\ & \text { and } \\ & 6.3 \end{aligned}$	
Input current LOW	${ }^{-1} \mathrm{I}_{\text {L max }}$	$\begin{array}{r} 1.75 \\ 2.0 \end{array}$	$\begin{array}{r} 1.65 \\ 1.9 \end{array}$	$\begin{array}{r} 1.55 \\ 1.8 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5.7 \\ & 6.3 \end{aligned}$	$\mathrm{V}_{\mathrm{G}}=0.4 \mathrm{~V}$; other Jinputs floating
Input current HIGH	$I_{\text {GHmax }}$	1.0	1.0	25	$\mu \mathrm{A}$	5.7	$\mathrm{v}_{\mathrm{G}}=\mathrm{V}_{\mathrm{QH} \min }$ other inputs 0 V
Output short circuit current	-IQsc	16.5	19.5	18.0	mA	5.7	$\begin{aligned} \mathrm{V}_{\mathrm{G}} & =\mathrm{V}_{\mathrm{GLmax}} \\ \mathrm{~V}_{\mathrm{Q}} & =0 \mathrm{~V} \end{aligned}$
Supply current (both gates together)	IPmax		7.5	-		6.3	G inputs HIGH
DYNAMIC DATA							
Rise propagation delay time	${ }^{t}$ pdr max	130	105	130	ns	6.0	$\begin{aligned} & \mathrm{V}_{\mathrm{pd}}=1.5 \mathrm{~V} \\ & \mathrm{~N}=15 ; \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{aligned}$
Fall propagation delay time	${ }^{\text {t pdf max }}$					6.0	$\begin{aligned} & \mathrm{V}_{\mathrm{pd}}=1.5 \mathrm{~V} \\ & \mathrm{~N}=15 ; \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{aligned}$

CHARACTERISTICS (continued)

DYNAMIC DATA

Equivalent load for $\mathrm{N}=15$ and $\left.\mathrm{C}_{\mathrm{L}}{ }^{1}\right)=250 \mathrm{pF}$
Waveforms and loading circuit illustrating measurement of $t_{p d r}$ and $t_{p d f}$.
$\overline{1}$) Including probe and jig capacitance.

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

DUAL 4-INPUT LINE DRIVER NAND GATE

QUICK REFERENCE DATA

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Áverage propagation delay time $\mathrm{N}=20, \mathrm{C}_{\mathrm{w}}=250 \mathrm{pF}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	${ }^{\text {tpd }}$	typ. 35	ns
Available d.c. fan-out $\mathrm{T}_{\mathrm{amb}}=0 \text { to }+75^{\circ} \mathrm{C}$	Na_{a}	$\geqslant 20$	
D.C. noise margin $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	M_{L}	typ. 1.2	V
Power consumption per gate 50% duty cycle, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P_{av}	typ. 11	mW

The FCH231 comprises two independent NAND gates incorporating bi-directional output circuitry for achieving very high fan-out and for driving large capacitive loads. Typical applications are in parallel setting of registers, shift pulse driving and driving of long lines.

PACKAGE OUTLINE 14 lead plastic dual in-line (type A).(See General Section)

CIRCUIT DIAGRAM

LOGIC FUNCTION

G_{1}	G_{2}	G_{3}	G_{4}	Q_{1}
G_{5}	G_{6}	G_{7}	G_{8}	Q_{2}
L	X	X	X	H
X	L	X	X	H
X	X	L	X	H
X	X	X	L	H
H	H	H	H	L

$$
\left.\begin{array}{l}
Q_{1}=\overline{G_{1} \cdot G_{2} \cdot G_{3} \cdot G_{4} \cdot E_{1}}{ }^{*} \\
Q_{2}=\overline{G_{5} \cdot G_{6} \cdot G_{7} \cdot G_{8} \cdot E_{2}} *
\end{array}\right\} \begin{aligned}
& \text { for positive } \\
& \text { logic }
\end{aligned}
$$

* When provided with diode

[^5]RATINGS (Limiting values) ${ }^{1}$)
Supply voltage
Output voltage
Input voltage
Output current ${ }^{2}$)
Input current ${ }^{3}$)
Voltage difference between any two inputs
Expander input voltages
with respect to supply with respect to other inputs

V_{P}	max.	8.0	V
$\mathrm{~V}_{\mathrm{Q}}$	\max.	8.0	V
$\mathrm{~V}_{\mathrm{G}}$	\max.	8.0	V
$-\mathrm{I}_{\mathrm{Q}}$	\max.	20	mA
$-\mathrm{I}_{\mathrm{G}}$	\max.	20	mA
	\max.	8.0	V

$\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{E}}$	max.	8.0	V
$\mathrm{~V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{E}}$	\max.	8.0	V
I_{E}	\max.	5.0	mA
$\mathrm{~T}_{\mathrm{stg}}$	-55 to	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	0 to	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{Qsc}}$	max.	60	ms

SYSTEM DESIGN DATA

Uniform system temperature	Tamb	0 to +75		${ }^{\circ} \mathrm{C}$
Uniform system supply voltage	V_{P}	5.7 to 6.3		V
Available d.c. fan out	Na_{a}	\geqslant	20	
D.C. noise margin	$\begin{aligned} & \mathrm{M}_{\mathrm{L}} \\ & \mathrm{M}_{\mathrm{H}} \end{aligned}$	min. min.	$\begin{aligned} & 0.4 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Average propagation delay time	${ }^{\text {t }}{ }_{\text {d }}$	max.	113	ns
Equivalent input capacitance	C_{G}	typ.	7	pF
Supply current (duty cycle 50%) ${ }^{\text {4 }}$)	IPav	typ.	3.6	mA
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}{ }^{4}$)	$\mathrm{P}_{\text {tot }}$	max.	73	mW

[^6]
CHARACTERISTICS

CHARACTERISTICS (continued)
DYNAMIC DATA

Equivalent load for $\mathrm{N}=20$ and $\mathrm{C}_{\mathrm{L}}{ }^{1}$) $=250 \mathrm{pF}$
Waveforms and loading circuit illustrating measurement of $t_{p d r}$ and $t_{p d f}$

[^7]The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

SINGLE 5-BIT COMPARATOR

QUICK REFERENCE DATA

Supply voltage
Operating ambient temperature range
V_{P}
$6.0 \pm 5 \% \quad \mathrm{~V}$

Average propagation delay time

$$
\mathrm{N}=6, \mathrm{C}_{\mathrm{w}}=60 \mathrm{pF}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}
$$

Available d.c. fan-out
$\mathrm{T}_{\mathrm{amb}}=0$ to $+75{ }^{\circ} \mathrm{C} \quad \mathrm{N}_{\mathrm{a}} \geqslant 8$
D.C. noise margin
$\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$
$\mathrm{M}_{\mathrm{L}} \quad$ typ. 1.2 V
Power consumption
50% duty cycle, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$P_{a v}$ typ. 50 miw

The FCH281 comprises five exclusive-OR functions, an OR gate, and an AND gate. If on one or more pairs ($\mathrm{G}_{1}-\mathrm{G}_{2},--\mathrm{G}_{9}-\mathrm{G}_{10}$) one input is LOW and the other HIGH then the output will be HIGH provided G_{11} is HIGH. Otherwise the output will be LOW.

PACKAGE OUTLINE : 14 lead plastic dual in -line (type A). (See General Section)

CIRCUIT DIAGRAM

FUNCTION TABLE

$\mathrm{G}_{1} \mathrm{G}_{2}$	$\mathrm{G}_{3} \mathrm{G}_{4}$	$\mathrm{G}_{5} \mathrm{G}_{6}$	$\mathrm{G}_{7} \mathrm{G}_{8}$	$\mathrm{G}_{9} \mathrm{G}_{10}$	G_{11}	Q
Equal	Equal	Equal	Equal	Equal	H	L
Unequal	X	X	X	X	H	H
X	Unequal	X	X	X	H	H
X	X	Unequal	X	X	H	H
X	X	X	Unequal	X	H	H
X	X	X	X	Unequal	H	H
X	X	X	X	X	L	L

G_{1}	G_{2}	
L	L	Equal
L	H	Unequal
H	L	Unequal
H	H	Equal

$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=$ LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial

LOGIC FUNCTION (continued)

$$
\left.\begin{array}{rl}
Q= & {\left[\left(\overline{\left(\overline{\mathrm{G}}_{1} \cdot \overline{\mathrm{G}}_{2}+\mathrm{G}_{1} \cdot \mathrm{G}_{2}\right)}+\left(\overline{\overline{\mathrm{G}}_{3} \cdot \overline{\mathrm{G}}_{4}+\mathrm{G}_{3} \cdot \mathrm{G}_{4}}\right)+\left(\overline{\overline{\mathrm{G}}_{5} \cdot \overline{\mathrm{G}}_{6}+\mathrm{G}_{5} \cdot \mathrm{G}_{6}}\right)+\right.\right.} \\
& +\left(\overline{\bar{G}}_{7} \cdot \overline{\mathrm{G}}_{8}+\mathrm{G}_{7} \cdot \mathrm{G}_{8}\right)+\left(\overline{\bar{G}}_{9} \cdot \overline{\mathrm{G}}_{10}+\mathrm{G}_{9} \cdot \mathrm{G}_{10}\right)
\end{array}\right] \cdot \mathrm{G}_{11} .
$$

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage
Output voltage
Input voltage
Output current
Input current
Voltage difference between any two inputs
Storage temperature
Operating ambient temperature

V_{P}	max.	8.0	V
$\mathrm{~V}_{\mathrm{Q}}$	max.	8.0	V
$\mathrm{~V}_{\mathrm{G}}$	max.	8.0	V
$-\mathrm{I}_{\mathrm{Q}}$	max.	20	$\left.\mathrm{~mA}^{1}\right)$
$-\mathrm{I}_{\mathrm{G}}$	max.	20	$\mathrm{~mA}^{2}$)
	max.	8.0	V
$\mathrm{~T}_{\text {Stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	0 to	+75	${ }^{\circ} \mathrm{C}$

[^8]
SYSTEM DESIGN DATA

Uniform system temperature
Uniform system supply voltage
Available d.c. fan out
D.C. noise margin

Average propagation delay time
Equivalent input capacitance
Supply current (duty cycle 50\%)
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$

$\mathrm{T}_{\text {amb }}$	0 to +75		${ }^{\circ} \mathrm{C}$
V_{P}	5.7	to	6.3
V	V		
$\mathrm{~N}_{\mathrm{a}}$	\geqslant	8	
M_{L}	min.	0.4	V
M_{H}	min.	1.5	V
$\mathrm{t}_{\text {pd }}$	max.	250	ns
C_{G}	typ.	4	pF
$\mathrm{I}_{\text {Pav }}$	typ.	10	mA
$\mathrm{P}_{\text {tot }}$	max.	90	mW

CHARACTERISTICS

Note 1
For the proper combination of inputs to be HIGH or LOW see function table on page 2.

CHARACTERISTICS (continued)

		$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}\left({ }^{\circ} \mathrm{C}\right) \\ & 0+25+75 \end{aligned}$	Conditions and references			
		Vp (V)		Fig.		
DYNAMIC DATA						
$\frac{\frac{\text { Propagation delay }}{\text { times from one } G}}{\left(G_{1} \text { to } G_{10}\right) \text { to } Q}$						
Rise propagation delay time	${ }^{\text {tpdrmax }}$	- 200 - ns	6.0	$\begin{aligned} & \mathrm{V}_{\mathrm{pd}}=1.5 \mathrm{~V} ; \mathrm{N}=6 \\ & \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \\ & \text { all other inputs } \end{aligned}$	1; 2	
Fall propagation delay time	${ }^{\text {tpdfmax }}$	- 200 - ns	6.0	$\begin{aligned} & \text { (including } \mathrm{G}_{11} \text {) } \\ & \text { at } \mathrm{V}_{\mathrm{G}}=5.3 \mathrm{~V} \end{aligned}$		
Rise propagation delay time	$t_{\text {tpdrmax }}$	- 250 - ns	6.0	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{pd}}=1.5 \mathrm{~V} ; \mathrm{N}=6 \\ \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \\ \text { all other inputs } \end{array}\right.$	1; 3	
Fall propagation delay time	${ }^{\text {tpdfmax }}$			$\left\{\begin{array}{l} \text { (excluding } \mathrm{G}_{11} \text {) } \\ \text { at } \mathrm{V}_{\mathrm{G}}=0.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{G}_{11}}=5.3 \mathrm{~V} \end{array}\right.$		
Propagation delay times from G11 to Q						
Rise propagation delay time	$t^{\text {t }}$ drmax	- 100 - ns	6.0	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{pd}}=1.5 \mathrm{~V} ; \mathrm{N}=6 \\ \mathrm{C}_{\mathrm{L}}=80 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{G}}=0 \mathrm{~V} \end{array}\right.$	1;3	
Fall propagation delay time	$\mathrm{t}_{\text {pdfmax }}$	- $120-\mathrm{ns}$	6.0	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{G}} \text { ather inputs at } \\ \mathrm{V}_{\mathrm{G}}=6.0 \mathrm{~V} \end{array}\right.$		

CHARACTERISTICS (continued)

DYNAMIC DATA

Fig. 1 Equivalent load for $\left.\mathrm{N}=6 ; \mathrm{C}_{\mathrm{L}}{ }^{1}\right)=80 \mathrm{pF}$

Fig. 2 Switch S1 in position a Switch S2 in position a

Fig. 3 Switch S1 in position a Switch S2 in position b or
Switch Sl in position b Waveforms illustrating measurement of $t_{p d r}$ and $t_{p d f}$. Switch S2 immaterial ${ }^{1}$) Including probe and jig capacitance.

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

SINGLE 10-BIT PARITY CHECKER

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Average propagation delay time $\mathrm{N}=6, \mathrm{C}_{\mathrm{W}}=60 \mathrm{pF}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	${ }^{\text {t }}{ }_{\text {d }}$	typ. 150	ns
Available d.c. fan-out $\mathrm{T}_{\mathrm{amb}}=0 \text { to }+75{ }^{\circ} \mathrm{C}$	Na_{a}	$\geqslant \quad 7$	
D.C. noise margin $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	M_{L}	typ. 1.2	V
Power consumption 50% duty cycle, $\mathrm{T}_{\text {amb }}=25{ }^{\circ} \mathrm{C}$	P_{av}	typ. 110	mW

The FCH291 comprises nine exclusive-OR functions followed by an AND gate. If an odd number of inputs (G_{1} to G_{10}) are HIGH the output will be HIGH, provided G_{11} is HIGH. If an even number of inputs (G_{1} to G_{10}) are HIGH the output will be LOW, provided G_{11} is HIGH. If G_{11} is LOW the output will be LOW regardless the condition of other inputs.

PACKAGE OUTLINE : 14 lead plastic dual in-line (type A). (See General Section)

CIRCUIT DIAGRAM

FUNCTION TABLE

$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)
$X=$ state is immaterial

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage
Output voltage
Input voltage
Output current
Input current
Voltage difference between any two inputs
Storage temperature
Operating ambient temperature

V_{P}	max.	8.0	V
$\mathrm{~V}_{\mathrm{Q}}$	max.	8.0	V
$\mathrm{~V}_{\mathrm{G}}$	max.	8.0	V
$-\mathrm{I}_{\mathrm{Q}}$	max.	20	$\left.\mathrm{~mA}^{1}\right)$
$-\mathrm{I}_{\mathrm{G}}$	max.	20	$\mathrm{~mA}^{2}$)
	max.	8.0	V
$\mathrm{~T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	0 to +75	${ }^{\circ} \mathrm{C}$	

${ }^{1}$) For negative output voltage.
${ }^{2}$) At this limit input voltage typ.: -1.5 V .

SYSTEM DESIGN DATA

Uniform system temperature
Uniform system supply voltage
Available d.c. fan-out
D.C. noise margin

Average propagation delay time
Equivalent input capacitance
Supply current (duty cycle 50\%)
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=+75^{\circ} \mathrm{C}$

$\mathrm{T}_{\text {amb }}$	0 to +75	${ }^{\circ} \mathrm{C}$
V_{P}	5.7 to 6.3	V
Na_{a}	$\geqslant 7$	
M_{L}	min. 0.4	V
M_{H}	\min. 0.8	V
${ }^{\text {t }}$ d	max. 250	ns
C_{G}	typ. 4	pF
IPav	typ. 21	mA
$\mathrm{P}_{\text {tot }}$	max. 190	mW

CHARACTERISTICS

		$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$		Conditions and references	
			$+25+75$	V_{P} (V)	
STATIC DATA					
Output voltage LOW	$\mathrm{V}_{\mathrm{QL} \max }$	0.4	$0.4 \quad 0.4 \mathrm{~V}$	$\begin{aligned} & \text { and } \\ & 6.3 \end{aligned}$	see note 1
at:		14.0	13.212 .4 mA	5.7	
Output current LOW	${ }^{1}$ QLmax	16.0	$15.2 \quad 14.4 \mathrm{~mA}$	6.3	
Output voltage HIGH	$\mathrm{V}_{\mathrm{QHmin}}$		5.35 .3 V	$\begin{array}{l\|} \hline 5.7 \\ \text { and } \\ 6.3 \end{array}$	$\mathrm{I}_{\mathrm{Q}}=0(\text { see note } 1)$
	$\mathrm{V}_{\mathrm{QHmin}}$	4.7	4.74 .5 V	5.7	$\mathrm{I}_{\mathrm{Q}}=-200 \mu \mathrm{~A}$
Input voltage LOW	$\mathrm{V}_{\mathrm{GLmax}}$	1.0	$1.0 \quad 0.8 \mathrm{~V}$	$\left\|\begin{array}{c} 5.7 \\ \text { and } \\ 6.3 \end{array}\right\|$	
Input voltage HIGH	$\mathrm{V}_{\text {GHmin }}$		3.83 .4 V	$\begin{array}{\|l\|} 5.7 \\ \text { and } \\ 6.3 \\ \hline \end{array}$	
Input current LOW	$\mathrm{II}_{\mathrm{G} 1} \text { to } 10 \mathrm{Lmax}$	$\begin{array}{r} 1.75 \\ 2.0 \end{array}$	$\begin{array}{rrr} 1.65 & 1.55 & \mathrm{~mA} \\ 1.9 & 1.8 & \mathrm{~mA} \end{array}$	$\begin{aligned} & 5.7 \\ & 6.3 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{G} 1 \text { to } 10}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{G} 1 \text { to } 10}=0.4 \mathrm{~V} \end{aligned}$
	$\mathrm{-I}_{\text {Gl }} \mathrm{max}$	1.9	1.8 1.7 1.9	5.7	$\mathrm{V}_{\mathrm{Gl1}}=0.4 \mathrm{~V}$
		2.1	$2.0 \quad 1.9 \mathrm{~mA}$	6.3	$\mathrm{V}_{\mathrm{Gl1}}=0.4 \mathrm{~V}$
Input current HIGH	$\mathrm{I}_{\text {GHmax }}$	1.0	$1.025 \mu \mathrm{~A}$	5.7	$\begin{aligned} & \mathrm{V}_{\mathrm{G}}=5.3 \mathrm{~V} \\ & \text { other inputs } 0 \mathrm{~V} \end{aligned}$
Supply current	IPmax	32.0	30.528 .0 mA	6.3	G inputs LOW

Note 1
For the proper combination of inputs to be HIGH or LOW see function table on page 2.

CHARACTERISTICS (continued)

		$\begin{gathered} \mathrm{T} \text { amb }\left({ }^{\mathrm{O}} \mathrm{C}\right) \\ 0+25+75 \end{gathered}$	Conditions and references			
		Vp (V)		Fig.		
DYNAMIC DATA						
$\frac{\frac{\text { Propagation delay }}{\text { times from one } G}}{\left(G_{1} \text { to } G_{10}\right) \text { to } Q}$						
Rise propagation delay time	tpdrmax	- 200 - ns	6.0	$\begin{aligned} & \mathrm{V}_{\mathrm{pd}}=1.5 \mathrm{~V} ; \mathrm{N}=6 \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { all other inputs } \end{aligned}$	1; 2	
Fall propagation delay time	tpdfmax	- 200 - ns	6.0	$\begin{aligned} & \text { (including } \mathrm{G}_{11} \text {) } \\ & \text { at } \mathrm{V}_{\mathrm{G}}=5.3 \mathrm{~V} \end{aligned}$		
Rise propagation delay time	${ }^{\text {t }}$ pdrmax	- $250-\mathrm{ns}$	6.0	$\begin{aligned} & \mathrm{V}_{\mathrm{pd}}=1.5 \mathrm{~V} ; \mathrm{N}=6 \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { all other inputs } \end{aligned}$		
Fall propagation delay time	${ }^{\text {t }}$ pdfmax			(excluding G_{11}) at $\mathrm{V}_{\mathrm{G}}=0.4 \mathrm{~V}$ $\mathrm{V}_{\mathrm{G}_{11}}=5.3 \mathrm{~V}$	1; 3	
$\frac{\text { Propagation delay }}{\text { times from } \mathrm{G}_{11} \text { to } \mathrm{Q}}$						
Rise propagation delay time	${ }^{\text {t }}$ pdrmax	- 100 - ns	6.0	$\begin{aligned} & \mathrm{V}_{\mathrm{pd}}=1.5 \mathrm{~V} ; \mathrm{N}=6 \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{G}]}=0 \mathrm{~V} \end{aligned}$	1; 3	
Fall propagation delay time	$t_{\text {pdfmax }}$	- 120 - ns	6.0	all other inputs at $\mathrm{V}_{\mathrm{G}}=6.0 \mathrm{~V}$		

CHARACTERISTICS (continued)

DYNAMIC DATA

Fig. 1 Equivalent load for $\mathrm{N}=6 ; \mathrm{C}_{\mathrm{L}}{ }^{1}$) $=100 \mathrm{pF}$

Fig. 2 Switch S 2 in position a Switch S1 in position a

Fig. 3 Switch Sl in position a Switch S2 in position b or
Switch S1 in position b Switch S2 immaterial

Waveforms illustrating measurement of $t_{p d r}$ and $t_{\text {pdf. }}$. ${ }^{1}$) Including probe and jig capacitance.

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

SINGLE 4-BIT DECODER

PACKAGE OUTLINE

16 lead plastic dual in-line (type A)
(See General Section)

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Average propagation delay time $\mathrm{N}=1, \mathrm{C}_{\mathrm{W}}=40 \mathrm{pF}, \mathrm{~T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	${ }^{\text {tpd }}$	$\leqslant 100$	ns
Available d.c. fan out $\mathrm{T}_{\mathrm{amb}}=0 \text { to }+75{ }^{\circ} \mathrm{C}$	N_{a}	$\geqslant \quad 9$	
D.C. noise margin $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	M_{L}	$\geqslant 0.6$	V
Power consumption 50% duty cycle, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {av }}$	typ. 250	mW

The FCH301 is a fast binary (8-4-2-1) to decimal decoder formed by 18 gate functions. All outputs except the decoded one stay HIGH. If the input does not conform to the 8-4-2-1 code, all outputs remain HIGH.

CIRCUIT DIAGRAMS

FUNCTION TABLE

G_{4}	G3	G_{2}	G1	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9
L	L	L	1.	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	H	H	L	H	H	H	H	H	H	H
L	L	H	H	H	H	H	L	H	H	H	H	H	H
L	H	L	L	H	H	H	H	L	H	H	H	H	H
L	H	L	H	H	H	H	H	H	L	H	H	H	H
L	H	H	L	H	H	H	H	H	H	L	H	H	H
L	H	H	H	H	H	H	H	H	H	H	L	H	H
H	L	L	L	H	H	H	H	H	H	H	H	L	H
H	L	L	H	H	H	H	H	H	H	H	H	H	L
H	L	H	L	H	H	H	H	H	H	H	H	H	H
H	L	H	H	H	H	H	H	H	H	H	H	H	H
H	H	L	L	H	H	H	H	H	H	H	H	H	H
H	H	L	H	H	H	H	H	H	H	H	H	H	H
H	H	H	L	H	H	H	H	H	H	H	H	H	H
H	H	H	H	H	H	H	H	H	H	H	H	H	H

LOGIC FUNCTIONS

$$
\begin{array}{ll}
\mathrm{Q}_{0}=\overline{\overline{G_{1}} \cdot \overline{\mathrm{G}_{2}} \cdot \overline{\mathrm{G}_{3}} \cdot \overline{\mathrm{G}_{4}}} & \mathrm{Q}_{5}=\overline{\mathrm{G}_{1} \cdot \overline{\mathrm{G}_{2}} \cdot \mathrm{G}_{3} \cdot \overline{\mathrm{G}_{4}}} \\
\mathrm{Q}_{1}=\overline{\mathrm{G}_{1} \cdot \overline{G_{2}} \cdot \overline{\mathrm{G}_{3}} \cdot \overline{\mathrm{G}_{4}}} & \mathrm{Q}_{6}=\overline{\overline{\mathrm{G}_{1}} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3} \cdot \overline{\mathrm{G}_{4}}} \\
\mathrm{Q}_{2}=\overline{\overline{\mathrm{G}_{1}} \cdot \mathrm{G}_{2} \cdot \overline{\mathrm{G}_{3}} \cdot \overline{\mathrm{G}_{4}}} & \mathrm{Q}_{7}=\overline{\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3} \cdot \overline{\mathrm{G}_{4}}} \\
\mathrm{Q}_{3}=\overline{\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \overline{\mathrm{G}_{3}} \cdot \overline{\mathrm{G}_{4}}} & \mathrm{Q}_{8}=\overline{\overline{\mathrm{G}_{1}} \cdot \overline{\mathrm{G}_{2}} \cdot \overline{\mathrm{G}_{3}} \cdot \mathrm{G}_{4}} \\
\mathrm{Q}_{4}=\overline{\overline{\mathrm{G}_{1}} \cdot \overline{\mathrm{G}_{2}} \cdot \mathrm{G}_{3} \cdot \overline{\mathrm{G}_{4}}} & \mathrm{Q}_{9}=\overline{\mathrm{G}_{1} \cdot \overline{\mathrm{G}_{2}} \cdot \overline{\mathrm{G}_{3}} \cdot \mathrm{G}_{4}}
\end{array}
$$

$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Supply voltage at $\mathrm{T}_{\mathrm{amb}}$: max. $40^{\circ} \mathrm{C}$
$V_{P} \max .8 .0 \mathrm{~V}$
Output voltage
Input voltage
$\mathrm{V}_{\mathrm{Q}} \quad \max . \quad 8.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{G}} \max . \quad 8.0 \mathrm{~V}$

Input current 1)	$-\mathrm{I}_{\mathrm{G}}$	\max.	20	mA
Voltage difference between any two inputs		\max.	8.0	V
Storage temperature	$\mathrm{T}_{\text {stg }}$	-35 to +125	${ }^{\circ} \mathrm{C}$	
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	0 to	+75	${ }^{\circ} \mathrm{C}$

1) At this limit, input voltage typ.: -1.5 V .

SYSTEM DESIGN DATA

Operating ambient temperature
Uniform system voltage
Available d.c. fan out
D.C. noise margin

Average propagation delay time
Equivalent input capacitance
Power dissipation

Tamb $\quad 0$ to $+75{ }^{\circ} \mathrm{C}$
Vp 5.7 to 6.3 V
$\mathrm{N}_{\mathrm{a}} \quad 9$
$\mathrm{M}_{\mathrm{L}} \quad \min .0 .4 \mathrm{~V}$
M_{H}
min. 2.9 V
${ }^{\mathrm{t}} \mathrm{pd} \quad 1.00 \mathrm{~ns}$
C_{G} typ. 4 pF
$P_{\text {tot }} \max .300 \mathrm{~mW}$

CHARACTERISTICS

		$\mathrm{T}_{\mathrm{amb}}\left({ }^{\circ} \mathrm{C}\right)$				Conditions and References	
		0	25			$\begin{array}{\|c\|} \hline V_{P} \\ (V) \end{array}$	
STATIC DATA Output voltage LOW at: Output current LOW	$\mathrm{V}_{\mathrm{QL} \max }$ $I_{Q L \text { max }}$ $I_{Q L \max }$	$\begin{gathered} 0.4 \\ 15.8 \\ 18.0 \end{gathered}$	$\begin{gathered} 0.4 \\ 14.9 \\ 17.1 \end{gathered}$	$\begin{gathered} 0.4 \\ 14.0 \\ 16.2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{array}{\|c\|} \hline 5.7 \\ \text { and } \\ 6.3 \\ \\ 5.7 \\ 6.3 \\ \hline \end{array}$	For the proper combination of inputs to be HIGH or LOW see Function Table
Output voltage HIGH	$\mathrm{V}_{\mathrm{QHmin}}$	5.2	5.2	5.2	V	5.7	$-\mathrm{IQ}=0$
Input voltage LOW	$\mathrm{V}_{\text {GLmax }}$	1.0	1.0	0.8	V	5.7 and 6.3	
Input voltage HIGH	$\mathrm{V}_{\mathrm{GH} \text { min }}$	2.6	2.5	2.4	V	5.7 and 6.3	
Input current LOW	$\begin{aligned} & -I_{\text {GLmax }} \\ & -I_{\text {GLmax }} \end{aligned}$	$\begin{array}{r} 1.75 \\ 2.0 \end{array}$	$\begin{array}{r} 1.65 \\ 1.9 \end{array}$	$\begin{array}{r} 1.55 \\ 1.8 \end{array}$		$\begin{aligned} & 5.7 \\ & 6.3 \end{aligned}$	$\begin{aligned} \mathrm{V}_{\mathrm{G}} & =0.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{G}} & =0.4 \mathrm{~V} \end{aligned}$
Input current HIGH	$I_{\text {GHmax }}$	1.0	1.0	25			$\mathrm{v}_{\mathrm{G}}=6.3 \mathrm{~V}$ other inputs 0 V
Supply current	$I_{\text {Pmax }}$	-	-	48	mA	6.3	G inputs 0 V

CHARACTERISTICS (continued)

*) See figures below

Waveforms and loading circuit illustrating measurement of $t_{p d r}$ and $t_{p d f}$

1) Including probe and jig capacitance

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

Sextuple inverter

non- R_{c}	R_{c}
FCH311	FCH321

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Average propagation delay time $\mathrm{N}=6, \mathrm{C}_{\mathrm{w}}=60 \mathrm{pF}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	${ }^{\text {t }} \mathrm{pd}$	typ. 30	ns
Available d.c. fan out to FC gates $\mathrm{T}_{\mathrm{amb}}=0 \text { to }+75^{\circ} \mathrm{C}$	N_{a}	≥ 8	
Power consumption per inverter 50% duty cycle, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \quad \begin{array}{r}\text { non- } \mathrm{R}_{\mathrm{C}} \\ \mathrm{R}_{\mathrm{C}}\end{array}$	$\begin{aligned} & \mathrm{P}_{\mathrm{av}} \\ & \mathrm{P}_{\mathrm{av}} \end{aligned}$	$\begin{array}{lr} \text { typ. } & 7 \\ \text { typ. } & 11 \end{array}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

The fan-in of the circuits can easily be expanded by means of a diode array.
The outputs of these inverters may be interconnected to perform the AND-OR-NOT function.

PACKAGE OUTLINES: 14 lead plastic dual in-line (type A). (See General Section)

CIRCUIT DIAGRAMS

FCH321

LOGIC FUNCTION

1. Individual inverter operation

7255307.1

$$
\mathrm{Q}=\overline{\mathrm{E}_{\mathrm{i}}} \text { for positive logic }
$$

2. Individual gate operation

$Q=\overline{G_{i} \cdot G_{j}}$ for positive logic

Function table

E_{i}	Q
L	H
H	L

.

Function table

G_{i}	G_{j}	Q
L	X	H
X	L	H
H	H	L

LOGIC FUNCTION (continued)

3. Commoned gate operation

Function table

G_{i}	G_{j}	G_{k}	G_{l}	Q
L	X	L	X	H
L	X	X	L	H
X	L	L	X	H
X	L	X	L	H
H	H	X	X	L
X	X	H	H	L

$Q=\left(\overline{G_{i} \cdot G_{j}}\right) \cdot\left(\overline{G_{k} \cdot G_{1}}\right)=\left(\overline{\left.G_{i} \cdot G_{j}\right)+\left(G_{k} \cdot G_{1}\right.}\right)$ for positive logic
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=$ LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
The AND-function is obtained by connecting a diode array to the E input.
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage	V_{P}	\max.	8.0	V
Output voltage (HIGH state)	V_{Q}	\max.	8.0	V
Output current ${ }^{1}$)	$-\mathrm{I}_{\mathrm{Q}}$	\max.	20	mA
Expander input voltages with respect to supply	$\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{E}}$	\max.	8.0	V
Expander input current	I_{E}	\max.	5.0	mA
Storage temperature	$\mathrm{T}_{\text {Stg }}$	$-55 \mathrm{to} \mathrm{+125}$	${ }^{\circ} \mathrm{C}$	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$	

$\overline{\text { 1) For negative output voltage. }}$

SYSTEM DESIGN DATA (both non $-\mathrm{R}_{\mathrm{c}}$ and R_{C})
Uniform system temperature
Uniform system supply voltage
Available d.c. fan out to FC gates

	$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$
	V_{p}	5.7 to 6.3	V
	Na_{a}	\geq	
nder	${ }^{\text {tpd }}$	$\max .75$	ns
	$\Delta t_{\text {pdf }}$	typ. 1.4	$\mathrm{ns} / \mathrm{pF}$
	${ }^{\text {C }}$ Q	typ. 10	pF
non- R_{c}	$\mathrm{I}_{\mathrm{Pav}}$	typ. 7.2	mA
R_{C}	$\mathrm{I}_{\text {Pav }}$	typ. 10.5	mA
non-R ${ }_{\text {c }}$	$\mathrm{P}_{\text {tot }}$	$\max .100$	mW
R_{c}	$\mathrm{P}_{\text {tot }}$	$\max .171$	mW

${ }^{t}$ pdr versus C_{L} for both BAX13 and FCY101 as input diode

$t_{\text {pdf }}$ versus C_{L} for BAX13 and FCY101 as input diode

CHARACTERISTICS of FCH311 (non R_{C})

CHARACTERISTICS of FCH321 (R_{c})

		$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$			Conditions and references	
		0	+25	+75	VP (V)	
STATIC DATA						
Output voltage LOW	$\mathrm{V}_{\text {QLmax }}$	0.4	0.4	0.4 V	$\begin{aligned} & \text { and } \\ & 6.3 \end{aligned}$	$-\mathrm{I}_{\mathrm{E}}=50 \mu \mathrm{~A}$
at: Output current LOW		14.0	13.2	12.4 mA	5.7	
	${ }^{\text {QLImax }}$	16.0	15.2	14.4 mA	6.3	
Expander input voltage HIGH	$\mathrm{V}_{\text {EHmax }}$	3.0	2.8	2.6 V	$\begin{aligned} & \hline 5.7 \\ & \text { and } \\ & 6.3 \end{aligned}$	$\left\{\begin{array}{l}\mathrm{I}_{\mathrm{QL}}=\mathrm{I}_{\mathrm{QL}} \mathrm{max} \\ -\mathrm{I}_{\mathrm{E}}=50 \mu \mathrm{~A}\end{array}\right.$
Output voltage HIGH at: Expander input voltage LOW	$\begin{aligned} & \mathrm{V}_{\mathrm{QHmin}} \\ & \mathrm{~V}_{\mathrm{ELmax}} \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.1 \end{aligned}$	$\begin{array}{ll} \hline 5.3 \mathrm{~V} \\ 3.9 \mathrm{~V} \end{array}$	$\begin{aligned} & 5.7 \\ & 5.7 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=0 \\ & \mathrm{I}_{\mathrm{Q}}=-200 \mu \mathrm{~A} \end{aligned}$
		1.8		1.4 V	$\begin{aligned} & 5.7 \\ & \text { and } \\ & 6.3 \end{aligned}$	
Input current LOWat:Expander inputvoltage LOW	${ }^{-1} \mathrm{E}_{\text {L max }}$	1.75	1.65	1.55 mA	5.7	
		2.0	1.9	1.8 mA	6.3	
			1.00	$0.90 \mathrm{~V}$		
Output current LOW (AND-OR-NOT function)	-IQLLmax		2.1	2.0 mA	6.3	Expander inputs LOW Output forced LOW externally to $\mathrm{V}_{\mathrm{Q}}=0.4 \mathrm{~V}$
Supply current	IPLmax	25.2	22.8	21.6 mA	6.3	Expander inputs floating
DYNAMIC DATA see also page 7 Rise propagation	${ }^{\text {t }}$ pdr max	-		- ns	6.0	$\begin{aligned} & \mathrm{R}=4 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF} \end{aligned}$
delay time	${ }^{t}$ pdr max	-	70	- ns	6.0	$\begin{aligned} & \mathrm{R}=670 \Omega \\ & \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF} \end{aligned}$
Fall propagation delay time	${ }^{t}$ pdf max	-	65	- ns	6.0	$\begin{aligned} & \mathrm{R}=4 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF} \end{aligned}$
	${ }^{t}$ pdf max	-			6.0	$\begin{aligned} & \mathrm{R}=670 \Omega \\ & \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF} \end{aligned}$

CHARACTERISTICS (continued)
DYNAMIC DATA

Waveforms and loading circuits, illustrating measurement of $t_{p d r}$ and $t_{p d f}$.

[^9]The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

SINGLE JK FLIP-FLOP

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V
Operating ambient temperature range	Tamb	0 to +75	${ }^{\circ} \mathrm{C}$
Clock rate	f_{c}	typ. 10	MHz
Available d.c. fan out $\mathrm{T}_{\mathrm{amb}}=0 \text { to }+75^{\circ} \mathrm{C}$	N_{a}	$\geqslant 8$	
$\begin{aligned} & \text { D.C. noise margin } \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	M_{L}	typ. 1.2	V
Power consumption 50% duty cycle, $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	P_{av}	typ. 36	mW

The FCJ101 performs the JK flip-flop operation. Three J and three K inputs permit an additional AND operation. Triggering occurs at the falling edge of a T signal. The direct-set inputs (overriding any other inputs) are active at the LOW level. The circuitry incorporates bi-directional outputs for driving capacitive loads. Typical applications are in high speed counters and shift registers.

PACKAGE OUTLINE: 14 lead plastic dual in-line (type A). (See General Section)

CIRCUIT DIAGRAM

LOGIC DIAGRAM (to MIL standard 806B)

FUNCTION TABLES

1. Trigger action via T terminal

$\mathrm{T}=$ HIGH	$\mathrm{T}=$ LOW		
J	K	Q_{1}	Q_{2}
H	H	reversed	
L	H	L	
H	L		
L	L	H	
L	L		
L	no change		

The information on J and K is transferred into the flip-flop by T becoming HIGH.
When T subsequently goes LOW the outputs will assume the levels shown in the table. Inputs S_{1} and S_{2} should be HIGH or floating.
$\left.\begin{array}{l}J=J_{1} \cdot J_{2} \cdot J_{3} \\ K=K_{1} \cdot K_{2} \cdot K_{3}\end{array}\right\}$ for positive logic
2. Set or reset via S terminals

S_{1}	$\mathrm{~S}_{2}$	Q_{1}	Q_{2}
H	L	L	H
L	H	H	L
L	L	H	H
H	H	no change	

The set inputs override the other inputs and directly determine the outputs of the flip-flop.
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)
RATINGS (Limiting values) ${ }^{1}$)

Supply voltage
Output voltage
Input voltage
Output current ${ }^{2}$)
Input current ${ }^{3}$)
Voltage difference between any two inputs
Storage temperature
Operating ambient temperature

V_{P}	\max.	8.0	V
$\mathrm{~V}_{\mathrm{Q}}$	\max.	8.0	V
$\mathrm{~V}_{\mathrm{J}}, \mathrm{V}_{\mathrm{K}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{S}}$	\max.	8.0	V
$-\mathrm{I}_{\mathrm{Q}}$	\max.	20	mA
$-\mathrm{I}_{\mathrm{J}},-\mathrm{I}_{\mathrm{K}},-\mathrm{I}_{\mathrm{T}},-\mathrm{I}_{\mathrm{S}}$	\max.	20	mA
	\max.	8.0	V
$\mathrm{~T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$	

[^10]
SYSTEM DESIGN DATA

Uniform system temperature
Uniform system supply voltage
Available d.c. fan out
to J or K input
to S input
to G input
Available a.c. fan out to T input
D.C. noise margin
to T input
to J or K input
to S input
to G input
Average propagation delay time
Maximum clock rate
Equivalent input capacitances
for T input
for J or K input
for S input
Supply current (duty cycle 50\%)
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$

| $\mathrm{T}_{\mathrm{amb}}$ | 0 to $+75 \quad \mathrm{oC}$ |
| :--- | ---: | :--- |
| V_{P} | 5.7 to $6.3 \quad \mathrm{~V}$ |

$\begin{array}{lll}\mathrm{N}_{\mathrm{aJ}}=\mathrm{N}_{\mathrm{aK}} & \geqslant & 8 \\ \mathrm{NaS} & \geqslant & 4 \\ \mathrm{NaG}_{\mathrm{aS}} & \geqslant & 8\end{array}$
$\mathrm{N}_{\mathrm{aT}} \geqslant 2$

M_{L}	min.	0.3	V
M_{H}	min.	0.2	V
M_{L}	min.	0.5	V
M_{H}	min.	0.2	V
M_{L}	min.	0.3	V
M_{H}	min.	0.2	V
M_{L}	min.	0.4	V
M_{H}	min.	1.5	V
t_{pd}	\max.	85	ns
f_{C}	\geqslant	6	MHz

C_{T}	typ.	30	pF
$\mathrm{C}_{\mathrm{J}}=\mathrm{C}_{\mathrm{K}}$	typ. C_{S}	20	pF
typ.	25	pF	
$\mathrm{I}_{\mathrm{Pav}}$	typ.	6.0	mA
$\mathrm{P}_{\text {tot }}$	max.	56	mW

CHARACTERISTICS

		$\left.\mathrm{Tamb}^{(0}{ }^{\circ} \mathrm{C}\right)$	Conditions and references	
		$0+25+75$	$\begin{gathered} V_{p} \\ (\mathrm{~V}) \\ \hline \end{gathered}$	
STATIC DATA				
Output voltage LOW at: Output current LOW	$\begin{aligned} & \mathrm{V}_{\mathrm{QLmax}} \\ & \mathrm{I}_{\mathrm{QLmax}} \end{aligned}$	0.4 0.4 0.4 V 14.0 16.5 12.4 mA 16.0 19.0 14.4 mA	$\left.\begin{array}{\|l\|} 5.7 \\ \text { and } \\ 6.3 \\ 5.7 \\ 6.3 \end{array} \right\rvert\,$	
Output voltage HIGH	$\mathrm{V}_{\mathrm{QHmin}}$	$3.8 \quad 3.9 \quad 4.1 \mathrm{~V}$	5.7	$\mathrm{IQ}=-100 \mu \mathrm{~A}$
Output voltage HIGH (lowest permissible) at: Output current HIGH	$\mathrm{V}_{\mathrm{QHPmin}}$ ${ }^{-\mathrm{I}_{\mathrm{QH}}}$	3.6 3.3 3.0 V 0.85 3.3 5.5 mA	$\begin{gathered} 5.7 \\ 5.7 \end{gathered}$	
Input current LOW	-IJLmax,$\{$ -I KLmax -ITLmax -ISLmax	1.75 1.65 1.55 mA 2.0 1.9 1.8 mA 3.5 3.3 3.1 mA 4.0 3.8 3.6 mA 3.5 3.3 3.1 mA 4.0 3.8 3.6 mA	$\begin{array}{\|l\|} 5.7 \\ 6.3 \\ 5.7 \\ 6.3 \\ 5.7 \\ 6.3 \end{array}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{J}}=\mathrm{V}_{\mathrm{K}}=0.4 \mathrm{~V} ; \\ \text { other inputs } \\ \text { floating } \\ \mathrm{V}_{\mathrm{T}}=0.4 \mathrm{~V} \text {; other } \\ \text { inputs floating } \\ \mathrm{V}_{\mathrm{S}}=0.4 \mathrm{~V} \text {; other } \\ \text { inputs floating } \end{array}\right.$
Input current HIGH	${ }^{-1}$ JHmax , -IKHmax $I_{\text {THmax }}$ $I_{\text {SH max }}$	$\begin{array}{lll} 1 & 1 & 25 \mu \mathrm{~A} \\ 2 & 2 & 50 \mu \mathrm{~A} \\ 2 & 2 & 50 \mu \mathrm{~A} \end{array}$	$\left\lvert\, \begin{gathered} 5.7 \\ 5.7 \\ 5.7 \end{gathered}\right.$	$\mathrm{V}_{\mathrm{J}}=\mathrm{V}_{\mathrm{K}}=5.3 \mathrm{~V}$ other inputs 0 V $V_{T}=5.3 \mathrm{~V}$ other inputs 0 V $\mathrm{V}_{\mathrm{S}}=5.3 \mathrm{~V}$ other inputs 0 V
Supply current	$\mathrm{I}_{\text {Pmax }}$	- 9 - mA	6.3	T input LOW J, K, S inputs HIGH

CHARACTERISTICS

CHARACTERISTICS (continued)
DYNAMIC DATA

Fig.1. Waveforms illustrating conditions for change of state.

Fig.2. Waveforms illustrating conditions for no change of state.
For no change of state to result:
a. the time between J or K reaching $\mathrm{V}_{\mathrm{JLmax}}, \mathrm{V}_{\mathrm{KLmax}}$ (going LOW) and T reaching $\mathrm{V}_{\mathrm{TL} \text { max }}$ (going LOW) must be at least $\mathrm{t}_{\mathrm{JLmin}}, \mathrm{t}_{\mathrm{KLmin}}$.
b. the time between J or K reaching $\mathrm{V}_{\mathrm{JLmax}}, \mathrm{V}_{\text {KLmax }}$ (going HIGH) and T reaching $\mathrm{V}_{\text {TLmax }}$ (going LOW) must be less than $\mathrm{t}_{\text {hold }}$.

CHARACTERISTICS (continued)

DYNAMIC DATA

Fig.3. Waveforms illustrating conditions for change of state.
For a change of state still to result, the time between J or K reaching $\mathrm{V}_{\mathrm{JHmin}}$, $\mathrm{V}_{\text {KHmin }}$ (going LOW) and Treaching $\mathrm{V}_{\text {TLmax }}$ (going LOW) must be less than $t_{\text {holdH }}$

Fig.4. Waveforms illustrating conditions for set or reset.

CHARACTERISTICS (continued)

DYNAMIC DATA

Equivalent load for $\mathrm{N}=8$ and $\mathrm{C}_{\mathrm{L}}{ }^{1}$) $=60 \mathrm{pF}$

Equivalent load for $\mathrm{N}=1$ and $\left.\mathrm{C}_{\mathrm{L}}{ }^{1}\right)=60 \mathrm{pF}$

Fig. 5. Waveforms and loading circuits illustrating measurement of $t_{p d r}$ and $t_{p d f}$ •

1) Including probe and jig capacitance

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

SINGLE JK MASTER-SLAVE FLIP-FLOP

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Clock rate	f_{c}	typ. 5	MHz
Available d.c. fan-out $\mathrm{T}_{\mathrm{amb}}=0 \text { to } 75^{\circ} \mathrm{C}$	N_{a}	$\geqslant 8$	
D.C. noise margin $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	M_{L}	typ. 1.2	V
Power consumption 50% duty cycle, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P_{av}	typ. 67	mW

The FCJlll is a direct-coupled JK flip-flop, operating on the master-slave principle. Operation depends on voltage levels only, i.e. rise and fall times of all input signals, including the trigger signal, are immaterial.The J, K and Tinputs are logically equivalent, allowing the use of J and K for triggering. The direct set-inputs (overriding any other inputs) are active at the LOW level.

PACKAGE OUTLINE : 14 lead plastic dual in-line (type A). (See General Section)

GIRCUIT DIAGRAM

LOGIC DIAGRAM(to MIL standard 806B)

FUNCTION TABLES

1. Trigger action via T terminal (each flip-flop)

$\mathrm{T}=\mathrm{HIGH}$		$\mathrm{T}=$ LOW	
J	K	Q_{1}	Q_{2}
H	H	reversed	
L	H	L	H
H	L	H	L
L	L	no change	

2. Trigger action via J and K terminals

J	K	Q_{1}	Q_{2}
$\mathrm{H} \rightarrow \mathrm{L}$	X	H	L
X	$\mathrm{H} \rightarrow \mathrm{L}$	L	H
$\mathrm{H} \rightarrow \mathrm{L}$	$\mathrm{H} \rightarrow \mathrm{L}$	reversed	

3. Set or reset via S terminals

S_{1}	$\mathrm{~S}_{2}$	Q_{1}	Q_{2}
H	L	L	H
L	H	H	L
L	L	indeterminate	
H	H	no change	

The information on J and K is transferred into the master by T becoming HIGH.
When T subsequently goes LOW the outputs will assume the levels shown in the table. Inputs S_{1} or S_{2} should be HIGH or floating.

If J or K go LOW with T HIGH, Q_{1} and Q_{2} assume the state shown. If both J and K go LOW with T HIGH, the outputs of Q_{1} and Q_{2} are reversed (exactly as if J and K remained HIGH and T were triggered). When triggering on J and K the T input requirements V_{TH} and V_{TL} (see CHARACTERISTICS) apply to J and K .
S_{1} and S_{2} should be HIGH or floating.
The set inputs override the other inputs and directly determine the outputs of the flip-flop.
In the case of both set inputs going LOW the first to reach LOW will determine the output conditions.
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Output voltage
Input voltage
Output current ${ }^{1}$)
Input current ${ }^{2}$)
Voltage difference between any two inputs
Storage temperature
Operating ambient temperature

V_{P}	\max.	8.0	V
$\mathrm{~V}_{\mathrm{Q}}$	\max.	8.0	V
$\mathrm{~V}_{\mathrm{J}}, \mathrm{V}_{\mathrm{K}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{S}}$	\max.	8.0	V
$-\mathrm{I}_{\mathrm{Q}}$	\max.	20	mA
$-\mathrm{I}_{\mathrm{J}},-\mathrm{I}_{\mathrm{K}},-\mathrm{I}_{\mathrm{T}},-\mathrm{I}_{\mathrm{S}}$	\max.	20	mA
	\max.	8.0	V
$\mathrm{~T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	0 to +75	o_{C}	

$\mathrm{V}_{\mathrm{P}} \max .8 .0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{Q}} \max .8 .0 \mathrm{~V}$

Tamb 0 to $+75{ }^{\circ} \mathrm{C}$

[^11]
SYSTEM DESIGN DATA

Uniform system temperature
Uniform system supply voltage
Available d.c. fan out
to T input
to J or K input
to S input
to G input
D.C. noise margin
to T input
to J or K input
to S input
to G input

Average propagation delay time
Maximum clock rate
Equivalent input capacitances
for T input
for J or K input
for S input
Supply current (duty cycle 50%)
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$
V_{P}

N_{aT}	\geqslant	4
$\mathrm{~N}_{\mathrm{aJ}}=\mathrm{N}_{\mathrm{aK}}$	\geqslant	8
$\mathrm{~N}_{\mathrm{aS}}$	\geqslant	5
$\mathrm{~N}_{\mathrm{aG}}$	\geqslant	8

C_{T}	typ.	8	pF
$\mathrm{C}_{\mathrm{J}}=\mathrm{C}_{\mathrm{K}}$	typ.	4	pF
C_{S}	typ.	8	pF
$\mathrm{I}_{\text {Pav }}$	typ.	11.2	mA
$\mathrm{P}_{\text {tot }}$	max.	110	mW

CHARACTERISTICS

CHARACTERISTICS

CHARACTERISTICS (continued)

DYNAMIC DATA

Fig. 1. Waveforms illustrating conditions for change of state.

Fig. 2. Waveforms illustrating conditions for no change of state.

Fig. 3. Waveforms illustrating conditions for set or reset.

CHARACTERISTICS (continued)

DYNAMIC DATA

Equivalent load for $\mathrm{N}=8$ and $\left.\mathrm{C}_{\mathrm{L}}{ }^{1}\right)=56 \mathrm{pF}$

Equivalent load for $\mathrm{N}=1$ and $\mathrm{C}_{\mathrm{L}}{ }^{1}$) $=60 \mathrm{pF}$

Fig. 4. Waveforms and loading circuits illustrating measurement of t_{pdr} and t_{pdf} •

1) Including probe and jig capacitance

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

DUAL JK MASTER-SLAVE FLIP-FLOP

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V
Operating ambient temperature range	Tamb	0 to +75	${ }^{\circ} \mathrm{C}$
Clock rate	f_{c}	typ. 7	MHz
Available d.c. fan out $\mathrm{T}_{\mathrm{amb}}=0 \text { to }+75^{\circ} \mathrm{C}$	Na_{a}	$\geqslant 8$	
D.C. noise margin $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	M_{L}	typ. 1.2	V
Power consumption $50 \% \text { duty cycle, } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { (each flip-flop) }$	P_{av}	typ. 50	mW

The FCJ121 comprises two independent direct coupled JK flip-flops, operating on the master-slave principle. Operation depends on voltage levels only, i.e. rise and fall times of all input signals including trigger signals are immaterial. The common set-input (overriding any other inputs) is active at the LOW level. Typical applications are in medium speed counters.

PACKAGE OUTLINE: 14 lead plastic dual in-line (type A). (See General Section)

CIRCUIT DIAGRAM

FUNCTION TABLES

1. Trigger action via T terminal (each flip-flop)

$\mathrm{T}=\mathrm{HIGH}$		$\mathrm{T}=\mathrm{LOW}$	
J_{1}	$\mathrm{~K}_{1}$	Q_{1}	Q_{2}
$\mathrm{~J}_{2}$	$\mathrm{~K}_{2}$	Q_{3}	Q_{4}
H	H	reversed	
L	H	L	
H	H		
L	L	H	
L			
L	L	no change	

The information on J and K is transferred into the master by T becoming HIGH.
When T subsequently goes LOW the outputs will assume the levels shown in the table. Input S_{2} should be HIGH or floating.

For the flip-flop with two J -inputs: $\mathrm{J}=\mathrm{J}_{2} \cdot \mathrm{~J}_{3}$ for positive logic
2. Set or Reset via S_{2} terminal (both flip-flops)

S_{2}	Q_{1}	Q_{2}
$\mathrm{~S}_{4}$	Q_{3}	Q_{4}
L	L	H
H	no change	

The set input overrides the other inputs and directly determines the outputs of both flip-flops.
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)
RATINGS (Limiting values) ${ }^{1}$)

Supply voltage
Output voltage
Input voltage
Output current ${ }^{2}$)
Input current ${ }^{3}$)
Voltage difference between any two inputs
Storage temperature
Operating ambient temperature

V_{P}	\max.	8.0	V
$\mathrm{~V}_{\mathrm{Q}}$	\max.	8.0	V
$\mathrm{~V}_{\mathrm{J}}, \mathrm{V}_{\mathrm{K}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{S}}$	\max.	8.0	V
$-\mathrm{I}_{\mathrm{Q}}$	\max.	20	mA
$-\mathrm{I}_{\mathrm{J}},-\mathrm{I}_{\mathrm{K}},-\mathrm{I}_{\mathrm{T}},-\mathrm{I}_{\mathrm{S}}$	\max.	20	mA
	\max.	8.0	V
$\mathrm{~T}_{\mathrm{Stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$	

[^12]
SYSTEM DESIGN DATA

Uniform system temperature
Uniform system supply voltage
Available d.c. fan out
to T input
to J or K input
to S input
to G input
D. C. noise margin
to T input
to J or K input
to S input
to G input

Average propagation delay time
Maximum clock rate
Equivalent input capacitances
for T input
for J or K input
for S input
Supply current (duty cycle 50%) ${ }^{1}$)
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=75{ }^{\circ} \mathrm{C}{ }^{1}$)
$\mathrm{T}_{\mathrm{amb}}$
V_{F}

N_{aT}	\geqslant	3
$\mathrm{~N}_{\mathrm{aJ}}=\mathrm{N}_{\mathrm{aK}}$	\geqslant	10
$\mathrm{~N}_{\mathrm{aS}}$	\geqslant	2
$\mathrm{~N}_{\mathrm{aG}}$	\geqslant	8

0 to +75 oc
5.7 to 6.3 V

8
min. 0.3 V min. 1.2 V
min. 0.7 V min. 1.2 V
min. 0.3 V
min. 1.9 V
min. 0.4 V
min. 1.5 V
$\max .105$ ns
$\geqslant \quad 5 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{T}} \quad$ typ. 12 pF
$C_{J}=C_{K}$
C_{S}
IPav
$P_{\text {tot }}$

CHARACTERISTICS

CHARACTERISTICS

CHARACTERISTICS(continued)

DYNAMIC DATA

Fig. 1. Waveforms illustrating conditions for change of state.

Fig. 2. Waveforms illustrating conditions for no change of state.

Fig. 3. Waveforms illustrating conditions for set or reset.

CHARACTERISTICS (continued)

DYNAMIC DATA

Equivalent load for $\mathrm{N}=8$ and $\mathrm{C}_{\mathrm{L}}{ }^{1}$) $=60 \mathrm{pF}$

Equivalent load for $\mathrm{N}=1$ and $\mathrm{C}_{\mathrm{L}}{ }^{1}$) $=60 \mathrm{pF}$
Fig. 4. Waveforms and loading circuits illustrating measurement of $t_{p d r}$ and $t_{p d f}$

1) Including probe and jig capacitance

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

DUAL JK MASTER-SLAVE FLIP FLOP

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Clock rate	f_{c}	typ. 7	MHz
Available d.c. fan out $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	N_{a}	$\geqslant 8$	
D.C. noise margin $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	M_{L}	typ. 1.2	V
Power consumption $50 \% \text { duty cycle, } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{Pav}_{\text {a }}$	typ. 100	mW

The FCJ131 comprises two independent direct coupled JK flip-flops, operating on the master-slave principle. Operation depends on voltage levels only, i.e. rise and fall times of all input signals, including the trigger signals, are immaterial. The separate set inputs (overriding any other inputs) are active at the LOW level. Typical applications include counters and shift registers.

PACKAGE OUTLINE 14 lead plastic dual in-line (type A). (S ee General Section)

FUNCTION TABLES

1. Trigger action via T terminal (each flip-flop)

$\mathrm{T}=\mathrm{HIGH}$		$\mathrm{T}=\mathrm{LOW}$	
J_{1}	$\mathrm{~K}_{1}$	Q_{1}	
$\mathrm{~J}_{2}$	$\mathrm{~K}_{2}$	Q_{3}	
Q	Q_{4}		
H	H	reversed	
L	H	L	
H	H		
L	L	H	
no change			

The information on J and K is transferred into the master by T becoming HIGH. When T subsequently goes LOW the outputs will assume the levels shown in the table. Inputs S_{2} and S_{4} should be HIGH or floating.
2. Set or reset via S terminals (each flip-flop)

S_{2}	Q_{1}	Q_{2}
$\mathrm{~S}_{4}$	Q_{3}	Q_{4}
L	L	H
H	no change	

The set inputs override the other inputs and directly determine the outputs of the relevant flip-flop.
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage
Output voltage
Input voltage
Output current ${ }^{1}$)
Input current ${ }^{2}$)
Voltage difference between any two inputs
Storage temperature
Operating ambient temperature

V_{P}	\max.	8.0	V
$\mathrm{~V}_{\mathrm{Q}}$	\max.	8.0	V
$\mathrm{~V}_{\mathrm{J}}, \mathrm{V}_{\mathrm{K}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{S}}$	\max.	8.0	V
$-\mathrm{I}_{\mathrm{Q}}$	\max.	20	mA
$-\mathrm{I}_{\mathrm{Y}},-\mathrm{I}_{\mathrm{K}},-\mathrm{I}_{\mathrm{T}},-\mathrm{I}_{\mathrm{S}}$	\max.	20	mA
	\max.	8.0	V
$\mathrm{~T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$	

[^13]
SYSTEM DESIGN DATA

Uniform system temperature
Uniform system supply voltage
Available d.c. fan out
to T input
to J or K input
to S input
to G input
D.C. noise margin
to T input
to J or K input
to S input
to G input

Average propagation delay time
Maximum clock rate
Equivalent input capacitances
for T input
for J or K input
for S input
Supply current (duty cycle 50%) ${ }^{1}$)
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=75{ }^{\circ} \mathrm{C}{ }^{\mathrm{l}}$)
$\mathrm{T}_{\mathrm{amb}}$
V_{P}
$\begin{array}{lrr}\mathrm{N}_{\mathrm{aT}} & \geqslant & 3 \\ \mathrm{~N}_{\mathrm{aJ}}=\mathrm{N}_{\mathrm{aK}} & \geqslant & 10 \\ \mathrm{~N}_{\mathrm{aS}} & \geqslant & 4 \\ \mathrm{~N}_{\mathrm{aG}} & \geqslant & 8\end{array}$
M_{L}
M_{H}
M_{L}
M_{H}
M_{L}
M_{L}
M_{H}
${ }^{t} \mathrm{pd}$
f_{C}
C_{T}
$C_{J}=C_{K}$
C_{S}
IPav
$P_{\text {tot }}$
$\min .0 .3 \mathrm{~V}$
min. 1.2 V
$\min .0 .7 \mathrm{~V}$
min. 1.2 V
min. 0.3 V
min. 1.9 V
min. 0.4 V
min. 1.5 V
$\max .105 \mathrm{~ns}$
$\geqslant \quad 5 \mathrm{MHz}$
typ. 12 pF
typ. 4 pF
typ. 8 pF
typ. 16.8 mA
$\max . \quad 150 \mathrm{~mW}$

[^14]
CHARACTERISTICS

		$\mathrm{Tamb}^{\left({ }^{\circ} \mathrm{C}\right)}$				Conditions and references	
		0				$\begin{gathered} \mathrm{v}_{\mathrm{P}} \\ (\mathrm{~V}) \end{gathered}$	
STATIC DATA							
Output voltage LOW	$\mathrm{V}_{\text {QLmax }}$		0.4	0.4	V	$\begin{aligned} & 5.7 \\ & \text { and } \\ & 6.3 \end{aligned}$	
at: Output current LOW	$\mathrm{I}_{\text {QLmax }}$	$\begin{aligned} & 14.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 14.4 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5.7 \\ & 6.3 \end{aligned}$	
Output voltage HIGH	$\mathrm{V}_{\text {QHmin }}$	3.8	3.9	4.1	V	5.7	$\mathrm{I}_{\mathrm{Q}}=-100 \mu \mathrm{~A}$
Output voltage HIGH (lowest permissible) at: Output current HIGH	$\begin{aligned} & \mathrm{V}_{\mathrm{QHPmin}} \\ & -\mathrm{I}_{\mathrm{QH}} \mathrm{max} \end{aligned}$	$\begin{gathered} 3.6 \\ 0.85 \end{gathered}$	3.3 3.3	3.0 5.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.7 \end{aligned}$	
Input current LOW	$\begin{aligned} & \text {-IJLmax }, \\ & \text { - IK Lmax } \\ & \text {-ITLmax } \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.6 \\ & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \\ & 3.8 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.4 \\ & 3.5 \\ & 3.9 \end{aligned}$	mA mA mA mA	$\begin{aligned} & 5.7 \\ & 6.3 \\ & 5.7 \\ & 6.3 \end{aligned}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{J}}=\mathrm{V}_{\mathrm{K}}=0.4 \mathrm{~V} ; \\ \text { other inputs } \\ \text { floating } \\ \mathrm{V}_{\mathrm{T}}=0.4 \mathrm{~V} \text {;other } \\ \text { inputs floating } \end{array}\right.$
	-ISLmax	$\begin{aligned} & 2.9 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.9 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5.7 \\ & 6.3 \end{aligned}$	$\mathrm{V}_{\mathrm{S}}=0.4 \mathrm{~V}$; other Jinputs floating
Input current HIGH	${ }^{\text {I }}$ Hmax , IKHmax	1	1	25	$\mu \mathrm{A}$	5.7	$\mathrm{V}_{\mathrm{J}}=\mathrm{V}_{\mathrm{K}}=5.3 \mathrm{~V}$ other inputs 0 V
	ITHmax	3	3	75		5.7	$\mathrm{V}_{\mathrm{T}}=5.3 \mathrm{~V}$ other inputs 0 V
	ISHmax	2	2	50		5.7	$\mathrm{v}_{\mathrm{S}}=5.3 \mathrm{~V}$ other inputs 0 V
Supply current (both flip-flops together)	IPmax	-	26.7	-	mA	6.3	T inputs LOW J, K, S inputs HIGH

CHARACTERISTICS

		$\mathrm{Tamb}^{\left({ }^{\circ} \mathrm{C}\right)}$			Conditions and references		
			+25		$\begin{array}{c\|} \hline \mathrm{v}_{\mathrm{P}} \\ \text { (V) } \end{array}$		fig.
DYNAMIC DATA					$\begin{aligned} & 5.7 \\ & \text { and } \\ & 6.3 \end{aligned}$		
Change of state							
Input voltage HIGH during:	$\mathrm{V}_{\text {THmin }}$ $\mathrm{V}_{\mathrm{JHmin}}$ $\mathrm{V}_{\mathrm{KHm}}$	2.6	2.31	1.9 V		$\begin{aligned} & \text { HIGH level at T } \\ & \text { and J and/or K to } \\ & \text { be present simul- } \end{aligned}$	1
Input time HIGH	${ }^{\text {t }}$ THmin	60	60	60 ns		taneously	1
to: T-input voltage LOW	$\mathrm{V}_{\text {TLmax }}$		1.0			$\mathrm{t}_{\mathrm{TLmin}}=\mathrm{t}_{\mathrm{pdf}}$	1
No change of state							
J/K input voltage LOW	VJLmax $V_{K L m a x}$	1.6	1.4	1.1 V		LOW level at J and K to be present prior to T turning HIGH and to remain present during T is HIGH during T is HIGH	2
Clock skew protection							
Hold time	$t_{\text {hold max }}$	10	10	10 ns			2
Reset							
S input voltage LOW	VSLmax	1.0	1.0	0.7 V		$\left\{\begin{array}{l}\text { active } \\ \text { tsLmin }^{\text {a }} \text { (} \text { t }_{\text {pdf }}\end{array}\right.$	3
S input voltage HIGH	$\mathrm{v}_{\text {SHmin }}$	1.9	1.8	1.6 V		inactive	
DYNAMIC DATA							
$\frac{\text { Propagation delay }}{\text { times from T to Q }}$							
Rise propagation delay time	${ }^{\text {t pdr max }}$	-	90	- ns	6.0	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{pd}}=1.5 \mathrm{~V} \\ \mathrm{~N}=1 ; \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF} \end{array}\right.$	4
Fall propagation delay time	${ }^{\text {tpdf max }}$	-	120	- ns	6.0	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{pd}}=1.5 \\ \mathrm{~N}=8 ; \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF} \\ \text { other output: } \\ \mathrm{N}=1 ; \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF} \end{array}\right.$	4

CHARACTERISTICS (continued)

DYNAMIC DATA

Fig. 1. Waveforms illustrating conditions for change of state.

Fig. 2. Waveforms illustrating conditions for no change of state.

Fig. 3. Waveforms illustrating conditions for set or reset.

CHARACTERISTIES (continued)

DYNAMIC DATA

Diodes FCY101
Equivalent load for $\mathrm{N}=8$ and $\left.\mathrm{C}_{\mathrm{L}}{ }^{1}\right)=60 \mathrm{pF}$

Diodes FCY101
Equivalent load for $\mathrm{N}=1$ and $\mathrm{C}_{\mathrm{L}}{ }^{1}$) $=60 \mathrm{pF}$

Fig. 4. Waveforms and loading circuits illustrating measurement of $t_{p d r}$ and $t_{p d f}$. 1) Including probe and jig capacitance

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

SINGLE ASYNCHRONOUS 10-COUNTER

QUICK REFERENCE DATA				
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V	
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$	
Clock rate	f_{C}	typ.	7	MHz
Available d.c. fan out				
$\mathrm{T}_{\mathrm{amb}}=25 \mathrm{o}^{\circ} \mathrm{C}$	N_{a}	\geqslant	8	
$\mathrm{D} . \mathrm{C}$. noise margin				
$\mathrm{T}_{\mathrm{amb}}=25 \mathrm{o}^{\mathrm{C}}$	M_{L}	typ. 1.2	V	
Power consumption				
50% duty cycle, $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$				

The FCJ141 is four master-slave flip-flops interconnected to form an a-synchronous decade counter in the 8-4-2-1 code. The information is transferred to the master when the trigger signal is HIGH (the first flip-flop is triggered by the count input at ${ }^{T}$ T). When the trigger signal is LOW the information is transferred to the slaves and appears at the outputs. A common reset input S_{2} directly resets the outputs and overrides the T input.

PACKAGE OUTLINE: 14 lead plastic dual in-line (type A) (See General Section)

CIRCUIT DIAGRAMS

FUNCTION TABLES

Count	OUTPUT			
	QD	QC	QB	QA
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

Input S when being at the HIGH state overrides the count input and directly resets all outputs in the LOW state
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=$ LOW state (the less positive voltage)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Input voltage
Output voltage
Input current ${ }^{1}$)
Output current ${ }^{2}$)
Voltage difference between any two inputs
Storage temperature
Operating ambient temperature

V_{P}	max.	8.0	V
$\mathrm{V}_{\mathrm{T}} ; \mathrm{V}_{\mathrm{S}}$	max.	8.0	V
V_{Q}	max.	8.0	V
${ }^{-\mathrm{I}_{S} ;}{ }^{-\mathrm{I}_{\mathrm{T}}}$	max.	20	m
${ }^{-1} \mathrm{Q}$	max.	20	m
	max.	8.0	V
$\mathrm{T}_{\text {stg }}$	-35 to +125		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	0 to +75		${ }^{\circ} \mathrm{C}$

1) At this limit, input voltage typ. -1.5 V .
2) For negative output voltage in LOW state

SYSTEM DESIGN DATA

Uniform system temperature
Uniform system supply voltage
Available d.c. fan out
D. C. noise margin
to T input
to S input
Average propagation delay time T input to Q3 output

Clock rate
Equivalent input capacitances
for T input
for S input
Supply current (duty cycle 50%)

Power dissipation at $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$

Tamb $\quad 0$ to $+75 \quad{ }^{\circ} \mathrm{C}$
Vp $\quad 5.7$ to $6.3 \quad \mathrm{~V}$
$\mathrm{Na}_{\mathrm{a}} \geq 8$
$\mathrm{M}_{\mathrm{L}} \quad \min . \quad 0.4 \mathrm{~V}$
$\mathrm{M}_{\mathrm{H}} \min .1 .6 \mathrm{~V}$
$\mathrm{M}_{\mathrm{L}} \quad \mathrm{min} . \quad 0.4 \mathrm{~V}$
$\mathrm{M}_{\mathrm{H}} \quad$ min. 1.6 V
tpd typ. 200 ns
$\mathrm{f}_{\mathrm{C}} \quad \max .3 .5 \mathrm{MHz}$

C $_{\text {T }}$	typ.	4	pF
C_{S}	typ.	4	pF
$\mathrm{I}_{\text {Pav }}$	max.	46	mA
$\mathrm{P}_{\text {tot }}$	max.	270	mW

CHARACTERISTICS

		$\mathrm{Tamb}\left({ }^{\circ} \mathrm{C}\right)$		Conditions and references	
		0	$25 \quad 75$	Vp (V)	
STATIC DATA Output voltage LOW	VQL max.	0.4	0.40 .4 V	$\begin{aligned} & 5.7 \\ & \text { and } \\ & 6.3 \end{aligned}$	
at: Output current LOW	IQLmax IQLmax		$\begin{array}{ll} 13.2 & 12.4 \mathrm{~mA} \\ 15.2 & 14.4 \mathrm{~mA} \end{array}$	$\begin{aligned} & 5.7 \\ & 6.3 \end{aligned}$	
$\begin{aligned} & \text { Output voltage HIGH } \\ & \text { at: } \\ & \text { Output current HIGH } \end{aligned}$	$\begin{aligned} & \mathrm{VQH} \\ & -\mathrm{IQH} \\ & \text {-In. } \end{aligned}$		$\begin{aligned} & 3.9 \quad 4.1 \mathrm{~V} \\ & 100 \quad 100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.7 \end{aligned}$	
Output voltage HIGH (lowest permissible) at: Output current HIGH	$\begin{aligned} & \text { VQHP min. } \\ & \text {-IQHmax } \end{aligned}$	$\begin{aligned} & 3.6 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 3.33 .0 \mathrm{~V} \\ & 3.3 \quad 5.5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.7 \end{aligned}$	
Input current LOW	-ITL max. -ISL max. -ITL max. -ISL max.	$\begin{array}{r} 1.75 \\ 1.75 \\ 2.0 \\ 2.0 \end{array}$	$\begin{array}{rr} 1.65 & 1.55 \mathrm{~mA} \\ 1.65 & 1.55 \mathrm{~mA} \\ 1.9 & 1.8 \mathrm{~mA} \\ 1.9 & 1.8 \mathrm{~mA} \end{array}$	$\begin{aligned} & 5.7 \\ & 5.7 \\ & 6.3 \\ & 6.3 \end{aligned}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{S}}=0.4 \mathrm{~V}$
Input current HIGH	ITH max. ISH max.	1.0	$1.025 .0 \mu \mathrm{~A}$	5.7	$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{S}}=5.3 \mathrm{~V}$
Supply current	IPmax	-	4540 mA	6.3	$\left\{\begin{array}{l}\mathrm{V}_{\mathrm{T}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=\text { floating }\end{array}\right.$

CHARACTERISTICS (continued)

CHARACTERISTICS (continued)

DYNAMIC DATA

diodes FCY101
CL^{2}) $=60 \mathrm{pF}$
Equivalent load for $\mathrm{N}=6$

diodes FCY101
$\left.C_{L}{ }^{2}\right)=40 \mathrm{pF}$
Equivalent load for $\mathrm{N}=1$

1) The falling edge of the T input signals is max. $1 \mu \mathrm{~s} / \mathrm{V}$
2) Including jig and probe capacitance

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

DUAL JK MASTER-SLAVE FLIP-FLOP

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$	0 to +75	${ }^{\circ} \mathrm{C}$
Clock rate	f_{c}	typ. 7	MHz
Available d.c. fan-out			
$\mathrm{T}_{\mathrm{amb}}=0$ to $+75^{\circ} \mathrm{C}$	N_{a}	$\geqslant 8$	
D.C. noise margin			
$\mathrm{T}_{\text {amb }}=25{ }^{\circ} \mathrm{C}$	M_{L}	typ. 1.2	V
Power consumption			
50% duty cycle, $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	$\mathrm{Pav}_{\text {a }}$	typ. 100	mW

The FCJ191 comprises two independent direct coupled JK flip-flops, operating on the master-slave principle. Operation depends on voltage levels only, e.g. rise and fall times of all input signals including the trigger signal are immaterial. The set and reset inputs (overriding any other inputs) are active at the LOW level. Typical applications include counters and shift registers.

PACKAGE OUTLINE 16 lead plastic dual in-line (type A). (See General Section)

FUNCTION TABLES

1. Trigger action via T terminal (each flip-flop)

$\mathrm{T}=\mathrm{HIGH}$		$\mathrm{T}=$ LOW		
J_{1}	$\mathrm{~K}_{1}$	Q_{1}	Q_{2}	
J	$\mathrm{~K}_{2}$	Q_{3}	Q_{4}	
H	H	reversed		
L	H	L		H
H	L	H		L
L	L	no change		

The information on J and K is transferred into the master by T becoming HIGH.
When T subsequently goes LOW the outputs will assume the levels shown in the table. Inputs S_{1}, S_{2} and S_{3} should be HIGH or floating.

For the flip-flop with two J -inputs is $\mathrm{J}=\mathrm{J}_{2} \cdot \mathrm{~J}_{3}$ for positive logic
2. Set or reset via S terminals

S_{1}	$\mathrm{~S}_{2}$	Q_{1}	Q_{2}
$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$	Q_{3}	Q_{4}
H	L	L	H
L	H	H	L
L	L	H	H
H	H	no change	

The set inputs override the other inputs and directly determine the outputs of the relevant flip-flop.
$\mathrm{H}=$ HIGH state (the more positive voltage)
L = LOW state (the less positive voltage)
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage
Output voltage
Input voltage
Output current ${ }^{1}$)
Input current ${ }^{2}$)
Voltage difference between any two inputs
Storage temperature
Operating ambient temperature

V_{P}	\max.	8.0	V
$\mathrm{~V}_{\mathrm{Q}}$	\max.	8.0	V
$\mathrm{~V}_{\mathrm{J}}, \mathrm{V}_{\mathrm{K}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{S}}$	\max.	8.0	V
$-\mathrm{I}_{\mathrm{Q}}$	\max.	20	mA
$-\mathrm{I}_{\mathrm{J}},-\mathrm{I}_{\mathrm{K}},-\mathrm{I}_{\mathrm{T}},-\mathrm{I}_{\mathrm{S}}$	\max.	20	mA
	$\max . \quad 8.0$	V	
$\mathrm{~T}_{\text {Stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$	

[^15]
SYSTEM DESIGN DATA

D. C. noise.margin
to T input
to J or K input
to S input
to G input

Average propagation delay time
Maximum clock rate
Equivalent input capacitances
for T input
for J or K input
for S input
Supply current (duty cycle 50%) ${ }^{1}$)
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}{ }^{1}$)

$$
\begin{aligned}
& C_{T} \\
& C_{J}=C_{K} \\
& C_{S 2} \\
& C_{S 1}=C_{S 3}
\end{aligned}
$$

IPav
$P_{\text {tot }}$
min. 0.3 V
\min. 1.2 V
min. 0.7 V
\min 1.2 V
min. 0.3 V
min. 1.9 V
\min. 0.4 V
min. 1.5 V
$\max .105$ ns
\geqslant
5 MHz
typ. 12 pF
typ. 4 pF
typ. 16 pF typ. 8 pF
typ. 16.8 mA max. 150 mW
${ }^{1}$) Both flip-flops together

CHARACTERISTICS

		$\mathrm{Tamb}^{\left({ }^{\circ} \mathrm{C}\right)}$				Conditions and references	
			+25			$\begin{aligned} & \mathrm{V}_{\mathrm{P}} \\ & (\mathrm{~V}) \end{aligned}$	
$\underline{\text { STATIC DATA }}$							
Output voltage LOW	$\mathrm{V}_{\text {QLmax }}$			0.4	V	5.7 and 6.3	
at: Output current LOW	$\mathrm{I}_{\text {QLmax }}$	$\begin{aligned} & 14.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 14.4 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5.7 \\ & 6.3 \end{aligned}$	
Output voltage HIGH	$\mathrm{V}_{\mathrm{QHmin}}$	3.8	3.9	4.1	V	5.7	$\mathrm{I}_{\mathrm{Q}}=-100 \mu \mathrm{~A}$
Output voltage HIGH (lowest permissible)	$\mathrm{V}_{\mathrm{QHPmin}}$	3.6	3.3	3.0	V	5.7	
at: Output current HIGH	-IQHmax					5.7	
Input current LOW	$\begin{aligned} & \text {-IJLmax } \\ & \text {-IKLmax } \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$		$\begin{aligned} & 5.7 \\ & 6.3 \end{aligned}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{J}}=\mathrm{V}_{\mathrm{K}}=0.4 \mathrm{~V} ; \\ \text { other inputs } \\ \text { floating } \end{array}\right.$
	- ITLmax		3.8	3.5		5.7 6.3	$\mathrm{V}_{\mathrm{T}}=0.4 \mathrm{~V}$;other
	- Lmax	4.5				6.3)inputs floating
	- I	5.7	5.5	5.2		5.7	$\mathrm{V}_{\mathrm{S}}=0.4 \mathrm{~V}$; other
	${ }^{-1}$ S2Lmax		6.3	5.8		6.3	Jinputs floating
	- IS1Lmax		2.8	2.6		5.7	$\mathrm{V}_{\mathrm{S}}=0.4 \mathrm{~V}$; other
	${ }^{-1}$ IS3Lmax	3.3	3.2	2.9	mA	6.3	Jinputs floating
Input current HIGH	IJHmax , IKHmax		1	25		5.7	$\mathrm{V}_{\mathrm{J}}=\mathrm{V}_{\mathrm{K}}=5.3 \mathrm{~V}$ other inputs 0 V
	ITHmax	3	3	75		5.7	$\mathrm{V}_{\mathrm{T}}=5.3 \mathrm{~V}$ other inputs 0 V
	$\mathrm{I}_{\mathrm{S} 2 \mathrm{Hmax}}$	4	4	100		5.7	$\mathrm{V}_{\mathrm{S}}=5.3 \mathrm{~V}$ other inputs 0 V
	$I_{\text {SlHmax }}$ ${ }^{\text {I }}$ S3Hmax	2	2	50		5.7	$\mathrm{V}_{\mathrm{S}}=5.3 \mathrm{~V}$ other inputs 0 V
Supply current (both flip-flops together)	IPmax	-	26.7	-	mA	6.3	T input Low J, K, S inputs HIGH

CHARACTERISTICS

CHARACTERISTICS (continued)
DYNAMIC DATA

Fig. 1. Waveforms illustrating conditions for change of state.

Fig. 2. Waveforms illustrating conditions for no change of state.

Fig. 3. Waveforms illustrating conditions for set or reset.

CHARACTERISTICS (continued)

DYNAMIC DATA

Diodes FCY 101
Equivalent load for $\mathrm{N}=8$ and $\left.C_{L}{ }^{1}\right)=60 \mathrm{pF}$

Diodes FCY101
Equivalent load for $\mathrm{N}=1$ and $\left.C_{L}{ }^{1}\right)=60 \mathrm{pF}$

Fig. 4. Waveforms and loading circuits illustrating measurement of $t_{p d r}$ and $t_{p d f}$. 1) Including probe and jig capacitance

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

SINGLE JK MASTER-SLAVE FLIP-FLOP

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Clock rate	f_{c}	typ. 5	MHz
Available d.c. fan out			
$\mathrm{T}_{\text {amb }}=0$ to $+75{ }^{\circ} \mathrm{C}$	N_{a}	$\geqslant 8$	
D.C. noise margin			
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	M_{L}	typ. 1.2	V
Power consumption			
50% duty cycle, ${ }^{\text {T }}$ amb $=25^{\circ} \mathrm{C}$	$\mathrm{Pav}_{\text {a }}$	typ. 67	mW

The FCJ201 is a direct-coupled JK flip-flop, operating on the master-slave principle, Operation depends on voltage levels only, i.e. rise and fall times of all input signals, including the trigger signal, are immaterial. The J, K and Tinputs are logically equivalent, allowing the use of J and K for triggering. The direct set inputs (overriding any other inputs) are active at the LOW level.

PACKAGE OUTLINE: 14 lead plastic dual in-line (type A). (See General Section)

CIRCUIT DIAGRAM

LOGIC DIAGRAM (to MIL standard 806B)

FUNCTION TABLES

1. Trigger action via T terminal (each flip-flop)

$\mathrm{T}=$ HIGH		$\mathrm{T}=$ LOW	
J	K	Q_{1}	Q_{2}
H	H	reversed	
L	H	L	H
H	L	H	L
L	L	no change	

The information on J and K is transferred into the master by T becoming HIGH. When T subsequently goes LOW the outputs will assume the levels shown in the table. Inputs S_{1} and S_{2} should be HIGH or floating.

$$
\mathrm{J}=\mathrm{J}_{1} \cdot \mathrm{~J}_{2} \cdot \mathrm{~J}_{3} ; \mathrm{K}=\mathrm{K}_{1} \cdot \mathrm{~K}_{2} \cdot \mathrm{~K}_{3} \text { (for positive logic) }
$$

2. Trigger action via J and K terminals

J	K	Q_{1}	Q_{2}
$\mathrm{H} \rightarrow \mathrm{L}$	X	H	L
X	$\mathrm{H} \rightarrow \mathrm{L}$	L	H
$\mathrm{H} \rightarrow \mathrm{L}$	$\mathrm{H} \rightarrow \mathrm{L}$	reversed	

$\mathrm{J}=\mathrm{J}_{1} \cdot \mathrm{~J}_{2} \cdot \mathrm{~J}_{3} ; \mathrm{K}=\mathrm{K}_{1} \cdot \mathrm{~K}_{2} \cdot \mathrm{~K}_{3}$
(for positive logic)
3. Set or reset via S terminals

S_{1}	$\mathrm{~S}_{2}$	Q_{1}	Q_{2}
H	L	L	H
L	H	H	L
L	L	indeterminate	
H	H	no change	

If J or K go LOW with T HIGH, Q_{1} and Q_{2} assume the state shown. If both J and K go LOW with T HIGH, the outputs of Q_{1} and Q_{2} are reversed (exactly as if J and K remained HIGH and T were triggered). When triggering on J and K the T input requirements V_{TH} and V_{TL} (see CHARACTERISTICS) apply to J and K.
S_{1} and S_{2} should be Hİ்H or floating.

The set inputs override the other inputs and directly determine the output of the flip-flop.
In the case of both set inputs going LOW the first to reach LOW will determine the output conditions.
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=$ LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
RATINGS (Limiting values) ${ }^{1}$)
Supply voltage
Output voltage
Input voltage
Output current ${ }^{2}$)
Input current ${ }^{3}$)

V_{P}	$\operatorname{max.}$	8.0	V
$\mathrm{~V}_{\mathrm{Q}}$	\max.	8.0	V
$\mathrm{~V}_{\mathrm{J}}, \mathrm{V}_{\mathrm{K}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{S}}$	\max.	8.0	V
$-\mathrm{I}_{\mathrm{Q}}$	\max.	20	mA
$-\mathrm{I}_{\mathrm{J}},-\mathrm{I}_{\mathrm{K}},-\mathrm{I}_{\mathrm{T}},-\mathrm{I}_{\mathrm{S}}$	\max.	20	mA
	max.	8.0	V
$\mathrm{~T}_{\text {stg }}$	-55 to +125	oC	
$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$	

[^16]
SYSTEM DESIGN DATA

Uniform system temperature
Uniform system supply voltage
Available d.c. fan out
to T input
to J or K input
to S input
to G input
D.C. noise.margin
to T input
to J or K input
to S input
to G input

Average propagation delay time
Maximum clock rate
Equivalent input capacitances

$$
\begin{aligned}
& \text { for } \mathrm{T} \text { input } \\
& \text { for } \mathrm{J} \text { or } \mathrm{K} \text { input } \\
& \text { for } \mathrm{S} \text { input } \\
& \text { Supply current (duty cycle } 50 \% \text {) } \\
& \text { Power dissipation at } \mathrm{T}_{\mathrm{amb}}=75{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$\mathrm{T}_{\mathrm{amb}}$
V_{P}

N_{aT}	\geqslant	4
$\mathrm{~N}_{\mathrm{aJ}}=\mathrm{N}_{\mathrm{aK}}$	\geqslant	8
$\mathrm{~N}_{\mathrm{aS}}$	\geqslant	5
$\mathrm{NaG}_{\mathrm{aG}}$	\geqslant	8

M_{L}
M_{H}
M_{L}
M_{H}
M_{L}
M_{H}
M_{L}
M_{H}
${ }^{t} \mathrm{pd}$
f_{C}
${ }^{C}$ T
$C_{J}=C_{K}$
C_{S}
Ipav
$P_{\text {tot }}$

0 to $+75{ }^{\circ} \mathrm{C}$
5.7 to 6.3 V

4
8

$$
5
$$ 8

$$
\begin{array}{lll}
\min . & 0.5 & \mathrm{~V} \\
\min . & 1.9 & \mathrm{~V} \\
\text { min. } & 0.9 & \mathrm{~V} \\
\min . & 1.9 & \mathrm{~V} \\
\text { min. } & 0.4 & \mathrm{~V} \\
\min . & 1.9 & \mathrm{~V} \\
\text { min. } & 0.4 & \mathrm{~V} \\
\min . & 2.3 & \mathrm{~V} \\
\max . & 150 & \mathrm{~ns} \\
\geqslant & 3 & \mathrm{MHz}
\end{array}
$$

typ. 8 pF
typ. 4 pF
typ. 8 pF
typ. 11.2 mA
$\max .110 \mathrm{~mW}$

CHARACTERISTICS

CHARACTERISTICS

CHARACTERISTICS (continued)

DYNAMIC DATA

Fig. 1. Waveforms illustrating conditions for change of state.

Fig. 2. Waveforms illustrating conditions for no change of state.

Fig. 3. Waveforms illustrating conditions for set or reset.

CHARACTERISTICS (continued)
DYNAMIC DATA

Equivalent load for $\mathrm{N}=8$ and $\mathrm{C}_{\mathrm{L}}{ }^{1}$) $=56 \mathrm{pF}$

Equivalent load for $\mathrm{N}=1$ and $C_{L}{ }^{1}$) $=60 \mathrm{pF}$

Fig. 4. Waveforms and loading circuits illustrating measurement of $t_{p d r}$ and $t_{p d f}$ • 1) Including probe and jig capacitance

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

DUAL JK MASTER SLAVE FLIP-FLOP

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$	0 to +75	${ }^{\circ} \mathrm{C}$
Clock rate	f_{C}	typ. 7	MHz
Available d.c. fan-out			
$\mathrm{T}_{\text {amb }}=0$ to $+75^{\circ} \mathrm{C}$	N_{a}	$\geqslant 8$	
D.C. noise margin			
$\mathrm{T}_{\text {amb }}=25{ }^{\circ} \mathrm{C}$	M_{L}	typ. 1.2	V
Power consumption			
50% duty cycle, $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	P_{av}	typ. 100	mW

The FCJ211 comprises two independent direct-coupled JK flip-flops, operating on the master-slave principle. Operation depends on voltage levels only, i.e. rise and fall times of all input signals, including trigger signals, are immaterial. The set and reset inputs (overriding any other inputs) are active at the LOW level. Typical applications include synchronous counters and shift registers.

PACKAGE OUTLINE 14 lead plastic dual in-line (type A) (See General Section)

FUNCTION TABLES

1. Trigger action via T terminal (each flip-flop)

$\mathrm{T}=$ HIGH		$\mathrm{T}=$ LOW	
J_{1}	$\mathrm{~K}_{1}$	Q_{1}	Q_{2}
J	$\mathrm{~K}_{2}$	Q_{3}	Q_{4}
H	H	reversed	
L	H	L	
H	H		
L	L	H	
no change			

The information on J and K is transferred into the master by T becoming HIGH.
When T subsequently goes LOW the outputs will assume the levels shown in the table. Inputs S_{1}, S_{2} and S_{3} should be HIGH or floating.

2. Set or reset via S terminals

S_{1}	$\mathrm{~S}_{2}$	Q_{1}	Q_{2}
$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	Q_{3}	Q_{4}
H	L	L	H
L	H	H	L
L	L	H	H
H	H	no change	

The set inputs override the other inputs and directly determine the outputs of the relevant flip-flop.
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=$ LOW state (the less positive voltage)

RATINGS Limiting values in accordance with the Absolute Maximum System(IEC134)

Supply voltage
Output voltage
Input voltage
Output current ${ }^{1}$)
Input current ${ }^{2}$)
Voltage difference between any two inputs
Storage temperature
Operating ambient temperature

V_{P}	\max.	8.0	V
$\mathrm{~V}_{\mathrm{Q}}$	\max.	8.0	V
$\mathrm{~V}_{\mathrm{J}}, \mathrm{V}_{\mathrm{K}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{S}}$	\max.	8.0	V
$-\mathrm{I}_{\mathrm{Q}}$	\max.	20	mA
$-\mathrm{I}_{\mathrm{J}},-\mathrm{I}_{\mathrm{K}},-\mathrm{I}_{\mathrm{T}},-\mathrm{I}_{\mathrm{S}}$	\max.	20	mA
	\max.	8.0	V
$\mathrm{~T}_{\mathrm{Stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$	

[^17]
SYSTEM DESIGN DATA

Uniform system temperature
Uniform system supply voltage
Available d.c. fan out
to T input
to J or K input
to S input
to G input
D. C. noise margin
to T input
to J or K input
to S input
to G input

Average propagation delay time
Maximum clock rate
Equivalent input capacitances
for T input
for J or K input
for S input
Supply current (duty cycle 50\%) ${ }^{1}$)
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}{ }^{1}$)
$\mathrm{T}_{\mathrm{amb}}$
V_{P}

N_{aT}	\geqslant	1
$\mathrm{~N}_{\mathrm{aJ}}=\mathrm{N}_{\mathrm{aK}}$	\geqslant	10
$\mathrm{~N}_{\mathrm{aS} 2}$		2
$\mathrm{~N}_{\mathrm{aS} 1}=\mathrm{N}_{\mathrm{aS} 3}$		4
$\mathrm{~N}_{\mathrm{aG}}$	\geqslant	8

M_{L}
M_{H}
M_{L}
M_{H}
M_{L}
M_{H}
M_{L}
M_{H}
$t_{p d}$
f_{C}
C_{T}
$C_{J}=C_{K}$
${ }_{C_{S}}^{\mathrm{C}_{S 1}}=\mathrm{C}_{\mathrm{S} 3}$
IPav
$P_{\text {tot }}$
min. 0.3 V
\min. 1.2 V
min. 0.7 V
min. 1.2 V
min. 0.3 V
min. 1.9 V
\min. 0.4 V
min. 1.5 V
max. 105 ns
$\geqslant \quad 5 \mathrm{MHz}$
typ. 24 pF
typ. 4 pF
typ. 16 pF typ. 8 pF
typ. 16.8 mA
$\max .150 \mathrm{~mW}$
${ }^{1}$) Both flip-flops together

CHARACTERISTICS

CHARACTERISTICS

CHARACTERISTICS (continued)

DYNAMIC DATA

Fig. 1. Waveforms illustrating conditions for change of state.

Fig. 2. Waveforms illustrating conditions for no change of state.

Fig. 3. Waveforms illustrating conditions for set or reset.

CHARACTERISTICS (continued)

DYNAMIC DATA

Diodes FCY101
Equivalent load for $\mathrm{N}=8$ and $\left.\mathrm{C}_{\mathrm{L}}{ }^{1}\right)=60 \mathrm{pF}$

Diodes FCY 101
Equivalent load for $\mathrm{N}=1$ and $\left.C_{L}{ }^{1}\right)=60 \mathrm{pF}$

Fig. 4. Waveforms and loading circuits illustrating measurement of $t_{p d r}$ and t_{pdf} 1) Including probe and jig capacitance

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication and industrial control.

QUADRUPLE LATCH FLIP-FLOP

PACKAGE OUTLINE

16 lead plastic dual in-line (type A)
See General Section

QUICK REFERENCE DATA				
Supply voltage	Vp	6.0	$\pm 5 \%$	V
Operating ambient temperature range	Tamb	0 to	+75	${ }^{\circ} \mathrm{C}$
Clock rate at T amb $=25^{\circ} \mathrm{C}$	f_{C}	typ.	5	MHz
Available d.c. fan out $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	Na_{a}	\geq	10	
D. C. noise margin $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	M_{L}	typ.	1.2	V
Power consumption 50% duty cycle, $\mathrm{T} a \mathrm{mb}=25^{\circ} \mathrm{C}$	Pav	typ.	250	mW

The FCJ221 is a quadruple latch flip-flop with D inputs, a common clock (T) and a reset input (S_{2}).
A LOW input signal at D arrives after the last T signal goes HIGH at output Q_{1}.
The information follows after a LOW signal at the T input.
It is possible to influence the output state of the flip-flop.
CIRCUIT DIAGRAM

LOGIC DIAGRAM

LOGIC FUNCTION

Function tables

t_{n}	$\mathrm{t}_{\mathrm{n}+1}$
D	Q 1
H	L
L	H

S_{2}	Q_{1}
H	H
L	X

$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)
$\mathrm{t}_{\mathrm{n}}=$ bit time before trigger pulse
$\mathrm{t}_{\mathrm{n}+1}=$ bit time after trigger pulse
$\mathrm{X}=$ state is immaterial

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage at $\mathrm{Tamb}<40^{\circ} \mathrm{C}$
Output voltage
Input voltage
Input current
Storage temperature
Operating ambient temperature

Vp	max.	8	V
V_{Q}	max.	8	V
V_{G}	max.	8	V
${ }^{-I_{D}} ;{ }^{-} \mathrm{I}_{\mathrm{T}} ;{ }^{-\mathrm{I}_{S} 2}$	max.	20	mA^{1})
$\mathrm{T}_{\text {stg }}$	-55 to	+125	${ }^{\circ} \mathrm{C}$
Tamb	0	+75	${ }^{0} \mathrm{C}$

[^18]
SYSTEMDESIGN DATA

Uniform system temperature
Uniform system supply voltage
Available d.c. fan-out
D. C. noise margin
to D input
to $\mathrm{T}, \mathrm{S}_{2}$ input
Supply current
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$

Tamb	0 to	+75	${ }^{\circ} \mathrm{C}$
VP	5.7 to	6.3	V
Na_{a}	\geq	10	
\{ MDL	min.	0.2	V
$\mathrm{M}_{\text {DH }}$	min.	3.0	V
(MTL; MS2L	min.	0.3	V
$1 \mathrm{M}_{\text {TH }} ; \mathrm{M}_{\text {S2H }}$	min.	3.1	V
IPav	max.	47	$m A^{1}$)
Ptot	max.	300	mW

1) Input open and $V_{D}=0 \mathrm{~V}$

CHARACTERISTICS

CHARACTERISTICS

		Tamb (${ }^{\circ} \mathrm{C}$)				Conditions and references	
		0	25			V_{P} (V)	
STATIC DATA							
D. C. noise margin							
$\mathrm{T} ; \mathrm{S}_{2}$	$\left.\begin{array}{l} \mathrm{M}_{\mathrm{TL} \min } \\ \mathrm{M}_{\mathrm{S} 2 \mathrm{~L} \min } \end{array}\right)$	0.6		0.3	V		
HIGH: D	MDHmin	3.0	3.1	3.2	V		
T; S2	$\left.\begin{array}{l} \mathrm{M}_{\mathrm{TH} \min } \\ \mathrm{M}_{\mathrm{S} 2 H \min } \end{array}\right\}$	3.1			V		
DYNAMIC DATA							
Input time LOW						5.7	
T	${ }^{\mathrm{t}}$ TLmin	-	100	-	ns	$\begin{aligned} & \text { and } \\ & 6.3 \end{aligned}$	
Input time HIGH						5.7	
T	$\mathrm{t}_{\text {THmin }}$	-	70	-	ns	$\begin{aligned} & \text { and } \\ & 6.3 \end{aligned}$	
Input time LOW						5.7	
S_{2}	${ }^{\text {tS }} 2 \mathrm{Lmin}$	-	100	-	ns	$\begin{aligned} & \text { and } \\ & 6.3 \end{aligned}$	
S_{2} (changing output state)	${ }^{\text {tS }}$ 2Lmin	-	100	-	ns	5.7 and	
						6.3	
$\frac{\text { Set -up times: }}{\mathrm{t} 1}$						5.7	
$\begin{aligned} & \mathrm{t}_{1} \\ & \mathrm{t}_{2} \end{aligned}$	${ }^{t}$ sulmin $\mathrm{t}_{\text {Su }} 2$ min	-	30			and	
$\frac{\text { Propagation delay }}{\text { times: }}$							
Rise propagation delay times							
$\mathrm{T} \rightarrow \mathrm{Q}_{1}$	${ }^{\text {tpdrmax }}$	-	95 105	-	ns	6.0	$\mathrm{N}=1 ; \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$
$\mathrm{T} \rightarrow \mathrm{Q}_{2}$	tpdrmax	-	105	-	ns	6.0	$\int \mathrm{V}_{\mathrm{pd}}=1.5 \mathrm{~V}$
$\mathrm{S}_{2} \rightarrow \mathrm{Q}_{2}$	tpdrmax	-	85	-	ns	6.0	
Fall propagation delay times							
$\mathrm{T} \rightarrow \mathrm{Q}_{1}$	${ }^{\text {tpdfmax }}$	-		-		6.0	$\mathrm{N}=8 ; \mathrm{C}_{\mathrm{L}}=70 \mathrm{pF}$
$\begin{aligned} & \mathrm{T} \rightarrow \mathrm{Q}_{2} \\ & \mathrm{~S}_{2} \rightarrow \mathrm{Q}_{2} \end{aligned}$	tpdfmax tpdfmax	-	120 60	-	ns	6.0 6.0	$\int \mathrm{V}_{\mathrm{pd}}=1.5 \mathrm{~V}$

CHARACTERISTICS (continued)

Waveform illustrating conditions for change of state

Waveforms illustrating $t_{p d r}$ and $t_{\text {pdf }}$

CHARACTERISTICS (continued)

Waveforms and loading circuits illustrating measurement
of $\mathrm{t}_{\mathrm{pdr}}$ and $\mathrm{t}_{\mathrm{pdf}}$.
${ }^{1}$) Including jig and probe capacitance.

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication and industrial control.

MONOSTABLE MULTIVIBRATOR

QUICK REFERENCE DATA				
Supply voltage	V_{P}	$6.0 \pm 5 \%$		V
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	0 to +75		
Propagation delay time $\quad \mid \mathrm{G}_{1} \rightarrow \mathrm{Q}_{1}$	${ }^{\text {t }}$ dff	typ. 70		
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ at $\left.\mathrm{V}_{\mathrm{pd}}=1.5 \mathrm{~V}\right\} \mathrm{G}_{3} \rightarrow \mathrm{Q}_{2}$	$t_{\text {pdf }}$	typ. 40		
Output pulse width:				
$\mathrm{R}_{\mathrm{t}}=10 \mathrm{k} \Omega \pm 1 \% ; \mathrm{C}_{\mathrm{t}}=160 \mathrm{pF} \pm 1 \%$	${ }^{\text {Q Q } 12}$	typ. 1.0		
Available d.c. fan-out Q_{1}	$\mathrm{Na}^{\text {a }}$	\geq	14	
$\mathrm{T}_{\mathrm{amb}}=0$ to $+75{ }^{\circ} \mathrm{C}$	$\mathrm{Na}^{\text {a }}$	\geq	14	
amb-0 A	N_{a}	$=$	1	
D. C. noise margin			1.2 V	
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	M_{L}	typ.		
Power consumption				
50% duty cycle, T amb $=25^{\circ} \mathrm{C}$	P_{av}	typ.	58	mW

PACKAGE OUTLINE: 14 lead plastic dual in-line (type A) (See General Section)
The FCK111 comprises a threshold triggered monostable circuit and an independent expandable inverter.
The monostable function is obtained by an externally connected resistor and capacitor. Each time one of the inputs G_{1} or G_{2} is going LOW a negative going pulse appears at output Q_{1}.
The pulse width is adjustable over a very wide range by varying the resistor and capacitor values.
If the input $\left(G_{3}\right)$ of the inverter is connected to A a positive going pulse is obtained at the output Q_{2}, almost coinciding and practically having the same width as the output pulse Q1, provided that the width of the input pulse does not exceed the width of the output pulse. The outputs Q_{1} and Q_{2} are bi-directional and have a high fan-out drive capability.

Notes

1. Terminals C and D make the circuit compatible with the FCK101.
2. To ensure conformity with the characteristics given in the data sheets, terminal C must be connected to terminal ϕ.
If terminals C and ϕ are not interconnected, the output pulse can be shortened by connecting a diode or a voltage source to C (positive to ϕ); however, this will alter a number of characteristics, including special input levels and output level A.
3. The noise margin for a.c. disturbances at the trigger inputs G_{1} and G_{2} can be increased by connecting a capacitor between terminals C and D , but this reduces the minimum operating frequency.

LOGIC DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{P}	max.	8.0	V
Output voltage	V_{Q}	max.	8.0	V
Input voltage	V_{G}	max.	8.0	V
Output current	-IQ	max.	20.0	mA^{1})
Input current	${ }^{-1} \mathrm{I}_{\mathrm{G}}$	max.	20.0	mA^{2})
Voltage difference between any two inputs		max.	8.0	V
Expander input voltages: - with respect to supply - with respect to other inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{E}} \\ & \mathrm{~V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{E}} \end{aligned}$	\max. \max.	8.0 8.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Expander input current	I_{E}	max.	5.0	mA
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55	to +125	${ }^{0} \mathrm{C}$
Operating ambient temperature	Tamb		0 to +75	${ }^{0} \mathrm{C}$
Output short circuit duration (duty cycle 10%, either output, or both)	${ }^{\text {t }} \mathrm{Qsc}$	max.	60	ms
Timing resistor (R_{t} connected to 6.3 V)	R_{t}	min. max.	5 20	$\begin{aligned} & k \Omega \\ & k \Omega \end{aligned}$
Timing capacitor	C_{t}	\max $\mathrm{min} .$	$\begin{array}{r} 160 \\ 30 \end{array}$	$\begin{aligned} & \mu \mathrm{F} \\ & \mathrm{pF} \end{aligned}$

[^19]
SYSTEM DESIGN DATA

Uniform system temperature
Uniform system supply voltage
Available d.c. fan-out $\left\{\begin{array}{l}Q_{1} \\ Q_{2} \\ A\end{array}\right.$
D. C. noise margin FCK111 \rightarrow gate gate \rightarrow FCK111

Propagation delay time: $\mathrm{G}_{1} \rightarrow \mathrm{Q}_{1}$
$\mathrm{G}_{1} \rightarrow \mathrm{Q}_{2}$
$\mathrm{G}_{3} \rightarrow \mathrm{Q}_{2}$
$\mathrm{G}_{3} \rightarrow \mathrm{Q}_{2}$
Equivalent input capacitance
Supply current
(duty cycle 50%)
Power dissipation
at $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$
Relative change of outputpulse width vs supply voltage

Output pulse width vs timing capacitor $\left(\mathrm{C}_{\mathrm{t}}\right)$

$\mathrm{T}_{\mathrm{amb}}$		0 to +75	${ }^{\circ} \mathrm{C}$
V_{P}		5.7 to 6.5	V
Na	\geq	14	
Na_{a}	\geq	14	
Na_{a}	$=$	1	
ML	min.	0. 4	V
M	min.	1. 2	V
ML	min.	0.4	V
M_{H}	min.	1.8	V
${ }_{\text {t }} \mathrm{df}$	max.	170	ns
${ }^{\text {t }} \mathrm{pdr}$	max.	200	ns
$t_{\text {pdr }}$	max.	120	ns
$t_{\text {pdf }}$	max.	55	ns
C_{G}	typ.	4	pF
${ }^{\text {Pava }}$	typ.	10.9	mA
$\mathrm{P}_{\text {tot }}$	max.	98	mW

see page 10
see page 10

CHARACTERISTICS : (pinC connected to $\operatorname{pin} \phi)$

CHARACTERISTICS (continued)

STATIC DATA (continued)		Tamb $\left.{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$		Conditions and references	
		025	75	$\begin{aligned} & \mathrm{V}_{\mathrm{P}} \\ & (\mathrm{~V}) \end{aligned}$	
Output A				5.7	
Output voltage LOW	$\mathrm{V}_{\text {AL max }}$	$0.4 \quad 0.4$	0.4 V	$\begin{aligned} & \text { and } \\ & 6.3 \end{aligned}$	
at:				5.7	
Output current LOW and	$I_{\text {AL max }}$	2.02 .0	2.0 mA	$\begin{aligned} & \text { and } \\ & 6.3 \end{aligned}$	see note
Input voltage LOW; $\mathrm{G}_{1}, \mathrm{G}_{2}$ or $\mathrm{V}_{\mathrm{B}}(\mathrm{pin} 3)$ at 0 V	$\mathrm{V}_{\text {GL max }}$	$1.0 \quad 1.0$	0.8 V	$\begin{array}{\|l} 5.7 \\ \text { and } \\ 6.3 \end{array}$	
Output voltage HIGH	$\mathrm{V}_{\text {AH min }}$	3.94 .0	4.1 V	5.7	$-\mathrm{I}_{\text {AH }}=30 \mu \mathrm{~A}$
		3.23 .4	3.4 V	5.7	$-^{-1}{ }_{\text {AH }}=5 \mathrm{~mA}$
at:				5.7	
Input voltage HIGH	$\mathrm{V}_{\mathrm{GH} \text { min }}$	2.32 .2	2.1 V	$\begin{aligned} & \text { and } \\ & 6.3 \end{aligned}$	
or: B (pin 3) connected to V_{P} via $20 \mathrm{k} \Omega(\pm 1 \%)$					
Output short circuit current	${ }^{-1}$ Asc min	$30 \quad 30$	25 mA	5. 7	B (pin 3) connected to V_{P} via $20 \mathrm{k} \Omega$ ($\pm 1 \%$) (max. duration 60 ms ; duty cycle 10%)

Note

${ }^{I}$ AL max is an extra static current, which can be applied to output A under both stat ic and dynamic conditions without dusturbing the output pulse width.

CHARACTERISTICS (continued)

CHARACTERISTICS (continued)

Waveform illustrating measurement of $t_{p d r}, t_{p d f}, t_{G L}$ and $t_{Q 1 L}$ for A pulse generator.

CHARACTERISTICS (continued)
DYNAMIC DATA

Waveforms illustrating measurement of $t_{p d r}, t_{p d f}$ and $t_{G L}$ for B pulse generator.

CHARACTERISTICS (continued)

Relative change of output pulse width versus supply voltage.

The FC family of DTL silicon monolithic integrated circuit has been designed for medium speed digital applications in computing, office electronics, telecommunication and industrial control.

LEVEL DETECTOR

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$6.0 \pm 5 \%$	V
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +75	${ }^{\circ} \mathrm{C}$
Input hysteresis voltage $\mathrm{R}_{\mathrm{D} \varnothing}=100 \Omega, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\Delta V_{\text {At }}$	$\begin{aligned} & \min . \\ & \max . \end{aligned} \quad 60$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Available output current $\mathrm{R}_{\mathrm{D} \emptyset}=100 \Omega, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	IQL	2.7	mA
Operating frequency $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	f	typ. 5	MHz
Power consumption 50% duty cycle, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {av }}$	typ. 12	mW

The FCL101 is a non-inverting Schmitt-trigger circuit. Tripping levels are set by an external resistor or zener diode.
Typical applications are discrimination, restoration, level shifting and pulse-shaping (squaring).

PACKAGE OUTLINE 14 lead dual in-line (See General Section)

CIRCUIT DIAGRAM

VOLTAGE TRANSFER CURVE

Letter symbols:
$\mathrm{R}_{\mathrm{Q} \varnothing}=$ external resistor between Q and \varnothing
$R_{D \varnothing}=$ external resistor between D and \varnothing
$\mathrm{V}_{\mathrm{Q}}=$ short for $\mathrm{V}_{\mathrm{Q} \varnothing}=$ voltage at Q with respect to \varnothing, the common reference and supply return terminal
$V_{A t i}=$ tripping level for increasing input voltage V_{A} (short for $V_{A}($)
$V_{\text {Atd }}=$ tripping level for decreasing input voltage V_{A}
$\Delta V_{\text {At }}=V_{\text {Ati }}-V_{\text {Atd }}=$ input hysteresis voltage.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{P}	\max.	8.0	V
Output voltage	V_{Q}	\max.	8.0	V
Input voltage	V_{A}	\max.	8.0	V
with respect to supply voltage	$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{P}}$	\max.	2.0	V
Output current ${ }^{1}$)	$-\mathrm{I}_{\mathrm{Q}}$	\max.	20	mA
Input current ${ }^{2}$)	$-\mathrm{I}_{\mathrm{A}}$	\max.	0.5	mA
Other terminals	I_{B}	\max.	5	mA
	$\mathrm{~V}_{\mathrm{C}}$	\max.	5.0	V
	$\mathrm{~V}_{\mathrm{D}}$	\max.	5.0	V
	$\mathrm{~T}_{\mathrm{stg}}$	-55 to	+125	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to	+75	${ }^{\circ} \mathrm{C}$

SYSTEM DESIGN DATA

Uniform system temperature
Uniform system supply voltage
Output resistance
Supply current at $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{P}}=6 \mathrm{~V}$ duty cycle 50\%

Power dissipation at $\mathrm{T}_{\mathrm{amb}}=75^{\circ} \mathrm{C}$

Tamb	0 to	+75	${ }^{\circ} \mathrm{C}$
V_{P}	5.7 to	6.3	V
P_{0}	\max.	7.6	$k \Omega$
IPav	typ.	2.0	mA
$P_{\text {tot }}$	max.	27	mW

${ }^{1}$) For negative output voltage.
${ }^{2}$) Input voltage typ. -9 V when D grounded; no input current protection required for input voltages down to -5 V .

DESIGN CURVES at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (dots indicate guaranteed values)

Input hysteresis voltage versus feedback resistance

FC family

DESIGN CURVES (continued) at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Input tripping levels and hysteresis voltage versus supply voltage

Input tripping levels and hysteresis voltage versus load conductance

DESIGN CURVES (continued) at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Hysteresis at signal source versus resistance

Low output voltage versus feedback resistance
areser

The FC family of DTL silicon monolithic integrated circuits has been designed for medium speed digital applications in computing, office electronics, telecommunication, instrumentation and industrial control.

TRIPLE GATE EXPANDER

CHARACTERISTICS

Reverse breakdown voltage at $\mathrm{I}_{\mathrm{R}}=50 \mu \mathrm{~A}$
Reverse leakage current

$$
\text { at } \mathrm{V}_{\mathrm{R}}=8.0 \mathrm{~V}
$$

Forward voltage
at $\mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~mA}$
Capacitance

$$
\text { at } \mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}
$$

Reverse recovery time at $\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{R}}=2.0 \mathrm{~mA}$
$\mathrm{T}_{\mathrm{amb}}\left({ }^{\circ} \mathrm{C}\right)$
2575
$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}} \min .8 .0 \quad \mathrm{~V}$
$\mathrm{I}_{\mathrm{R}} \quad \max .1 .0 \quad 25 \quad \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{F}} \quad \max .1 .0 \quad \mathrm{~V}$
$\mathrm{C}_{\mathrm{d}} \quad \max .11 \quad \mathrm{pF}$

The FCY101 comprises three independent diode arrays. It is intended primarily for expanding the fan-in capability of those FCH gates that have an expansion input terminal.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Reverse voltage
Forward current
Storage temperature
Operating ambient temperature
V_{R}
$\mathrm{I}_{\mathrm{F}} \quad \max .30 \mathrm{~m} . \mathrm{t}$
$\mathrm{T}_{\text {stg }} \quad-55$ to $+125{ }^{\circ} \mathrm{C}$
Tamb
typ. 4 ns
max. 11
ns
I
$\overline{\text { PACKAGE OUT }}$
PACKAGE OUTLINE : 14 lead plastic dual in-line (type A) (See General Section)

CIRCUIT DIAGRAM

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance * short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

NAND GATES

In the standard temperature range the FJ family comprises the following NAND gates (positive logic):

Single 8-input NAND gate
Dual 4-input NAND gate
Triple 3-input NAND gate
Quadruple 2-input NAND gate

FJH101/7430
FJH111/7420
FJH121/7410
FJH131/7400

FJH101/7430

FJH111/7420

FJH121/7410

FJH131/7400

QUICK REFERENCE DATA				
Supply voltage	V_{P}		$5.0 \pm 5 \%$	V
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$		0 to +70	${ }^{\circ} \mathrm{C}$
Average propagation delay time $\mathrm{N}=\text { fan-out }=10 ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$t_{\text {pd }}$	typ.	11	ns
Available d.c. fan-out (full temperature range)	N_{a}	\geq	10	
D. C. noise margin (full temperature range)	M_{L}	$\stackrel{>}{\text { typ. }}$	0.4 1.0	V
Average power consumption (per gate) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {av }}$	typ.	10	mW

Each gate comprises a multi-emitter AND input gate followed by an inverting amplifier and a totem pole output stage.

PACKAGE OUTLINE: 14 lead plastic dual in-line (type A) (See General Section)

CIRCUIT DIAGRAMS AND TERMINAL CONNECTIONS
$\frac{\text { FJH101/7430 }}{\text { Single 8-input NAND gate }}$

FJH111/7420
Dual 4-input NAND gate

CIRCUIT DIAGRAMS AND TERMINAL CONNECTIONS (continued)
$\frac{\text { FJH121/7410 }}{\text { Triple 3-input NAND gate }}$

CIRCUIT DIAGRAMS AND TERMINAL CONNECTIONS (continued)
$\frac{\text { FJH131/7400 }}{\text { Quadruple 2- }}$

LOGIC FUNCTION

Individual gate operation

Function table

A	B	C
L	L	H
L	H	H
H	L	H
H	H	L

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage
Output voltage
G input voltage
Peak negative G input voltage
Storage temperature
Operating ambient temperature

V_{P}	max.	7.0	V
$\mathrm{~V}_{\mathrm{Q}}$	max.	5.5	V
$\mathrm{~V}_{\mathrm{G}}$	0 to	5.5	$\left.\mathrm{~V}^{\mathrm{l}}\right)$
$-\mathrm{V}_{\mathrm{GM}}$	max.	2	$\left.\mathrm{~V}^{2}\right)$
$\mathrm{T}_{\mathrm{Stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$	

[^20]
CHARACTERISTICS

		Tamb (${ }^{\mathrm{O}} \mathrm{C}$)				Conditions and references	
		0	25	70		$\begin{aligned} & \mathrm{VP}_{\mathrm{P}} \\ & \text { (V) } \end{aligned}$	
STATIC DATA							
Voltages							
Input threshold LOW	$\mathrm{V}_{\text {GLmax }}$	0.8	0.8	0.8	V		
Input threshold HIGH	$\mathrm{V}_{\text {GHmin }}$	2.0	2.0	2.0	V		
Output LOW	$\mathrm{V}_{\text {QLmax }}$	0.4	0.4		V	4. 75	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=\mathrm{I}_{\mathrm{QLmax}} ; \\ & \mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{GHm}} \end{aligned}$
Output HIGH	VQHmin	2.4	2.4		V	4. 75	$\begin{aligned} & -\mathrm{I}_{\mathrm{Q}}=-\mathrm{I}_{\mathrm{QHmax}} \\ & \mathrm{~V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{GL} \max } \end{aligned}$
Currents							
Input LOW	${ }^{-1}{ }_{\text {GLImax }}$	1.6	1.6		mA	5. 25	$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{QL} \text { max }} ; \mathrm{I}_{\mathrm{Q}}=0$
Input HIGH	$I_{\text {GHmax }}$	40	40		$\mu \mathrm{A}$	5.25	$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{QHmin}} ; \mathrm{I}_{\mathrm{Q}}=0$ other inputs 0 V
Output LOW	$I_{\text {QLmax }}$	16	16		mA		
Output HIGH	-IQHmax	0.4	0.4	0.4	mA		
Output shortcircuited	-IQsc min ${ }^{-I}$ Qsc max	$\begin{aligned} & 18 \\ & 55 \end{aligned}$	$\begin{aligned} & 18 \\ & 55 \end{aligned}$	$\begin{aligned} & 18 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	5.25	$\mathrm{V}_{\mathrm{Q}}=0 ; \mathrm{V}_{\mathrm{G}}=0$
DYNAMIC DATA							
Rise propagation delay time	$t_{p d r}$ typ. tpdr <	-	$\begin{aligned} & 13 \\ & 22 \end{aligned}$	-	ns ns	5.0	$\mathrm{N}=10$
Fall propagation delay time	$\begin{aligned} & \mathrm{t}_{\mathrm{pdf}} \quad \mathrm{typ} . \\ & \mathrm{t}_{\mathrm{pdf}} \\ & < \end{aligned}$	-	8 15	-	ns ns	5.0	$\mathrm{N}=10$

CHARACTERISTICS (continued)

		Tamb $\left.{ }^{(0} \mathrm{C}\right)$				Conditions and references	
				70		V_{P} (V)	
SUPPLY DATA						5.0	$\left\{\begin{array}{l}\mathrm{V}_{\mathrm{G}}=5.0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{Q}}=0\end{array}\right.$
Supply current							
$\begin{aligned} & \text { Output LOW } \\ & \text { FJH101/7430 } \end{aligned}$	IPL ${ }_{\text {typ }} \stackrel{\text { typ }}{ }$		3 6	3 6			
FJH111/7420	$\mathrm{I}_{\mathrm{PL}} \stackrel{\text { typ }}{<}$	6 11	6 11	6 11	mA mA		
FJH121/7410	IPL ${ }_{\text {typ. }}^{<}$	$\begin{gathered} 9 \\ 16.5 \end{gathered}$	11 9 16.5	11 9 16.5	mA mA mA		
FJH131/7400	IPL $\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 12 \\ & 22 \end{aligned}$	$\begin{aligned} & 12 \\ & 22 \end{aligned}$	12 22	mA mA		
$\begin{aligned} & \text { Output HIGH } \\ & \text { FJH101/7430 } \end{aligned}$	IPH ${ }_{\text {typ. }}^{\text {typ }}$		1	1	mA mA		
FJH111/7420	IPH ${ }_{<}^{\text {typ. }}$		$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$		$\mathrm{V}_{\mathrm{G}}=0$
FJH121/7410	IPH ${ }_{\text {c }}^{\text {typ. }}$	3 6	3	3	mA mA		$\mathrm{I}_{\mathrm{Q}}=0$
FJH131/7400	IPH ${ }_{<}^{\text {typ. }}$	4 8	4 8	4 8	mA mA		

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) $*$ high logic swing $*$ low output impedance $*$ short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

DUAL NAND POWER GATE

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$5.0 \pm 5 \%$	V
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Average propagation delay time			
$\mathrm{N}=$ fan-out $=30 ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	${ }^{\text {p }}$ d	typ. 11	ns
Available d.c. fan-out (full temperature range)	Na_{a}	$\geqslant 30$	
D.C. noise margin (full temperature range)	M_{L}	$>\quad 0.4$	V
Average power consumption (per gate)			
$\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	$\mathrm{Pav}^{\text {a }}$	typ. 26.5	mW

Each gate comprises a multi-emitter AND gate followed by an inverting amplifier and a totem pole power output stage.

PACKAGE OUTLINE 14 lead plastic dual in-line (type A) (See General Section)

CIRCUIT DIAGRAM (each gate)

LOGIC FUNCTION

Individual gate operation
Function table

A	B	C
L	L	H
L	H	H
H	L	H
H	H	L

$\mathrm{C}=\overline{\mathrm{A} \cdot \mathrm{B}}$ (positive logic)
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Output voltage
G input voltage
Peak negative G input voltage
. Storage temperature
Operating ambient temperature

V_{P}	max.	7.0	V
$\mathrm{~V}_{\mathrm{Q}}$	max.	5.5	V
$\mathrm{~V}_{\mathrm{G}}$	\max.	5.5	$\left.\mathrm{~V}^{1}\right)$
$-\mathrm{V}_{\mathrm{GM}}$	max.	2	$\left.\mathrm{~V}^{2}\right)$
$\mathrm{T}_{\text {Stg }}$	-55 to	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	0 to	+70	${ }^{\circ} \mathrm{C}$

[^21]
CHARACTERISTICS

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance $*$ short circuit protection * high capacitance drive capability $*$ high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

DUAL AND-OR-NOT GATES

Dual expandable
$2+2$ input AND-OR -NOT gate
Dual $2+2$ input AND-OR-NOT gate

FJH151/7450
FJH161/7451

FJH151/7450

FJH161/7451

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$5.0 \pm 5 \%$	V
Operating ambient temperature range	Tamb	0 to +70	${ }^{\circ} \mathrm{C}$
Average propagation delay time			
$\mathrm{N}=$ fan-out $=10 ; \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	${ }^{\text {p }}$ d	typ. 11	ns
Available d.c. fan-out (full temperature range)	Na_{a}	$\geqslant 10$	
D.C. noise margin (full temperature range)	M_{L}	$i>0.4$	V
Average power consumption (per gate)			
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P_{av}	typ.14.25	mW

The FJH151/7450 is a dual $2+2$ input AND-OR-NOT gate, one of the two gates having additional inputs for up to four FJY101/7460 expander circuits. It can be arranged to perform the exclusive OR function.
The FJH161/7451 is similar to the FJH151/7540, except for being non-expandable.
PACKAGE OUTLINE 14 lead plastic dual in-line (type A) (See General Section)

FJH 151/7450

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Output voltage
G input voltage
Peak negative G input voltage
Storage temperature
Operating ambient temperature

V_{P}	max.	7.0	V
$\mathrm{~V}_{\mathrm{Q}}$	max.	5.5	V
$\mathrm{~V}_{\mathrm{G}}$	max.	5.5	$\left.\mathrm{~V}^{1}\right)$
$-\mathrm{V}_{\mathrm{GM}}$	max.	2	$\left.\mathrm{~V}^{2}\right)$
$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	0 to	70	${ }^{\circ} \mathrm{C}$

${ }^{1}$) In addition, peak voltage difference between any two inputs $=\max .5 .5 \mathrm{~V}$.
${ }^{2}$) Pulse duration $t_{p}=20 \mathrm{~ms}$; repetition frequency $f=5 \mathrm{MHz}$; source resistance $R_{S} \geq 75 \Omega$.

CHARACTERISTICS

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance * short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates. AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

EXPANDABLE $2+2+2+2$ INPUT AND-OR-NOT GATE

QUICK REFERENCE DATA					
Supply voltage	V_{P}	$5.0 \pm 5 \%$	V		
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0	$0+70$	${ }^{\circ} \mathrm{C}$	
Average propagation delay time					
$\mathrm{N}=$ fan-out $=10 ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	t_{pd}	typ.	11	ns	
Available d.c. fan-out (full temperature range)	N_{a}	\geq	10		
D.C. noise margin (full temperature range)	M_{L}	$>$	0.4	V	
Average power consumption		typ.	1.0	V	
$\mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$	P_{av}	typ. 22.75	mW		

The FJH171/7453 has additional inputs for up to four FJY101/7460 expander circuits.

PACKAGE OUTLINE: 14 lead plastic dual in-line (type A) (See General Section)

LOGIC FUNCTION

$Q=\overline{G_{1} \cdot G_{2}+G_{3} \cdot G_{4}+G_{5} \cdot G_{6}+G_{7} \cdot G_{8}+E X} \quad$ (for positive logic)
EX represents the extrafunction available if gate expander FJYl01 is used. (Connect E_{1}. E_{2} to Q_{1}, Q_{2} respectively or to Q_{3}, Q_{4} respectively, of the FJY101 to get a 4-input NAND function).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage

V_{P}	max.	7.0	V
$\mathrm{~V}_{\mathrm{Q}}$	max.	5.5	V
$\mathrm{~V}_{\mathrm{G}}$	max.	5.5	$\left.\mathrm{~V}^{1}\right)$
$-\mathrm{V}_{\mathrm{GM}}$	max.	2	$\mathrm{~V}^{2}$)
$\mathrm{T}_{\text {stg }}$	-55	to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	0	to +70	${ }^{\circ} \mathrm{C}$

[^22]
CHARACTERISTICS

Note 1: Not more than one output must be short circuited at any time.

FJH171/7453
AND-or-NOT gate

FJ family
standard temperature range

CHARACTERISTICS (continued)

[^23]The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out $*$ low power consumption (typ. 10 mW for standard gates) * high logic swing $*$ low output impedance $*$ short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

$2+2+2+2$ INPUT AND-OR-NOT GATE

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$5.0 \pm 5 \%$	V
Operating ambient temperature	Tamb	0 to +70	${ }^{0} \mathrm{C}$
Average propagation delay time $\mathrm{N}=\text { fan-out }=10 ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	${ }^{\text {tpd }}$	typ. 11	ns
Available d.c. fan-out (full temperature range)	Na_{a}	≥ 10	
D.C. noise margin (full temperature range)	M_{L}	$\begin{array}{ll} > & 0.4 \\ \text { typ. } & 1.0 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Average power consumption $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	P_{av}	typ. 22.75	mW

PACKAGE OUTLINE 14 lead plastic dual in-line (type A) (See General Section)

CIRCUIT DIAGRAM

LOGIC FUNCTION

$\mathrm{Q}=\overline{\mathrm{G}_{1} \cdot \mathrm{G}_{2}+\mathrm{G}_{3} \cdot \mathrm{G}_{4}+\mathrm{G}_{5} \cdot \mathrm{G}_{6}+\mathrm{G}_{7} \cdot \mathrm{G}_{8}}$ (for positive logic)

RATINGS Limiting values in accordancewith the Absolute Maximum System (IEC134)
$\left.\begin{array}{lllll}\text { Supply voltage } & \mathrm{V}_{\mathrm{P}} & \text { max. } & 7.0 & \mathrm{~V} \\ \text { Output voltage } & \mathrm{V}_{\mathrm{Q}} & \text { max. } & 5.5 & \mathrm{~V} \\ \mathrm{G} \text { input voltage } & \mathrm{V}_{\mathrm{G}} & \text { max. } & 5.5 & \mathrm{~V} \\ \hline\end{array}\right)$

[^24]
CHARACTERISTICS

CHARACTERISTICS (continued)

DYNAMIC DATA
Generator
$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{t}_{\mathrm{L}}=0.5 \mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{f}} \leq 15 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}$
$\mathrm{R}_{\mathrm{S}}=50 \Omega$

[^25]The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance $*$ short circuit protection * high capacitance drive capability $*$ high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

FULL ADDER

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$5.0 \pm 5 \%$	V
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	0 to +70	${ }^{\circ} \mathrm{C}$
Available d.c. fan-out			
for outputs: $\Sigma ; \Sigma^{*}$ (sum outputs)	Na_{a}	$\geq \quad 10$	
$\mathrm{C}_{\mathrm{n}}+1$ (inverted carry output)	Na_{a}	≥ 5	
Average power consumption	$\mathrm{Pav}_{\text {a }}$	typ. 105	mW

The FJH191/7480 is a single-bit, high speed, binary full adder with gated complementary inputs, complementary sum outputs (Σ and Σ^{*}), and inverted carry output.

PACKAGE OUTLINE :14 lead plastic dual in-line (type A) See General Section

CIRCUIT DIAGRAM

LOGIC DIAGRAM

FUNCTION TABLE

C_{n}	A	B	$\mathrm{C}_{\mathrm{n}}+1$	Σ	Σ^{*}
L	L	L	H	L	H
L	H	L	H	H	L
L	L	H	H	H	L
L	H	H	L	L	H
H	L	L	H	H	L
H	H	L	L	L	H
H	L	H	L	L	H
H	H	H	L	H	L

$$
\begin{aligned}
& A=\overline{A^{*} \cdot A_{C}} \\
& A^{*}=A_{1} \cdot A_{2} \\
& B=B^{*} \cdot B_{C} \\
& B^{*}=B_{1} \cdot B_{2}
\end{aligned}
$$

$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)

Notes

When A^{*} is used as an input, A_{1} and A_{2} must be connected to ϕ; when B^{*} is used as an input. B_{1} and B_{2} must be connected to ϕ.
When A_{1} and A_{2} are used as inputs, A^{*} must either be open or in wired-OR use; the same applies to B^{*} when B_{1} and B_{2} are used as inputs.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Input voltage
Peak negative input voltage
Operating ambient temperature
Storage temperature

V_{P}	max.	7.0	V
$\mathrm{~V}_{\mathrm{G}} ; \mathrm{V}_{\mathrm{Q}_{1}} ; \mathrm{V}_{\mathrm{Q}_{2}}$	max.	5.5	V
$-\mathrm{V}_{\mathrm{IM}}$	\max.	2	$\left.\mathrm{~V}^{\mathrm{l}}\right)$
$\mathrm{T}_{\mathrm{amb}}$	0 to	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	

[^26]CHARACTERISTICS

CHARACTERISTICS (continued)

		Tamb $\left.{ }^{(0} \mathrm{C}\right)$			Conditions and References		
		0	25	70	$\begin{gathered} \mathrm{V}_{\mathrm{p}} \\ \text { (V) } \end{gathered}$	Waveform Fig. 1	loading circuit
DYNAMIC DATA							
Rise propagation delay times:							
$\mathrm{C}_{\mathrm{n}} \rightarrow \mathrm{C}_{\mathrm{n}}+1$	$\mathrm{t}_{\mathrm{pdr}} \stackrel{\text { typ. }}{<}$	-	13	-ns	5.0 5.0	\} A	Fig. 2
$\mathrm{A}_{1} \rightarrow \mathrm{~A}^{*}$	${ }_{\text {tadr }} \stackrel{\text { typ }}{<}$	-		- ns -ns	5.0 5.0	A	Fig. 3
$\mathrm{B}_{1} \rightarrow \mathrm{~B}^{*}$	$\mathrm{t}_{\mathrm{pdr}} \stackrel{\text { typ }}{<}$	-	48 65	- ns -ns	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$) A	Fig. 4
$\mathrm{BC} \rightarrow \mathrm{C}_{\mathrm{n}}+1$	$\mathrm{t}_{\mathrm{pdr}} \stackrel{\text { typ }}{<}$	-	18 25	-ns -ns	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	B	Fig. 5
$A_{C} \rightarrow \Sigma$	${ }^{\text {tpdr }} \stackrel{\text { typ. }}{\substack{\text { ty }}}$	-	52 70	-ns -ns	5.0 5.0	B	Fig. 6
$\mathrm{BC} \rightarrow \Sigma^{*}$	${ }^{\text {t }}$ pdr ${ }^{\text {typ }}$.	-	$\begin{aligned} & 38 \\ & 55 \end{aligned}$	$\begin{aligned} & -\mathrm{ns} \\ & -\mathrm{ns} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	B	Fig. 7
Fall propagation delay times:							
$\mathrm{C}_{\mathrm{n}} \rightarrow \mathrm{C}_{\mathrm{n}}+1$	$\mathrm{t}_{\text {pdf }} \stackrel{\text { typ. }}{<}$	-	8 12	- ns -ns	5.0 5.0	, A	Fig. 2
$A_{1} \rightarrow A^{*}$	$\mathrm{t}_{\text {pdf }} \underset{\sim}{\text { typ. }}$		17 25	- ns -ns	5.0 5.0	A	Fig. 3
$B_{1} \rightarrow B^{*}$	$\mathrm{t}_{\mathrm{pdf}} \underset{\sim}{\text { typ. }}$	-	17 25	-ns - ns	5.0 5.0	A	Fig. 4
$\mathrm{B}_{\mathrm{C}} \rightarrow \mathrm{C}_{\mathrm{n}}+1$	$\mathrm{t}_{\text {pdf }} \underset{\sim}{\text { typ. }}$	-	38 55	-ns - ns	5.0 5.0	B	Fig. 5
$A_{C} \rightarrow \Sigma$	$\mathrm{t}_{\text {pdf }} \stackrel{\text { typ. }}{<}$		62 80	- ns - ns	5.0 5.0	B	Fig. 6
$\mathrm{BC} \rightarrow \Sigma^{*}$	$\mathrm{t}_{\text {pdf }} \stackrel{\text { typ. }}{\sim}$		56 75	-ns - ns	5.0 5.0	B	Fig. 7

CHARACTERISTICS (continued)

DYNAMIC DATA

Fig. 1

Fig. 2 Fan out: $N=5$

Fig. 3

Fig. 4

1) Including probe and jig capacitance

CHARACTERISTICS (continued)

DYNAMIC DATA

Fig. 5 Fan out: $N=5$

Fig. 6 Fan out $Q_{4}: N=10$
Fan out Q5: $\mathrm{N}=10$
Fan out $Q_{3}: N=5$

1) Including probe and jig capacitance

FJH191/7480
full adder

FJ family
standard temperature range

CHARACTERISTICS (continued)

DYNAMIC DATA

Fig. 7 Fan out: $\mathrm{N}=10$

[^27]The FJ family TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) $*$ high logic swing $*$ low output impedance $*$ short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

2 - BIT BINARY FULL ADDER

QUICK REFERENCE DATA					
Supply voltage	V_{P}	5.0	$\pm 5 \%$	V	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0	to	+70	${ }^{\circ} \mathrm{C}$
Available d.c. fan-out					
for outputs: $\Sigma_{0} ; \Sigma_{1}$ (sum outputs)	Na_{2}	\geq	10		
$\mathrm{C}_{\mathrm{n}+1}$ (carry output)	Na_{a}		\geq	5	
Average power consumption	Pav^{2}		175	mW	

PACKAGE OUTLINE: 14 lead plastic dual in-line (type A) (See General Section)

CIRCUIT DIAGRAM

LOGIC DIAGRAM

The FJH201/7482 full adder is designed for medium-to-high speed, multiple-bit, par-allel-add/serial -carry applications and performs the addition of two 2 -bit binary numbers. The summation outputs (Σ_{0} and Σ_{1}) are provided for each bit and the resultant carry output $\left(C_{n+1}\right)$ is obtained from the second bit. High speed serial-carry circuitry within each bit minimises the necessity for extensive "look-ahead" and car-ry-cascading circuits.

INPUT				OUTPUT					
				$\mathrm{C}_{\mathrm{n}}=\mathrm{L}$			$\mathrm{C}_{\mathrm{n}}=\mathrm{H}$		
A_{0}	B_{0}	A_{1}	B1	Σ_{0}	Σ_{1}	$\mathrm{C}_{\mathrm{n}+1}$	Σ_{0}	Σ_{1}	$\mathrm{C}_{\mathrm{n}+1}$
L	L	L	L	L	L	L	H	L	L
H	L	L	L	H	L	L	L	H	L
L	H	L	L	H	L	L	L	H	L
H	H	L	L	L	H	L	H	H	L
L	L	H	L	L	H	L	H	H	L
H	L	H	L	H	H	L	L	L	H
L	H	H	L	H	H	L	L	L	H
H	H	H	L	L	L	H	H	L	H
L	L	L	H	L	H	L	H	H	L
H	L	L	H	H	H	L	L	L	H
L	H	L	H	H	H	L	L	L	H
H	H	L	H	L	L	H	H	L	H
L	L	H	H	L	L	H	H	L	H
H	L	H	H	H	L	H	L	H	H
L	H	H	H	H	L	H	L	H	H
H	H	H	H	L	H	H	H	H	H

$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
D. C. input voltage

Peak negative transient input voltage
Operating ambient temperature
Storage temperature

Vp	max.	7.0	V
$\mathrm{~V}_{\mathrm{I}}$	max.	5.5	$\left.\mathrm{~V}^{1}\right)$
$-\mathrm{V}_{\text {IM }}$	max.	2.0	$\mathrm{~V}^{2}$)
$\mathrm{T}_{\text {amb }}$	0 to	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$	

[^28]CHARACTERISTICS

		Tamb (${ }^{\circ} \mathrm{C}$)			Conditions and references	
		0	25	70	$\begin{aligned} & \hline \mathrm{Vp} \\ & (\mathrm{~V}) \end{aligned}$	
STATIC DATA						
Voltages						
Input threshold LOW	$\mathrm{V}_{\text {ILmax }}$	0.8	0.8	0.8 V	4.75	
Input threshold HIGH	$\mathrm{V}_{\text {IHmin }}$	2.0	2.0	2.0 V	4.75	
Output LOW						
at $\Sigma_{0} ; \Sigma_{1}$	$\mathrm{V}_{\text {OLmax }}$	0.4	0.4	0.4 V	4.75	$\mathrm{I}_{\mathrm{O}}=16 \mathrm{~mA}$
at $\mathrm{C}_{\mathrm{n}+1}$	VOLmax	0.4	0. 4	0.4 V	4. 75	$\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$
Output HIGH						
at $\Sigma_{0} ; \Sigma_{1}$	VoHmin	2.4	2. 4	2.4 V	4.75	$\mathrm{IO}_{\mathrm{O}}=-400 \mu \mathrm{~A}$
at $\mathrm{C}_{\mathrm{n}+1}$	VOHmin	2.4	2. 4	2.4 V	4. 75	$\mathrm{I}_{\mathrm{O}}=-200 \mu \mathrm{~A}$
Currents						
Input LOW						
at $\mathrm{A}_{1} ; \mathrm{B}_{1}$	-IILmax	1.6	1.6	1.6 mA	5.25	
at $\mathrm{A}_{0} ; \mathrm{B}_{0} ; \mathrm{C}_{\mathrm{n}}$	-IILmax	6.4	6.4	6.4 mA	5.25	$\mathrm{V}_{\mathrm{I}}=0.4$
Input HIGH						
	IIHmax	1	1	1 mA	5.25	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$
at $\mathrm{A}_{0} ; \mathrm{B}_{0} ; \mathrm{C}_{\mathrm{n}}$	IIHmax	160	160	$160 \mu \mathrm{~A}$	5.25	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$
	${ }^{\text {IHmax }}$	1	1	1 mA	5.25	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$
Output LOW						
at $\Sigma_{0} ; \Sigma_{1}$	IOLmax	16		16 mA		
at $\mathrm{C}_{\mathrm{n}+1}$	IOLmax	8	8	8 mA		
Output HIGH						
at $\Sigma_{0} ; \Sigma_{1}$	-IOHmax	0.4	0.4	0.4 mA		
at $\mathrm{C}_{\mathrm{n}+1}$	-IOHmax	0.2	0.2	0.2 mA		
Output short circuit ${ }^{1}$)						
at $\Sigma_{0} ; \Sigma_{1} ; \mathrm{C}_{\mathrm{n}+1}$	-Iscmin	18	18	18 mA	5.25	
at $\Sigma_{0} ; \Sigma_{1}$	$\mathrm{II}_{\text {Scmax }}$	55	55	55 mA	5.25	
at $\mathrm{C}_{\mathrm{n}+1}$	- $_{\text {scmax }}$	70	70	70 mA	5.25	
SUPPLY DATA						
Supply current	Ip ${ }_{\text {typ }}$	35		35 mA	5.0	All terminals
	<	58	58	58 mA	5.0	open

[^29]CHARACTERISTICS (continued)

		$\mathrm{Tamb}^{\left({ }^{\circ} \mathrm{C}\right)}$			Conditions and references	
					VP (V)	
DYNAMIC DATA						
Rise propagation delay times						
$\mathrm{C}_{\mathrm{n}} \rightarrow \Sigma_{0}$	$\mathrm{t}_{\mathrm{pdr}}<$	-	34	- ns	5.0	
$\mathrm{B}_{1} \rightarrow \Sigma_{1}$	$\mathrm{t}_{\mathrm{pdr}}<$		40	- ns	5.0	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{N}_{\mathrm{a}}=10$
$\mathrm{C}_{\mathrm{n}} \rightarrow \Sigma_{1}$	$\mathrm{t}_{\mathrm{pdr}}<$		38	- ns	5.0	
$\mathrm{C}_{\mathrm{n}} \rightarrow \mathrm{C}_{\mathrm{n}+1}$	${ }^{\text {tpdr }}{ }_{<}^{\text {typ. }}$			- ns - ns	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{N}_{\mathrm{a}}=5$
Fall propagation delay times						
$\mathrm{C}_{\mathrm{n}} \rightarrow \Sigma_{0}$	$\mathrm{t}_{\text {pdf }}<$	-	40	- ns	5.0	
$\mathrm{B}_{1} \rightarrow \Sigma_{1}$	${ }^{\text {p }}$ dff $<$		35	- ns	5.0	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{Na}_{\mathrm{a}}=10$
$\mathrm{C}_{\mathrm{n}} \rightarrow \Sigma_{1}$	$\mathrm{t}_{\text {pdf }}<$		42	- ns	5.0	
$\mathrm{C}_{\mathrm{n}} \rightarrow \mathrm{C}_{\mathrm{n}+1}$	tpdf ${ }_{<}^{\text {typ. }}$		17	- ns	5.0	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{Na}_{\mathrm{a}}=5$

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) $*$ high logic swing $*$ low output impedance $*$ short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

4-BIT FULL ADDER

QUICK REFERENCE DATA					
Supply voltage Operating ambient temperature Available d.c. fan-out (full temperature range)	$\mathrm{VP}_{\mathrm{amb}}$	$0.0 \pm$	0%	to	
from $\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, \Sigma_{3}$		${ }^{\circ} \mathrm{C}$			
from $\mathrm{C}_{\mathrm{n}-1} 1$					

PACKAGE OUTLINE : 16 lead plastic dual in-line (type A) (See General Section)

LOGIC FUNCTION

The FJH211/7483 consists of a full adder for two words of four bits each plus a carry input $\left(C_{n}\right)$. Sum outputs (Σ) are provided for each bit and the carry output $\left(\mathrm{C}_{\mathrm{n}+1}\right)$ is obtained from the last bit. The high-speed internal serial carry circuitry used in the FJH211/7483 minimises the need for external "carry look ahead" logic when cascading adders for long word-length addition.

FUNCTION TABLE

To simplify the function table, it is presented in two parts:
Input conditions at $A_{0}, A_{1}, B_{0}, B_{1}$ and C_{n} determine the outputs Σ_{0} and Σ_{1} together with the internal carry $\left(\mathrm{C}_{1}\right)$ obtained from this addition.
Input conditions at $A_{2}, A_{3}, B_{2}, B_{3}$ and the internal carry C_{1} determine the outputs Σ_{2}, Σ_{3} and C_{n+1}.

INPUT				OUTPUT					
				$\mathrm{C}_{\mathrm{n}}=\mathrm{L} \quad \mathrm{C}_{1}=\mathrm{L}$			$C_{n}=H$$\mathrm{C}_{1}=\mathrm{H}$		
	B_{0}	A_{1}	B_{1}	Σ_{0}	Σ_{1} / Σ_{3}	C_{1}			
L	L	L	L	L	L	L	H	L	L
H	L	L	L	H	L	L	L	H	L
L	H	L	L	H	L	L	L	H	L
H	H	L	L	L	H	L	H	H	L
L	L	H	L	L	H	L	H	H	L
H	L	H	L	H	H	L	L	L	H
L	H	H	L	H	H	L	L	L	H
H	H	H	L	L	L	H	H	L	H
L	L	L	H	L	H	L	H	H	L
H	L	L	H	H	H	L	L	L	H
L	H	L	H	H	H	L	L	L	H
H	H	L	H	L	L	H	H	L	H
L	L	H	H	L	L	H	H	L	H
H	L	H	H	H	L	H	L	H	H
L	H	H	H	H	L	H	L	H	H
H	H	H	H	L	H	H	H	H	H

$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)

RATINGS Limiting values in accordance with the Absolute MaximumSystem (IEC 134)

Supply voltage
Output voltage
D. C. input voltage

Peak negative input voltage
Operating ambient temperature
Storage temperature

V_{P}	max.	7.0	V
$\mathrm{~V}_{\mathrm{O}}$	max.	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	max.	5.5	$\mathrm{~V}^{1}$)
$-\mathrm{V}_{\mathrm{IM}}$	max.	2	$\mathrm{~V}^{2}$)
$\mathrm{T}_{\text {amb }}$	0 to	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Stg }}$	-65 to $+1500^{\circ}$	${ }^{\circ} \mathrm{C}$	

CHARACTERISTICS

[^30]CHARACTERISTICS (c ontinued)

[^31]The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing $*$ low output impedance $*$ short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates. gate expanders, flip-flops and complex-function devices.

QUADRUPLE 2-INPUT NOR GATE

QUICK REFERENCE DATA				
Supply voltage	V_{P}	$5.0 \pm 5 \%$	V	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$	
Average propagation delay time				
$\mathrm{N}=$ fan-out $=10 ; \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	t_{pd}	typ.	10	ns
Available d.c. fan -out (full temperature range)	N_{a}	2	10	
D.C. noise margin (full temperature range)	M_{L}	$>$	0.4	V
Average power consumption (per gate)				
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	$\mathrm{Pav}_{\mathrm{av}}$	typ. 14.25	mW	

PACKAGE OUTLINE : 14 lead plastic dual in-line (type A) (See General Section)

CIRCUIT DIAGRAM

Function table

$\mathrm{G}_{1} ; \mathrm{G}_{3}$	$\mathrm{G}_{2} ; \mathrm{G}_{4}$	$\mathrm{Q}_{1} ; \mathrm{Q}_{2}$
$\mathrm{G}_{5} ; \mathrm{G}_{7}$	$\mathrm{G}_{6} ; \mathrm{G}_{8}$	$\mathrm{Q}_{3} ; \mathrm{Q}_{4}$
L	L	H
L	H	L
H	L	L
H	H	L

$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Supply voltage
Output voltage
$\mathrm{V}_{\mathrm{P}} \quad \max$.
7.0 V

G input voltage
Peak negative G input voltage
Storage temperature
Operating ambient temperature

V_{Q}	max.	5.5	V
$\mathrm{~V}_{\mathrm{G}}$	max.	5.5	$\left.\mathrm{~V}^{1}{ }^{1}\right)$
$-\mathrm{V}_{\mathrm{GM}}$	max.	2	$\mathrm{~V}^{2}$)
$\mathrm{T}_{\text {stg }}$	-55	to	+150
${ }^{\circ}{ }^{\circ} \mathrm{C}$			
$\mathrm{T}_{\mathrm{amb}}$	0	to	+70

[^32]
CHARACTERISTICS

CHARACTERISTICS (continued)

DYNAMIC DATA

INPUT

${ }^{1}$) Including probe and jig capacitance

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) $*$ high logic swing $*$ low output impedance $*$ short circuit protection * high capacitance drive capability $*$ high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

QUADRUPLE 2-INPUT NAND GATE

FJH231/7401

FJH291/7403

QUICK REFERENCE DATA

Supply voltage	V_{P}	$5.0 \pm 5 \%$	V	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$	
Average propagation delay time				
$\mathrm{N}=$ fan-out $=10 ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	t_{pd}	typ.	22	ns
Available d.c. fan-out (full temperature range)	N_{a}	\geq	10	
D. C. noise margin (full temperature range)		M_{L}	$>$	0.4
		typ.	1.0	V
Average power consumption (each gate)				
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P_{av}	typ.	7.5	mW

The FJH231/7401 and FJH291/7403 are quadruple 2-input NAND gates with open -collector output transistors for use in "wired-OR" connection with other gates of the FJ family.
The FJH291/7403 is pin-compatible with the FJH131/7400 NAND gate.
PACKAGE OUTLINE 14 lead plastic dual in-line (type A) (See general Section)

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
D. C. output voltage
(applied through $\mathrm{R}_{\mathrm{L}} \geq 270 \Omega$)
G input voltage
Peak negative G input voltage
Storage temperature
Operating ambient temperature

V_{P}	max.	7.0	V
$\mathrm{~V}_{\mathrm{Q}}$	max.	7.0	V
$\mathrm{~V}_{\mathrm{G}}$	max.	5.5	$\left.\mathrm{~V}^{1}\right)$
$-\mathrm{V}_{\mathrm{GM}}$	max.	2	$\left.\mathrm{~V}^{2}\right)$
$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	0 to	+70	${ }^{\circ} \mathrm{C}$

[^33]Fan-out and the "wired-OR" function
TTL gates with open collector can be connected to a common load resistor (R_{L}) to give a wired-OR function.
A gate alone will drive 10 TTL loads; when it is paralleled with other gates, it can drive from 1 to 9 loads.

To find the proper value of R_{L}, see application information on page 6 .
Wired-OR logic function (positive logic)
$Q=\overline{G_{1} \cdot G_{2}+G_{3} \cdot G_{4}+\ldots \ldots+G_{i} \cdot G_{j}}$

CHARACTERISTICS

quadruple NAND gates

CHARACTERISTICS (continued)

[^34]
FJ family

APPLICATION INFORMATION

Determining the value of R_{L}

Proper operation of the functions mentioned depends on the value of the common load resistor. The maximum value is set by the need to ensure sufficient load current to TTL loads and off current IQHmax through paralleled outputs when the output is HIGH. A minimum value is set by the need to limit the total current through the resistor, including the "sink" current of the TTL loads, so that the output voltage does not rise above the LOW level, even when one of the paralleled outputs is absorbing all the current. The table shows minimum and maximum resistor values for up to 10 TTL loads and up to 7 gates connected in wired-OR.

Table I

fan-out	wired-OR outputs							
loads	1	2	3	4	5	6	7	1 to 7
1	8965	4814	3291	2500	2015	1688	1452	319
2	7878	4482	3132	2407	1954	1645	1420	359
3	7027	4193	2988	2321	1897	1604	1390	410
4	6341	3939	2857	2241	1843	1566	1361	479
5	5777	3714	2736	2166	1793	1529	1333	575
6	5306	3513	2626	2096	1744	1494	1306	718
7	4905	3333	2524	2031	1699	1460	1280	958
8	4561	3170	2429	1969	1656	X	X	1437
9	4262	3023	X	X	X	X	X	2875
10	4000	X	X	X	X	X	X	4000*
	maximum							min.
	load resistor values in ohms							

$\mathrm{X}=$ not recommended or not possible

* $=$ the thoretical value is ∞

All values shown in the table are based on:
Logical HIGH conditions: $\mathrm{V}_{\mathrm{P}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{QH}}$ required $=2.4 \mathrm{~V}$
Logical LOW conditions: $\mathrm{V}_{\mathrm{P}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{QL}}$ required $=0.4 \mathrm{~V}$

APPLICATION INFORMATION (continued)

Circuit calculations

HIGH (off level) configurations (see figure below)

M. $\mathrm{I}_{\mathrm{QH}}=4 \times 250 \mu \mathrm{~A} \quad \mathrm{~N} . \mathrm{I}_{\mathrm{GH}}=3 \times 40 \mu \mathrm{~A} \quad \mathrm{R}_{\mathrm{L} \max }=\frac{(5-2.4) \mathrm{V}}{(0.001+0.00012) \mathrm{A}}=2321 \Omega$

The allowable voltage drop across the load resistor (V_{RL}) is the difference between V_{P} applied and the output voltage V_{QH} required at the TTL load.

$$
\mathrm{V}_{\mathrm{RL}}=\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{QH} \min }
$$

The total current through the load resistor (I_{RL}) is the sum of the load currents I_{GH} and off-level reverse current I_{QH} through each of the "wired-OR" connected outputs. Putting N as the number of TTL loads, and M as the number of outputs, the current is given by

$$
\mathrm{I}_{\mathrm{RL}}=\mathrm{M} \cdot \mathrm{I}_{\mathrm{QH}}+\mathrm{N} \cdot \mathrm{I}_{\mathrm{GH}}
$$

Therefore, the maximum value of R_{L} is

$$
\mathrm{R}_{\mathrm{Lmax}}=\frac{\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{QH}}=\mathrm{Imin}}{\mathrm{M} \cdot \mathrm{I}_{\mathrm{QH}}+\mathrm{N} \cdot \mathrm{I}_{\mathrm{GH}}}
$$

APPLICATION INFORMATION (continued)
 LOW (on level) configurations (see figure below)

$I_{Q L \max }=16 \mathrm{~mA} \quad \mathrm{~N} \cdot\left|\mathrm{I}_{G L \max }\right|=3 \times 1.6 \mathrm{~mA} \quad R_{\operatorname{Lmin}}=\frac{(5-0.4) \mathrm{V}}{(0.016-0.0048) \mathrm{A}}=410 \Omega$

* current through OFF outputs negligible at LOW output state

The current through the resistor must be limited to the maximum for one output transistor. If several outputs are "wired-OR" connected the current through R_{L} may be shared among the paralleled output transistors, but, unless it can be guaranteed that more than one transistor will be in the ON -(= conducting) state during the LOW output periods, the current must be limited to 16 mA , i.e. the maximum current that will still ensure a maximum LOW output voltage of 0.4 V .
The fan-out current must be considered as well. Part of the 16 mA will be supplied from the inputs being driven, which further reduces the current through R_{L}. These considerations lead to the minimum value of R_{L}

$$
\mathrm{R}_{\mathrm{Lmin}}=\frac{\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{QL} \max }}{\mathrm{I}_{\mathrm{QL} \max }-\mathrm{N} \cdot\left|\mathrm{I}_{\mathrm{GL} \max }\right|}
$$

For up to 10 TTL loads and up to 7 "wired-OR" connected outputs table I gives the maximum and minimum values of R_{L} calculated in this way.
For a single output the values are determined by the fan-out plus the leakage current of one transistor.
More than 7 outputs can be connected in "wired-OR" provided valid maximum and minimum resistor values are possible.
The value of R_{L} for driving 10 loads should be infinite according to these calcula tions but $4 \mathrm{k} \Omega$ is sufficient to satisfy logic HIGH while keeping logic LOW to less than 0.43 V .

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high -fan-out $*$ low power consumption (typ. 10 mW for standard gates) $*$ high logic swing $*$ low output impedance $*$ short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

SEXTUPLE SINGLE INPUT INVERTERS

Sextuple single input inverter with an active output (totem pole): FJH241/7404 Sextuple single input inverter with an open collector output: FJH251/7405

QUICK REFERENCE DATA			
Supply voltage	V_{P}	$5.0 \pm 5 \%$	V
Operating ambient 'temperature	Tamb	0 to +70	${ }^{\circ} \mathrm{C}$
Average propagation delay time			
$\mathrm{N}=$ fan-out $=10 ; \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	FJH241/7404: $\mathrm{tpd}^{\text {p }}$	typ. 10	ns
	FJH251/7405: $\mathrm{t}_{\text {pd }}$	typ. 24	ns
Available d.c. fan-out; full temperature range			
D. C. noise margin (full temperature range)	M_{L}	typ. 1.0	V
Average power consumption (each gate)			
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {av }}$	typ. 10	mW

The FJH241/7404 is a sextuple single-input inverter with an active output (totem pole). The FJH251/7405 is a sextuple single-input inverter with an open collector output transistor. It can be used in wired-OR connections with other gates of the FJ family.

PACKAGE OUTLINE : 14 lead plastic dual in-line (type A) (See General Section)

CIRCUIT DIAGRAMS

FJH241/7404

FJH251/7405

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
G input voltage
Peak negative G input voltage
Storage temperature
Operating ambient temperature

V_{P}	max.	7.0	V
$\mathrm{~V}_{\mathrm{G}}$	max.	5.5	V
$-\mathrm{V}_{\mathrm{GM}}$	max.	2	$\left.\mathrm{~V}^{1}\right)$
$\mathrm{T}_{\text {Stg }}$	-55 to	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	0 to	+70	${ }^{\circ} \mathrm{C}$

Fan-out and "wired-OR" function of FJH251/7405
TTL inverters with open collector can be connected to a common load resistor (R_{L}) to give a wired-OR function.
An inverter alone will drive 10 TTL loads; when it is paralleled with other inverters it can drive from 1 to 9 TTL loads.

7255405
To find the proper value of R_{L} see application information on page 5.
Wired-OR logic function (positive logic)
$Q=\overline{G_{1}+G_{2}+\ldots G_{i}}$

[^35]
CHARACTERISTICS

		$25 \quad 75$	Conditions and References		
		V_{P} (V)			
STATIC DATA					
Voltages					
Input threshold LOW	$\mathrm{V}_{\text {GLmax }}$		0.80 .80 .8 V		
Input threshold HIGH	$\mathrm{V}_{\text {GHmin }}$	2.02 .02 .0 V			
Output LOW	$\mathrm{V}_{\text {QLmax }}$	0.40 .40 .4 V	4.75	$\mathrm{I}_{\mathrm{Q}}=\mathrm{I}_{\mathrm{QL} \text { max }} ; \mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{GH} \text { min }}$	
Output HIGH	$\mathrm{V}_{\mathrm{QHmin}}$	2.42 .42 .4 V	4.75	$\mathrm{H}_{\mathrm{Q}}=-\mathrm{I}_{\mathrm{QH}} \mathrm{max} ; \mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{GLmax}}$	
Currents					
Input LOW	${ }^{-1} \mathrm{I}_{\text {GLmax }}$	1.61 .61 .6 mA	5.25	$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{QLmax}} ; \mathrm{I}_{\mathrm{Q}}=0$	
Input HIGH	$\mathrm{I}_{\text {GHmax }}$	$40 \quad 40 \quad 40 \mu \mathrm{~A}$	5.25	$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{QHmin}} ; \mathrm{I}_{\mathrm{Q}}=0$	
Output LOW	IQLmax	$\begin{array}{llll}16 & 16 & 16 \mathrm{~mA}\end{array}$			
Output HIGH FJH241/7404	-IQHmax	$400400400 \mu \mathrm{~A}$	4.75	$\mathrm{V}_{\mathrm{Q}}=\mathrm{V}_{\mathrm{QH}}$ min	
Output reverse HIGH;FJH251/7405	IQHmax	$250250250 \mu \mathrm{~A}$	4.75	$\left\{\begin{array}{l} V_{G}=V_{G L m a x} ; \\ V_{Q}=5.5 \mathrm{~V} \end{array}\right.$	
Output short circuit ed FJH241/7404	$-\mathrm{I}_{\mathrm{Qscmin}}$ -IQscmax	18 18 18 mA 55 55 55 mA	$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	$\mathrm{V}_{\mathrm{G}}=0 ; \mathrm{V}_{\mathrm{Q}}=0$	
See note 1	-IQscmax	$55 \quad 55 \quad 55 \mathrm{~mA}$) $0, \mathrm{~V}_{\text {Q }}$	
SUPPLY DATA					
Output LOW	$\mathrm{I}_{\text {PL }} \underset{<}{\text { typ. }}$	$\begin{array}{lll} 18 & 18 & 18 \mathrm{~mA} \\ 33 & 33 & 33 \mathrm{~mA} \end{array}$	5.0 5.0	$\mathrm{V}_{\mathrm{G}}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{Q}}=0$	
Outpet HIGH	$\mathrm{I}_{\mathrm{PH}} \underset{\sim}{\text { typ. }}$	$\begin{array}{rrr} 6 & 6 & 6 \mathrm{~mA} \\ 12 & 12 & 12 \mathrm{~mA} \end{array}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\mathrm{V}_{\mathrm{G}}=0 ; \mathrm{I}_{\mathrm{Q}}=0$	
DYNAMIC DATA					
Rise propagation delay time:		- 12 - ns			
FJH241/7404	$\begin{aligned} & \mathrm{t}_{\mathrm{pdr}}^{\mathrm{typ}} . \\ & \mathrm{t}_{\mathrm{pdr}}< \end{aligned}$	$\begin{aligned} & -12-\mathrm{ns} \\ & -\quad 22 \text { - ns } \end{aligned}$	5.0 5.0	$\mathrm{R}_{\mathrm{L}}=390 \Omega ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	
FJH251/7405	$\begin{aligned} & \mathrm{t}_{\mathrm{pdr}} \text { typ. } \\ & \mathrm{t}_{\mathrm{pdr}}< \end{aligned}$	$\begin{aligned} & -\quad 40-n s \\ & -\quad 55-n s \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	
Fall propagation delay time	${ }^{t}$ pdf typ. $t_{\text {pdf }}<$	$\begin{aligned} & -\quad 8-\mathrm{ns} \\ & -\quad 15-\mathrm{ns} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=390 \Omega ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	

Note 1: Not more than one output should be short circuited at a time

APPLICATION INFORMATION for FJH251/7405

Determining the value of R_{L}

Proper operation of the functions mentioned depends on the value of the common load resistor. The maximum value is set by the need to ensure sufficient load current to TTL loads and off current $I_{Q H m a x}$ through paralleled outputs when the output is HIGH. A minimum value is set by the need to limit the total current through the resistor, including the "sink" current of the TTL loads, so that the output voltage does not rise above the LOW level, even when one of the paralleled outputs is absorbing all the current. The table shows minimum and maximum resistor values for up to 10 TTL loads and up to 7 gates connected in wired-OR.

Table I

fan-out to TTL loads	wired-OR outputs							
	1	2 。	3	4	5	6	7	1 to 7
1	8965	4814	3291	2500	2015	1688	1452	319
2	7878	4482	3132	2407	1954	1645	1420	359
3	7027	4193	2988	2321	1897	1604	1390	410
4	6341	3939	2857	2241	1843	1566	1361	479
5	5777	3714	2736	2166	1793	1529	1333	575
6	5306	3513	2626	2096	1744	1494	1306	718
7	4905	3333	2524	2031	1699	1460	1280	958
8	4561	3170	2429	1969	1656	X	X	1437
9	4262	3023	X	X	X	X	X	2875
10	4000	X	X	X	X	X	X	4000*
				aximu				min.
			loa	sistor	lues i	hms		

$\mathrm{X}=$ not recommended or not possible

* = the theoretical value is ∞

All values shown in the table are based on:
Logical HIGH conditions: $\mathrm{V}_{\mathrm{P}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{QH}}$ required $=2.4 \mathrm{~V}$
Logical LOW conditions: $\mathrm{V}_{\mathrm{P}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{QL}}$ required $=0.4 \mathrm{~V}$

APPLICATION INFORMATION (continued)

Circuit calculations

HIGH (off level) configurations (see figure below)

M. $\mathrm{I}_{\mathrm{QH}}=4 \times 250 \mu \mathrm{~A} \quad \mathrm{~N} \cdot \mathrm{I}_{\mathrm{GH}}=3 \times 40 \mu \mathrm{~A} \quad \mathrm{R}_{\mathrm{Lmax}}=\frac{(5-2.4) \mathrm{V}}{(0.001+0.00012) \mathrm{A}}=2321 \Omega$

The allowable voltage drop across the load resistor (V_{RL}) is the difference between V_{P} applied and the output voltage V_{QH} required at the TTL load.

$$
\mathrm{V}_{\mathrm{RL}}=\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{QH} \min }
$$

The total current through the load resistor ($I_{R L}$) is the sum of the load currents I_{GH} and off-level reverse current I_{QH} through each of the "wired-OR" connected outputs. Putting N as the number of TTL loads, and M as the number of outputs, the current is given by

$$
\mathrm{I}_{\mathrm{RL}}=\mathrm{M} \cdot \mathrm{I}_{\mathrm{QH}}+\mathrm{N} \cdot \mathrm{I}_{\mathrm{GH}}
$$

Therefore, the maximum value of R_{L} is

$$
\mathrm{R}_{\mathrm{L}_{\max }}=\frac{\mathrm{V}_{\mathrm{P}}-\mathrm{VQHmin}}{\mathrm{M} \cdot \mathrm{I}_{\mathrm{QH}}+\mathrm{N} \cdot \mathrm{I}_{\mathrm{GH}}}
$$

FJH241/7404

FJ family

APPLICATION INFORMATION (continued)

LOW (on level) configurations (see figure below)

7255407

$$
\mathrm{I}_{\mathrm{QL} \max }=16 \mathrm{~mA} \quad \mathrm{~N} \cdot\left|\mathrm{I}_{\mathrm{GL} \max }\right|=3 \times 1.6 \mathrm{~mA} \quad \mathrm{R}_{\mathrm{L} \min }=\frac{(5-0.4) \mathrm{V}}{(0.016-0.0048) \mathrm{A}}=410 \Omega
$$

*current through OFF outputs negligible at LOW output state
The current through the resistor must be limited to the maximum for one output transistor. If several outputs are "wired-OR" connected the current through R_{L} may be shared among the paralleled output transistor, but, unless it can be guaranteed that more than one transistor will be in the ON -(= conducting) state during the LOW output periods, the current must be limited to 16 mA , i.e. the maximum current that will still ensure a maximum LOW output voltage of 0.4 V . The fan-out current must be considered as well. Part of the 16 mA will be supplied from the inputs being driven, which further reduces the current through R_{L}; These considerations lead to the minimum value of R_{L}

$$
\left.\mathrm{R}_{\mathrm{Lmin}}=\frac{\mathrm{V}_{\mathrm{P}}-\mathrm{VQLmax}}{\mathrm{I}_{\mathrm{QL} \max }-\mathrm{N} \cdot \mid{ }^{\mathrm{I}} \mathrm{GLmax}} \right\rvert\,
$$

For up to 10 TTL loads and up to 7 "wired-OR" connected outputs table I gives the maximum and minimum values of R_{L} calculated in this way.
For a single output the values are determined by the fan-out plus the leakage current of one transistor.
More than 7 outputs can be connected in "wired-OR" provided valid maximum and minimum resistor values are possible.
The value of R_{L} for driving 10 loads should be infinite according to these calculations but $4 \mathrm{k} \Omega$ is sufficient to satisfy logic HIGH while keeping logic LOW to less than 0.43 V .

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance * short circuit protection * high capacitance drive capability $*$ high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

BCD-to-DECIMAL DECODER

QUICK REFERENCE DATA				
Supply voltage	V_{P}	5	$\pm 5 \%$	V
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0	to	+70
${ }^{\circ} \mathrm{C}$				
Available d.c. fan-out (each output)	N_{a}	\geq	10	
Average propagation delay	t_{pd}	typ.	20	ns
Average power consumption	P_{av}	typ. 140	mW	

PACKAGE OUTLINE 16 lead plastic dual in-line (type A) (See General Section)

GENERAL DESCRIPTION

The FJH261/7442 is a multipurpose decoder which accepts four BCD (8-4-2-1 code) inputs and provides ten mutually exclusive outputs.
The active LOW outputs facilitate addressing functions when inverting drivers are used. Full decoding of valid input logic ensures that all outputs remain HIGH (off) for input binary codes greater than nine.
The most significant input (I_{8}) provides a useful inhibit function when the FJH261/7442 is used as a l-of-8 decoder, as shown in the APPLICATION INFORMATION section on page 6 .

LOGIC DIAGRAM

FUNCTION TABLE

inputs				outputs									
I_{8}	I_{4}	I_{2}	I_{1}	Q_{0}	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}	Q_{7}	Q_{8}	Q9
L	L	L	L	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	H	H	L	H	H	H	H	H	H	H
L	L	H	H	H	H	H	L	H	H	H	H	H	H
L	H	L	L	H	H	H	H	L	H	H	H	H	H
L	H	L	H	H	H	H	H	H	L	H	H	H	H
L	H	H	L	H	H	H	H	H	H	L	H	H	H
L	H	H	H	H	H	H	H	H	H	H	L	H	H
H	L	L	L	H	H	H	H	H	H	H	H	L	H
H	L	L	H	H	H	H	H	H	H	H	H	H	L
H	L	H	L	H	H	H	H	H	H	H	H	H	H
H	L	H	H	H	H	H	H	H	H	H	H	H	H
H	H	L	L	H	H	H	H	H	H	H	H	H	H
H	H	L	H	H	H	H	H	H	H	H	H	H	H
H	H	H	L	H	H	H	H	H	H	H	H	H	H
H	H	H	H	H	H	H	H	H	H	H	H	H	H

$\mathrm{H}=\mathrm{HIGH}$ (the more positive voltage)
L = LOW (the less positive voltage)
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage
Input voltage (d.c.)
Negative transient input voltage

$$
\left(\mathrm{t}_{\mathrm{p}}=20 \mathrm{~ns} ; \mathrm{f}=5 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}} \geq 75 \Omega\right)
$$

Operating ambient temperature
Storage temperature

V_{P}	max.	7	V
$\mathrm{~V}_{\mathrm{I}}$	max.	5.5	$\left.\mathrm{~V}^{1}\right)$
$-\mathrm{V}_{\text {I M }}$	max.	2	V
$\mathrm{~T}_{\mathrm{amb}}$	0 to	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$	

[^36]CHARACTERISTICS

		$\mathrm{T}_{\mathrm{amb}}\left({ }^{\mathrm{o}} \mathrm{C}\right)$				Conditions and references	
		0	25	70		$\begin{aligned} & \mathrm{V}_{\mathrm{P}} \\ & (\mathrm{~V}) \end{aligned}$	
STATIC DATA	$V_{\text {ILmax }}$				V	4.75	$\begin{aligned} \mathrm{I}_{\mathrm{Q}} & =16 \mathrm{~mA} \\ -\mathrm{I}_{\mathrm{Q}} & =400 \mu \mathrm{~A} \end{aligned}$
Voltages Input threshold LOW							
Input threshold HIGH	$\mathrm{V}_{\text {IHmin }}$	2.0	2.0	2.0	V	4. 75	
Output LOW	$\mathrm{V}_{\mathrm{QL} \text { max }}$	0.4	0.4	0.4	V	4. 75	
Output HIGH	$\mathrm{V}_{\mathrm{QHmin}}$	2.4	2.4	2.4	V	4. 75	
Currents		1.6	1.6	1.6		5.25	
Input LOW (each input)	${ }^{-1}$ IL max						$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$
Input HIGH (each input)	${ }^{1}$ IH max ${ }^{\text {I }}$ IHmax	40 1		$\begin{array}{r} 40 \\ 1 \end{array}$		$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V} \end{aligned}$
Output LOW	${ }^{\text {Q }}$ L max	16	16	16	mA		$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$
Output short circuited ${ }^{1}$)	${ }^{-} \mathrm{I}_{\mathrm{Qsc}} \min$ ${ }^{-1}$ Qsc max		$\begin{aligned} & 18 \\ & 55 \end{aligned}$	$\begin{aligned} & 18 \\ & 55 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	
SUPPLY DATA	$\begin{aligned} & { }^{{ }^{\prime}} \mathrm{P} \text { typ. } \\ & \mathrm{I}_{\mathrm{P}} \leq \end{aligned}$	56	$\begin{aligned} & 28 \\ & 56 \end{aligned}$	56	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.25 \end{aligned}$	$\} \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$
Supply current							
$\frac{\text { DYNAMIC DATA }}{\frac{\text { Propagation delay }}{\frac{\text { times }}{\text { Rise: through two }}}}$		min. typ. max.					
Rise: through two logic levels through three	${ }^{\text {t }} \mathrm{pdr}$	10	17	25	ns	5.0	
logic levels Fall: through two	${ }_{\text {t }}^{\text {pdr }}$	-	26	35	ns	5.0	$\left\{\begin{array}{l}\mathrm{C}_{\mathrm{L}}=15 \cdot \mathrm{pF} \\ \mathrm{N}=10\end{array}\right.$
logic levels through three	${ }^{\text {tpdf }}$	10	22	30	ns	5.0	Tamb $=25^{\circ} \mathrm{C}$
logic levels	${ }^{\text {p }}$ df	-	23	35	ns	5.0	

[^37]
APPLICATION INFORMATION

Digital demultiplexer

Data may be routed from a single source to any of 8 outputs by addressing that output. All other outputs remain HIGH. Complements of outputs Q_{0} and Q_{1} are available at Q_{8} and Q_{9} respectively.

address			output
A	B	C	line
L	L	L	X_{0}
H	L	L	X_{1}
L	H	L	X_{2}
H	H	L	X_{3}
L	L	H	X_{4}
H	L	H	X_{5}
L	H	H	X_{6}
H	H	H	X_{7}

APPLICATION INFORMATION (continued)

1-of-32 decodi.g
The general purfose nature of the FJH261/7442 is shown by this application, where the most significant input (I_{8}) is used as an inhibit in the four 1 -of-8 decoders.

QUADRUPLE 2-INPUT NAND GATE

For data of this type please refer to FJH231/7401

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance * short circuit protection $*$ high capacitance drive capability $*$ high noise margin (typ. 1.0 V for standard gates) $*$ comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

NAND GATES

Quadruple 2 -input NAND gate, with open collector Quadruple 2 -input NAND gate, with open collector Sextuple single input inverter, with open collector

FJH301/7426

FJH311/7401-S1

FJH301/7426
FJH311/7401-S1
FJH321/7405-S1

FJH321/7405-S1

QUICK REFERENCE DATA				
Supply voltage	VP	$5.0 \pm$		V
Operating ambient temperature	Tamb	0 to		${ }^{\circ} \mathrm{C}$
Output voltage	V_{Q}	max.	15	V
Average propagation delay				
$\mathrm{N}=$ fan-out $=10 ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	${ }^{\text {tpd }}$	max.	22	ns
Available d.c. fan-out (full temperature range)	N_{a}	\geq	10	
D. C. noise margin (full temperature range)	ML	$\{>$	0.4	V
Average power consumption at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{Pav}^{\text {- }}$	I typ. typ.	1.0	V mW

PACKAGE OUTLINE : 14 lead plastic dual in-line (type A) See General Section

CIRCUIT DIAGRAMS

FJH301/7426 and FJH311/7401-S1

FJH321/7405-S1

This series of open-collector NAND gates features 15 V output voltage ratings and is intended to be used for interfacing with MOS logic or as open-collector drivers for indicator lamps and relays.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage

V_{P}	max.	7.0	V
$\mathrm{~V}_{\mathrm{Q}}$	max.	15	V
$\mathrm{~V}_{\mathrm{G}}$	max.	5.5	$\left.\mathrm{~V}^{1}\right)$
$-\mathrm{V}_{\mathrm{GM}}$	max.	2	$\mathrm{~V}^{2}$)
$\mathrm{T}_{\text {stg }}$	-65 to	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	0	to	+70
${ }^{\circ} \mathrm{C}$			

Fan-out and the "wired-OR" function
TTL gates with open collector can be connected to a common load resistor (R_{L}) to give a wired-OR function.
A gate alone will drive 10 TTL loads; when it is paralleled with other gates, it can drive from 1 to 9 loads.

7255760

To find the proper value of R_{L}, see application information on page 6 .
Wired-OR logic function (positive logic)
$\mathrm{Q}=\overline{\mathrm{G}_{1} \cdot \mathrm{G}_{2}+\mathrm{G}_{3}+\ldots \ldots \ldots+\mathrm{G}_{\mathrm{i}} \cdot \mathrm{G}_{\mathrm{j}}}$

[^38]CHARACTERISTICS

		$\mathrm{Tamb}^{\left({ }^{\circ} \mathrm{C}\right)}$				Conditions and References	
				25	70	V_{P} (V)	
STATIC DATA							
Voltages							
Input threshold LOW	$\mathrm{V}_{\text {GLmax }}$. 8	0.8	0.8 V		
Input threshold HIGH	$\mathrm{V}_{\text {GHmin }}$. 0	2.0	2.0 V		
Output LOW	$\mathrm{V}_{\text {GLmax }}$			0.4	0.4 V	4.75	$\mathrm{I}_{\mathrm{Q}}=\mathrm{I}_{\mathrm{QLmax}} ; \mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{GH} \text { min }}$
Output HIGH	$\mathrm{V}_{\text {QHmin }}$		15	15	15 V	4. 75	$-\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{GL} \text { max }}$
Currents							
Input LOW	-IGLmax				1.6 mA	5.25	$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{QLmax}} ; \mathrm{I}_{\mathrm{Q}}=0$
Input HIGH	$\mathrm{I}_{\text {GHmax }}$			40	$40 \mu \mathrm{~A}$	5. 25	$\mathrm{V}_{\mathrm{G}}=2.4 \mathrm{~V} ; \mathrm{I}_{\mathrm{Q}}=0$
Output LOW	IQLmax		16	16	16 mA		
Output reverse HIGH	${ }^{\text {I QHmax }}$			50	$50 \mu \mathrm{~A}$	4.75	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{GLImax}} \\ \mathrm{~V}_{\mathrm{Q}}=12 \mathrm{~V} \end{array}\right.$
SUPPLY DATA							
Supply current							
Output LOW	IPL $\stackrel{\text { typ. }}{<}$			12 22	- mA	5.0 5.0	$\}_{V_{G}}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{Q}}=0$
Output HIGH	IPH ${ }_{\text {typ. }}^{<}$			$\begin{aligned} & 4 \\ & 8 \end{aligned}$	- mA	5.0 5.0	$\} V_{G}=0 ; I_{Q}=0$
DYNAMIC DATA							
Rise propagation delay time:	$t_{\text {pdr }}$ typ. ${ }^{\text {t }}$ pdr $<$		-	$\begin{aligned} & 35 \\ & 45 \end{aligned}$	- ns		$\}_{\mathrm{L}}=390 \Omega ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
Fall propagation delay time:	${ }^{t}$ pdf typ. $t_{\text {pdf }}<$		-	8 15	- ns - ns	5.0 5.0	$\} \mathrm{R}_{\mathrm{L}}=390 \Omega ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

FJ family

APPLICATION INFORMATION

Determining the value of R_{L}

Proper operation of the functions mentioned depends on the value of the common load resistor. The maximum value is set by the need to ensure sufficient load current to TTL loads and off current $I_{\text {QHmax }}$ through paralleled outputs when the output is HIGH. A minimum value is set by the need to limit the total current through the resistor, including the "sink" current of the TTL loads, so that the output voltage does not rise above the LOW level, even when one of the paralleled outputs is absorbing all the current. The table shows minimum and maximum resistor values for up to 10 TTL loads and up to 7 gates connected in wired-OR.

Table 1

fan-out				ired-OR	output			
loads	1	2	3	4	5	6	7	1 to 7
1	8965	4814	3291	2500	2015	1688	1452	319
2	7878	4482	3132	2407	1954	1645	1420	359
3	7027	4193	2988	2321	1897	1604	1390	410
4	6341	3939	2857	2241	1843	1566	1361	479
5	5777	3714	2736	2166	1793	1529	1333	575
6	5306	3513	2626	2096	1744	1494	1306	718
7	4905	3333	2524	2031	1699	1460	1280	958
8	4561	3170	2429	1969	1656	X	X	1437
9	4262	3023	X	X	X	X	X	2875
10	4000	X	X	X	X	X	X	4000*
	maximum							min.
	load resistor values in ohms							

$X=$ not recommended or not possible

* = the theoretical value is ∞

All values shown in the table are based on:
Logical HIGH conditions: Vp $=5 \mathrm{~V}$; V QH required $=2.4 \mathrm{~V}$
Logical LOW conditions: $\mathrm{VP}=5 \mathrm{~V}$; V QL required $=0.4 \mathrm{~V}$

APPLICATION INFORMATION (continued)

Circuit calculations

HIGH (off level) configurations (see figure below)

M. IQH $=4 \times 250 \mu \mathrm{~A} \quad \mathrm{~N} . \mathrm{I}_{G H}=3 \times 40 \mu \mathrm{~A} \quad \mathrm{R}_{\mathrm{Lmax}}=\frac{(5-2.4) \mathrm{V}}{(0.001+0.00012) \mathrm{A}}=2321 \Omega$

The allowable voltage drop across the load resistor $\left(V_{R L}\right)$ is the difference between V_{P} applied and the output voltage V_{QH} required at the TTL load.

$$
\mathrm{V}_{\mathrm{RL}}=\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{QH}} \mathrm{Hin}
$$

The total current through the load resistor ($I_{R L}$) is the sum of the load currents $I_{G H}$ and off-level reverse current I_{QH} through each of the "wired-OR" connected outputs. Putting N as the number of TTL loads, and M as the number of outputs, the current is given by

$$
\mathrm{I}_{\mathrm{RL}}=\mathrm{M} \cdot \mathrm{I}_{\mathrm{QH}}+\mathrm{N} \cdot \mathrm{I}_{\mathrm{GH}}
$$

Therefore, the maximum value of R_{L} is

$$
\mathrm{R}_{\mathrm{Lmax}}=\frac{\mathrm{VP}_{\mathrm{P}}-\mathrm{VQHmin}^{\mathrm{M} \cdot \mathrm{I}_{\mathrm{QH}}+\mathrm{N} \cdot \mathrm{I}_{\mathrm{GH}}}}{\text { an }}
$$

APPLICATION INFORMATION (continued)

LOW (on level) configurations (see figure below)

$I_{Q L \max }=16 \mathrm{~mA} \quad \mathrm{~N} .\left|I_{G L \max }\right|=3 \times 1.6 \mathrm{~mA} \quad R_{\operatorname{Lmin}}=\frac{(5-0.4) \mathrm{V}}{(0.016-0.0048) \mathrm{A}}=410 \Omega$ *current through OFF outputs negligible at LOW output state

The current through the resistor must be limited to the maximum for one output transistor. If several outputs are "wired-OR" connected the current through R_{L} may be shared among the paralleled output transistor, but, unless it can be guaranteed that more than one transistor will be in the $\mathrm{ON}-(=$ conducting) state during the LOW output periods, the current must be limited to 16 mA , i.e. the maximum current that will still ensure a maximum LOW output voltage of 0.4 V .
The fan-out current must be considered as well. Part of the 16 mA will be supplied from the inputs being driven, which further reduces the current through R_{L}; These considerations lead to the minimum value of R_{L}

$$
\mathrm{R}_{\mathrm{Lmin}}=\frac{\mathrm{VP}-\mathrm{VQLmax}^{\text {IQLmax }}-\mathrm{N} \cdot|\mathrm{IGLmax}|}{}
$$

For up to 10 TTL loads and up to 7 "wired-OR" connected outputs table I gives the maximum and minimum values of R_{L} calculated in this way.
For a sing'e output the values are determined by the fan-out plus the leakage current of one transistor.
More than 7 outputs can be connected in "wired-OR" provided valid maximum and minimum resistor values are possible.
The value of R_{L} for driving 10 loads should be infinite according to these calculations but $4 \mathrm{k} \Omega$ is sufficient to satisfy logic HIGH while keeping logic LOW to less than 0.43 V .

APPLICATION INFORMATION (continued)

Typical application of open-collector gates as interface with MOS circuit.

The example above shows a FDR116Z 2560-bit read-only memory being used together with TTL.
Open-collector gates are used at the input interface, each collector being taken through a $2 \mathrm{k} \Omega$ resistor to the 12 V positive supply voltage of the FDR116Z. A nor mal totem-pole output FJ type is used as the output to restore the TTL logic levels.

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance * short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

SINGLE JK FLIP-FLOP (AND INPUTS)

QUICK REFERENCE DATA				
Supply voltage	V_{P}	$5.0 \pm 5 \%$	V	
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$	
Available d.c. fan-out (full temperature range)	N_{a}	\geqslant	10	
Max. operating frequency; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	f	$>$	20	MHz
Average power consumption; $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	P_{av}	typ. 70	mW	

The FJJ101/7470 is a monolithic, edge-triggered JK flip-flop with gated inputs, direct S_{1} and S_{2} inputs, and complementary Q_{1} and Q_{2} outputs. It is suited for medium and high speed applications. In systems where input gating is required, its use can lead to a lower package count and reduced system power dissipation. Input information is transferred to the outputs in time with the positive-going edge of the trigger pulse. Direct-coupled input triggering occurs as soon as the trigger pulse reaches a fixed threshold voltage; thereafter the gated inputs are locked out.

PACKAGE OUTLINE : 14 lead plastic dual in-line (type A) (See General Section)

CIRCUIT DIAGRAM

FUNCTION TABLE

t_{n}		$\mathrm{t}_{\mathrm{n}+1}$
$\mathrm{~J}^{*}$	$\mathrm{~K}^{* *}$	Q
L	L	Q_{n}
L	H	L
H	L	H^{2}
H	H	Q_{n}

* $\mathrm{J}=\mathrm{J}_{1} \cdot \mathrm{~J}_{2} \cdot \overline{\mathrm{~J}_{3}}$
${ }^{* *} \mathrm{~K}=\overline{\mathrm{K}_{1}} \cdot \mathrm{~K}_{2} \cdot \mathrm{~K}_{3}$
S_{1} and S_{2} function can only occur when T is LOW.
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L=LOW state (the less positive voltage)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Input voltage
Peak negative input voltage (J, K, T, S)
Storage temperature
Operating ambient temperature

V_{P}	max.	7.0 V
$\mathrm{~V}_{\mathrm{J}}, \mathrm{V}_{\mathrm{K}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{S}}$	\max.	$\left.5.5 \mathrm{~V}^{\mathrm{l}}\right)$
$-\mathrm{V}_{\mathrm{M}}$	\max.	$\left.2 \mathrm{~V}^{2}\right)$
$\mathrm{T}_{\text {stg }}$	-55 to $+150{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	0 to	$+70^{\circ} \mathrm{C}$

${ }^{1}$) In addition the input voltage between any two Jinputs or between any two K inputs: max. 5.5 V .
2) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $\mathrm{f}=5 \mathrm{MHz}$; source resistance $R_{S} \geq 75 \Omega$.

CHARACTERISTICS

CHARACTERISTICS (continued)

			$\mathrm{T}_{\mathrm{amb}}\left({ }^{\circ} \mathrm{C}\right)$				$\begin{array}{c\|} \hline \text { Conditions and } \\ \text { references } \end{array}$	
			0	25	70		$\begin{aligned} & V_{p} \\ & (V) \end{aligned}$	
SUPPLY DATA	Ip	typ.$<$	1326	1326	$\begin{aligned} & 13 \mathrm{~mA} \\ & 26 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$)^{I_{Q}}=0$
Supply current								
DYNAMIC DATA								
Signal requirements								
Rise time (T input)	${ }^{\mathrm{t}} \mathrm{Tr}$	$<$	-	150	-	ns	5.0	
Pulse duration (T input)	${ }^{\text {t }}$ H	>	-	20	-	ns	5.0	
Pulse duration (S input)	tSL	>	-	25	-	ns	5.0	
Performance								
Rise propagation delay time $(\mathrm{S} \rightarrow \mathrm{Q})$	${ }^{\text {tpdr }}$	$<$	-	50	-	ns	5.0	$\mathrm{N}=10$
Fall propagation delay time $(\mathrm{S} \rightarrow \mathrm{Q})$	$t_{\text {t }}$ df	<	-	50	-	ns	5.0	$\mathrm{N}=10$
	$t_{\text {pdr }}$	$>$	-	10	-	ns	5.0	
Rise propagation	tpdr	typ.	-	27			5.0	$\mathrm{N}=10$
delay time ($\mathrm{T} \rightarrow \mathrm{Q}$)	$t_{p d r}$	$<$	-	50		ns	5.0	
	${ }^{\text {tpdf }}$	$>$	-	10	-	ns	5.0	
Fall propagation	${ }_{\text {tpdf }}$	typ.	-	18			5.0	$\mathrm{N}=10$
delay time ($\mathrm{T} \rightarrow \mathrm{Q}$)	tpdf	$<$	-	50		ns	5.0	
Set-up time ($3_{3}, \mathrm{~K}_{1}$)	$\mathrm{t}_{\text {su min }}$	$<$	-	20	-	ns		
Hold time (J_{1}, J2, K K_{2}, K_{3})	thold m		-	5	-	ns		
Preset time (S_{1})	$\mathrm{t}_{\mathrm{S}} 1$	$>$	-	25		ns		
Clear time (S_{2})	${ }^{\text {tS }} 2$	$>$	-	25		ns		
Maximum operating frequency	$\begin{aligned} & \mathrm{f} \\ & \mathrm{f} \end{aligned}$	$\begin{gathered} > \\ \text { typ. } \end{gathered}$	-	$\begin{aligned} & 20 \\ & 35 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	5.0	$\mathrm{N}=10$

CHARACTERISTICS (continued)

CHARACTERISTICS (continued)

DYNAMIC DATA

Waveform illustrating switching times.

[^39]The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out $*$ low power consumption (typ. 10 mW for standard gates) $*$ high logic swing $*$ low output impedance $*$ short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates. gate expanders. flip-flops and complex-function devices.

SINGLE JK MASTER-SLAVE FLIP-FLOP (AND INPUTS)

QUICK REFERENCE DATA				
Supply voltage	V_{P}	$5.0 \pm 5 \%$	V	
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$	
Available d.c. fan-out (full temperature range)	N_{a}	\geqslant	10	
Max. operating frequency; $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	f	$>$	10	MHz
Average power consumption; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	P_{av}	typ. 40	mW	

The FJJ111/7472 is a master-slave flip-flop having three J and three K input (AND function). The circuit operates at a frequency up to 15 MHz (typ.). The information at the J and K input enters the master when T is HIGH. Afterwards, when T is LOW, the information is transferred from the master to the slave and appears at the outputs.

PACKAGE OUTLINE: 14 lead plastic dual in-line (type A) (See General Section) ${ }^{*}$

CIRCUIT DIAGRAM

LOGIC DIAGRAM

FUNCTION TABLE

t_{n}		$\mathrm{t}_{\mathrm{n}+1}$
$\mathrm{~J}^{*}$	$\mathrm{~K}^{* *}$	Q
L	L	Q_{n}
L	H	L
H	L	H
H	H	$\overline{\mathrm{Q}}_{\mathrm{n}}$

$$
\begin{aligned}
& { }^{*} \mathrm{~J}=\mathrm{J}_{1} \cdot \mathrm{~J}_{2} \cdot \mathrm{~J}_{3} \\
& { }^{* *} \mathrm{~K}=\mathrm{K}_{1} \cdot \mathrm{~K}_{2} \cdot \mathrm{~K}_{3} \\
& \quad \mathrm{~S}_{1} \text { and } \mathrm{S}_{2} \text { functions are independent of } \mathrm{T} .
\end{aligned}
$$

$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{P}	\max.	7.0	V
Input voltage	$\mathrm{V}_{\mathrm{J}}, \mathrm{V}_{\mathrm{K}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{S}}$	\max.	5.5	$\left.\mathrm{~V}^{1}\right)$
Peak negative input voltage (J, K, T, S)	$-\mathrm{V}_{\mathrm{M}}$	\max.	2	$\left.\mathrm{~V}^{2}\right)$
Storage temperature	$\mathrm{T}_{\text {Stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to	+70	${ }^{\circ} \mathrm{C}$

${ }^{1}$) In addition the voltage between any two Jinputs, or between any two K inputs: max. 5.5 V .
${ }^{2}$) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $\mathrm{f}=5 \mathrm{MHz}$; source resistance $R_{S} \geq 75 \Omega$.

CHARACTERISTICS

CHARACTERISTICS (continued)

CHARACTERISTICS (continued)

DYNAMIC DATA

Waveforms illustrating measurement of t_{pdr} and $\mathrm{t}_{\mathrm{pdf}}$.

${ }^{1}$) Including probe and jig capacitance

CHARACTERISTICS (continued)

DYNAMIC DATA

Waveforms illustrating switching times.
(and

FJJ121/7473
 FJJ261/74107
 dual JK flip-flops

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.
Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for 'standard gates) * high logic swing * low output impedance * short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

DUAL JK MASTER-SLAVE FLIP-FLOP

QUICK REFERENCE DATA				
Supply voltage	V_{P}	$5.0 \pm 5 \%$	V	
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$	
Available d.c. fan-out (full temperature range)	N_{a}	\geqslant	10	
Max. operating frequency; $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	f	$>$	10	MHz
Average power consumption;				
$\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$ (per flip-flop)	P_{av}	$<$	40	mW

The FJJ121/7473 comprises two independent flip-flops, each provided with one J and one K input and based on the master-slave principle. The circuits operate at a frequency up to 15 MHz (typ.). The information at the J and K inputs enters the master when T is HIGH. Afterwards, when T is LOW, the Information is transferred from the master to the slave and appears at the outputs. The FJJ261/74107 is electrically identical to the FJJ121/7473 but has power supply and ground on corner pins. (7 and 14) PACKAGE OUTLINE : 14 lead plastic dual in-line (type A) (See General Section)

CIRCUIT DIAGRAM

LOGIC DIAGRAM

FUNCTION TABLE

$t_{n \mid}$		$t_{n}+1$
J	K	$Q_{1}\left(Q_{3}\right)$
L	L	Q_{n}
L	H	L
H	L	H_{n}
H	H	Q_{n}

S_{2} and S_{4} functions are independent of T_{1} and T_{2}.
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=$ LOW state (the less positive voltage)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Input voltage
Peak negative input voltage (J, K, T, S)
Storage temperature
Operating ambient temperature

V_{P}	max.	7.0	V
$\mathrm{~V}_{\mathrm{J}}, \mathrm{V}_{\mathrm{K}}, \mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{T}}$	max.	5.5	V
$-\mathrm{V}_{\mathrm{M}}$	max.	2	$\left.\mathrm{~V}^{1}\right)$
$\mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	0 to	+70	${ }^{\circ} \mathrm{C}$

[^40]
CHARACTERISTICS

		$\left.\mathrm{Tamb}^{(0}{ }^{\circ} \mathrm{C}\right)$				Conditions and references	
		0				$\begin{aligned} & \text { Vp } \\ & \text { (V) } \end{aligned}$	
STATIC DATA							
Voltages							
Input threshold LOW (any input)	$\mathrm{V}_{\text {ILmax }}$	0.8	0.8	0.8	V		
Input threshold HIGH (any input)	$\mathrm{V}_{\text {IHmin }}$	2.0			V		
Output LOW	$\mathrm{V}_{\text {QLmax }}$	0.	0.4	0.4	V	4.75	$\mathrm{I}_{\mathrm{Q}}=\mathrm{I}_{\mathrm{QL}}$ max
Output HIGH	$\mathrm{V}_{\mathrm{QHmin}}$	2.			V	4.75	$-\mathrm{I}_{\mathrm{Q}}=-\mathrm{I}_{\mathrm{QH}}$ max
Currents							
Input LOW (J, K)	${ }^{-I}$ J Lmax -IKLmax	1.6	1.6	1.6	mA	5.25	$\mathrm{V}_{\mathrm{JK}}=\mathrm{V}_{\mathrm{QLmax}} ; \mathrm{I}_{\mathrm{Q}}=0$
Input HIGH (J, K)	${ }^{\text {I }}$ JHmax ${ }^{I_{\text {KHmax }}}$	40	40	40	$\mu \mathrm{A}$	5.25	$\mathrm{V}_{\mathrm{JK}}=\mathrm{V}_{\mathrm{QHmin}} ; \mathrm{I}_{\mathrm{Q}}=0$
Input LOW (S, T)	-I S Lmax -I TLmax	3.2	3.2	3.2	mA	5.25	$\mathrm{V}_{\mathrm{ST}}=\mathrm{V}_{\mathrm{QLmax}} ; \mathrm{I}_{\mathrm{Q}}=0$
Input HIGH (S, T)	$I_{\text {SLmax }}$ $I_{\text {TLmax }}$	80	80	80	$\mu \mathrm{A}$	5.25	$\mathrm{V}_{\mathrm{ST}}=\mathrm{V}_{\mathrm{QHmin}} ; \mathrm{I}_{\mathrm{Q}}=0$
Output LOW	$\mathrm{I}_{\text {QLmax }}$	16	16	16	mA		
Output HIGH	-IQHmax	0.		0.4			
	${ }^{-1} \mathrm{Q}$ scmin	18	18	18	mA	5.25	$\mathrm{V}_{\mathrm{I}}=0 ; \mathrm{V}_{\mathrm{Q}}=0$
Output short circuited	-IQscmax	57	57	57	mA	5.25	$\mathrm{V}_{\mathrm{I}}=0 ; \mathrm{V}_{\mathrm{Q}}=0$

CHARACTERISTICS (continued)

CHARACTERISTICS (continued)

DYNAMIC DATA

T, J, and K INPUTS

Waveforms illustrating in- and output pulses.

Equivalent load for $\mathrm{N}=10$

[^41]
CHARACTERISTICS (continued)

$\underline{\text { DYNAMIC DATA }}$

Waveforms illustrating measurement of $\mathrm{t}_{\mathrm{pdr}}$ and $\mathrm{t}_{\mathrm{pdf}} \cdot(\mathrm{S} \rightarrow \mathrm{Q})$

FJ family

dual JK flip-flops

CHARACTERISTICS (continued)

DYNAMIC DATA

Waveforms illustrating measurement of t_{pdr} and $\mathrm{t}_{\mathrm{pdf}} \cdot(\mathrm{T} \rightarrow \mathrm{Q})$

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance $*$ short circuit protection * high capacitance drive capability $*$ high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOP

QUICK REFERENCE DATA				
Supply voltage	V_{P}	$5.0 \pm 5 \%$	V	
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +70	o^{C}	
Available d.c. fan-out (full temperature range)	N_{a}	\geqslant	10	
Max. operating frequency; $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	f	$>$	15	MHz
Average power consumption;				
$\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$ (per flip-flop)	P_{av}	$<$	42.5	mW

The FJJ131/7474 is an edge-triggered dual D-type flip-flop with direct SET inputs and complementary outputs. On the positive going edge of the clock pulse the information on the D input is transferred to Q_{1} (or resp. Q_{3}).

PACKAGE OUTLINE:|14 lead plastic dual in-line (type A)(See General Section)

CIRCUIT DIAGRAM

LOGIC DIAGRAM

FUNCTION TABLE

t_{n}	$\mathrm{t}_{\mathrm{n}}+1$	
D	Q_{1}	Q_{2}
L	L	H
H	H	L

$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage
Output voltage
Input voltage
Peak negative input voltage ($\mathrm{D}, \mathrm{S}, \mathrm{T}$)
Storage temperature
Operating ambient temperature

V_{P}	max.	7.0	V
$\mathrm{~V}_{\mathrm{Q}}$	max.	5.5	V
$\mathrm{~V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{T}}$	max.	5.5	V
$-\mathrm{V}_{\mathrm{M}}$	max.	2	$\mathrm{~V}^{1}$)
$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$	

${ }^{1}$) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $\mathrm{f}=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}} \geq 75 \Omega$.

CHARACTERISTICS

		$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$				Conditions and references	
						$\begin{aligned} & \mathrm{V}_{\mathrm{P}} \\ & (\mathrm{~V}) \end{aligned}$	
STATIC DATA							
Voltages							
Input threshold LOW (any input)	$\mathrm{V}_{\text {ILmax }}$	0.8	0.8	0.8	V		
Input threshold HIGH (any input)	$\mathrm{V}_{\text {IHmin }}$	2.0	2.0		V		
Output LOW	$\mathrm{V}_{\text {QLmax }}$	0.	0.4		V	4.75	$\mathrm{I}_{\mathrm{Q}}=\mathrm{I}_{\mathrm{QL}} \mathrm{max}$
Output HIGH	VQHmin	2.	2.4		V	4.75	$-\mathrm{I}_{\mathrm{Q}}=-\mathrm{I}_{\mathrm{QH}}$ max
Currents							
Input LOW ($\mathrm{S}_{1}, \mathrm{D}_{1}$)	- IS1 Lmax -ID1 Lmax	1.6	1.6	1.6	mA	5.25	$\mathrm{V}_{\mathrm{Sl} 1}, \mathrm{~V}_{\mathrm{D} 1}=\mathrm{V}_{\mathrm{QLmax}}$
Input LOW ($\mathrm{S}_{2}, \mathrm{~T}_{1}$)	-IS2 Lmax -IT1 Lmax	3.2	3.2	3.2	mA	5.25	$\mathrm{V}_{\mathrm{S} 2}, \mathrm{~V}_{\mathrm{T} 1}=\mathrm{V}_{\mathrm{QL} \text { max }}$
Input HIGH (D)	IDHmax	40	40	40	$\mu \mathrm{A}$	5.25	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{QHmin}}$
Input $\mathrm{HIGH}\left(\mathrm{S}_{1}, \mathrm{~T}_{1}\right)$	${ }^{\text {I }}$ S1Hmax IT1Hmax	80	80	80	$\mu \mathrm{A}$	5.25	$\mathrm{V}_{\mathrm{S} 1}, \mathrm{~V}_{\mathrm{Tl}}=\mathrm{V}_{\mathrm{QHmin}}$
Input HIGH (S_{2})	IS2Hmax	120	120	120	$\mu \mathrm{A}$	5.25	$\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{QHmin}}$
Output LOW	IQLmax		16		mA		
Output HIGH	-I QHmax	0.	0.4	0.4			
Output short circuited	-IQscmin	,	18			5.25	$\mathrm{V}_{\mathrm{Q}}=$
Output short circuited	-IQscmax		57	57	mA	5.25	V

CHARACTERISTICS (continued)

				0°				nditions and references
					70		$\begin{aligned} & V_{P} \\ & (\mathrm{~V}) \end{aligned}$	
SUPPLY DATA								
Supply current	IP	$\stackrel{\text { typ. }}{<}$	17 30	17 30		mA mA	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=5.0 \mathrm{~V}$
DYNAMIC DATA								
$\underline{\text { Signal requirement }}$								
Pulse duration (S, T input)	${ }^{\text {t }}$ SL, ${ }^{\text {t }}$		30	30		ns	5.0	
Performance								
Rise propagation delay time $(\mathrm{S} \rightarrow \mathrm{Q})$	$t_{\text {pdr }}$	$<$	-	25		ns	5.0	$\mathrm{N}=10$
Fall propagation delay time $(\mathrm{S} \rightarrow \mathrm{Q})$	${ }^{\text {t }}$ df	<		40		ns	5.0	$\mathrm{N}=10$
Rise propagation delay time $(\mathrm{T} \rightarrow \mathrm{Q})$	${ }^{\text {tpdr }}$	$\left\{\begin{array}{l}> \\ \text { typ. } \\ <\end{array}\right.$		10 14 25	-	ns ns ns	$\} 5.0$	$\mathrm{N}=10$
Fall propagation delay time $(\mathrm{T} \rightarrow \mathrm{Q})$	${ }^{\text {p }}$ df	$\left\{\begin{array}{l}> \\ \text { typ. }\end{array}\right.$	-	10 20 50		ns ns	$\} 5.0$	$\mathrm{N}=10$
		<	-	50		ns		
Set-up time	t_{su}	$>$	-	20		ns		
Hold time	$t_{\text {hold }}$	$>$	-	5		ns		
Maximum operating frequency	f	> typ.		15 25	-	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\} 5.0$	$\mathrm{N}=10$

CHARACTERISTICS (continued)
DYNAMIC DATA

Waveforms illustrating set-up and hold times.
S_{1} or \mathbf{S}_{3} INPUT

S_{2} or S_{4} INPUT

\mathbf{Q}_{1} or \mathbf{Q}_{3} OUTPUT

Waveforms illustrating measurement of t_{pdr} and $t_{\mathrm{pdf}}(\mathrm{S} \rightarrow \mathrm{Q})$

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) $*$ high logic swing $*$ low output impedance $*$ short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

BCD DECADE COUNTER

QUICK REFERENCE DATA

Supply voltage
Operating ambient temperature
Max. operating frequency; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Available d.c. fan-out (full temperature range)

	$5.0 \pm 5 \%$	V	
$\mathrm{~V}_{\mathrm{P}}$	$5.0 \pm$		
$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$	
f_{C}	\geq	10	MHz
N_{a}	\geq	10	

Average power consumption
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$P_{a v} \quad$ typ. 160 mW

The FJJ141/7490 is a high speed decade counter, consiting of 4 master-slave flip-flops. Gated direct reset lines are provided to inhibit count inputs and return all outputs to a logical zero (inputs $\cdot \mathrm{G}_{1}, \mathrm{G}_{2}$) or to a binary coded (BCD) count of nine (inputs G_{3}, $\left.\mathrm{G}_{4}\right)$.

PACKAGE OUTLINE : 14 lead plastic dual in-line (type A) (See General Section)

CIRCUIT DIAGRAM

LOGIC FUNCTION

As the output Q_{A} from the first flip-flop is not internally connected to the succeeding stages, the counter can be used in three different modes.

1. Binary coded decimal decade counter: the T_{2} input must be externally connected to the Q_{A} output. T_{1} is then the counter input.
2. Symmetrical divide-by-ten counter for frequency synthesizer or other applications requiring division of a binary count by the power of ten: the Q_{D} output must be connected to the T_{1} input. In this case T_{2} becomes counter input and a divide-by-ten square wave is obtained at output Q_{A}.
3. Divide-by-two counter and a divide-by-five counter: no external interconnections are required.

FUNCTION TABLES

$\underline{B C D}$ count sequence (output Q_{A} connected to input T_{2})

Count	OUTPUT			
	Q_{D}	Q_{C}	Q_{B}	Q_{A}
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

Reset/count

RESET INPUTS				OUTPUTS			
G_{1}	G_{2}	G_{3}	G_{4}	Q_{D}	Q_{C}	Q_{B}	Q_{A}
H	H	L	X	L	L	L	L
H	H	X	L	L	L	L	L
X	L	H	H	H	L	L	H
L	X	H	H	H	L	L	H
X	L	X	L	no change			
L	X	L	X	no change			
L	X	X	L	no change			
X	L	L	X	no change			

$\mathrm{H}=$ HIGH state (the more positive voltage)
$\mathrm{L}=$ LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
G_{1} and G_{2} are "preset 0 " inputs (reset all Q outputs to LOW)
G_{3} and G_{4} are "preset 9" inputs (set Q_{A} and Q_{D} to HIGH and reset Q_{B} and Q_{C} to LOW to provide BCD 9 count for nine complement applications)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{P}	max.	7.0	V
T input voltage	V_{T}	max.	5.5	V
G input voltage	V_{G}	\max.	5.5	V
```Duration of negative transient input voltage of 2 V \(\mathrm{R}_{\mathrm{S}} \geq 75 \Omega ; \mathrm{f}=5.0 \mathrm{MHz}\)```	$t_{p}$	max.	20	ns
storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to	-150	${ }^{0} \mathrm{C}$
Operating ambient temperature	Tamb	0 to	+70	${ }^{\circ} \mathrm{C}$



1) Do not short circuit more than one output at a time.
2) All four outputs loaded, $Q_{A}$ output connected to $T_{2}$ input, delay from $T_{1}$ input to $Q_{C}$ output. (see also waveforms page 6).

CHARACTERISTICS (continued)
Input pulse


Input $T_{1}\left(Q_{A}\right.$ output connected to $\left.T_{2}\right)$

$\overline{1_{)} \text {Including probe and jig capacitance }}$

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.
-Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance * short circuit protection * high capacitance drive capability $*$ high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices $*$ it corresponds to the 74 Nseries TTL.

## 8 BIT SHIFT REGISTER



QUICK REFERENCE DATA							
Supply voltage	$\mathrm{V}_{\mathrm{P}}$	$5.0 \pm 5 \%$	V				
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$				
Max. shift frequency	f	10	MHz				
Available d.c. fan-out							
(full temperature range)	$\mathrm{N}_{\mathrm{a}}$	10					
D.C. noise margin (full temperature range)	$\mathrm{M}_{\mathrm{L}}$	$>$	0.4				
typ. 1.0	V						
Total power dissipation	$\mathrm{P}_{\text {tot }}$	typ. 175	mW				

PACKAGE OUTLINE : 14 lead plastic dual in-line (type A) (See General Section)

FJJ151/7491A
shift register

## CIRCUIT DIAGRAM



The FJJ151 is a serial input, serial-ouput 8-bit shift register with complementary outputs. It consists of eight RS master-slave flip-flops, a two-input NAND gate, and a clock driver. Inputs $G_{1}$ and $G_{2}$ go to an AND gate; either one or both inputs may be used. If only one is used, the other must be kept in the HIGH state.
When the Tinput is HIGH, information at the input of each stage is shifted to the next; thus, information at the $G_{1}$ or $G_{2}$ input is transferred to the $Q_{1}$ or $Q_{2}$ output after 8 clock pulses.
The FJJ151 corresponds to the SN7491AN.

## LOGIC FUNCTION

Function table

$\mathrm{t}_{\mathrm{n}}$		$\mathrm{t}_{\mathrm{n}+8}$
$\mathrm{G}_{1}$	G 2	$\mathrm{Q}_{1}$
L	L	L
L	H	L
H	L	L
H	H	H

$$
\begin{aligned}
& H=\text { HIGH state (the more positive voltage) } \\
& L=\text { LOW state (the less positive voltage) } \\
& t_{\mathrm{n}}=\text { bit time before trigger pulse } \\
& \mathrm{t}_{\mathrm{n}}+8=\text { bit time after } 8 \text { trigger pulses }
\end{aligned}
$$

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltages
Input voltages
Peak negative input voltage $\left(\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{~T}\right)$
Storage temperature
Operating ambient temperature

$\mathrm{V}_{\mathrm{P}}$	max.	7.0	V
$\mathrm{~V}_{\mathrm{G} 1} ; \mathrm{V}_{\mathrm{G} 2} ; \mathrm{V}_{\mathrm{T}}$	max.	5.5	$\left.\mathrm{~V}^{\mathrm{l}}\right)$
$-\mathrm{V}_{\mathrm{M}}$	$\max$.	2	$\left.\mathrm{~V}^{2}\right)$
$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\mathrm{o}} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\mathrm{o}} \mathrm{C}$	

[^42]
## CHARACTERISTICS

		Tamb ( ${ }^{\circ} \mathrm{C}$ )			Conditions and References	
			25	70	VP   (V)	
STATIC DATA	$\mathrm{V}_{\text {ILmax }}$	0.	0.8	0.8 V		$\begin{aligned} \mathrm{I}_{\mathrm{Q}} & =\mathrm{I}_{\mathrm{QL} \max } \\ -\mathrm{I}_{\mathrm{Q}} & =-\mathrm{I}_{\mathrm{QH} \max } \end{aligned}$
Voltages						
Input threshold LOW (any input)						
Input threshold HIGH (any input)	$\mathrm{V}_{\text {IHmin }}$	2.0		2.0 V		
Output LOW	$\mathrm{V}_{\text {QLmax }}$	0.4	0.4	0.4 V		
Output HIGH	$\mathrm{V}_{\text {QHmin }}$	2.4	2.4	2.4 V	4.75	
Currents						
Input LOW; G1	-IGlLmax	1.6	1.6	1.6 mA	5.25	
$\mathrm{G}_{2}$	$-_{\text {I }}^{\text {G2Lmax }}$	1.6	1.6	1.6 mA	5.25	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$
T	-ITLmax	1.6	1.6	1.6 mA	5.25	
Input HIGH; $\mathrm{G}_{1}$	IG1Hmax	40	40	$40 \mu \mathrm{~A}$	5.25	
$\mathrm{G}_{2}$	$\mathrm{I}_{\text {G2Hmax }}$	40	40	$40 \mu \mathrm{~A}$	5.25	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$
T	$\mathrm{I}_{\text {THmax }}$	40	40	$40 \mu \mathrm{~A}$	5.25	
$\mathrm{G}_{1}$	IG1Hmax	1.0	1.0	1.0 mA	5.25	
$\mathrm{G}_{2}$	$\mathrm{I}_{\mathrm{G} 2 \mathrm{Hmax}}$	1.0	1.0	1.0 mA	5.25	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$
T	ITHmax	1.0	1.0	1.0 mA	5.25	
Output LOW	$I_{\text {QLmax }}$	16	16	16 mA		$\mathrm{V}_{\mathrm{Q}}=\mathrm{V}_{\mathrm{QL} \text { max }}$
Output HIGH	- $\mathrm{I}_{\mathrm{QHmax}}$	0.4	0.4	0.4 mA		$\mathrm{V}_{\mathrm{Q}}=\mathrm{V}_{\mathrm{QH} \text { min }}$
Output short circuited (see note 1)	$-\mathrm{I}_{\mathrm{Qscmin}}$   -IQscmax	$\begin{aligned} & 18.0 \\ & 55.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 55.0 \end{aligned}$	$\begin{aligned} & 18.0 \mathrm{~mA} \\ & 55.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	$\} \mathrm{V}_{\mathrm{Q}}=0$
SUPPLY DATA						
Supply current;   HIGH input G1; G2; T	IPH $\underset{\sim}{\stackrel{\text { typ. }}{<} \text {. }}$	35 60	$\begin{aligned} & 35 \\ & 60 \end{aligned}$	$\begin{aligned} & 35 \mathrm{~mA} \\ & 60 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|l\|l} 5.0 \\ 5.0 \end{array}$	

Note 1: Not more than one output should be shoṛt circuited at a time.

## CHARACTERISTICS



Note 1: Refers to propagation delay from seventh bit to output stage.

CHARACTERISTICS (continued)
DYNAMIC DATA

T INPUT
$G_{1} \cdot G_{2}$ INPUT

Waveforms illustrating input signals


CHARACTERISTICS (continued)
DYNAMIC DATA
In general case


Waveforms illustrating measurement of set-up and hold times to guarantee shifting operation, for HIGH logic level.

## CHARACTERISTICS (continued)

DYNAMIC DATA

In general case

T INPUT
$\mathbf{G}_{1} \cdot \mathbf{G}_{\mathbf{2}}$ INPUT


Waveforms illustrating measurement of set-up and hold times to guarantee shifting operation, for LOW logic Ievel.

CHARACTERISTICS (continued) DYNAMIC DATA

T INPUT

QI OUTPUT

## $Q_{2}$ OUTPUT



Waveforms illustrating measurement of $t_{p d r}$ and $t_{\text {pdf }}$ if $S$ input of eight bit at logic HIGH level is 25 ns prior to rising edge of T input. (thold $=0 \mathrm{~ns}$ )

FJ151/7491A
shift register

CHARACTERISTICS (continued)
DYNAMIC DATA

T INPUT
$Q_{1}$ OUtput
$Q_{2}$ OUTPUT


Waveforms illustrating measurement of $t_{p d r}$ and $t_{p d f}$ if $S$ input of eight bit at logic LOW level is 25 ns prior to rising edge of T input (thold $=0 \mathrm{~ns}$ ).


To output $\mathrm{Q}_{2}$ the same loading circuit.
${ }^{1}$ ) Including probe and jig capacitance

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out $*$ low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance * short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.


## PACKAGE OUTLINE:

16 lead plastic dual in-line (type A) (See General Section)

QUICK REFERENCE DATA				
Supply voltage	$\mathrm{V}_{\mathrm{P}}$	$5.0 \pm 5 \%$	V	
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$	
Available d.c. fan-out (full temperature range)	$\mathrm{N}_{\mathrm{a}}$	$\geq$	10	
D.C. noise margin (full temperature range)	$\mathrm{M}_{\mathrm{L}}$	$>$	typ. 1.0	
		V		
Average power consumption (total)	$\mathrm{P}_{\mathrm{av}}$	typ. 160	mW	
$\mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$				

## CIRCUIT DIAGRAM



## LOGIC DIAGRAM



## LOGIC FUNCTION

Information present at a data input is transferred to the Q output. For so long as the trigger input is HIGH, the Q output will follow the data input. When the trigger goes LOW, the information present at the data input at the time of transition is retained at the Q output until the trigger again goes HIGH.

Function table (each gate)

$\mathrm{t}_{\mathrm{n}}$   data input	$\mathrm{t}_{\mathrm{n}+1}$   output Q
L	L
H	H

$\mathrm{H}=$ HIGH state (the more positive voltage)
$\mathrm{L}=$ LOW state (the less positive voltage)
$\mathrm{t}_{\mathrm{n}}=$ bit time before trigger pulse
$\mathrm{t}_{\mathrm{n}+1}=$ bit time after rising edge of trigger pulse

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Input voltage
Peak negative input voltage (D, T)
Storage temperature
Operating ambient temperature

$\mathrm{V}_{\mathrm{P}}$	max.	7.0	V
$\mathrm{~V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{T}}$	max.	5.5	$\left.\mathrm{~V}^{1}\right)$
$-\mathrm{V}_{\mathrm{M}}$	max.	2	$\left.\mathrm{~V}^{2}\right)$
$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	0 to	+70	${ }^{\mathrm{O}} \mathrm{C}$

[^43]
## CHARACTERISTICS



## CHARACTERISTICS

		$\begin{array}{ll} \mathrm{T}_{\mathrm{amb}} & \left({ }^{\circ} \mathrm{C}\right) \\ 0 & 25 \\ 0 & 70 \end{array}$	Conditions and References		
		$\begin{array}{\|l\|} \hline V_{p} \\ (V) \end{array}$	All these times at $\mathrm{N}=10$		
DYNAMIC DATA					$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=400 \Omega$
Performance					
Set-up time					
D inputs:					
	$\mathrm{t}_{\text {suH }}$ typ.	- 7 - ns	$5^{7}$		
	$\mathrm{t}_{\text {suH }}<$	- $20-\mathrm{ns}$	5		
LOW	$\mathrm{t}_{\text {suL }}$ typ.	- 14 - ns	5		
	$\mathrm{t}_{\text {SuL }}<$	- $20-\mathrm{ns}$	5		
Hold time					
D inputs:					
HIGH	thold H typ.	- $15-\mathrm{ns}$	5		
LOW	${ }^{\text {thold L }}$ Lyp.	- 6 - ns	5		
$\frac{\text { Propagation delay }}{\text { times: }}$					
Rise $D \rightarrow Q_{1}\left(Q_{3} ; Q_{5} ; Q_{7}\right)$	$t_{\text {pdr }}<$	- $30-\mathrm{ns}$	5		
Fall $\mathrm{D} \rightarrow \mathrm{Q}_{1}\left(\mathrm{Q}_{3} ; \mathrm{Q}_{5} ; \mathrm{Q}_{7}\right)$	$t_{\text {pdf }}<$	- 25 - ns	5		
Rise $D \rightarrow Q_{2}\left(Q_{4} ; Q_{6} ; Q_{8}\right)$	$t_{\text {pdr }}<$	- 40 - ns	5		
Fall $\mathrm{D} \rightarrow \mathrm{Q}_{2}\left(\mathrm{Q}_{4} ; \mathrm{Q}_{6} ; \mathrm{Q}_{8}\right)$	$\mathrm{t}_{\text {pdf }}<$	- 15 - ns	5		
	$\mathrm{t}_{\mathrm{pdr}}<$	- $30-\mathrm{ns}$	5		
$\begin{array}{ll} \text { Fall } \begin{array}{ll} \mathrm{T}_{1} \rightarrow Q_{1}\left(Q_{3}\right) \\ & \mathrm{T}_{2} \rightarrow Q_{5}\left(Q_{7}\right) \end{array} \end{array}$	${ }^{\text {tpdf }}$ <	- $15-\mathrm{ns}$	5		
$\begin{aligned} \text { Rise } & \mathrm{T}_{1} \rightarrow \mathrm{Q}_{2}\left(\mathrm{Q}_{4}\right) \\ & \mathrm{T}_{2} \rightarrow \mathrm{Q}_{6}\left(\mathrm{Q}_{8}\right) \end{aligned}$	$\mathrm{t}_{\mathrm{pdr}}<$	- $30-\mathrm{ns}$	5		
$\begin{aligned} \text { Fall } & \mathrm{T}_{1} \rightarrow \mathrm{Q}_{2}\left(\mathrm{Q}_{4}\right) \\ & \mathrm{T}_{2} \rightarrow \mathrm{Q}_{6}\left(\mathrm{Q}_{8}\right) \end{aligned}$	${ }^{\text {t }}$ pdf $<$	- 15 - ns	5		

CHARACTERISTICS (continued)
DYNAMIC DATA


Waveforms inllustrating measurement of $t_{p d r}$ and $t_{p d f}$.
Each latch D flip-flop is tested seperately


## Notes:

1. Pulse generator $A: V_{A}=3 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns} ; \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns} ; \mathrm{R}_{\mathrm{S}}=50 \Omega$; $\mathrm{tDH}=\mathrm{tDL}=1 \mu \mathrm{~s}$; $\mathrm{f}=500 \mathrm{kHz}$
2. Pulse generator $\mathrm{B} ; \mathrm{V}_{\mathrm{B}}=3 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns} ; \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns} ; \mathrm{R}_{\mathrm{S}}=50 \Omega ; \mathrm{t}_{\mathrm{TH}}=\mathrm{t}_{\mathrm{TL}}=500 \mathrm{~ns}$; $\mathrm{f}=1 \mathrm{MHz}$

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance $*$ short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

## DUAL JK MASTER-SLAVE FLIP-FLOP



QUICK REFERENCE DATA				
Supply voltage	$\mathrm{V}_{\mathrm{P}}$	$5.0 \pm 5 \%$	V	
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$	
Maximum operating frequency	f	$\geq$	15	MHz
Available d.c. fan-out (full temperature range)	$\mathrm{N}_{\mathrm{a}}$	$\geq$	10	
D.C. noise margin (full temperature range)		$\mathrm{M}_{\mathrm{L}}$	$>$	0.4
typ.	1.0	V		
Average power consumption (total)				
$\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{av}}$	typ. 80	mW	

The FJJ191/7476 is a dual JK master-slave flip-flop having one J and one K input per flipflop. The circuits operate at a frequency up to 15 MHz (typ.) The information at the J and K inputs enters the master when T is HIGH. Afterwards, when T is LOW, the information is transferred from the master to the slave and appears at the outputs. The SET signals on $S_{1}$ and $S_{2}\left(S_{3}\right.$ and $\left.S_{4}\right)$ which override any other inputs, are active at the LOW level.

PACKAGE OUTLINE: 16 lead plastic dual in-line (type A) (See General Section)

CIRCUIT DIAGRAM


LOGIC DIAGRAM


## LOGIC FUNCTION

$\left.\begin{array}{l}\text { LOW input to } S_{1}\left(S_{3}\right) \text { sets } Q_{1}\left(Q_{3}\right) \text { to HIGH } \\ \text { LOW input to } S_{2}\left(S_{4}\right) \text { sets } Q_{1}\left(Q_{3}\right) \text { to LOW }\end{array}\right\}$ independent of trigger pulse
Function table for J and K inputs

$\mathrm{t}_{\mathrm{n}}$		$\mathrm{t}_{\mathrm{n}+1}$
J	K	$\mathrm{Q}_{1}$
L	L	$\mathrm{Q}_{\ln }$
L	H	L
H	L	H
H	H	$\mathrm{Q}_{\ln }$

$H=$ HIGH state (the more positive voltage)
$L=$ LOW state (the less positive voltage)
$t_{n}=$ bit time before trigger pulse
$t_{n+1}=$ bit time after trigger pulse

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Input voltage
Peak negative input voltage (J, K, T, S)
Storage temperature
Operating ambient temperature

$V_{P}$	max.	7.0	V
$\mathrm{~V}_{\mathrm{J}}, \mathrm{V}_{\mathrm{K}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{S}}$	max.	5.5	$\left.\mathrm{~V}^{\mathrm{l}}\right)$
$-\mathrm{V}_{\mathrm{M}}$	max.	2	$\left.\mathrm{~V}^{2}\right)$
$\mathrm{T}_{\mathrm{Stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	0 to	+70	${ }^{\circ} \mathrm{C}$

0 to $+70 \quad{ }^{\circ} \mathrm{C}$
max. 7.0 V
$\max .5 .5 \mathrm{~V}^{1}$ )
max. $2 \mathrm{~V}^{2}$ )
-55 to $+125{ }^{\circ} \mathrm{C}$

[^44]CHARACTERISTICS


CHARACTERISTICS (continued)
DYNAMIC DATA

T, J and K INPUTS


Waveforms illustrating in- and output pulses

$\overline{\left.{ }^{1}\right) \text { Including }}$ probe and jig capacitance


Equivalent load for $\mathrm{N}=10$

CHARACTERISTICS (continued)

## DYNAMIC DATA



Waveforms illustrating switching times

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance $*$ short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates. gate expanders, flip-flops and complex-function devices.

## SINGLE ASYNCHRONOUS 4-BIT BINARY COUNTER



QUICK REFERENCE DATA			
Supply voltage	$\mathrm{V}_{\mathrm{P}}$	$5.0 \pm 5 \%$	V
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$
Maximum operating frequency	f	$\geq 10$	MHz
Available d.c. fan-out (full temperature range)	$\mathrm{N}_{\mathrm{a}}$	$\geq \quad 10$	
D.C. noise margin (full temperature range)	$\mathrm{M}_{\mathrm{L}}$	$\begin{array}{lr} > & 0.4 \\ \text { typ. } & 1.0 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Average power consumption (total) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {av }}$	typ. 128	mW

PACKAGE OUTLINE: 14 lead plastic dual in-line (type A) (See General Section)

CIRCUIT DIAGRAM


The FJJ211/7493 is a high-speed asynchronous 4-bit binary counter with four masterslave flip-flops which are internally connected to provide a divide-by-two and a di-vide-by-eight counter. By using an external connection a count of sixteen can be obtained. A gated line, direct reset inhibits the count and simultaneously all flip-flop outputs return to the LOW state.
For use as a 4-bit ripple-through counter, externally connect $Q_{1}$ to $T_{2}$; apply the count pulses to $T_{1}$. As shown by the function table below, the outputs at $Q_{1}, Q_{3}, Q_{5}$ and $Q_{7}$ represent division by 2, 4, 8 and 16 respectively.
For use as 3-bit ripple-through counter, apply the count pulses to $\mathrm{T}_{2}$.
Simultaneous divisions by 2,4 and 8 are available at the outputs $Q_{3}, Q_{5}$ and $Q_{7}$. The first flip-flop ( $T_{1}$ and $Q_{1}$ ) can be used independently if the reset function ( $S_{2}$ and $S_{4}$ ) coincides with reset of the 3-bit ripple-through counter.

## FUNCTION TABLES

count	outputs			
	$\mathrm{Q}_{1}$	Q 3	$\mathrm{Q}_{5}$	$\mathrm{Q}_{7}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L.	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H
12	L	L	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

Notes:
$\overline{1 . Q_{1}}$ connected to $T_{2}$
2. To reset all outputs in the LOW state, $\mathrm{S}_{2}$ and $S_{4}$ inputs must be HIGH.
3. Either $S_{2}$ or $S_{4}$ (or both) must be LOW to count.
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L = LOW state (the less positive voltage)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	$\mathrm{V}_{\mathrm{P}}$	$\max$.	7.0	V
Input voltage	$\mathrm{V}_{\mathrm{T}} ; \mathrm{V}_{\mathrm{S}}$	$\max$.	5.5	$\left.\mathrm{~V}^{1}\right)$
Peak negative input voltage $(\mathrm{T}, \mathrm{S})$	$-\mathrm{V}_{\mathrm{M}}$	$\max$.	2	$\left.\mathrm{~V}^{2}\right)$
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$		-55 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$		0 to +70	${ }^{\circ} \mathrm{C}$

[^45]CHARACTERISTICS


## CHARACTERISTICS (continued)



## Note 1:

All four outputs loaded. Output $Q_{1}$ connected to input $T_{2}$.

## Note 2:

Not more than one output should be short circuited at a time.

CHARACTERISTICS (continued)
DYNAMIC DATA



Waveforms inllustrating measurement of $t_{\text {pdr }}$ and $t_{\text {pdf }}$ Note 1:
$\mathrm{T}_{1}$ input $\left(\mathrm{Q}_{1}\right.$ output connected to $\mathrm{T}_{2}$ input)


To outputs $\mathrm{Q}_{3}, \mathrm{Q}_{5}$ and $\mathrm{Q}_{7}$ the same loading circuit.

[^46]The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the Fl family: * high-fan-out * low power consumption (typ. 10 mW for standurd gutes) * high logic swing * low output impedance * short circuit protection * high čapacitance drive čapability * high noise margin (typ. 1.0 V for standard gat(s) * čomprehensive range of circuits, including NAND gates, AND-OR-NOT gates. gate expanders, flip-flops and complex-function devices.


## SINGLE ASYNCHRONOUS 4-BIT BINARY COUNTER



## PACKAGE OUTLINE:

14 lead plastic dual in-line (type A) (See General Section)

QUICK REFERENCE DATA			
Supply voltage	Vp	$5.0 \pm 5 \%$	V
Operating ambient temperature	Tamb	0 to +70	${ }^{\circ} \mathrm{C}$
Maximum operating frequency	f	$\geq 10$	MHz
Available d.c. fan-out (full temperature range)	$\mathrm{Na}_{\mathrm{a}}$	$\geq 10$	
D.C. noise margin (full temperature range)	$\mathrm{M}_{\mathrm{L}}$	$\begin{array}{ll} > & 0.4 \\ \text { typ. } & 1.0 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Average power consumption (total) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {av }}$	typ. 155	mW

CIRCUIT DIAGRAM


The FJJ251/7492 is a high-speed asynchronous 4-bit binary counter with four masterslave flip-flops which are internally connected to provide divide-by -two and a divide-by-six counter. By using an external connection a count of twelve can be obtained. A gated line, direct reset inhibits the count and simultaneously all flip-flop outputs return to the LOW state.
For use as a divide-by-twelve counter, externally connect $Q_{1}$ to $T_{2}$; apply the count pulses to $T_{1}$.
Simultaneous divisions by 2, 6 and 12 are available at the outputs $\mathrm{Q}_{1}, \mathrm{Q}_{5}$ and $\mathrm{Q}_{7}$ as shown in the function table below. For use as a divide-by-six counter, apply the count pulses to $T_{2}$.
Simultaneous divisions by 3 and 6 are available at the outputs $Q_{5}$ and $Q_{7}$.
The first flip-flop ( $T_{1}$ and $Q_{1}$ ) can be used independently if the reset function coincides with reset of the divide-by-six counter.

FUNCTION TABLE

count	outputs			
	$\mathrm{Q}_{1}$	$\mathrm{Q}_{3}$	$\mathrm{Q}_{5}$	$\mathrm{Q}_{7}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	L	L	H
7	H	L	L	H
8	L	H	L	H
9	H	H	L	H
10	L	L	H	H
11	H	L	H	H

## Notes:

1. $\mathrm{Q}_{1}$ connected to $\mathrm{T}_{2}$
2. To reset all outputs in the LOW state, $\mathrm{S}_{2}$ and $\mathrm{S}_{4}$ inputs must be HIGH.
3. Either $S_{2}$ or $S_{4}$ (or both) must be LOW to count.
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voitage	$\mathrm{V}_{\mathrm{P}}$	$\max$.	7.0	V
Input voltage	$\mathrm{V}_{\mathrm{T}} ; \mathrm{V}_{\mathrm{S}}$	$\max$.	5.5	$\left.\mathrm{~V}^{1}\right)$
Peak negative input voltage $(\mathrm{T}, \mathrm{S})$	$-\mathrm{V}_{\mathrm{M}}$	$\max$.	2	$\left.\mathrm{~V}^{2}\right)$
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-55 to	+150	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to	+70	${ }^{\circ} \mathrm{C}$

[^47]
## CHARACTERISTICS



## CHARACTERISTICS (continued)



## Note 1:

All four output loaded. Output $\mathrm{Q}_{1}$ connected to input $\mathrm{T}_{2}$.

## Note 2:

Not more than one output should be short circuited at a time.

## CHARACTERISTICS (continued)

## DYNAMIC DATA



Pulse generator:
$\mathrm{t}_{\mathrm{r}}<10 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{f}}<10 \mathrm{~ns}$
$\mathrm{f}=1 \mathrm{MHz}$
duty cycle $\delta=0.5$


Waveforms inllustrating measurement of $t_{\text {pdr }}$ and $t_{\text {pdf }}$
Note 1:
$\mathrm{T}_{1}$ input ( $\mathrm{Q}_{1}$ output connected to $\mathrm{T}_{2}$ input)


To outputs $Q_{3}, Q_{5}$ and $Q_{7}$ the same loading circuit.

[^48]
# DUAL JK MASTER-SLAVE FLIP-FLOP 

For data of this type please refer to FJJ 121/7473

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance * short circuit protection * high capacitance drive capability $*$ high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

## MONOSTABLE MULTIVIBRATOR



QUICK REFERENCE DATA				
Supply voltage	$\mathrm{V}_{\mathrm{P}}$	$5.0 \pm 5 \%$	V	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0	to +70	${ }^{\circ} \mathrm{C}$
Available fan-out (each output)	$\mathrm{N}_{\mathrm{a}}$	$\geq$	10	
Average power consumption (50\% duty cycle)	$\mathrm{P}_{\mathrm{av}}$	typ.	90	mW

PACKAGE OUTLINE 14 lead plastic dual in-line (type A) (See General Section)

The FJK101/74121 monostable multivibrator features D. C. voltage level triggering which is not directly related to the input pulse transition time. The input gating allows the choice of triggering either on the positive or negative-going edge of the input pulse, as well as providing an inhibit facility. Both positive and negative output pulses are available with a full fan-out of 10 and TTL line driving capabilities.
$G_{1}$ and $G_{2}$ are negative-edge trigger inputs and will trigger the one-shot when either or both go LOW as long as $\mathrm{G}_{3}$ is HIGH. $\mathrm{G}_{3}$ is a positive-edge Schmitt-trigger input for slow edges or level detection, and will trigger the one-shot when $\mathrm{G}_{3}$ goes HIGH as long as $G_{1}$ or $G_{2}$ are LOW.
Output pulse duration may be varied between 40 ns and 40 s and is determined by the value of external components used (see TIMING NOTES on page 6).

## FUNCTION TABLE

inputs						outputs	
$\mathrm{G}_{1}$	$\begin{aligned} & \mathrm{tn}_{n} \\ & \mathrm{G}_{2} \end{aligned}$	$\mathrm{G}_{3}$		$\begin{gathered} \mathrm{t}_{\mathrm{n}+1} \\ \mathrm{G}_{2} \end{gathered}$	$\mathrm{G}_{3}$		
H	H	L	H	H	H	inhibit	
L	X	H	L		L	"	
X	L	H	X	L	L	"	$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
L	X	L	L	X	H	one-shot	L $=$ LOW state (the less positive voltage)
X	L	L	X	L	H	"	$\mathrm{X}=$ state immaterial
H	H	H	X	L	H	"	
H	H	H	L	X	H	"	$\mathrm{t}_{\mathrm{n}} \quad=$ time before input transition
X	L	L	X	H	L	inhibit	$\mathrm{t}_{\mathrm{n}+1}=$ time after input transition
L	X	L	H	X	L	"	
X	L	H	H	H	H	"	
L	X	H			H	"	
H	H	L	X	L	L	"	
H	H	L	L	X	L	"	

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	$\mathrm{V}_{\mathrm{P}}$	$\max$.	7.0	V
D. C. input voltage	$\mathrm{V}_{\mathrm{G}}$	$\max$.	5.5	$\left.\mathrm{~V}^{1}\right)$
Negative transient input voltage	$-\mathrm{V}_{\mathrm{GM}}$	$\max$.	2.0	$\left.\mathrm{~V}^{2}\right)$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to	+150	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0	to	+70
${ }^{\circ} \mathrm{C}$				

[^49]CHARACTERISTICS


[^50]CHARACTERISTICS (continued)


## CHARACTERISTICS (continued)

## DYNAMIC DATA



CHARACTERISTICS (continued)
TIMING NOTES


1. An external timing capacitor may be connected between $C_{1}$ (pin 10 - positive) and $\mathrm{C}_{2}$ (pin 11 -negative). Without an external capacitor the output pulse width is typically 30 ns .
2. An internal timing resistor is incorporated between $C_{3}$ (pin 9) and $C_{2}$ (pin 11) and has a nominal value of 2 k 。. It may be brought into the circuit by connecting $\mathrm{C}_{3}$ to $V_{P}($ pin 14).
3. For variable pulse widths an external variable resisto: whould be connected between $\mathrm{C}_{3}$ and $\mathrm{V}_{\mathrm{P}}$; no external limiting is then required
4. For accurate repeatable pulse widths connect an external resistor between point $C_{2}$ and $V_{p}$, leaving point $C_{3}$ open.
5. Jitter-free operation is maintained over the full temperature and supply voltage range for timing capacitances from 10 pF to $10 \mu \mathrm{~F}$ and timing resistances from $2 \mathrm{k} \Omega$ to $40 \mathrm{k} \Omega$.
Within these limits the output pulse width follows the relationship $t_{Q}=C_{t} \cdot R_{t} \ell n Z$.
6. A duty cycle of up to $67 \%$ is achieved by using only the internal timing resistance. Duty cycles as high as $90 \%$ are obtained by using $R_{t}=40 \mathrm{k} \Omega$. Higher duty cycles are achievable if a certain amount of pulse-width jitter is allowed.

CHARACTERISTICS (continued)


## CHARACTERISTICS (continued)



The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance $*$ short circuit protection * high capacitance drive capability * high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates. gate expanders. flip-flops and complex-function devices.

SINGLE DECODER N.I.T. DRIVER ${ }^{1}$ )


QUICK REFERENCE DATA									
Supply voltage	$\mathrm{V}_{\mathrm{P}}$	$5.0 \pm 5 \%$	V						
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$						
Supply current	$\mathrm{IP}_{\mathrm{P}}$	typ.	19						
mA									
Drive lines			10						
Output voltage at any output	$\mathrm{V}_{\mathrm{Q}}$	$>$	55						

The FJL101/7441A is a BCD (1-2-4-8 code) to decimal decoder incorporating high voltage output transistors for driving numerical indication tubes. It contains a decoding array followed by ten output driver stages which can be used for parallel or serial drive. For parallel drive no external clamping diodes are needed. For serial drive the cathode voltages must be clamped to prevent excessive dissipation that may be caused by the leakage currents of non-ignited cathodes are cut-off.

PACKAGE OUTLINE: 16 lead plastic dual in-line (type A) (See General Section)

[^51]
## CIRCUIT DIAGRAM



## FUNCTION TABLE

inputs				output
$\mathrm{I}_{1}$	$\mathrm{I}_{2}$	$\mathrm{I}_{4}$	$\mathrm{I}_{8}$	ON-state ${ }^{*}$ )
L	L	L	L	0
H	L	L	L	1
L	H	L	L	2
H	H	L	L	3
L	L	H	L	4
H	L	H	L	5
L	H	H	L	6
H	H	H	L	7
L	L	L	H	8
H	L	L	H	9

*) All other outputs are off.
$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=$ LOW state (the less positive voltage)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	$\mathrm{VP}_{\mathrm{P}}$	$\max$.	7.0	V
Input voltage	$\mathrm{V}_{\mathrm{I}}$	$\max$.	5.5	V
Current into any output				
$\quad$ (OFF state)	$\mathrm{I}_{\mathrm{Q}}$	$\max$.	0.5	mA
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	0 to	+70	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {Stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$	

## CHARACTERISTICS


${ }^{1}$ ) See function table on page $3, V_{I L}$ and $V_{I H}$ to be maintained as in function table.

The FJ family of TTL silicon monolithic integrated circuits is designed for medium speed digital equipment in computing, telecommunication, instrumentation and control.

Features of the FJ family: * high-fan-out * low power consumption (typ. 10 mW for standard gates) * high logic swing * low output impedance * short circuit protection * high capacitance drive capability $*$ high noise margin (typ. 1.0 V for standard gates) * comprehensive range of circuits, including NAND gates, AND-OR-NOT gates, gate expanders, flip-flops and complex-function devices.

## DUAL 4-INPUT AND-OR-NOT EXPANDER




The FJY101/7460 is a dual 4 -input AND-OR-NOT expander for use with the FJH151/ 7450 and $\mathrm{FJH} 171 / 7453$. Up to 4 expanders may be connected to the expandable gates of FJH151/7450 and FJH171/7453.

PACKAGE OUTLINE 14 lead plastic dual in-line (type A) (See General Section)

[^52]
## CIRCUIT DIAGRAM



RATINGS Limiting values in accrodance with the Absolute Maximum System (IEC 134)

Supply voltage
Input voltage
Peak negative $G$ input voltage
Storage temperature
Operating ambient temperature

$V_{P}$	max.	7.0 V	
$\mathrm{~V}_{\mathrm{G}}$	max.	5.5	$\left.\mathrm{~V}^{1}\right)$
$-\mathrm{V}_{\mathrm{GM}}$	max.	$\left.2 \mathrm{~V}^{2}\right)$	
$\mathrm{T}_{\text {stg }}$	-55 to $+150{ }^{\circ} \mathrm{C}$		
$\mathrm{T}_{\text {amb }}$	0 to	+70	${ }^{\circ} \mathrm{C}$

[^53]CHARACTERISTICS ${ }^{1}$ )


[^54]
## MOS <br> FD family

The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enhancement mode technology.

## ARITHMETIC/LOGIC ARRAY



QUICK REFERENCE DATA			
Supply voltage	$\mathrm{V}_{\mathrm{P}}$	-24 to -28	V
Operating ambient temperature	Tamb	-55 to +85	${ }^{\circ} \mathrm{C}$
Average propagation delay			
$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$t_{\text {pd }}$	typ. 250	ns
D. C. noise margin	$\mathrm{M}_{\mathrm{H}}, \mathrm{M}_{\mathrm{L}}$	$>\quad 1.0$	V
Average power consumption per function at 1 MHz switching rate	Pav	typ. 35	mW

PACKAGE OUTLINE: 40 lead ceramic dual in-line (See General Section)


## GENERAL DESCRIPTION

The FDH106 consists of six, identical, 3-input gate networks. Five coded control lines determine the function of the six gate networks. Each network may function as a full adder/subtractor, or, if used as a 2 -input gate, it can provide all logic functions of 2 variables.
Thus one of 32 different functions can be selected by the control lines; the selected function is available six times.
The output voltage swing is determined by the output buffer supply voltage. All inputs are protected against over-voltage caused by static charges.
Inputs $G_{1}$ to $G_{5}$ have pull-down resistors connected to $P_{3}$, so that they assume the LOW state when left floating.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage on all inputs, outputs and supply terminals with reference to $\mathrm{P}_{0}$
Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Junction temperature
Storage temperature
Total current through terminal $\mathrm{P}_{3}$

	+0.5 to	-30	V
	max.	1	W
$\mathrm{P}_{\text {tot }}$	max.	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	max.	40 mA	
$\mathrm{~T}_{\text {stg }}$	-65	to +150	${ }^{\circ} \mathrm{C}$
$-\mathrm{IP}_{3}$	max.		
$\pm \mathrm{I}_{\mathrm{Q}}$	$\max$.	20 mA	

## THERMAL RESISTANCE

From junction to ambient

$$
R_{\text {th } j-a}=125^{\circ} \mathrm{C} / \mathrm{W}
$$

FUNCTION TABLE

$\mathrm{G}_{5} \mathrm{G}_{4} \mathrm{G}_{3} \mathrm{G}_{2} \mathrm{G}_{1}$	logic equation (positive logic)	logic function	
		positive logic	negative logic
L L L L L	$\mathrm{Q}_{\mathrm{n}}=\mathrm{HIGH}$	-	-
L L L L L	$\mathrm{Q}_{\mathrm{n}}=\overline{\mathrm{G}_{\mathrm{n} 1}}+\overline{\mathrm{G}_{\mathrm{n} 2}}$	NAND	NOR
L L L L $\quad$ H	$\mathrm{Q}_{\mathrm{n}}=\overline{\mathrm{G}_{\mathrm{n} 1}}+\mathrm{G}_{\mathrm{n} 2}$	-	-
$\begin{array}{llllll}\text { L } & \text { L } & \mathrm{L} & \mathrm{H} & \mathrm{H}\end{array}$	$\mathrm{Q}_{\mathrm{n}}=\overline{\mathrm{G}_{\mathrm{n} 1}}$	Complement $\mathrm{G}_{\mathrm{n} 1}$	Complement $\mathrm{G}_{\mathrm{n}} 1$
L L L H L L	$\mathrm{Q}_{\mathrm{n}}=\mathrm{G}_{\mathrm{n} 1}+\mathrm{G}_{\mathrm{n} 2}$	OR	AND
L L $\quad \mathrm{H}$ L	$\mathrm{Q}_{\mathrm{n}}=\overline{\mathrm{G}_{\mathrm{n} 1}} \cdot \mathrm{G}_{\mathrm{n} 2}+\mathrm{G}_{\mathrm{n} 1} \cdot \overline{\mathrm{G}_{\mathrm{n} 2}}$	exclusive-OR	comparator
L L H H H L	$\mathrm{Q}_{\mathrm{n}}=\mathrm{G}_{\mathrm{n} 2}$	transfer $\mathrm{G}_{\mathrm{n} 2}$	transfer $\mathrm{G}_{\mathrm{n} 2}$
L L H H H	$\mathrm{Q}_{\mathrm{n}}=\overline{\mathrm{G}_{\mathrm{n} 1}} \cdot \mathrm{G}_{\mathrm{n} 2}$	-	-
L H L L L L	$\mathrm{Q}_{\mathrm{n}}=\mathrm{G}_{\mathrm{n} 1}+\overline{\mathrm{G}_{\mathrm{n} 2}}$	-	-
L H L L L	$\mathrm{Q}_{\mathrm{n}}=\overline{\mathrm{G}_{\mathrm{n} 2}}$	Complement $\mathrm{G}_{\mathrm{n} 2}$	Complement $\mathrm{G}_{\mathrm{n} 2}$
L H H L H H L	$\mathrm{Q}_{\mathrm{n}}=\overline{\mathrm{G}_{\mathrm{n} 1}} \cdot \overline{\mathrm{G}_{\mathrm{n} 2}}+\mathrm{G}_{\mathrm{n} 1} \cdot \mathrm{G}_{\mathrm{n} 2}$	comparator	exclusive-OR
L H L L H H H	$\mathrm{Q}_{\mathrm{n}}=\overline{\mathrm{G}_{\mathrm{n} 1}} \cdot \overline{\mathrm{G}_{\mathrm{n} 2}}$	NOR	NAND
L H H H L L	$\mathrm{Q}_{\mathrm{n}}=\mathrm{G}_{\mathrm{n} 1}$	transfer $\mathrm{G}_{\mathrm{nl}}$	transfer $\mathrm{G}_{\mathrm{n} 1}$
L H H H L	$\mathrm{Q}_{\mathrm{n}}=\mathrm{G}_{\mathrm{n} 1} \cdot \overline{\mathrm{G}_{\mathrm{n} 2}}$	-	-
$\begin{array}{llllll}\text { L } & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{L}\end{array}$	$\mathrm{Q}_{\mathrm{n}}=\mathrm{G}_{\mathrm{n} 1} \cdot \mathrm{G}_{\mathrm{n} 2}$	AND	OR
L H H H H H H	$\mathrm{Q}_{\mathrm{n}}=$ LOW	-	-

FUNCTION TABLE (continued)

|  | $G_{5}$ | $G_{4}$ | $G_{3}$ | $G_{2}$ | $G_{1}$ | logic equation (positive logic) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad$| logic function |
| :---: |

## CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{P}_{1}}=-24$ to $-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}_{2}}=\mathrm{V}_{\mathrm{P} 3}=-12$ to -14 V (see note 1 ); $\mathrm{T}_{\mathrm{amb}}=$ -55 to $+85^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.

	Symbol	min. typ. $\left.{ }^{1}\right)_{\max }$.	conditions and references
Input logic levels			
HIGH	$\mathrm{V}_{\mathrm{GH}}$	-2 0 +0.3V	
LOW	$\mathrm{V}_{\mathrm{GL}}$	$-28-6 \mathrm{~V}$	
Output levels			
HIGH	$\mathrm{V}_{\mathrm{QH}}$	$-1.0-0 \mathrm{~V}$	
LOW	$\mathrm{V}_{\text {QL }}$	$-14--10 \mathrm{~V}$	
Input capacitance			
$\mathrm{G}_{1} ; \mathrm{G}_{2} ; \mathrm{G}_{3} ; \mathrm{G}_{4} ; \mathrm{G}_{5}$	$\mathrm{C}_{\mathrm{G} 1}$ to $\mathrm{C}_{\mathrm{G} 5}$	- $5.5 \quad 7 \mathrm{pF}$	bias: $\mathrm{V}_{\mathrm{G}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
all other inputs	$\mathrm{C}_{\mathrm{G} 11}$ to $\mathrm{C}_{\mathrm{G} 63}$	- 3.5 5pF	bias: $\mathrm{V}_{\mathrm{G}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Input leakage current	${ }^{-1} \mathrm{I}_{\text {GL }}$	- - $1 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{G}}=-15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ \text { all other terminals } \\ \text { at } \mathrm{V}_{\mathrm{P} 0} \end{array}\right.$
Output resistance $\quad \square$			
	QH	1.0 k $\Omega$	$\mathrm{Q}=-1$
LOW	$\mathrm{R}_{\mathrm{QL}}$	- $2.0-\mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{Q}}=-10 \mathrm{~V}$
Supply current -IP1 -4.6 7.0 mA   (see note 2)			
	- IP2	- 2.02 .5 mA	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
	-IP3	- 4.26 .0 mA	
Output transition times:			
fall time	${ }^{\text {t }}$ THL	- $150-\mathrm{ns}$	
rise time	${ }^{\text {t }}$ LH	- 150 - ns	
Delay times:			
fall time	${ }^{\text {D }}$ D ${ }^{\text {L }}$	- 250400 ns	\}see note 3
rise time	${ }^{\text {D }}$ DLH	- 250400 ns	see note 3
Control input sink current	$-_{\text {I } 1}$ to		
	${ }^{-1} \mathrm{~F}_{5}$	- $32-\mu \mathrm{A}$	bias: $\mathrm{V}_{\mathrm{G}}=-2 \mathrm{~V}$

Note 1: $V_{P 2}$ is independent of circuit operation and is used for output LOW only.
Note 2: Output buffer power supply current is almost entirely dependent on the external load.
Note 3: Delays are measured at -6 V levels of input and output signals.
${ }^{1}$ ) All typ. values under test conditions: $\mathrm{V}_{\mathrm{P} 1}=-26 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}_{2}}=-13 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

## CHARACTERISTICS (continued)

TIMING DIAGRAMS

non-inverting function

inverting function

Measurements performed under the following conditions:

$$
\mathrm{V}_{\mathrm{P} 1}=-24 \text { to }-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}_{2}}=\mathrm{V}_{\mathrm{P} 3}=-12 \text { to }-14 \mathrm{~V} ; \mathrm{t}_{\mathrm{GLH}}=\mathrm{t}_{\mathrm{GHL}}=150 \mathrm{~ns}
$$

Note: The indicated points on the vertical axis are specified in the glossary of terms.

CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Input signal rise time: ${ }_{\mathrm{GLH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the input pulse goes from LOW to HIGH.
2. Input signal fall time: ${ }^{t_{G H L}}$

The time between the $10 \%$ and $90 \%$ voltage points as the input pulse goes from HIGH to LOW.
3. Rise delay time: ${ }^{\mathrm{D}} \mathrm{DLH}$

The delay between the time the inplut arrives at its -6 V point and the time the output passes -6 V when going from LOW to HIGH.
4. Fall delay time: ${ }^{\mathrm{t}} \mathrm{DHL}$

The delay between the time the input arrives at its -6 V point and the time the output passes -6 V when going from HIGH to LOW.
5. Output rise transition time: ${ }^{\mathrm{t}} \mathrm{TLH}$

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH .
6. Output fall transition time: ${ }^{\mathrm{t}} \mathrm{THL}$

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.

## OUTPUT BUFFER DESCRIPTION

The FDH 106 utilizes push-pull output buffers which exhibit the $\mathrm{V}_{\mathrm{Q}}$ versus $\mathrm{I}_{\mathrm{Q}}$ output curves, for both HIGH and LOW output, shown below.


TYPICAL PERFORMANCE at load of $\mathrm{C}_{\mathrm{L}}$ in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.


TYPICAL PERFORMANCE (continued)
Test conditions: $\mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.



Power dissipation as a function of the supply voltages $\mathrm{V}_{\mathrm{P} 1}$ and $\mathrm{V}_{\mathrm{P} 2}$


Propagation delay as a function of the supply voltages $\mathrm{V}_{\mathrm{P} 1}$ and $\mathrm{V}_{\mathrm{P} 2}$

The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enhancement mode technology.

## CONTROL LOGIC ARRAY


$P_{0}$ and metal lid on top of the package are connected.

QUICK REFERENCE DATA							
Supply voltage	$\mathrm{V}_{\mathrm{P} 1}$	-24 to	-28	V			
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +85	${ }^{\circ} \mathrm{C}$				
Power dissipation $(\mathrm{f}=1 \mathrm{MHz})$	$\mathrm{P}_{\text {tot }}$	typ.	150	mW			
Average propagation delay	$\mathrm{t}_{\mathrm{pd}}$	typ.	250	ns			
D. C. noise margin	$\mathrm{M}_{\mathrm{H}} ; \mathrm{M}_{\mathrm{L}}$	$>$	1.0	V			

PACKAGE OUTLINE 40 lead ceramic dual in-line (See General Section)


## GENERAL DESCRIPTION

The FDH116 contains all the logic functions shown in the diagram and described in the logic function on page 4. It is intended to perform the controllogic in all MOS digital systems. The output voltage swing is determined by the output buffer supply voltage. All inputs are protected against over-voltage caused by static charges.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage on all inputs, outputs and supply   terminals with reference to $\mathrm{P}_{0}$				
Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	1	W
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65	V	
to +150	${ }^{\circ} \mathrm{C}$			
Total current through terminal $\mathrm{P}_{2}$	$-\mathrm{I}_{\mathrm{P} 2}$	$\max$.	40	mA
Output current (per output)	$\pm \mathrm{I}_{\mathrm{Q}}$	$\max$.	20	mA

## THERMAL RESISTANCE

From junction to ambient
$R_{\text {th } j-a}=125{ }^{\circ} \mathrm{C} / \mathrm{W}$

## LOGIC FUNCTIONS

Positive logic
$Q_{1}=G_{1} \cdot G_{2} \cdot G_{3} \cdot G_{4} \cdot G_{5} \cdot G_{6} \cdot\left(G_{7}+G_{8}\right) \cdot\left(G_{9}+G_{10}\right)$
$\mathrm{Q}_{2}=\overline{\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3} \cdot \mathrm{G}_{4} \cdot \mathrm{G}_{5} \cdot \mathrm{G}_{6} \cdot\left(\mathrm{G}_{7}+\mathrm{G}_{8}\right) \cdot\left(\mathrm{G}_{9}+\mathrm{G}_{10}\right)}$
$Q_{3}=G_{11} \cdot G_{12} \cdot\left(G_{13}+G_{14}\right) \cdot\left(G_{15}+G_{16}\right) \cdot\left(G_{17}+G_{18}\right)$
$\mathrm{Q}_{4}=\mathrm{G}_{19} \cdot\left(\mathrm{G}_{20}+\mathrm{G}_{21}\right) \cdot\left(\mathrm{G}_{22}+\mathrm{G}_{23}\right) \cdot\left(\mathrm{G}_{24}+\mathrm{G}_{25}\right)$
$\mathrm{Q}_{5}=\mathrm{G}_{26} \cdot \mathrm{G}_{27} \cdot \mathrm{G}_{28}$
$\mathrm{Q}_{6}=\overline{\mathrm{G}_{29}}$
$\mathrm{Q}_{7}=\overline{\mathrm{G}_{30}}$

Negative logic

$$
\begin{aligned}
& Q_{1}=G_{1}+G_{2}+G_{3}+G_{4}+G_{5}+G_{6}+G_{7} \cdot G_{8}+G_{9} \cdot G_{10} \\
& Q_{2}=\overline{G_{1}+G_{2}+G_{3}+G_{4}+G_{5}+G_{6}+G_{7} \cdot G_{8}+G_{9} \cdot G_{10}} \\
& Q_{3}=G_{11}+G_{12}+\left(G_{13} \cdot G_{14}\right)+\left(G_{15} \cdot G_{16}\right)+\left(G_{17} \cdot G_{18}\right) \\
& Q_{4}=G_{19}+\left(G_{20} \cdot G_{21}\right)+\left(G_{22} \cdot G_{23}\right)+\left(G_{24} \cdot G_{25}\right) \\
& Q_{5}=G_{26}+G_{27}+G_{28} \\
& Q_{6}=\overline{G_{29}} \\
& Q_{7}=\overline{G_{30}}
\end{aligned}
$$

## CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{P} 1}=-24$ to $-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P} 2}=-12$ to -14 V (see note 1); $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85{ }^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.

	Symbol	min.	typ. ${ }^{1}$	max.	Conditions and references
Input logic levels					
HIGH	$\mathrm{V}_{\mathrm{GH}}$	-2	-	+0.3 V	
LOW	$\mathrm{V}_{\text {GL }}$	-28	-	-9 V	
Output levels					
HIGH	$\mathrm{V}_{\mathrm{QH}}$	$-1.0$	-	0 V	
LOW	$\mathrm{V}_{\mathrm{QL}}$	-14	-	-10 V	
Input capacitance					
$\mathrm{G}_{29}$; $\mathrm{G}_{30}$	$\mathrm{C}_{\mathrm{G} 29}, \mathrm{C}_{\mathrm{G} 30}$	-	5	7 pF	$)^{\text {bias: } V_{G}=0 \mathrm{~V}}$
all other inputs	$\mathrm{C}_{\mathrm{G} 1}$ to $\mathrm{C}_{\mathrm{G} 28}$	-	3.5	5 pF	$\mathrm{f}=1 \mathrm{MHz}$
Input leakage current	${ }^{-1} \mathrm{IL}$	-	-	$1 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{G}}=-15 \mathrm{~V} \text {; all other } \\ \text { terminals at } \mathrm{V}_{\mathrm{P} 0} \\ \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{array}\right.$
Output resistance					
HIGH	$\mathrm{R}_{\mathrm{QH}}$	-	1	- $\mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{Q}}=-1 \mathrm{~V}$
LOW	$\mathrm{R}_{\mathrm{QL}}$	-	2	- k $\Omega$	$\mathrm{V}_{\mathrm{Q}}=-10 \mathrm{~V}$
Supply currents	$-\mathrm{IP}_{1}$	-	4.6	6.5 mA	
	-IP2			3.0 mA	see note 2
Output transition times:					
fall time rise time	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{t}_{\mathrm{T} H \mathrm{~L}} \end{aligned}$		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & -\quad \mathrm{ns} \\ & -\quad \mathrm{ns} \end{aligned}$	
Delay times:					
$\mathrm{G} \rightarrow \mathrm{Q}_{1} ; \mathrm{Q}_{3} ; \mathrm{Q}_{4} ; \mathrm{Q}_{5}$	${ }^{\text {t }}$ DHL, ${ }^{\text {t }}$ DLH		150 125	250 ns	see note 3
$\mathrm{G} \rightarrow \mathrm{Q}_{6} ; \mathrm{Q}_{7}$ $\mathrm{G} \rightarrow \mathrm{Q}_{2}$	t $\mathrm{DHL}, \mathrm{t}_{\text {DLH }}$ $\mathrm{t}_{\text {DHL }}$ t ${ }^{\text {DLH }}$		125 175	250 ns 300 ns	see note 3

1) All typ. values measured at: $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}_{1}}=-26 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}_{2}}=-13 \mathrm{~V}$

Note 1: $V_{P 2}$ is independent of circuit operation and is used for output LOW only.
Note 2: Output buffer power supply current is almost entirely dependent on the external load.
Note 3: Delays are measured at -6 V levels of input and output signals.
(see also timing diagram on page 6 ).

## CHARACTERISTICS (continued)

## TIMING DIAGRAMS



Measurements performed under the following conditions:

$$
\mathrm{V}_{\mathrm{P} 1}=-24 \text { to }-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P} 2}=-12 \text { to }-14 \mathrm{~V} ; \mathrm{t}_{\mathrm{GLH}}=\mathrm{t}_{\mathrm{GHL}}=150 \mathrm{~ns} .
$$

Note: The indicated points on the vertical axis are specified in the glossary of terms.

CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Input signal rise time: $\mathrm{t}_{\mathrm{GLH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the input pulse goes from LOW to HIGH.
2. Input signal fall time: $\mathrm{t}_{\mathrm{GHL}}$

The time between the $10 \%$ and $90 \%$ voltage points as the input pulse goes from HIGH to LOW.
-3. Rise delay time: tDLH
The delay between the time the input arrives at its -6 V point and the time the output passes -6 V when going from LOW to HIGH.
4. Fall delay time: $\mathrm{t}_{\mathrm{DHL}}$

The delay between the tirne the input arrives at its -6 V point and the time the output passes -6 V when going from HIGH to LOW.
5. Output rise transition time: $\mathrm{t}_{\mathrm{TLH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
6. Output fall transition time: ${ }^{\text {t THL }}$

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.

## OUTPUT BUFFER DESCRIPTION

The FDH116 utilizes push-pull output buffers which exhibit the $\mathrm{V}_{\mathrm{Q}}$ versus $\mathrm{I}_{\mathrm{Q}}$ output curves, for both HIGH and LOW output, shown below.


TYPICAL PERFORMANCE at load of $\mathrm{C}_{\mathrm{L}}$ in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.


TYPICAL PERFORMANCE (continued)
Test conditions: $\mathrm{P}_{0}=$ grounded; standard load of 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.


Rated proparation delay as a function of ambient temperature.


Power dissipation as a function of the supply voltage $\mathrm{VP}_{1}$ and $\mathrm{VP}_{2}$

Note: output buffer power dissipation not included, since it is entirely dependent of loading conditions


Propagation delay of $\mathrm{Q}_{2}$ (slowest output) as a function of the supply voltages $V_{P_{1}}$ and $V_{P_{2}}$.

The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enhancement mode technology.

## CARRY ARRAY


$\mathrm{P}_{0}$ and metal lid on top of the package are connected.

QUICK REFERENCE DATA				
Supply voltage	$\mathrm{V}_{\mathrm{P} 1}$	-24 to	-28	V
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +85	${ }^{\circ} \mathrm{C}$	
Average propagation delay				
$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\mathrm{pd}}$	typ.	250	ns
D. C. noise margin	$\mathrm{M}_{\mathrm{H}}, \mathrm{M}_{\mathrm{L}}$	$>$	1.0	V
Power dissipation $(\mathrm{f}=1 \mathrm{MHz})$	$\mathrm{P}_{\text {tot }}$	typ.	260	mW

PACKAGE OUTLINE 40 lead ceramic dual in-line (See General Section)


## GENERAL DESCRIPTION

The FDH126 contains CARRY propagation circuits for a nine stage binary adder/subtractor. It can be cascaded for longer word lengths.
The device is intended to cooperate with the FDH106; e.g. three FDH 106 and two FDH126 packages can be put together to make an 18-bit parallel adder/subtractor. By combining all the CARRY circuits in the same package, a very fast CARRY propagation is obtained.
All inputs are protected against over-voltage caused by static changes.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage on all inputs, outputs and supply terminals with reference to $\mathrm{P}_{0}$
Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$
Junction temperature
Storage temperature
Total current through terminal $\mathrm{P}_{2}$
Current per output

	+0.5	to	-30
	max.	1	W
$\mathrm{P}_{\text {tot }}$	max.	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	-65	to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	$\max$.	40	mA
$-\mathrm{I}_{\mathrm{P} 2}$	$\max$.	20	mA
$\pm \mathrm{I}_{\mathrm{Q}}$			

## THERMAL RESISTANCE

From junction to ambient
$R_{\text {th j-a }}=125{ }^{\circ} \mathrm{C} / \mathrm{W}$

FUNCTION TABLE

$\mathrm{G}_{2}$	$\mathrm{G}_{3}$	$\mathrm{Q}_{\mathrm{n}-1}$	$\mathrm{G}_{\mathrm{n} 1}$	$\mathrm{G}_{\mathrm{n} 2}$	$\mathrm{Q}_{\mathrm{n}}$
H	X	H	H	X	H
H	H	H	L	H	L
H	H	H	L	L	H
H	H	L	H	H	L
H	H	L	H	L	H
H	X	L	L	X	L
H	L	H	L	H	H
H	L	H	L	L	L
H	L	L	H	H	H
H	L	L	H	L	L
L	X	X	X	X	L

For $n=1$ :

$$
\mathrm{Q}_{\mathrm{n}-1}=\mathrm{G}_{1}
$$

$\mathrm{H}=\mathrm{HIGH}$ state (the less negative voltage)
$\mathrm{L}=\mathrm{LOW}$ state (the more negative voltage)
$\mathrm{X}=$ state is immaterial

## LOGIC FUNCTION

Positive logic:
$Q_{n}=G_{2} \cdot\left\{G_{n 1} \cdot\left(\overline{G_{3}} \cdot G_{n 2}+G_{3} \cdot \overline{G_{n 2}}\right)+Q_{n-1}\left(G_{n 1}+\overline{G_{3}} \cdot G_{n 2}+G_{3} \cdot \overline{G_{n 2}}\right)\right\}$
Negative logic:
$Q_{n}=G_{2}+G_{n 1} \cdot\left(G_{3} \cdot G_{n 2}+\overline{G_{3}} \cdot \overline{G_{n 2}}\right)+Q_{n-1}\left(G_{n 1}+G_{3} \cdot G_{n 2}+\overline{G_{3}} \cdot \overline{G_{n 2}}\right)$

## CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{P} 1}=-24$ to $-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P} 2}=-12$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$ $\mathrm{P}_{0}=$ grounded; standard load for $\mathrm{Q}_{8}$ and $\mathrm{Q}_{9}: 50 \mathrm{pF}$ in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$; for $\mathrm{Q}_{1}$ to $\mathrm{Q}_{7}, 25 \mathrm{pF}$ in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.

	Symbol	min.	typ. ${ }^{1}$ )	$\max$.		Conditions and references
Input logic levels						
HIGH	$\mathrm{V}_{\mathrm{GH}}$	-2	0	+0.3	V	
LOW	$\mathrm{V}_{\text {GL }}$	-28		-9	V	
Output levels						
HIGH	VQH	-1.0	-	0	V	
LOW	$\mathrm{V}_{\mathrm{QL}}$	-14	-	-10	V	
Input capacitance						
$\mathrm{G}_{1} ; \mathrm{G}_{11}$ to $\mathrm{G}_{92}$	$\mathrm{C}_{\mathrm{G}}$	-	4.5	6.0	pF	
$\mathrm{G}_{2}$	$\mathrm{C}_{\mathrm{G} 2}$	-	6.8	9.0	pF	bias: $\mathrm{V}_{\mathrm{G}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{G}_{3}$	$\mathrm{C}_{\mathrm{G} 3}$	-	9.5	12.5	pF	
Input leakage current	${ }^{-1} \mathrm{I}_{\text {GL }}$	-	-	1	$\mu \mathrm{A}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{G}}=-15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ \text { all other terminals at } \\ \mathrm{V}_{\mathrm{P} 0} \end{array}\right.$
Output resistance						
$\mathrm{Q}_{1}$ to $\mathrm{Q}_{7}$	$\mathrm{R}_{\mathrm{QH}}$	-	1.4	-	$\mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{Q}}=-1 \mathrm{~V}$
	$\mathrm{R}_{\mathrm{QL}}$	-	3.7	-	$\mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{Q}}=-10 \mathrm{~V}$
$\mathrm{Q}_{8} ; \mathrm{Q}_{9}$	$\mathrm{R}_{\mathrm{QH}}$	-	0.5	-	$k \Omega$	$\mathrm{V}_{\mathrm{Q}}=-1 \mathrm{~V}$
	$\mathrm{R}_{\mathrm{QL}}$	-	1.7	-	$\mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{Q}}=-10 \mathrm{~V}$
Supply currents	$-\mathrm{I}_{\text {P1 }}$	-	$8.0$	$13.0$		$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
	-I P2	-	$4.0$	$6.0$	mA	$\mathrm{I}^{1=1 \mathrm{MHz}, \mathrm{T} a \mathrm{mb}=25^{\circ} \mathrm{C}}$
Output transition times:						
fall time	${ }^{\text {t }}$ THL	-	150	-	ns	
rise time	${ }^{\text {t }}$ TLH		100		ns	
Delay times:   (any input to output)						
fall time rise time	${ }^{\mathrm{t}} \mathrm{DHL}$   tbLH		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	500 500	ns ns	\}see note

1) All typ. values measured at: $\mathrm{V}_{\mathrm{P} 1}=-26 \mathrm{~V} ; \mathrm{V}_{\mathrm{P} 2}=-13 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Note: Delays are measured at -6 V levels of input and output signals.
(see also timing diagrams on page 6)

## CHARACTERISTICS (continued)

TIMING DIAGRAMS


Measurements performed under the following conditions:

$$
\mathrm{V}_{\mathrm{P} 1}=-24 \text { to }-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P} 2}=-12 \text { to }-14 \mathrm{~V} ; \mathrm{t}_{\mathrm{GLH}}=\mathrm{t}_{\mathrm{GHL}}=150 \mathrm{~ns} .
$$

Note: The indicated points on the vertical axis are specified in the glossary of terms.

## CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Input signal rise time: $\mathrm{t}_{\mathrm{GLH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the input pulse goes from LOW to HIGH.
2. Input signal fall time: ${ }^{\mathrm{t}} \mathrm{GHL}$

The time between the $10 \%$ and $90 \%$ voltage points as the input pulse goes from HIGH to LOW.
3. Rise delay time: ${ }^{\text {t }} \mathrm{DLH}$

The delay between the time the input arrives at its -6 V point and the time the output passes -6 V when going from LOW to HIGH.
4. Fall delay time: ${ }^{\text {t DHL }}$

The delay between the time the input arrives at its -6 V point and the time the output passes -6 V when going from HIGH to LOW.
5. Output rise transition time: ${ }^{\mathrm{T}} \mathrm{TLH}$

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
6. Output fall transition time: ${ }^{\mathrm{t}} \mathrm{THL}$

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.

## OUTPUT BUFFER DESCRIPTION

The FDH126 utilizes push-pull output buffers which exhibit the $\mathrm{V}_{\mathrm{Q}}$ versus $\mathrm{I}_{\mathrm{Q}}$ output curves, for both HIGH and LOW output, shown below.


TYPICAL PERFORMANCE at load: $C_{L}$ in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.


## TYPICAL PERFORMANCE (continued)

Test conditions: $\mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.



Power dissipation as a function of the supply voltages $\mathrm{V}_{\mathrm{P} 1}$ and $\mathrm{V}_{\mathrm{P} 2}$


Propagation delay as a function of the supply voltages $V_{p}$ and $V_{P 2}$

The FD family is a series of complex monolithic integrated circuits utilizing MOS $P$-channel enhancement mode technology.

## AND-OR GATING ARRAY


$\mathrm{P}_{0}$ and metal lid on top of the package are connected.

QUICK REFERENCE DATA				
Supply voltage	$\mathrm{V}_{\mathrm{P} 1}$	-24 to	-28	V
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +85	${ }^{\circ} \mathrm{C}$	
Average propagation delay				
$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\mathrm{pd}}$	typ.	180	ns
D. C. noise margin	$\mathrm{M}_{\mathrm{H}}, \mathrm{M}_{\mathrm{L}}$	$>$	1.0	V
Power consumption $(\mathrm{f}=1 \mathrm{MHz})$	$\mathrm{P}_{\text {tot }}$	typ.	230	mW

PACKAGE OUTLINE 40 lead ceramic dual in-line (See General Section)


## GENERAL DESCRIPTION

The FDH136 contains general purpose, expandable OR/AND/NAND gates.
Two control lines $C_{0}$ and $C_{1}$ provide four different logic configurations, as shown in the function table.
Complementary outputs are available.
All inputs are protected against over-voltages caused by static charges.
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage on all inputs, outputs and supply terminals with reference to $\mathrm{P}_{0}$
Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Junction temperature
Storage temperature
Total current through terminal $\mathrm{P}_{2}$
Output current (per output)

	+0.5 to	-30	V
$\mathrm{P}_{\text {tot }}$	max.	1	W
$\mathrm{~T}_{\mathrm{j}}$	$\max$.	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-65	to +150	${ }^{\circ} \mathrm{C}$
$-\mathrm{I}_{\mathrm{P} 2}$	max.	40	mA
$\pm \mathrm{I}_{\mathrm{Q}}$	$\max$.	20	mA

## THERMAL RESISTANCE

From junction to ambient

$$
R_{\text {th } j-a}=125 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

FUNCTION TABLE

$\mathrm{C}_{0} \quad \mathrm{C}_{1}$	logic equation	
	positive logic	negative logic
X X	$\begin{aligned} & x_{1}=G_{1}+G_{2}+G_{3}+G_{4}+G_{5}+G_{6}+G_{7}+G_{8} \\ & x_{2}=G_{9}+G_{10}+G_{11}+G_{12} \\ & x_{3}=G_{13}+G_{14}+G_{15}+G_{16} \\ & x_{4}=G_{17}+G_{18}+G_{19}+G_{20} \\ & x_{5}=G_{21}+G_{22}+G_{23}+G_{24} \\ & x_{6}=G_{25}+G_{26}+G_{27} \\ & Q_{5}=x_{5} \cdot x_{6} \\ & Q_{6}=\bar{x}_{5}+\bar{x}_{6} \end{aligned}$	$\begin{aligned} & X_{1}=G_{1} \cdot G_{2} \cdot G_{3} \cdot G_{4} \cdot G_{5} \cdot G_{6} \cdot G_{7} \cdot G_{8} \\ & X_{2}=G_{9} \cdot G_{10} \cdot G_{11} \cdot G_{12} \\ & X_{3}=G_{13} \cdot G_{14} \cdot G_{15} \cdot G_{16} \\ & X_{4}=G_{17} \cdot G_{18} \cdot G_{19} \cdot G_{20} \\ & X_{5}=G_{21} \cdot G_{22} \cdot G_{23} \cdot G_{24} \\ & X_{6}=G_{25} \cdot G_{26} \cdot G_{27} \\ & Q_{5}=X_{5}+X_{6} \\ & Q_{6}=\bar{X}_{5} \cdot \bar{X}_{6} \end{aligned}$
L L	$\begin{aligned} & \mathrm{Q}_{1}=\mathrm{x}_{1} \cdot \mathrm{X}_{2} \cdot \mathrm{X}_{3} \cdot \mathrm{G}_{28} \\ & \mathrm{Q}_{2}=\overline{\mathrm{X}_{1}}+\overline{\mathrm{x}_{2}}+\overline{\mathrm{x}_{3}}+\overline{\mathrm{G}_{28}} \\ & \mathrm{Q}_{3}=\mathrm{x}_{4} \cdot \mathrm{X}_{5} \cdot \mathrm{x}_{6} \cdot \mathrm{G}_{29} \\ & \mathrm{Q}_{4}=\overline{\mathrm{x}_{4}}+\overline{\mathrm{x}_{5}}+\overline{\mathrm{x}_{6}}+\overline{\mathrm{G}_{29}} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{1}=\mathrm{x}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{G}_{28} \\ & \mathrm{Q}_{2}=\overline{\mathrm{x}_{1}} \cdot \overline{\mathrm{X}_{2}} \cdot \overline{\mathrm{X}_{3}} \cdot \overline{\mathrm{G}_{28}} \\ & \mathrm{Q}_{3}=\mathrm{x}_{4}+\mathrm{x}_{5}+\mathrm{x}_{6}+\mathrm{G}_{29} \\ & \mathrm{Q}_{4}=\overline{\mathrm{x}_{4}} \cdot \overline{\mathrm{x}_{5}} \cdot \overline{\mathrm{x}_{6}} \cdot \overline{\mathrm{G}_{29}} \end{aligned}$

FUNCTION TABLE (continued)

$\mathrm{C}_{0}$	$\mathrm{C}_{1}$	logic equation	
		positive logic	negative logic
L	H	$\begin{aligned} & \mathrm{Q}_{1}=\mathrm{X}_{1} \cdot \mathrm{X}_{2} \cdot \mathrm{X}_{3} \cdot \mathrm{X}_{4} \cdot \mathrm{X}_{5} \cdot \mathrm{X}_{6} \cdot \mathrm{G}_{28} \\ & \mathrm{Q}_{2}=\overline{\mathrm{X}_{1}}+\overline{\mathrm{X}_{2}}+\overline{\mathrm{X}_{3}}+\overline{\mathrm{X}_{4}}+\overline{\mathrm{X}_{5}}+\overline{\mathrm{X}_{6}}+\overline{\mathrm{G}_{28}} \\ & \mathrm{Q}_{3}=\mathrm{X}_{1} \cdot \mathrm{X}_{2} \cdot \mathrm{G}_{29} \\ & \mathrm{Q}_{4}=\overline{\mathrm{X}_{1}}+\overline{\mathrm{X}_{2}}+\overline{\mathrm{G}_{29}} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{1}=\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}+\mathrm{X}_{5}+\mathrm{X}_{6}+\mathrm{G}_{28} \\ & \mathrm{Q}_{2}=\overline{\mathrm{X}_{1}} \cdot \overline{\mathrm{X}_{2}} \cdot \overline{\mathrm{X}_{3}} \cdot \overline{\mathrm{X}_{4}} \cdot \overline{\mathrm{X}_{5}} \cdot \overline{\mathrm{X}_{6}} \cdot \overline{\mathrm{G}_{28}} \\ & \mathrm{Q}_{3}=\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{G}_{29} \\ & \mathrm{Q}_{4}=\overline{\mathrm{X}_{1}} \cdot \overline{\mathrm{X}_{2}} \cdot \overline{\mathrm{G}_{29}} \end{aligned}$
H	L	$\begin{aligned} & \mathrm{Q}_{1}=\mathrm{X}_{1} \cdot \mathrm{X}_{2} \cdot \mathrm{G}_{28} \\ & \mathrm{Q}_{2}=\overline{\mathrm{X}_{1}}+\overline{\mathrm{X}_{2}}+\overline{\mathrm{G}_{28}} \\ & \mathrm{Q}_{3}=\mathrm{X}_{3} \cdot \mathrm{X}_{4} \cdot \mathrm{G}_{29} \\ & \mathrm{Q}_{4}=\overline{\mathrm{X}_{3}}+\overline{\mathrm{X}_{4}}+\overline{\mathrm{G}_{29}} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{1}=\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{G}_{28} \\ & \mathrm{Q}_{2}=\overline{\mathrm{X}_{1}} \cdot \overline{\mathrm{X}_{2}} \cdot \overline{\mathrm{G}_{28}} \\ & \mathrm{Q}_{3}=\mathrm{X}_{3}+\mathrm{X}_{4}+\mathrm{G}_{29} \\ & \mathrm{Q}_{4}=\overline{\mathrm{X}_{3}} \cdot \overline{\mathrm{X}_{4}} \cdot \overline{\mathrm{G}_{29}} \end{aligned}$
H	H	$\begin{aligned} & \mathrm{Q}_{1}=\mathrm{X}_{1} \cdot \mathrm{X}_{2} \cdot \mathrm{X}_{3} \cdot \mathrm{X}_{4} \cdot \mathrm{G}_{28} \\ & \mathrm{Q}_{2}=\overline{\mathrm{X}_{1}}+\overline{\mathrm{X}_{2}}+\overline{\mathrm{X}_{3}}+\overline{\mathrm{X}_{4}}+\overline{\mathrm{G}_{28}} \\ & \mathrm{Q}_{3}=\mathrm{X}_{5} \cdot \mathrm{X}_{6} \cdot \mathrm{G}_{29} \\ & \mathrm{Q}_{4}=\overline{\mathrm{X}_{5}}+\overline{\mathrm{X}_{6}}+\overline{\mathrm{G}_{29}} . \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{1}=\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}+\mathrm{G}_{28} \\ & \mathrm{Q}_{2}=\overline{\mathrm{X}_{1}} \cdot \overline{\mathrm{X}_{2}} \cdot \overline{\mathrm{X}_{3}} \cdot \overline{\mathrm{X}_{4}} \cdot \overline{\mathrm{G}_{28}} \\ & \mathrm{Q}_{3}=\mathrm{X}_{5}+\mathrm{X}_{6}+\mathrm{G}_{29} \\ & \mathrm{Q}_{4}=\overline{\mathrm{X}_{5}} \cdot \overline{\mathrm{X}_{6}} \cdot \overline{\mathrm{G}_{29}} \end{aligned}$

[^55]
## CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{P} 1}=-24$ to $-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P} 2}=-12$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85{ }^{\circ} \mathrm{C}$; $\mathrm{P}_{0}=$ grounded; standard load : 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.


[^56]Note: Inputs mentioned are provided with a pull-down resistor to terminal $\mathrm{P}_{2}$. These inputs, when not used, may be left floating; they will then be in the LOW state.

## CHARACTERISTICS (continued)

TIMING DIAGRAMS


Measurements performed under the following conditions:

$$
\mathrm{V}_{\mathrm{P}_{1}}=-24 \text { to }-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}_{2}}=-12 \text { to }-14 \mathrm{~V} ; \mathrm{t}_{\mathrm{GLH}}=\mathrm{t}_{\mathrm{GHL}}=150 \mathrm{~ns} .
$$

Note: The indicated points on the vertical axis are specified in the glossary of terms.

## CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Input signal rise time: ${ }^{t_{G L H}}$

The time between the $90 \%$ and $10 \%$ voltage points as the input pulse goes from LOW to HIGH.
2. Input signal fall time: $\mathrm{t}_{\mathrm{GHL}}$

The time between the $10 \%$ and $90 \%$ voltage points as the input pulse goes from HIGH to LOW.
3. Rise delay time: ${ }^{\mathrm{D}} \mathrm{DH}$

The delay between the time the input arrives at its -6 V point and the time the output passes -6 V when going from LOW to HIGH.
4. Fall delay time: ${ }^{\mathrm{D}} \mathrm{DL}$

The delay between the time the input arrives at its -6 V point and the time the output passes -6 V when going from HIGH to LOW.
5. Output rise transition time: ${ }^{\mathrm{t}} \mathrm{TLH}$

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
6. Output fall transition time: $\mathrm{t}_{\mathrm{THL}}$

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.

## OUTPUT BUFFER DESCRIPTION

The FDH136 utilizes push-pull output buffers which exhibit the $\mathrm{V}_{\mathrm{Q}}$ versus $\mathrm{I}_{\mathrm{Q}}$ output curves, for both HIGH and LOW output, shown below.


TYPICAL PERFORMANCE at load $\mathrm{C}_{\mathrm{L}}$ in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.


## FD family

TYPICAL PERFORMANCE (continued)
Test conditions: $\mathrm{P}_{0}=$ grounded; standard load of 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.



Power dissipation as a function of the supply voltages $\mathrm{V}_{\mathrm{P} 1}$ and $\mathrm{V}_{\mathrm{P} 2}$


Propagation delay as a function of the supply voltages $\mathrm{V}_{\mathrm{P} 1}$ and $\mathrm{V}_{\mathrm{P} 2}$

The FD family is a series of complex monolithic integrated circuits utilizing MOS P -channel enhancement mode technology.

## VARIABLE GATE ARRAY


$P_{0}$ and metal lid on bottom of the package are connected.

QUICK REFERENCE DATA				
Supply voltage	$\mathrm{V}_{\mathrm{P} 1}$	-24 to	-28	V
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +85	${ }^{\circ} \mathrm{C}$	
Average propagation delay				
$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\mathrm{pd}}$	typ.	250	ns
$\mathrm{D} . \mathrm{C}$. noise margin   Average power consumption   per function $(\mathrm{f}=1 \mathrm{MHz})$	$\mathrm{M}_{\mathrm{H}}, \mathrm{M}_{\mathrm{L}}$	$>$	1.0	V

PACKAGE OUTLINE 24 lead ceramic dual in-line (See General Section)


## GENERAL DESCRIPTION

The FDH146 consists of six, identical, 2-input gate networks. Three coded control lines determine the function of the six gate networks, so that eight different functions can be selected; the selected function is available six times.
The control inputs have pull-down resistors connected to $P_{2}$, so that they assume the LOW state, when left floating.
All inputs are protected against over-voltage caused by static charges.
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage on all inputs, outputs and supply terminals with reference to $\mathrm{P}_{0}$

$$
+0.5 \text { to }-30 \mathrm{~V}
$$

Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Junction temperature
Storage temperature
Total current through terminal $\mathrm{P}_{2}$
Output current per output

$P_{\text {tot }}$	max.	1 W	
$\mathrm{~T}_{\mathrm{j}}$	max.	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-65	to +150	${ }^{\circ} \mathrm{C}$
$-\mathrm{I}_{\mathrm{P} 2}$	max.	40	mA
$\pm \mathrm{I}_{\mathrm{Q}}$	max.	20	mA

## THERMAL RESISTANCE

From junction to ambient

$$
\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}=125^{\circ} \mathrm{C} / \mathrm{W}
$$

## FUNCTION TABLE

$C_{3}$	$C_{2}$	$C_{1}$	logic equation (positive logic)	logic function	
		positive logic			
$L$	$L$	$L$	$Q_{n}=1$	-	-
$L$	$L$	$H$	$Q_{n}=\overline{G_{n 1}} \cdot G_{n 2}$	NAND	NOR
$L$	$H$	$L$	$Q_{n}=G_{n 1}+G_{n 2}$	OR	AND
$H$	$L$	$L$	$Q_{n}=G_{n 1} \cdot \overline{G_{n 2}}+\overline{G_{n 1}} \cdot G_{n 2}$	exclusive-OR	comparator
$H$	$L$	$H$	$Q_{n}=\overline{G_{n 1}} \cdot \overline{G_{n 1}}+\overline{G_{n 2}}+\overline{G_{n 1}} \cdot \overline{G_{n 2}}$	comparator	exclusive-OR
$H$	$H$	$L$	$Q_{n}=G_{n 1} \cdot G_{n 2}$	NOR	NAND
$H$	$H$	$H$	$Q_{n}=0$	AND	OR

## CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{P} 1}=-24$ to -28 V ; $\mathrm{V}_{\mathrm{P} 2}=-12$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$; $\mathrm{P}_{0}=$ grounded; standard load : 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.

${ }^{1}$ ) All typ. values are measured at: $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{P} 1}=-26 \mathrm{~V}, \mathrm{~V}_{\mathrm{P} 2}=-13 \mathrm{~V}$.

## CHARACTERISTICS (continued)

## TIMING DIAGRAMS



Measurements performed under the following conditions:

$$
\mathrm{V}_{\mathrm{P} 1}=-24 \text { to }-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P} 2}=-12 \text { to }-14 \mathrm{~V} ; \mathrm{t}_{\mathrm{GLH}}=\mathrm{t}_{\mathrm{GHL}}=150 \mathrm{~ns} .
$$

Note: The indicated points on the vertical axis are specified in the glossary of terms.

## CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Input pulse rise time: $\mathrm{t}_{\mathrm{GLH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the input pulse goes from LOW to HIGH.
2. Input pulse fall time: $\mathrm{t}_{\mathrm{GHL}}$

The time between the $10 \%$ and $90 \%$ voltage points as the input pulse goes from HIGH to LOW.
3. Rise delay time: ${ }^{t} \mathrm{DLH}$

The delay between the time the input arrives at its -6 V point and the time the output passes -6 V when going from LOW to HIGH.
4. Fall delay time: ${ }^{\mathrm{D}} \mathrm{DL}$

The delay between the time the input arrives at its -6 V point and the time the output passes -6 V when going from HIGH to LOW.
5. Output rise transition time: ${ }^{\mathrm{T}} \mathrm{TLH}$

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
6. Output fall transition time: ${ }^{\mathrm{t}}$ THL

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.

## FD family

## OUTPUT BUFFER DESCRIPTION

The FDH146 utilizes push-pull output buffers which exhibit the $\mathrm{V}_{\mathrm{Q}}$ versus $\mathrm{I}_{\mathrm{Q}}$ output curves, for both HIGH and LOW output, shown below.


TYPICAL PERFORMANCE at load: $\mathrm{C}_{\mathrm{L}}$ in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$


## TYPICAL PERFORMANCE (continued)

Test conditions: $\mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.



Power dissipation as a function of the supply voltages $\mathrm{V}_{\mathrm{P} 1}$ and $\mathrm{V}_{\mathrm{P}}$


Propagation delay as a function of the supply voltages $V_{P 1}$ and $V_{P 2}$

The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enhancement mode technology.

## FIXED LOGIC ARRAY


$P_{0}$ and metal lid on bottom of the package connected

QUICK REFERENCE DATA				
Supply voltage	$\mathrm{V}_{\mathrm{P} 1}$	-24		V
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55		${ }^{\circ} \mathrm{C}$
Average propagation delay				
$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\mathrm{t}_{\mathrm{pd}}$	typ.	150	ns
D. C. noise margin	$\mathrm{M}_{\mathrm{H}}, \mathrm{M}_{\mathrm{L}}$	>	1.0	V
Power dissipation $\mathrm{f}=1 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\mathrm{P}_{\text {tot }}$	typ.	160	mW

PACKAGE OUTLINE 24 lead ceramic dual in-line (See General Section)


## GENERAL DESCRIPTION

The FDH 156 contains all the logic functions shown in the diagram and described in the logic functionsbelow. It is intended to perform logic functions in all MOS digital systems. The output voltage swing is determined by the output buffer supply voltage $\left(\mathrm{V}_{\mathrm{P} 2}\right)$.
All inputs are protected against over-voltage caused by static charges.
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage on all inputs, outputs and supply terminals with reference to $P_{0}$
Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Junction temperature
Storage temperature
Total current through terminal $\mathrm{P}_{2}$
Output current (per output)

	+0.5	to	-30
	V		
$\mathrm{P}_{\text {tot }}$	max.	1	W
$\mathrm{~T}_{\mathrm{j}}$	max.	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$	
$-\mathrm{I}_{\mathrm{P} 2}$	max.	40	mA
$\pm \mathrm{I}_{\mathrm{Q}}$	max.	20	mA

## THERMAL RESISTANCE

From junction to ambient

$$
R_{\text {th } j-a}=125 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

## LOGIC FUNCTIONS

Positive logic

$$
\begin{aligned}
& \mathrm{Q}_{1}=\overline{\mathrm{G}_{1}} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3} \cdot \mathrm{G}_{4} \cdot \mathrm{G}_{5} \cdot \mathrm{G}_{6} \\
& \mathrm{Q}_{2}=\mathrm{G}_{7} \cdot\left(\mathrm{G}_{8}+\mathrm{G}_{9}\right) \cdot\left(\mathrm{G}_{10}+\mathrm{G}_{11}\right) \cdot\left(\mathrm{G}_{12}+\mathrm{G}_{13}\right) \\
& \mathrm{Q}_{3}=\mathrm{G}_{14} \cdot \mathrm{G}_{15} \cdot \mathrm{G}_{16} \\
& \mathrm{Q}_{4}=\overline{\mathrm{G}_{17}}
\end{aligned}
$$

Negative logic
$Q_{1}=\overline{G_{1}+G_{2}+G_{3}+G_{4}+G_{5}+G_{6}}$
$\mathrm{Q}_{2}=\mathrm{G}_{7}+\left(\mathrm{G}_{8} \cdot \mathrm{G}_{9}\right)+\left(\mathrm{G}_{10} \cdot \mathrm{G}_{11}\right)+\left(\mathrm{G}_{12} \cdot \mathrm{G}_{13}\right)$
$\mathrm{Q}_{3}=\mathrm{G}_{14}+\mathrm{G}_{15}+\mathrm{G}_{16}$
$\mathrm{Q}_{4}=\overline{\mathrm{G}_{17}}$

## CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{P} 1}=-24$ to $-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P} 2}=-12$ to -14 V (see note 1); $\mathrm{T}_{\mathrm{amb}}=$ -55 to $+85{ }^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.


Note 1: $V_{\mathrm{P} 2}$ is independent of circuit operation and is usec for output LOW only.
Note 2: Output buffer supply current is almost entirely dependent on the external load.
The value shown is for a load: 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.
Note 3: Delays are measured at -6 V levels of input and output signals. (see also timing diagram on page 5)

[^57]CHARACTERISTICS (continued)
TIMING DIAGRAMS


inverting function

Measurements performed under the following conditions:

$$
\mathrm{V}_{\mathrm{P} 1}=-24 \text { to }-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P} 2}=-12 \text { to }-14 \mathrm{~V} ; \mathrm{t}_{\mathrm{GLH}}=\mathrm{t}_{\mathrm{GHL}}=150 \mathrm{~ns} .
$$

Note: The indicated points on the vertical axis are specified in the glossary of terms.

## CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Input signal rise time: $\mathrm{t}_{\mathrm{GLH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the input pulse goes from LOW to HIGH.
2. Input signal fall time: $\mathrm{t}_{\mathrm{GHL}}$

The time between the $10 \%$ and $90 \%$ voltage points as the input pulse goes from HIGH to LOW.
3. Rise delay time: tDLH

The delay between the time the input arrives at -6 V point and the time the output passes -6 V when going from LOW to HIGH.
4. Fall delay time: $\mathrm{t}_{\mathrm{DHL}}$

The delay between the time the input arrives at -6 V point and the time the output passes -6 V when going from HIGH to LOW.
5. Output rise transition time: $\mathrm{t}_{\mathrm{TLH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
6. Output fall transition time: $\mathrm{t}_{\mathrm{THL}}$

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.

## FD family

## OUTPUT BUFFER DESCRIPTION

The FDH156 utilizes push-pull output buffers which exhibit the $\mathrm{V}_{\mathrm{Q}}$ versus $\mathrm{I}_{\mathrm{Q}}$ output curves, for both HIGH and LOW output, shown below.


TYPICAL PERFORMANCE at load: $\mathrm{C}_{\mathrm{L}}$ in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.


## TYPICAL PERFORMANCE (continued)

Test conditions: $\mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.


Rated propagation delay as a function of ambient temperature.


Power dissipation as a function of the supply voltages $\mathrm{V}_{\mathrm{P} 1}$ and $\mathrm{V}_{\mathrm{P} 2}$

Note: output buffer power dissipation not included, since it is entirely dependent of loading conditions


Propagation delay of $\mathrm{Q}_{2}$ (slowest output) as a function of the supply voltages $V_{P 1}$ and $V_{P 2}$.

## FD family

The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enhancement mode technology.

## REGISTER ARRAY



QUICK REFERENCE DATA				
Supply voltage	$\mathrm{V}_{\text {P1 }}$	-24 to		V
Operating ambient temperature	Tamb	-55 to		${ }^{\circ} \mathrm{C}$
Cycle time		typ.	400	ns
Propagation delay time at $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	${ }^{\text {tpd }}$	typ.	150	ns
D. C. noise margin	$\mathrm{M}_{\mathrm{H}}, \mathrm{M}_{\mathrm{L}}$	>	1.0	V
Power dissipation $\mathrm{f} \phi=1 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	Ptot.	typ.	180	mW

PACKAGE OUTLINE : 40 lead ceramic dual in-line (See General Section)


## GENERAL DESCRIPTION

The FDJ106 is an array of 5 flip-flops, designed to act as a synchronous bit slice of a CPU.
Each of the 5 D-type flip-flops has at least one external input and output, as well as individually controlled transfer and input SELECT logic.
The input gating matrix can therefore enable transfers from external inputs or from other registers in the same array.
The register array contains one bit of each of the five main registers in most computers:

$$
\begin{aligned}
& \text { FF1 - accumulator } \\
& \text { FF2 - memory data register } \\
& \text { FF3 - multiplier / quotient register } \\
& \text { FF4 - program counter } \\
& \text { FF5 - instruction register }
\end{aligned}
$$

All inputs are protected against over-voltage caused by static charge.
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage on all inputs, outputs and supply					
$\quad$terminals with reference to $\mathrm{P}_{0}$		+0.5	to	-30	V
Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot. }}$	$\max$.	1	W	
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	$\max$.	150	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65	to	+150	${ }^{\circ} \mathrm{C}$
Total current through terminal $\mathrm{P}_{2}$	$-\mathrm{I}_{\mathrm{P} 2}$	$\max$.	40	mA	
Current per output	$\pm \mathrm{IQ}_{\mathrm{Q}}$	$\max$.	20	mA	

## THERMAL RESISTANCE

From junction to ambient

$$
\mathrm{R}_{\text {th } \mathrm{j}-\mathrm{a}}=125 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

## LOGIC FUNCTION

## REGISTER INPUT SELECTION TABLE

The FDJ106 outputs will conform to the following input transfer function table. With the given set of control inputs, including $\mathrm{C}_{1}$, which is common to all gate matrices, each flip-flop will have at its $D$-input the signal shown in the table below.
With the control inputs established, the output of each register will assume the state of its input after the positive going edge of $\phi$.

control input (for any gate matrix)				Flip-flop inputs									
				$\mathrm{C}_{1}: \mathrm{HIGH}$					$\mathrm{C}_{1}$ : LOW				
$\mathrm{C}_{\mathrm{n} 4}$	Cn3			FF1	FF2	FF3	FF4	FF5	FF 1	FF2	FF3	FF4	FF5
L		L		H					$\mathrm{G}_{41}$				
L	L	L	H	$\mathrm{G}_{17}$					$\mathrm{G}_{17}$				
L	L	H	L	$\mathrm{G}_{16}$					$\mathrm{G}_{16}$				
L	L	H	H	$\mathrm{G}_{15}$					$\mathrm{G}_{15}$				
L	H	L	L	$\mathrm{G}_{14}$					$\mathrm{G}_{14}$				
L	H	L	H	$\mathrm{G}_{13}$					$\mathrm{G}_{13}$				
L	H	H	L	$\mathrm{G}_{12}$					$\mathrm{G}_{12}$				
L	H	H	H	$\mathrm{G}_{11}$					$\mathrm{G}_{11}$				
H	L	L	L	H	H	$\mathrm{G}_{34}$	H			$\overline{\mathrm{Q}_{2}}$	$\mathrm{G}_{34}$		
H	L	L	H	H	H	$\mathrm{G}_{33}$	H		$\mathrm{Q}_{1}$	H	$\mathrm{G}_{33}$		
H	L	H	L	$\mathrm{Q}_{5}$	$\mathrm{Q}_{5}$	$\mathrm{G}_{32}$	$\mathrm{G}_{41}$		$\mathrm{Q}_{1}$	$\mathrm{G}_{21}$	$\mathrm{G}_{32}$		
H	L	H	H	$\mathrm{Q}_{4}$	Q21	$\mathrm{G}_{31}$	H		Q1	$\mathrm{Q}_{2}$	$\mathrm{G}_{31}$	$\mathrm{Q}_{4}$	
H	H	L	L	$\overline{\mathrm{Q}_{2}}$	Q4	H	$\mathrm{Q}_{1}$	$\mathrm{G}_{52}$	$\mathrm{Q}_{1}$	$\mathrm{Q}_{2}$	$\mathrm{Q}_{3}$	$\mathrm{Q}_{4}$	$\mathrm{G}_{52}$
H	H	L	H	$\mathrm{Q}_{2}$	$\mathrm{Q}_{1}$	$\mathrm{Q}_{2}$	$\mathrm{Q}_{2}$	$\mathrm{G}_{51}$	$\mathrm{Q}_{1}$	$\mathrm{Q}_{2}$	$\mathrm{Q}_{3}$	Q4	$\mathrm{G}_{51}$
H	H	H	L	$\mathrm{Q}_{3}$	Q3	$\mathrm{Q}_{1}$	$\mathrm{Q}_{5}$	$\mathrm{Q}_{2}$	$\mathrm{Q}_{1}$	$\mathrm{Q}_{2}$	$\mathrm{Q}_{3}$	$\mathrm{Q}_{4}$	$\mathrm{Q}_{5}$
H	H	H	H	$\mathrm{Q}_{1}$	$\mathrm{Q}_{2}$	$\mathrm{Q}_{3}$	$\mathrm{Q}_{4}$	$\mathrm{Q}_{5}$	$\mathrm{Q}_{1}$	$\mathrm{Q}_{2}$	$\mathrm{Q}_{3}$	Q4	$\mathrm{Q}_{5}$

$\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)

## CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{P} 1}=-24$ to $-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P} 2}=-12$ to -14 V ; $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85{ }^{\circ} \mathrm{C}$; $\mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.

${ }^{1}$ ) All typical values are measured at: $\mathrm{V}_{\mathrm{P}_{1}}=-26 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}_{2}}=-13 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$.

## CHARACTERISTICS (continued)

Test conditions: $\mathrm{V}_{\mathrm{P} 1}=-24$ to $-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P} 2}=-12$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$; $\mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.

${ }^{1}$ ) All typical values are measured at: $\mathrm{V}_{\mathrm{P}_{1}}=-26 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}_{2}}=-13 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$.

CHARACTERISTICS (continued)

## TIMING DIAGRAMS



## Note:

The indicated points on the vertical axis are specified in the glossary of terms.
Timing diagram notes:

1. Data and control inputs must remain valid for the shaded interval to ensure proper entry.
2. $\mathrm{C}_{1}$ may be switched in the same manner as all other inputs, providing it completes its switching transition before input $\mathrm{G}_{41}$ becomes LOW, for any given clock pulse.

## CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Clock pulse width: $t_{\phi L}$

The time for which the clock pulse is LOW; $\mathrm{V}_{\phi} \leq-24 \mathrm{~V}$.
2. Clock pulse rise time: $\mathrm{t}_{\phi \mathrm{LH}}$

The time between the -24 V and -2 V voltage points as the clock pulse goes from LOW to HIGH.
3. Clock pulse fall time: $\mathrm{t}_{\phi} \mathrm{HL}$

The time between the -2 V and -24 V voltage points as the clock pulse goes from HIGH to LOW.
4. Output rise transition time: ${ }^{\mathrm{T}} \mathrm{TLH}$

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
5. Output fall transition time: ${ }^{\mathrm{t}} \mathrm{THL}$

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.
6. Fall delay time: ${ }^{\mathrm{D}} \mathrm{DHL}$

The delay between the time the positive going edge of the clock pulse arrives at -2 V and the output -6 V voltage point as the output goes from HIGH to LOW.
7. Rise delay time: ${ }^{\mathrm{D}} \mathrm{DLH}$

The delay between the time the positive going edge of the clock pulse arrives at -2 V and the output -6 V voltage point as the output goes from LOW to HIGH.

## FD family

## OUTPUT BUFFER DESCRIPTION

The FDJ106 utilizes push-pull output buffers which exhibit the $\mathrm{V}_{\mathrm{Q}}$ versus $\mathrm{I}_{\mathrm{Q}}$ output curves, for both HIGH and LOW output, shown below.


## TYPICAL PERFORMANCE



TYPICAL PERFORMANCE (continued)
Test conditions: $\mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.


Propagation delay as a function of the supply voltages $\mathrm{V}_{\mathrm{P} 1}$ and $\mathrm{V}_{\mathrm{P} 2}$

## TYPICAL PERFORMANCE (continued)

Test conditions: $\mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.


Power dissipation as a function of the supply voltages $\mathrm{V}_{\mathrm{P} 1}$ and $\mathrm{V}_{\mathrm{P} 2}$

The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enhancement mode technology.

## QUADRUPLE 32-BIT DYNAMIC SHIFT REGISTERS

FDN106

$P_{0}$ and metal package bottom are connected.

QUICK REFERENCE DATA					
Supply voltage	$\mathrm{V}_{\mathrm{P}_{\perp}}$	-24 to	-28	V	
D. C. noise margin	$\mathrm{M}_{\mathrm{L}} ; \mathrm{M}_{\mathrm{H}}$	$>$	1	V	
Clock rate: FDN106	$\mathrm{f}_{\phi}$	0.01 to	3	MHz	
FDN116	$\mathrm{f}_{\phi}$	0.01 to	1	MHz	
Power consumption per bit at 1 MHz:FDN106	$\mathrm{P}_{\mathrm{av}}$	typ.	0.6	mW	
	FDN116	$\mathrm{P}_{\mathrm{av}}$	typ.	1.0	mW
Power dissipätion		$\mathrm{P}_{\text {tot }}$	max.	300	mW
Operating ambient temperature		$\mathrm{T}_{\mathrm{amb}}$	-55 to +85	${ }^{\circ} \mathrm{C}$	

PACKAGE OUTLINE: 14 lead metal-ceramic dual in-line (See General Section)

## GENERAL DESCRIPTION

The FDN106 and FDN116 packages comprise 4 separate 32 -bit shift registers that can be used independently or can be externally connected to make registers up to 128 -bits long. Clock and power lines are common to all four registers. The output buffers are bi-directional, low impedance NRZ ${ }^{1}$ ), that by suitable biasing will directly drive MOS, DTL or TTL loads or, because they have separate supply voltages $\left(\mathrm{V}_{2} ; \mathrm{V}_{\mathrm{P}_{3}}\right)$, a combination of MOS and bipolar. $\mathrm{V}_{\mathrm{P}_{2}}$ and $\mathrm{V}_{\mathrm{P}_{3}}$ are output buffer voltages only, and the output LOW signal is independent of the width and amplitude of the clock pulse.
The FDN106 uses a two-phase external clock, has low power dissipation and will operate at high speed.
The FDNll6 uses a single phase external clock, and is for applications not calling for the low power economy and high speed of the FDN106.
With the FDN106; FDN116; the FDN126; FDN136 (variable length 1 to 64 -bit dynamic shift registers) and the FDN146; FDN156 (256-bit dynamic shift registers) shift registers of any length can be built from off-the shelf parts.
$\rightarrow$ RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages on all data inputs, clock inputs, outputs   and supply terminals with reference to $\mathrm{P}_{0}$		+0.5 to	-30	V
Power disspation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	$\max$.	800	mW
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	$\max$.	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$	
Total current through terminals $\mathrm{P}_{2}$ and $\mathrm{P}_{3}$	$-\mathrm{I}_{\mathrm{P} 2},-\mathrm{I}_{\mathrm{P} 3}$	$\max$.	40	mA
Output current (per output)	$\pm \mathrm{I}_{\mathrm{Q}}$	$\max$.	20	mA

$\longrightarrow$ THERMAL RESISTANCE
From junction to ambient
$R_{\text {th j-a }}=156{ }^{\circ} \mathrm{C} / \mathrm{W}$

[^58]CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$


## Note 1

The fall time specified for the FDN116 is to ensure that output data will meet the input hold time requirements of other shift registers, when more shift registers operate in series from a common clock. If a register does not drive other registers the clock pulse fall time may be longer.
Note 2
For FDN106 above $\mathrm{f}_{\phi}=1.54 \mathrm{MHz} \mathrm{t}_{\phi} 1 \mathrm{Lmin}$ and $\mathrm{t}_{\phi 2 \mathrm{Lmin}}$ determine the maximum value of $t_{\phi H L}$ and $t_{\phi L H}$.

## CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{P}_{1}}=-24 \mathrm{~V}$ to $-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}_{2}}=-12 \mathrm{~V}$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded; standard load of $20 \mathrm{k} \Omega$ in parallel with 50 pF to $\mathrm{P}_{0}$

	Symbol	$\begin{aligned} & \text { Type } \\ & \text { number } \end{aligned}$	min.	typ.	max.	Conditions and references
ELECTRICAL DATA						
Output levels HIGH LOW	$\begin{gathered} \mathrm{v}_{\mathrm{QH}} \\ \mathrm{v}_{\mathrm{QL}} \end{gathered}$		-0.5 -14	-	$\begin{array}{r} 0 \mathrm{~V} \\ -10 \mathrm{~V} \end{array}$	
Data input capacitance	$\mathrm{C}_{\mathrm{I}}$		-	2	3.5 pF	bias: $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Clock input capacitance	$\mathrm{C}_{\mathrm{C}_{\phi 1}}, \mathrm{C}_{\phi_{2}}$	$\begin{aligned} & \text { FDN106 } \\ & \text { FDN116 } \end{aligned}$		$\begin{array}{r} 38 \\ 6 \end{array}$	$\begin{gathered} 50 \mathrm{pF} \\ 8 \mathrm{pF} \end{gathered}$	b bias: $\mathrm{V}_{\phi}=0 \mathrm{~V}$; $\mathrm{f}=1 \mathrm{MHz}$
	$\mathrm{C}_{\phi 1}, \mathrm{C}_{\phi 2}$	FDN106	-	28	37 pF	bias: $\mathrm{V}_{\boldsymbol{\phi}}=-26 \mathrm{~V}$; $\mathrm{f}=1 \mathrm{MHz}$
$\frac{\text { Leakage currents: }}{\text { Data input currents }}$	${ }^{-1}$ IL			-	$1 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{I}}=-15 \mathrm{~V} ; \text { all other } \\ \text { terminals at } \mathrm{V}_{\mathrm{P}_{0}} ; \\ \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \end{array}\right.$
Clock input current	${ }^{-1}{ }_{\phi} \mathrm{L}$			-	$100 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \int_{\phi}=-28 \mathrm{~V} \text {; all other } \\ \text { terminals at } \mathrm{V}_{\mathrm{P} 0} ; \\ \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \end{array}\right.$
Output resistance						
HIGH	$\mathrm{R}_{\mathrm{QH}}$			220	$500 \Omega$	
LOW	$\mathrm{R}_{\mathrm{QL}}$			220	$500 \Omega$	$\mathrm{V}_{\mathrm{P}_{2}}=\mathrm{V}_{\mathrm{P}_{3}}=-5 \mathrm{~V}$
Drive capability (see note l)	$\mathrm{V}_{\mathrm{QL}}$			-10	-8V	$\left\{\begin{array}{l} \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \\ \text { reference to } \mathrm{P}_{0} \end{array}\right.$
	$\mathrm{V}_{\mathrm{QL}}$			-4.7	$-4.4 \mathrm{~V}$	$\left\{\begin{array}{l} \left\{\begin{array}{l} \mathrm{V}_{\mathrm{P}_{2}}=\mathrm{V}_{\mathrm{P}_{3}}=-5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \\ \text { reference to } \mathrm{P}_{0} \end{array}\right. \end{array}\right.$
Power supply current drain (see note 2)	$-^{-1} \mathrm{P}_{2},-\mathrm{IP}_{3}$			3.0	3.5 mA	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{V}_{2}}=\mathrm{V}_{\mathrm{P}_{3}}=-13 \mathrm{~V} ; \\ \mathrm{f}_{\dot{\varphi}=1 \mathrm{MHz}}=1 \\ \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C} \end{array}\right.$
	${ }_{-1}^{-\mathrm{I}^{-1} \mathrm{P}_{1}}$	$\begin{aligned} & \text { FDN106 } \\ & \text { FDN116 } \end{aligned}$		$\begin{aligned} & 2.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.0 \mathrm{~mA} \\ & 7.0 \mathrm{~mA} \end{aligned}$	$\left\{\begin{array}{l} \mathrm{v}_{\mathrm{P}_{1}}=-26 \mathrm{~V} ; \\ \mathrm{f}_{\phi}=1 \mathrm{MHz} ; \\ \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{array}\right.$
$\frac{\text { Output transition times: }}{\text { fall time }}$rise time	$\begin{aligned} & { }^{\mathrm{t}}{ }_{\mathrm{t} \mathrm{THL}} \\ & { }^{\mathrm{t}} \mathrm{TLH} \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & -\mathrm{ns} \\ & -\mathrm{ns} \end{aligned}$	
Delay times: $\begin{aligned} \text { fall time }\end{aligned}$	${ }_{\text {t }}$	FDN106			- ns	
	${ }_{\text {t }{ }_{\text {DHL }}}^{\text {thLH }}$	FDN116			- ns	
	${ }_{\text {thLH }}$	FDN116			- ns	
D. C. noise margin	$\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{H}}$		1	-	- V	

## CHARACTERISTICS (continued)

Note 1 (see page 4)
The maximum capacitive load that can be driven depends only on the speed desired and the power dissipation allowable. See the output buffer description on page 8 for further information on output drive capability.

Note 2 (see page 4)
The output buffer power supply currents $\left(\mathrm{IP}_{2}, \mathrm{I}_{3}\right)$ are almost entirely dependent on the external load.

CHARACTERISTICS (continued)
TIMING DIAGRAMS


FDN116
$\varnothing$


Notes

1. The indicated points on the vertical axes are specified in the glossary of terms.
2. Input data must remain valid during the shaded interval to ensure proper entry into the register.

CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Clock pulse width: $t_{\phi L}$

The time for which the clock pulse is LOW: FDN106; $\mathrm{V}_{\boldsymbol{\phi}} \leq-24 \mathrm{~V}$
FDN116; $\mathrm{V}_{\phi} \mathrm{L} \leq-9 \mathrm{~V}$
2. Clock pulse fall time: $\mathrm{t}_{\boldsymbol{\phi} \mathrm{HL}}$

The time between the $10 \%$ and $90 \%$ voltage points as the clock pulse goes from HIGH to LOW.
3. Clock pulse rise time: $\mathrm{t}_{\phi \mathrm{LH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the clock pulse goes from LOW to HIGH.
4. Clock delay time: ${ }^{t_{\phi 1 \phi 2}},{ }^{t_{\phi 2 \phi 1}}$ (FDN106)

The least allowable time between the end of the $\phi_{1}$ (or $\phi_{2}$ ) clock pulse and the start of the $\phi_{2}$ (or $\phi_{1}$ ) clock pulse, defined at -2 V .
5. Clock pulse space: $\mathrm{t}_{\phi \mathrm{H}}$ (FDN116)

The minimum time between the end of a clock pulse $(\phi)$ and the start of the next, defined at -2 V .
6. Data lead time: tli

FDN106: The time before the $90 \%$ point on the clock pulse $\phi_{1}$ for which the voltage at the data input must be at its specified logic level in order to ensure that the data will be entered in the register.
FDN116: The time before the $10 \%$ point on the clock pulse for which the voltage at the data input must be at its specified logic level in order to ensure that the data will be entered in the register.
7. Data hold time: $\mathrm{t}_{\mathrm{hI}}$ (FDN116)

The time after the clock pulse $\phi$ reaches LOW for which the input data must remain stable to guarantee that it will be entered into the register.
8. Output fall transition time: tTHL

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.
9. Output rise transition time: tTLH

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
10. Fall delay time: tDHL

FDN106: The delay between the clock pulse $\phi_{2}$ reaching LOW and the outputbeginning to change from HIGH to LOW .
FDN116: The delay between the clock pulse $\phi$ reaching LOW and the output beginning to change from HIGH to LOW.
11. Rise delay time: tDLH

FDN106: The delay between the clock pulse $\phi_{2}$ reaching LOW and the output beginning to change from LOW to HIGH.
FDN116: The delay between the clock pulse $\phi$ reaching LOW and the output beginning to change from LOW to HIGH.

## OUTPUT BUFFER DESCRIPTION

$\rightarrow 1$. The curves below are typical output buffer voltage-current characteristics for the FDN106 and FDN116. They show $\mathrm{V}_{\mathrm{Q}}$ versus $\mathrm{I}_{\mathrm{Q}}$ for the bias $\mathrm{V}_{\mathrm{P}_{2}}$ and $\mathrm{V}_{\mathrm{P}_{3}}$ at -5 V and -12 V , for both HIGH and LOW output.

Note: When operating with high output current levels, the maximum power rating must not be exceeded.

The circuit shown may be used to obtain output curves for other values of $\mathrm{V}_{\mathrm{P}_{2}}$ and $\mathrm{V}_{\mathrm{P}_{3}}$.


$\longrightarrow 2$. The bias arrangement shown is suitable for driving TTL or DTL loads direct.


TYPICAL PERFORMANCE



TYPICAL PERFORMANCE (continued)


The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enhancement mode technology.

## VARIABLE LENGTH 1 TO 64-BIT DYNAMIC SHIFT REGISTERS


$P_{0}$ and metal package bottom are connected.

QUICK REFERENCE DATA				
Supply voltage	$\mathrm{V}_{\mathrm{P}_{1}}$	-24 to	-28	V
D. C. noise margin	$\mathrm{M}_{\mathrm{L}} ; \mathrm{M}_{\mathrm{H}}$	$>$	1	V
Clock rate: FDN126	$\mathrm{f}_{\phi}$	0.01 to	3	MHz
FDN136	$\mathrm{f}_{\phi}$	0.01 to	1	MHz
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +85	${ }^{\circ} \mathrm{C}$	

PACKAGE OUTLINE : 14 lead metal-ceramic dual in-line (See General Section)

## GENERAL DESCRIPTION

The FDN126 and FDN136 are unique in that the bit length of both registers can be set from 1 to 64 bits by appropriate choice of the logic state of 6 control inputs. The same input and output leads are used, the control inputs determine the number of register stages connected between them.
The FDN126 is essentially for high speed operation and needs a 2 phase external clock.
The FDN136 needs only a low level single phase external clock; it is suitable for applications that do not demand speeds in excess of 1 MHz .
Both circuits use a bi-directional low impedance output buffer which, when appropriately biased, is capable of driving MOS or DTL and TTL loads direct.
With the FDN126; FDN136, the FDN106; FDN116 (quadruple 32 -bit dynamic shift registers) and FDN146; FDN156 (256 bit dynamic shift registers) shift registers of any length can be built from off-the-shelf parts.

## REGISTER LENGTH CONTROL

The length of the register is controlled by applying binary signals to lines $\mathrm{A}_{1}$ to $\mathrm{A}_{6}$. The actual length is one more than the binary sum (see table). The length control bits are gated in at $\phi_{1}$. The length of the register is set up approximately $2 \mu \mathrm{~s}+2$ clock cycles after application of the control signals. (one clock cycle is one $\phi_{1}$ pulse + one $\phi_{2}$ pulse for the FDN126 and one $\phi$ pulse for the FDN136)
Table (examples)

weight: 32	16	8	4	2	1	
$\mathrm{~A}_{6}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	register   length
H	H	H	H	H	H	l-bit
H	H	H	H	H	L	2 -bits
H	H	H	L	H	L	6 -bits
L	H	H	H	H	H	33 -bits
L	L	L	L	L	L	64 -bits

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages on all data inputs, clock inputs, outputs, control inputs and supply terminals with reference to $\mathrm{P}_{0}$
Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \quad$ Ptot max. 800 mW
Junction temperature
$\mathrm{T}_{\mathrm{j}} \max .150{ }^{\circ} \mathrm{C}$

Storage temperature
$\mathrm{T}_{\text {stg }} \quad-65$ to $+150{ }^{\circ} \mathrm{C}$

Total current through terminal $\mathrm{P}_{2}$
-IP2 max. 20 mA
Output current (per output)
$\pm \mathrm{I}$ max. 20 mA

## THERMAL RESISTANCE

From junction to ambient
$R_{\text {th } j-a}=156{ }^{\circ} \mathrm{C} / \mathrm{W}$

## DRIVE REQUIREMENTS



## Note

The clock pulse fall time specified for the FDN136 is to ensure that output data will meet the input hold time requirements of other shift registers, when more shift registers operate in series from a common clock. If a register does not drive other registers, the clock pulse rise and fall times may be longer.

## Note 2

For FDN126 above $\mathrm{f} \phi=1.6 \mathrm{MHz} \mathrm{t} \phi \mathrm{L} \operatorname{Lmin}$ and $\mathrm{t} \phi 2 \mathrm{Lmin}$ determine the maximum value of $\mathrm{t} \phi \mathrm{HL}$ and $\mathrm{t} \phi \mathrm{LH}$.

## CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{P}_{1}}=-24 \mathrm{~V}$ to $-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}_{2}}=-12$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85{ }^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded; standard load of $20 \mathrm{k} \Omega$ in parallel with 50 pF to $\mathrm{P}_{0}$


## CHARACTERISTICS (continued)

## Note 1 (see page 4)

The maximum capacitive load that can be driven depends only on the speed desired and the power dissipation allowable. See the output buffer description on page 8 for further information on output drive capability.

Note 2 (see page 4)
The output buffer power supply current $I_{P 2}$ is almost entirely dependent on the external load.

## CHARACTERISTICS (continued)

TIMING DIAGRAMS


FDN136


Notes

1. The indicated points on the vertical axes are specified in the glossary of terms.
2. During a continuous series of LOW signals the data output may return momentarily to zero once every clock cycle, i.e. when the register output normally changes signal. The data output should be not sampled during this period.
3. Input data must remain valid during the shaded interval to ensure proper entry into the register.

## CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Clock pulse width: $t_{\phi L}$

The time for which the clock pulse is LOW: FDN126; $\mathrm{V}_{\phi \mathrm{L}} \leq-24 \mathrm{~V}$
FDN136; $\mathrm{V}_{\phi \mathrm{L}} \leq-9 \mathrm{~V}$
2. Clock pulse fall time: $\mathrm{t}_{\phi \mathrm{HL}}$

The time between the $10 \%$ and $90 \%$ voltage points as the clock pulse goes from HIGH to LOW.
3. Clock pulse rise time: $t_{\phi L H}$

The time between the $90 \%$ and $10 \%$ voltage points as the clock pulse goes from LOW to HIGH.
4. Clock delay time: ${ }^{\mathrm{t}}{ }_{\phi 1 \phi 2}{ }^{\mathrm{t}}{ }^{\mathrm{\phi} 2 \phi 1}$ (FDN126)

The least allowable time between the end of the $\phi_{1}$ (or $\phi_{2}$ ) clock pulse and the start of the $\phi_{2}$ (or $\phi_{1}$ ) clock pulse, defined at -2 V .
5. Clock pulse space: $\mathrm{t}_{\phi \mathrm{H}}$ (FDN136)

The minimum time between the end of a clock pulse $(\phi)$ and the start of the next, defined at -2 V .
6. Data lead time: tlI

FDN126: The time before the $90 \%$ point on the clock pulse $\phi_{1}$ for which the voltage at the data input must be at its specified logic level in order to ensure that the data will be entered in the register.
FDN136: The time before the $10 \%$ point on the clock pulse for which the voltage at the data input must be at its specified logic level in order to ensure that the data will be entered in the register.
7. Data hold time: $\mathrm{t}_{\mathrm{hI}}$ (FDN136)

The time after the clock pulse $\phi$ reaches LOW for which the input data must remain stable to guarantee that it will be entered into the register.
8. Output fall transition time: tTHL

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.
9. Output rise transition time: tTLH

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
10. Fall delay time: tDHL

FDN126: The delay between the clock pulse $\phi 2$ reaching LOW and the output beginning to change from HIGH to LOW.
FDN136: The delay between the clock pulse $\phi$ reaching LOW and the output beginning to change from HIGH to LOW.
11. Rise delay time: t DLH

FDN126: The delay between the clock pulse $\phi_{2}$ reaching LOW and the output beginning to change from LOW to HIGH.
FDN136: The delay between the clock pulse $\phi$ reaching LOW and the output beginning to change from LOW to HIGH.

## OUTPUT BUFFER DESCRIPTION

$\rightarrow 1$. The curves below are typical output buffer voltage-current characteristics for the FDN126 and FDN136. They show $V_{Q}$ versus $I_{Q}$ for the bias $V_{P_{2}}$ at -5 V and - 12 V , for both HIGH and LOW output.

Note: When operating with high output current levels, the maximum power rating must not be exceeded.

The circuit shown may be used to obtain output curves for other values of $\mathrm{V}_{\mathrm{P}_{2}}$.


$\longrightarrow 2$. The bias arrangement shown is suitable for driving TTL or DTL loads direct.


TYPICAL PERFORMANCE



TYPICAL PERFORMANCE (continued)





The FD family is a series of complex monolithic integrated circuits utilizing MOS P -channel enhancement mode technology.

## 256-BIT DYNAMIC SHIFT REGISTER



Pin numbers refer to FDN146 only



FDN146 : P0 connected to metal bottom FDN146A: $\mathrm{P}_{0}$ connected to metal case

QUICK REFERENCE DATA			
D.C. noise margin	ML	$>\quad 1$	V
Clock rate	$\mathrm{f}_{\varnothing}$	0.01 to 3	MHz
Power consumption per bit at 10 kHz	$\mathrm{P}_{\text {av }}$	$<0.002$	mW
1 MHz	Pav	$<0.2$	mW
3 MHz	$\mathrm{Pav}^{\text {a }}$	$<\quad 0.6$	mW
Power dissipation	$\mathrm{P}_{\text {tot }}$	max. 300	mW
Operating ambient temperature	Tamb	-55 to +85	${ }^{\circ} \mathrm{C}$

## GENERAL DESCRIPTION

The FDN146(A) contains one continuous 256 -bit shift register with one serial input and one serial output. It dissipates very little power and uses a two-phase external clock. The device has a low impedance push-pull output buffer which, when appropriately biased is capable of interfacing direct with MOS, DTL, TTL and other loads. The buffer supply terminal $\mathrm{P}_{1}$ is a separate supply which determines the output LOW signal only. This provides an output level that is independent of both the amplitude and width of the clock pulse. With the FDN146(A), the FDN106 (a quadruple 32-bit shift register) and FDN126 (a variable length 1 to 64 bit shift register) shift registers of any length can be built from off-the-shelf parts.

PACKAGE OUTLINE : FDN146: 14 lead metal-ceramic dual in-line (See General Section)
FDN146A: TO -100 (See General Section)
$\rightarrow$ RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages on all data inputs, clock inputs, outputs and supply terminals with reference to $P_{0}$ +0.5 to -30 V
Power dissipation up to $\mathrm{Tamb}=25^{\circ} \mathrm{C}$

Junction temperature
Storage temperature

FDN146 :	$\mathrm{P}_{\text {tot }}$	$\max$.	800	mW
FDN146A:	$\mathrm{P}_{\text {tot }}$	$\max$.	625	mW
	$\mathrm{~T}_{\mathrm{j}}$	$\max$.	150	${ }^{\circ} \mathrm{C}$
	$\mathrm{T}_{\text {stg }}$	-65	+156	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to ambient
FDN146: R $R_{\text {th } j-\mathrm{a}}=156{ }^{\circ} \mathrm{C} / \mathrm{W}$
FDN146A: $R_{\text {th } j-\mathrm{a}}=200{ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$


## Note 1

The FDN146(A) can be supplied in versions that will operate with -24 V to -28 V clock pulse LOW signal range.

## Note 2

Above $\mathrm{f}_{\phi}=1.54 \mathrm{MHz} \mathrm{t}_{\phi} 1 \mathrm{Lmin}$ and $\mathrm{t}_{\phi} 2 \mathrm{Lmin}$ determine the maximum value of $\mathrm{t}_{\phi} \mathrm{HL}$ and $t_{\phi L H}$.

CHARACTERISTICS (continued)
Test conditions: $\mathrm{V}_{\mathrm{P}_{1}}=-12 \mathrm{~V}$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85{ }^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $20 \mathrm{k} \Omega$ to $\mathrm{P}_{0}$


## Note 1

The maximum capacitive load that can be driven depends only on the speed desired and the power dissipation allowable. See the output buffer description on pages 6 and 7 for further information on output drive capability.

## Note 2

The output buffer power supply current $\mathrm{IP}_{1}$ is almost entirely dependent on the external load. The value shown is for a standard load of $1 \mathrm{M} \Omega, 50 \mathrm{pF}$ load.

## CHARACTERISTICS (continued)

TIMING DIAGRAM


## Notes

1. The indicated points on the vertical axis are specified in the glossary of terms.
2. Input data must remain valid during the shaded interval to ensure proper entry into the register.

## CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Clock pulse width: $\mathrm{t}_{\phi \mathrm{L}}$

The time for which the clock pulse is LOW: $\mathrm{V}_{\phi \mathrm{L}} \leq-26 \mathrm{~V}$
2. Clock pulse fall time: $\mathrm{t}_{\phi \mathrm{HL}}$

The time between the $10 \%$ and $90 \%$ voltage points as the clock pulse goes from HIGH to LOW.
3. Clock pulse rise time: $\mathrm{t} \phi \mathrm{LH}$

The time between the $90 \%$ and $10 \%$ voltage points as the clock pulse goes from LOW to HIGH.
4. Clock delay time: $\mathrm{t}_{\phi 1 \phi 2}, \mathrm{t}_{\phi} \not 2 \phi 1$

The least allowable time between the end of the $\phi_{1}$ (or $\phi_{2}$ ) clock pulse and the start of the $\phi_{2}$ (or $\phi_{1}$ ) clock pulse, defined at -2 V .
5. Data lead time: $t_{\ell I}$

The time before the $90 \%$ point on the clock pulse $\phi_{1}$ for which the voltage at the data input must be at its specified logic level in order to ensure that the data will be entered in the register.
6. Output fall transition time: t THL

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.
7. Output rise transition time: $\mathrm{t}_{\mathrm{TLH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
8. Fall delay time: $\mathrm{t}_{\mathrm{DHL}}$

The delay between the clock pulse $\phi_{2}$ reaching LOW and the output beginning to change from HIGH to LOW .
9. Rise delay time: t DLH

The delay between the clock pulse $\phi_{2}$ reaching LOW and the output beginning to change from LOW to HIGH.

## OUTPUT BUFFER DESCRIPTION

1. The curves below are typical output buffer voltage-current characteristics for the FDN146(A). They show $\mathrm{V}_{\mathrm{Q}}$ versus $\mathrm{I}_{\mathrm{Q}}$ for the bias $\mathrm{VP}_{1}$ at -5 V and -12 V , for both HIGH and LOW output. The circuit shown may be usedto obtain output curves for other values of VPI.

Note: When operating with high output current levels, the maximum power rating must not be exceeded.



## OUTPUT BUFFER DESCRIPTION (continued)

2. Biasing circuit A may be used to drive TTL or DTL loads direct. The MOS input logic levels must be referenced to $\mathrm{V}_{\mathrm{P}_{0}}$. TR1 and TR2 are the push-pull output driver transistors of the FDN146.


Biasing circuit A
3. Biasing circuit $B$ allows the MOS device to be interfaced with TTL or DTL at both the input and output using only passive interface components.
Note that the TTL or DTL integrated circuit must be able to withstand +12 V applied to the output lead (point A), most non- $R_{C}$ type gates of our FC series and most FJ gates satisfy this requirement. Special open collector FJ gates (FJH301, 311,321 ) have a minimum ouput breakdown voltage guarantee of 15 V .


Biasing circuit B
4. To drive MOS loads direct, the bias $\mathrm{V}_{P_{1}}$ should be between -12 and -14 V to $\mathrm{P}_{0}$.

TYPICAL PERFORMANCE




The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enhancement mode technology.

## 256-BIT DYNAMIC SHIFT REGISTER



Pin numbers refer to FDN156 only


FDN156 : $\mathrm{P}_{0}$ connected to the metal bottom FDN156A: $P_{0}$ connected to the metal case

QUICK REFERENCE DATA			
Supply voltage	$\mathrm{VP}_{1}$	-26 to -28	V
D. C. noise margin	$\mathrm{M}_{\mathrm{L}}{ }^{\text {l }}$	$>\quad 1$	V
	$\mathrm{M}_{\mathrm{H}}$	$>\quad 1.5$	V
Clock rate	$\mathrm{f}_{\phi}$	0.01 to 1	MHz
Power consumption per bit at $\mathrm{f}=10 \mathrm{kHz}$	$\mathrm{P}_{\mathrm{av}}$	< 0.2	mW
$\mathrm{f}=1 \mathrm{MHz}$	Pav	< 0.6	mW
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +85	${ }^{\circ} \mathrm{C}$

## GENERAL DESCRIPTION

The FDN156A contains one 256-bit shift register with one serial input and one serial output. It dissipates very little power and uses a one-phase external clock. The device has a low impedance push-pull output buffer which, when appropriately biased is capable of interfacing direct with MOS, DTL, TTL and other loads.
The buffer supply terminal $\mathrm{P}_{2}$ is a separate supply which determines the output LOW signal only. This provides an output level that is independent of both the amplitude and width of the clock pulse.
With the FDN156A, the FDN116 (a quadruple 32 -bit shift register) and FDN136 (a variable length 1 to 64 -bit shift register) shift registers of any length can be built from off-the-shelf parts.

PACKAGE OUTLINE : FDN156: 14lead metal-ceramic dual in-line (See General Section) FDN156A: TO-100 (See General Section)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages on all data inputs, clock inputs, outputs and supply terminals with reference to $\mathrm{P}_{0}$

Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Junction temperature
Storage temperature
Total current through terminal $\mathrm{P}_{2}$
Output current (per output)

FDN156 :	$P_{\text {tot }}$	max.	800	mW
FDN156A:	$\mathrm{P}_{\text {tot }}$	$\max$.	625	mW
$\mathrm{~T}_{\mathrm{j}}$	$\max$.	150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$		
	$\mathrm{I}_{\mathrm{P} 2}$	max.	20	mA
$\pm \mathrm{I}_{\mathrm{Q}}$	$\max$.	20	mA	

## THERMAL RESISTANCE

From junction to ambient

$$
\begin{aligned}
& \text { FDN156 : } R_{\text {th } j-a}=\begin{array}{l}
156{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\text { FDN156A: } R_{\text {th } j-\mathrm{a}}
\end{array} \quad 200{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$ FDNI56A. $\mathrm{R}_{\text {th }} \mathrm{j}-\mathrm{a}$

	Symbol	min	typ.	max.	Conditions and references
Clock rate	$\mathrm{f}_{\phi}$	0.0	-	1 MHz	
Clock pulse width	${ }^{t}{ }_{\phi}$	0.5	-	$50 \mu \mathrm{~s}$	See timing diagram for   tparameter definitions
Clock pulse fall time	${ }_{\text {t }}$ ¢ HL	-	-	$0.10 \mu \mathrm{~S}$	See note 1
Clock pulse rise time	$t_{\varnothing \text { LH }}$	-	-	$0.10 \mu \mathrm{~s}$	
Clock pulse space	$t_{\phi} \mathrm{H}^{\text {H }}$	0.5	-	$50 \mu \mathrm{~s}$	
Clock pulse voltage level HIGH   LOW	$V_{\not \subset \mathrm{H}}$ $V_{\phi L}$	-28	$\begin{gathered} 0 \\ -12 \end{gathered}$	$\begin{array}{r} +0.3 \mathrm{~V} \\ -9 \mathrm{~V} \end{array}$	
Data input logic levels HIGH LOW	$\mathrm{V}_{\text {IH }}$ $\mathrm{V}_{\text {IL }}$	-28 -28		$\begin{array}{r} +0.3 \mathrm{~V} \\ -9 \mathrm{~V} \end{array}$	
Data lead time	${ }^{\text {¢ }}$ II	20	-	- ns	
Data hold time	$t_{\text {h }}$	75	-	- ns	
Supply voltages	$\mathrm{V}_{\mathrm{P}_{1}}$ $\mathrm{~V}_{\mathrm{P}_{1}}$ $\mathrm{~V}_{\mathrm{P}_{2}}$	-28 -28 -28	$\begin{gathered} -26 \\ -27 \\ - \end{gathered}$	$\begin{array}{r} -24 \mathrm{~V} \\ -26 \mathrm{~V} \\ +0.3 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{f} \phi \leq 750 \mathrm{kHz} \\ & \mathrm{f} \phi \leq 750 \mathrm{kHz} \end{aligned}$

## Note 1

The fall time specified for the FDN156(A) is to ensure that output data will meet the input hold time requirements of other shift registers, when more shift registers operate in series from a common clock. If a register does not drive other registers the clock pulse fall time may be longer.

CHARACTERISTICS (continued)
Test conditions: $\mathrm{V}_{\mathrm{P}_{1}}=-26 \mathrm{~V}$ to $-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}_{2}}=-12 \mathrm{~V}$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85{ }^{\circ} \mathrm{C}$; $\mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $20 \mathrm{k} \Omega$ to $\mathrm{P}_{0}$.

	Symbol	min.	typ.	$\max$.	Conditions and references
ELECTRICAL DATA					
Output levels					
HIGH	$\mathrm{V}_{\mathrm{QH}}$	-0.5	-	0 V	
LOW	$\mathrm{V}_{\mathrm{QL}}$	-14		-10 V	
Data input capacitance		-	2	3.5 pF	bias: $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} ; \mathrm{ff}_{\boldsymbol{\prime}}=1 \mathrm{MHz}$
Clock input capacitance	$\mathrm{C}_{\varnothing}$	-	6	10 pF	bias: $\mathrm{V}_{\phi}=0 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz}$
Leakage currents					$\mathrm{V}_{\mathrm{I}}=-15 \mathrm{~V}$; all other
Data input currents	${ }^{-1} \mathrm{IL}$	-	-	$1 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \text { terminals at } \mathrm{V}_{\mathrm{P}_{0}} \\ \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{array}\right.$
Clock input current	$-\mathrm{I}_{\phi L}$	-	-	$100 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \mathrm{V}_{\phi}=-28 \mathrm{~V} \text {; all other } \\ \text { terminals at } \mathrm{V}_{\mathrm{P}_{0}} ; \\ \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{array}\right.$
Output resistance					
HIGH	$\mathrm{R}_{\mathrm{QH}}$	-	250	$500 \Omega$	
LOW	$\mathrm{R}_{\mathrm{QL}}$	-		$500 \Omega$	$\mathrm{V}_{\mathrm{P}_{2}}=-5 \mathrm{~V}$
Drive capability   (see note l)	$\mathrm{V}_{\mathrm{QL}}$		-4.8	$-4.6 \mathrm{~V}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{P}_{2}}=-5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \\ \text { to reference } \mathrm{P}_{0} \end{array}\right.$
Power supply current drain (see note 2)	- $\mathrm{IP}_{2}$		1.0	1.5 mA	$\begin{aligned} & \mathrm{V}_{\mathrm{P}_{2}}=-13 \mathrm{~V} ; \mathrm{f} \phi=1 \mathrm{MHz} ; \\ & \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C} \end{aligned}$
Output transition times:	${ }^{-1} \mathrm{P}_{1}$	-	$5.0$	8.0 mA	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=-27 \mathrm{~V} ; \mathrm{f} \phi=1 \mathrm{MHz} ; \\ & \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C} \end{aligned}$
fall time	${ }^{\text {t }}$ THL			- ns	
rise time	${ }^{\text {t }}$ TLH			- ns	
Delay times: fall time	${ }^{\text {t }}$ DHL		300	- ns	
rise time	${ }^{\text {t }}$ L LH	-	300	- ns	
D. C. noise margin	$\begin{aligned} & \mathrm{M}_{\mathrm{L}} \\ & \mathrm{M}_{\mathrm{H}} \end{aligned}$	$\begin{array}{r} 1 \\ 1.5 \end{array}$		$\begin{aligned} & -\mathrm{V} \\ & -\mathrm{V} \end{aligned}$	

## Note 1

The maximum capacitive load that can be driven depends only on the speed desired and the power dissipation allowable. See the output buffer description on pages 5 and 6 for further information on output drive capability.
Note 2
The output buffer power supply current $\mathrm{IP}_{2}$ is almost entirely dependent on the external load.

CHARACTERISTICS (continued)

## TIMING DIAGRAM



## Notes

1. The indicated points on the vertical axis are specified in the glossary of terms.

## CHARACTERISTICS (continued)

## GLOSSERY OF TERMS

1. Clock pulse width: $\mathrm{t}_{\varnothing \mathrm{L}}$

The time for which the clock pulse is LOW: $\mathrm{V}_{\phi \mathrm{L}} \leq-9 \mathrm{~V}$.
2. Clock pulse fall time: $t_{\phi H L}$

The time between the $10 \%$ and $90 \%$ voltage points as the clock pulse goes from HIGH to LOW.
3. Clock pulse rise time: $\mathrm{t}_{\phi \mathrm{LH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the clock pulse goes from LOW to HIGH.
4. Clock pulse space: $\mathrm{t}_{\phi \mathrm{H}}$

The least allowable time between the end of a clock pulse ( $\phi$ ) and the start of the next.
5. Data lead time: ${ }_{\ell} \ell$

The time before the $10 \%$ point on the clock pulse for which the voltage at the data input must be at its specified logic level in order to ensure that the data will be entered in the register.
6. Data hold time: thi

The time after the clock pulse $\phi$ reaches LOW for which the input data must remain stable in order to ensure that the data will be entered in the register.
7. Output fall transition time: $\mathrm{t}_{\mathrm{THL}}$

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.
8. Output rise transition time: $\mathrm{t}_{\mathrm{TLH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
9. Fall delay time: tDHL

The delay between the clock pulse $\phi$ reaching LOW and the output beginning to change from HIGH to LOW.
10. Rise delay time: t DLH

The delay between the clock pulse $\phi$ reaching LOW and the output beginning to change from LOW to HIGH.

## OUTPUT BUFFER DESCRIPTION

1. The curves below are typical output buffer voltage-current characteristics for the FDN156. They show $\mathrm{V}_{\mathrm{Q}}$ versus $\mathrm{I}_{\mathrm{Q}}$ for the bias $\mathrm{V}_{\mathrm{P}_{1}}$ at -5 V and -12 V , for both HIGH and LOW output. The circuit shown may be used to obtain outputcurves for other values of $\mathrm{V}_{\mathrm{P}_{2}}$.

Note: When operating with high output current levels, the maximum power rating must not be exceeded.



## OUTPUT BUF FER DESCRIPTION

2. Biasing circuit "A" may be used to drive TTL or DTL loads direct. The MOS input logic levels must be referenced to $\mathrm{V}_{\mathrm{P}_{0}}$. TR1 and TR2 are the push-pull output driver transistor of the FDN156.

3. Biasing circuit "B" allows the MOS device to be interfaced with TTL or DTL at both input and output using only passive interface components. Note that the TTL or DTL integrated circuit must be able to withstand +10 V applied to the output lead (point A), most non- $R_{C}$ type gates of our FC series and most FJ gates satisfy this requirement. Special open collector FJ gates (FJH301; 311; 321) have a minimum output breakdown voltage guaranteこ of 15 V .

4. To drive MOS loads direct, the bias $\mathrm{V}_{\mathrm{P}_{1}}$ should be between-12 and -14 V to $\mathrm{P}_{0}$.

TYPICAL PERFORMANCE




The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enhancement mode technology.

## 512-BIT RECIRCULATING DYNAMIC SERIAL MEMORY



$\mathrm{P}_{0}$ connected to the metal case

	QUICK REFERENCE DATA				
Clock rate	$\mathrm{f}_{\phi}$	0.005	to	5	MHz
Data rate	$\mathrm{f}_{\mathrm{D}}$	0.01	to	5	MHz
Power consumption per bit					
at 1 MHz data rate	$\mathrm{Pav}_{\mathrm{av}}$	0.07	mW		
at 5 MHz data rate	$\mathrm{P}_{\mathrm{av}}$	0.35	mW		
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +85	${ }^{\mathrm{o}} \mathrm{C}$		

.PACKAGE OUTLINE : TO-100 (See General Section)

## GENERAL DESCRIPTION

The FDN166A consists of two 256-bit 2-phase dynamic shift registers, with internal multiplexing and recirculation circuitry. ${ }^{1}$ )
Data is written into and read from the device at both $\phi_{1}$ and $\phi_{2}$, so that the data rate is twice the clock rate. The chip disable (CD) inputs allow selection of one-out -of--many circuits in larger memories. Both CD inputs have to be in the HIGH state to activate the device. Data will be written in when $\mathrm{W}, \mathrm{CD}_{1}$, and $\mathrm{CD}_{2}$ are in the HIGH state; at all other times the device is in the recirculation mode. The output is active only when $R, C D_{1}$ and $C D_{2}$ are in the HIGH state; so that the outputs of more devices can be wired-OR.
With the FDN166A large serial memories with a drum-like organisation can be made.
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage on all data inputs, clock inputs, outputs and supply terminals with reference to $\mathrm{P}_{0} \quad+0.5$ to -30

Power dissipation	$P_{\text {tot }}$	$\max$.	625	mW
Junction temperature up to $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{j}}$	$\max$.	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65	to	+150
${ }^{\circ} \mathrm{C}$				
Output current (per output)	$\pm \mathrm{IQ}$	$\max$.	20	mA

THERMAL RESISTANCE
From junction to ambient
$R_{\text {th } \mathrm{j}-\mathrm{a}}=200 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

Note
All terminals are protected against over-voltage due to static charges.

[^59]DRIVE REQUIREMENTS at $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$; $\mathrm{P}_{0}$ is grounded

	Symbol	min. typ.	max.	Conditions and references
Clock rate	$\mathrm{f}_{\phi}$	0.05 -	1.5 MHz	$\mathrm{V}_{\phi \mathrm{L}}=-23 \mathrm{~V}$
		0.05 -	2.5 MHz	$\mathrm{V}_{\phi} \mathrm{L}=-26 \mathrm{~V}$
Clock pulse width	${ }^{\text {t }}$ ¢ ${ }_{\text {L }}$	0.28 -	$10 \mu \mathrm{~s}$	$\mathrm{V}_{\phi \mathrm{L}}=-23 \mathrm{~V}$
		0.16 -	$10 \mu \mathrm{~s}$	$\mathrm{V}_{\phi \mathrm{L}}=-26 \mathrm{~V}$
Clock pulse rise time	${ }^{\mathrm{t}} \mathrm{LL}^{\text {L }} \mathrm{H}$	- -	100 ns	
Clock pulse fall time	$\mathrm{t}_{\phi} \mathrm{HL}$	- -	100 ns	
Clock delay	${ }^{t_{\phi 1}}{ }_{1}{ }, \mathrm{t}_{\phi 2 \phi 1}$	0 -	$100 \mu \mathrm{~s}$	
Clock pulse voltage levels				
HIGH	$\mathrm{V}_{\phi} \mathrm{H}$	-2 -	+0.3 V	
LOW	$\mathrm{V}_{\phi L}$	-28 -	$-23 \mathrm{~V}$	
Data input logic levels				
HIGH	$\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{CDH}}$,   VRH, VWH	-1 -	$+0.3 \mathrm{~V}$	
LOW	VIL, VCDL,   VRL, VWL	-28 -	-9 V	
Data lead time for   I, W, R and CD inputs	$\mathrm{t}_{\ell}$	$50-$	-. ns	

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$; $\mathrm{P}_{0}$ grounded

	Symbol	min. typ. max.	Conditions and references
Data rate	$\mathrm{f}_{\mathrm{D}}$	$0.01-3 \mathrm{MHz}$	$\mathrm{V}_{\phi \mathrm{L}}=-23 \mathrm{~V}$
	fD	$0.01-5 \mathrm{MHz}$	$\mathrm{V}_{\phi \mathrm{L}}=-26 \mathrm{~V}$
Output current			
HIGH	${ }^{-1} \mathrm{QH}$	$2-\mathrm{mA}$	$\mathrm{V}_{\mathrm{Q}}=-5 \mathrm{~V}$; see note
LOW	${ }^{-1} \mathrm{QL}$	- $\quad 10 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{Q}}=-15 \mathrm{~V}$
Capacitances			
I, R, W and CD inputs	$\mathrm{C}_{\mathrm{I}}$	- 2.33 .5 pF	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Clock input capacitance	$\mathrm{C}_{\phi}$	- $\quad 95110 \mathrm{pF}$	$\mathrm{V}_{\phi}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Output capacitance	CQ	- 2.02 .5 pF	$\mathrm{V}_{\mathrm{Q}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Leakage currents			
I, R, W and CD inputs	-II	- - $1 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{I}}=-15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$   all other terminals at $\mathrm{V}_{\mathrm{P} 0}$
Clock inputs	$-\mathrm{I}_{\phi}$	- $\quad 100 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{V}_{\phi}=-28 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \text { all other terminals at } \mathrm{V}_{\mathrm{P} 0} \end{aligned}$
Output resistance   HIGH	RQH	- - $1 \mathrm{k} \Omega$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{Q}}=-5 \mathrm{~V} \\ \text { See note } \end{array}\right.$
Delay times			
Clock input to data output	${ }^{\text {t }}$ DHL, ${ }^{\text {t }}$ LH	- - 110 ns	

Note
The specified output current is measured immediately after the delay time t DLH. In a steady HIGH state the output resistance decreases to less then $1 \mathrm{k} \Omega$.

## CHARACTERISTICS (continued)

TIMING DIAGRAM


Note
Data inputs (I, W, R, $C_{1}$ and $C D_{2}$ ) must remain valid for the shaded interval to ensure proper entry.
When $\mathrm{CD}_{1}, \mathrm{CD}_{2}$ and R are HIGH during this time, the output circuit will be active during the succeeding clock pulse.

## CHARACTERISTICS

## GLOSSARY OF TERMS

1. Clock pulse width: $t_{\phi L}$

The time for which the clock pulse is LOW.
2. Clock pulse fall time: $\mathrm{t}_{\phi} \mathrm{HL}$

The time between the $10 \%$ and $90 \%$ voltage points as the clock pulse goes from HIGH to LOW.
3. Clock pulse rise time: $\mathrm{t}_{\phi} \mathrm{LH}$

The time between the $90 \%$ and $10 \%$ voltage points as the clock pulse goes from LOW to HIGH.
4. Clock delay time: $\mathrm{t}_{\phi 1 \phi 2}, \mathrm{t}_{\phi 2 \phi 1}$

The time for which the clock pulses are simultaneously HIGH.
5. Data lead time: $t_{l}$

The time before the indicated point on the clock pulse for which $\mathrm{I}, \mathrm{R}, \mathrm{W}, \mathrm{CD}_{1}$ and $\mathrm{CD}_{2}$ must be present at the inputs to ensure correct entry into the memory.
6. Delay time: tD

The delay between the clock pulse reaching LOW and the output beginning to change from LOW to HIGH.

## OUTPUT BUFFER DESCRIPTION

The output buffer of the FDN166A consists of an open drain MOS transistor. The source is connected to $\mathrm{P}_{0}$, the drain to the output terminal Q . The use of this type of output allows wired-OR-ing of the outputs in expanded memories. The buffer can simply be interfaced with TTL or with other MOS circuits. In the latter case only one resistor is required; which value depends on the load capacitance and the speed desired.






The FD family is a series of complex monolithic integrated circuits utilizing MOS $P$-channel enhancement mode technology.

## QUADRUPLE 16-BIT DYNAMIC SHIFT REGISTER



P0 and metal package bottom are connected.

QUICK REFERENCE DATA					
Supply voltage	$\mathrm{V}_{\mathrm{P}_{1}}$	-24	to	-28	V
D. C. noise margin	$\mathrm{M}_{\mathrm{L}} ; \mathrm{M}_{\mathrm{H}}$	$>$	1	V	
Clock rate	$\mathrm{f}_{\phi}$	0.01 to	3	MHz	
Power consumption per bit at 1 MHz	$\mathrm{P}_{\mathrm{av}}$	typ.	1.2	mW	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +85	${ }^{\circ}{ }^{\circ} \mathrm{C}$		

PACKAGE OUTLINE : 14 lead metal-ceramic dual in-line (See General Section)

## GENERAL DESCRIPTION

The FDN186 package comprises 4 separate 16 -bit shift registers that can be used independently or can be externally connected to make registers up to 64-bits long. Clock and power lines are comm on to all four registers. The output buffers are bi-directional, low impedance NRZ 1), that by suitable biasing will directly drive MOS, DTL or TTL loads or, because they have separate output voltages $\left(\mathrm{VP}_{2}\right.$; VP 3$)$, a combina tion of MOS and bipolar. $\mathrm{VP}_{2}$ and $\mathrm{VP}_{3}$ are output buffer voltages only, and the output signal is independent of the width and amplitude of the clock pulse.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage on all data inputs, clock inputs, outputs and supply terminals with reference to $\mathrm{P}_{0}$
Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max .800 \mathrm{~mW}$
Junction temperature
Storage temperature
Total current through terminals $\mathrm{P}_{2}$ and $\mathrm{P}_{3}$
Output current (per output)

	+0.5	to	-30
	V		
$P_{\text {tot }}$	max.	800	mW
$\mathrm{~T}_{\mathrm{j}}$	max.	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$	
$-\mathrm{I}_{\mathrm{p} 2},-\mathrm{I}_{\mathrm{p} 3}$	max.	40	mA
$\pm \mathrm{I}_{\mathrm{Q}}$	$\max$.	20 mA	

## THERMAL RESISTANCE

From junction to ambient
Rth $\mathrm{j}-\mathrm{a}=156^{\circ} \mathrm{C} / \mathrm{W}$

## Note

The device is protected against over-voltage caused by static charges.

[^60]CHARACTERISTICS at T amb $=-55$ to $+85^{\circ} \mathrm{C}$

	Symbol	min.	typ.	max.		Conditions and references
Clock rate	$\mathrm{f}_{\phi}$	0.01	-	3	MHz	see timing diagram for parameter def. see note 1 see note 1
Clock pulse width	${ }^{\text {t }}$ ¢ 1 L	0.125	-	1	$\mu \mathrm{s}$	
	$\mathrm{t}_{\phi} 2 \mathrm{~L}$	0.125	-	1	$\mu \mathrm{s}$	
Clock pulse fall time	$\mathrm{t}_{\phi} \mathrm{HL}$	-	-	0.10	$\mu \mathrm{s}$	
Clock pulse rise time	$\mathrm{t}_{\phi} \mathrm{LH}$	-	-	0.10	$\mu \mathrm{s}$	
Clock delay times	$\mathrm{t}_{\mathrm{巾}}^{1} \mathrm{\phi}^{2}$	0	-	49	$\mu \mathrm{s}$	
	${ }_{\text {t }}^{\text {¢ }}$ 2 ${ }^{1}$	0	-	49	$\mu \mathrm{s}$	
Clock pulse voltage level						
HIGH	$\mathrm{V}_{\phi} \mathrm{H}$	-2	0	+0.3	V	
LOW	$\mathrm{V}_{\phi} \mathrm{L}$	-28	-26	-24	V	
Data input logic level						
LOW	$\mathrm{V}_{\text {IH }}$	-1.5 -28	-12	+0.3 -9	V	
Data lead time	teI	10	-	-	ns	

[^61]CHARACTERISTICS (continued)
Test conditions: $\mathrm{VP}_{1}=-24 \mathrm{~V}$ to $-28 \mathrm{~V} ; \mathrm{V}_{2}=\mathrm{VP}_{3}=-12 \mathrm{~V}$ to -14 V ; $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $20 \mathrm{k} \Omega$ to $\mathrm{P}_{0}$

	Symbol	min.	typ.	max.	Conditions and references
ELECTRICAL DATA					
Output levels   HIGH   LOW	V QH   VQL	-0.5 -14	-	0 V -10 V	
Data input capacitance	$\mathrm{C}_{\mathrm{I}}$	-	2	3.5 pF	bias: $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Clock input capacitance	$\mathrm{C}_{\phi 1}, \mathrm{C}_{\phi 2}$	-	19	25 pF	bias: $\mathrm{V}_{\phi}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
	$\mathrm{C}_{\phi 1}, \mathrm{C}_{\phi 2}$	-	14	18 pF	bias: $\mathrm{V}_{\phi}=-26 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Leakage currents:					$\mathrm{V}_{\mathrm{I}}=-15 \mathrm{~V}$; all other
Data input currents	-IIL	-	-	$1 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \text { terminals at VPO; } \\ \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \end{array}\right.$
Clock input current	$-^{-1} \mathrm{I}_{\mathrm{L}}$	-	-	$100 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \mathrm{V}_{\phi}=-28 \mathrm{~V} ; \text { all other } \\ \text { terminals at } \mathrm{VP}_{0} ; \\ \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \end{array}\right.$
Output resistance					
HIGH	$\mathrm{R}_{\mathrm{QH}}$	-	300	$600 \Omega$	
LOW	RQL	-	250	$500 \Omega$	$\mathrm{VP}_{2}=\mathrm{VP} P_{3}=-5 \mathrm{~V}$
Drive capability (see note 1 on page 5)	VQL	-	-10	-8 V	$\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$   reference to $\mathrm{P}_{0}$
	VQL	-	-4. 7	$-4.4 \mathrm{~V}$	$\left\{\begin{array}{l} \mathrm{VP}_{2}=\mathrm{VP}_{3}=-5 \mathrm{~V} ; \\ \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \\ \text { reference to } \mathrm{P}_{0} \end{array}\right.$
Power supply current drain ( see note 2 on page 5)	$-^{-1 P_{1}}$	-	2.0	3.0 mA	$\left\{\begin{array}{l} \mathrm{VP}_{1}=-26 \mathrm{~V} ; \\ \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{~T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C} \end{array}\right.$
	$-\mathrm{IP}_{2},-\mathrm{IP}_{3}$	-	2.4	3.0 mA	$\left\{\begin{array}{l} \mathrm{VP}_{2}=\mathrm{VP}_{3}=-13 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{array}\right.$
fall time	tTHL	-	100	- ns	
rise time	${ }^{\text {T }}$ TLH		100	- ns	
Delay times: $\begin{aligned} & \text { fall time } \\ & \\ & \text { rise time }\end{aligned}$	${ }^{\text {t }} \mathrm{DHL}$		80	- ns	
	${ }^{\text {t }}$ L ${ }^{\text {L }}$			- ns	
D. C. noise margin	$\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{H}}$	1	-	- V	

## CHARACTERISTICS (continued)

Note 1 (see page 4)
The maximum capacitive load that can be driven depends only on the speed deisred and the power dissipation allowable. See the output buffer description on page 8 for further information on output drive capability.

Note 2 (see page 4 )
The output buffer power supply currents ( $\mathrm{IP}_{2}, \mathrm{IP}_{3}$ ) are almost entirely dependent on the external load.

CHARACTERISTICS (continued)
TIMING DIAGRAM


Timing diagram note:
Input data must remain valid for the shaded interval to ensure proper entry into the register.

## Note

The indicated points on the vertical axes are specified in the glossary of terms.

## CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Clock pulse width: $\mathrm{t}_{\phi} \mathrm{L}$

The time for which the clock pulse is LOW: $\mathrm{V}_{\phi \mathrm{L}} \leq-24 \mathrm{~V}$
2. Clock pulse fall time: $\mathrm{t}_{\phi} \mathrm{HL}$

The time between the $10 \%$ and $90 \%$ voltage points as the clock pulse goes from HIGH to LOW.
3. Clock pulse rise time: $\mathrm{t}_{\phi \mathrm{LH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the clock pulse goes from LOW to HIGH.
4. Clock delay time: $\mathrm{t}_{\phi} 1 \phi 2, \mathrm{t}_{\phi} 2 \phi 1$

Thetime between the end of the $\phi_{1}$ (or $\phi_{2}$ ) clock pulse and the start of the $\phi_{2}$ (or $\phi_{1}$ ) clock pulse, defined at -2 V .
5. Data lead time: $t_{\ell I}$

The time before the $90 \%$ point on the clock pulse $\phi_{1}$ for which the voltage at the input must be at its specified logic level in order to ensure that the data will be entered in the register.
6. Output fall transition time: tTHL

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.
7. Output rise transition time: tTLH

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
8. Fall delay time: $\mathrm{t}_{\mathrm{DHL}}$

The delay between the clock pulse $\phi 2$ reaching LOW and the output beginning to change from HIGH to LOW.
9. Rise delay time: tDLH

The delay between the clock pulse $\phi 2$ reaching LOW and the output beginning to change from LOW to HIGH.

## OUTPUT BUFFER DESCRIPTION

1. The curves below are typical output buffer voltage-current characteristics for the FDN186. They show $\mathrm{V}_{\mathrm{Q}}$ versus $\mathrm{I}_{\mathrm{Q}}$ for the $\mathrm{VP}_{2}$ and $\mathrm{VP}_{3}$ at -5 V and -12 V , for both HIGH and LOW output.

Note: When operating with high output current levels, the maximum power rating must not be exceeded.

The circuit shown may be usedto obtain output curves for other values of $\mathrm{VP}_{2}$ and $\mathrm{VP}_{3}$.


2. The bias arrangement shown is suitable for driving TTL or DTL loads direct.





TYPICAL PERFORMANCE (continued)


The FD family is a series of complex monolithic integrated circuits utilizing MOS P -channel enchancement mode technology.

## DUAL 256-BIT DYNAMIC SHIFT REGISTER


$P_{0}$ connected to metal case

QUICK REFERENCE DATA			
Clock rate	$\mathrm{f}_{\phi}$	0.01 to 3	MHz
Power consumption per bit at $\mathrm{f}_{\phi}=3 \mathrm{MHz}$	$\mathrm{Pav}_{\text {v }}$	typ. 0.36	mW
Operating ambient temperature	Tamb	-55 to +85	${ }^{\circ} \mathrm{C}$
D. C. noise margin	$\mathrm{M}_{\mathrm{H}} ; \mathrm{M}_{\mathrm{L}}$	> 1	V

PACKAGE OUTLINE: TO-100 (See General Section)

## GENERAL DESCRIPTION

The FDN196A consists of two 256 -bit 2 -phase dynamic shift registers, with common clock lines.
The device has two low impedance push-pull output buffers, with separate supply volt ages. Thus the two outputs may be independently biased to drive a bipolar load or other MOS circuits.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage on all data inputs, clock inputs outputs and supply terminals with re		+0. 5	-30	V
Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	625	mW
Junction temperature	Tj	max.	150	${ }^{0} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150		${ }^{0} \mathrm{C}$
Total current through terminals $\mathrm{P}_{1}, \mathrm{P}_{2}$	$-\mathrm{IP}_{1},-\mathrm{IP}_{2}$	max.	20	mA
Output current (per output)	$\pm \mathrm{I}_{\mathrm{Q}}$	max.	20	mA
THERMAL RESISTANCE				
From junction to ambient	$R_{\text {th }} \mathrm{j}-\mathrm{a}$	=	200	${ }^{0} \mathrm{C} / \mathrm{W}$

Note
All terminals are protected against over-voltage due to static charges.

DRIVE REQUIREMENTS at $\mathrm{T} \mathrm{amb}=-55$ to $+85^{\circ} \mathrm{C}$; $\mathrm{P}_{0}$ is grounded

	Symbol	min.	typ.	max.		Conditions and references
Clock rate	$\mathrm{f}_{\phi}$	0.01	-	3	MHz	
Clock pulse width	${ }^{\text {t }}$ ¢ 1 L	0.125	-	5.0		
	$\mathrm{t}_{\phi} 2 \mathrm{~L}$	0.125			$\mu \mathrm{s}$	
Clock pulse rise time	${ }^{\text {t }}$ ¢ LH	-	-	0.5	$\mu \mathrm{s}$	
Clock pulse fall time	$\mathrm{t}_{\phi} \mathrm{HL}$		-	0.5	$\mu \mathrm{s}$	
Clock delay	$\mathrm{t}_{\phi} 1 \phi 2, \mathrm{t} \mathrm{t}^{2}$ ¢ 1	0	-	45	$\mu \mathrm{s}$	
Clock pulse voltage levels						
HIGH	$\mathrm{V}_{\phi} \mathrm{H}$	-2	0	+0.3	V	
LOW	$\mathrm{V}_{\phi L}$	-28	-26	-24	V	
Data input logic levels						
HIGH	$\mathrm{V}_{\text {IH }}$	-2	0	+0. 3	V	
LOW	VIL	-28	-12	-9	V	
Data lead time	$\mathrm{t}_{\ell} \mathrm{I}$	10	-	-	ns	
Buffer supply voltages	$-\mathrm{V}_{\mathrm{P}_{1}},-\mathrm{V}_{\mathrm{P}_{2}}$	0	-	14	V	

## CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{P}_{1}}=\mathrm{V}_{\mathrm{P}_{2}}=-12$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded standard load: 50 pF in parallel with $20 \mathrm{k} \Omega$ to $\mathrm{P}_{0}$.

ELECTRICAL DATA	Symbol	min.	typ.	max.	Conditions and references
Output levels					
HIGH	$\mathrm{V}_{\mathrm{QH}}$	-0.5	-	0 V	
LOW	$\mathrm{V}_{\text {QL }}$	-14	-	-10 V	
Data input capacitance	$\mathrm{C}_{\mathrm{I}}$	-	2	3.5 pF	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Clock input capacitances	$\mathrm{C}_{\phi 1}, \mathrm{C}_{\phi 2}$	-	90	110 pF	$\mathrm{V}_{\phi}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
	$\mathrm{C}_{\phi 1}, \mathrm{C}_{\phi 2}$	-	60	80 pF	$\mathrm{V}_{\phi}=-26 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Data input current	${ }^{-I} \mathrm{IL}$	-	-	$1 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{I}}=-15 \mathrm{~V} ; \text { all other } \\ \text { terminals at } \mathrm{P}_{0} ; \\ \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \end{array}\right.$
Clock input current	$-\mathrm{I}_{\phi} \mathrm{L}$	-	-	$100 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \mathrm{V}_{\phi}=-28 \mathrm{~V} \text {; all other } \\ \text { terminals at } \mathrm{P}_{0} ; \\ \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \end{array}\right.$
Output resistance					
HIGH	$\mathrm{R}_{\mathrm{QH}}$	-	250	$500 \Omega$	
LOW	$\mathrm{R}_{\mathrm{QL}}$	-	150	300 ת	$\mathrm{V}_{\mathrm{P} 1}, \mathrm{~V}_{\mathrm{P} 2}=-5 \mathrm{~V}$
Supply currents	$-\mathrm{IP} \mathrm{P}_{1},-\mathrm{I} \mathrm{P}_{2}$	-	-0.68	$-1.0 \mathrm{~mA}$	$\left\{\begin{array}{l} \mathrm{VP}_{1}, \mathrm{VP}_{2}=-13 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ \text { See note } \end{array}\right.$
Delay time					
Clock to output	${ }^{\text {b }}$ D	-	135	275 ns	

## Note

The output buffer power supply current is almost entirely dependent on the external load. The value shown is for a load of 50 pF is parallel with $1 \mathrm{M} \Omega$ to $\mathrm{P}_{0}$.

## CHARACTERISTICS (continued)

## TIMING DIAGRAM



## Notes

1. The indicated points on the vertical axis are specified in the glossary of terms.
2. With the FDN196A the data inputs must also remain valid for the $t_{\phi L H}$.
3. Data inputs must remain valid for the shaded interval to ensure proper entry into the register.

## CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Clock pulse width: $\mathrm{t}_{\phi \mathrm{L}}$

The time for which the clock pulse is LOW: $\mathrm{V}_{\phi \mathrm{L}} \leq-26 \mathrm{~V}$
2. Clock pulse fall time: $\mathrm{t}_{\phi \mathrm{HL}}$

The time between the $10 \%$ and $90 \%$ voltage points as the clock pulse goes from HIGH to LOW.
3. Clock pulse rise time: $\mathrm{t}_{\phi} \mathrm{LH}$

The time between the $90 \%$ and $10 \%$ voltage points as the clock pulse goes from LOW to HIGH.
4. Clock delay time: $\mathrm{t}_{\phi 1} 1 \phi 2, \mathrm{t}_{\phi 2 \phi 1}$

The last allowable time between the end of the $\phi_{1}$ (or $\phi_{2}$ ) clock pulse and the start of the $\phi_{2}$ (or $\phi_{1}$ ) clock pulse, defined at -2 V .
5. Data lead time: $t_{\ell I}$

The time before the $90 \%$ point on the clock pulse $\phi_{1}$ for which the voltage at the data input must be at its specified logic level in order to ensure that the data will be entered in the register.
6. Delay time: ${ }^{\mathrm{t}} \mathrm{D}$

The delay between the clock pulse $\phi_{2}$ reaching LOW and the output reaching its logic level.

## OUTPUT BUFFER DESCRIPTION

1. The curves below are typical output buffer voltage-current characteristics for the FDN 196 A . They show $\mathrm{V}_{\mathrm{Q}}$ versus IQ for the bias $\mathrm{V}_{P_{1}}$ at -5 V and -12 V , for both HIGH and LOW output. The circuit shown may be used to obtain LOW output curves for other values of $V_{P_{1}}$.

Note: When operating with high output current levels, the maximum power rating must not be exceeded.



## OUTPUT BUFFER DESCRIPTION (continued)

2. Biasing circuit A may be used to drive TTL or DTL loads direct. The MOS input logic levels must be referenced to VP0. TR1 and TR2 are the push-pull output driver transistors of the FDN146.


Biasing circuit A
3. Biasing circuit B allows the MOS device to be interfaced with TTL or DTL at and output using only passive interface components.
Note that the TTL or DTL integrated circuit must be able to withstand +10 V applied to the output lead (point A), most circuits of our FC series and most FJ gates satisfy this requirement. Some open collector FJ gates have a minimum output breakdown voltage guarantee of 15 V .

4. To drive MOS loads direct, the bias $\mathrm{V}_{\mathrm{P}_{1}}$ should be between -12 and -14 V to $\mathrm{P}_{0}$.


The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enhancement mode technology.

## 200-BIT DYNAMIC SHIFT REGISTER



FDN206 : $\mathrm{P}_{0}$ connected to the metal bottom FDN206A: $\mathrm{P}_{0}$ connected to the metal case

QUICK REFERENCE DATA				
Supply voltage	$\mathrm{V}_{\mathrm{P}_{1}}$	-26 to	-28	V
D. C. noise margin	$\mathrm{M}_{\mathrm{L}} ; \mathrm{M}_{\mathrm{H}}$	$>$	1	V
Clock rate	$\mathrm{f}_{\phi}$	0.01 to	1	MHz
Power consumption per bit at $\mathrm{f} \phi=10 \mathrm{kHz}$	$\mathrm{P}_{\mathrm{av}}$	$<$	0.2	mW
$\mathrm{f} \phi=1 \mathrm{MHz}$	$\mathrm{P}_{\mathrm{av}}$	$<$	0.6	mW
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +85	${ }^{\circ} \mathrm{C}$	

PACKAGE OUTLINES : FDN206 ; 14 lead dual in-line (See General Section) FDN206A; TO-99 (See General Section)

## GENERAL DESCRIPTION

The FDN206 contains one 200 -bit shift register with one serial input and one serial output. It dissipates little power and uses a one-phase external clock. The device has a low impedance push-pull output buffer which, when appropriately biased is capable of interfacing direct with MOS, DTL, TTL and other loads.
The buffer supply terminal $\mathrm{P}_{2}$ is a separate supply which determines the output LOW signal only. This provides an output level that is independent of both the amplitude and width of the clock pulse.
With the FDN206, the FDN116 (a quadruple 32-bit shift register) and FDN136 (a variable length 1 to 64 -bit shift register) shift registers of any required length can be built from off-the-shelf parts.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages on all data inputs, clock inputs, outputs and supply terminals with reference to $\mathrm{P}_{0}$		+0.5 to	-30	V
Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\begin{array}{ll} \text { FDN206 : } & \mathrm{P}_{\text {tot }} \\ \text { FDN206A: } & \mathrm{P}_{\text {tot }} \end{array}$	max. max.	$\begin{aligned} & 800 \\ & 625 \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
Junction temperature	$\mathrm{T}_{\mathrm{j}}$	max.	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150		${ }^{\circ} \mathrm{C}$
Total current through terminal $\mathrm{P}_{2}$	$-\mathrm{IP}_{2}$	max.	40	mA
Output current (per output)	$\pm \mathrm{I}_{\mathrm{Q}}$	max.	20	mA

## THERMAL RESISTANCE

From junction to ambient
FDN206 : $R_{\text {th }}$ j-a $=156{ }^{\circ} \mathrm{C} / \mathrm{W}$
FDN206A: $R_{\text {th } j-\mathrm{a}}=200{ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$

	Symbol		typ.	$\max$.		Conditions and references
Clock rate	$\mathrm{f}_{\phi}$	0.0	-	1	MHz	
Clock pulse width	${ }^{\text {t }}$ L	0.	-	50	$\mu \mathrm{s}$	$\left\{\begin{array}{l} \text { See timing diagram for } \\ \text { parameter definitions } \end{array}\right.$
Clock pulse fall time	$\mathrm{t}_{\phi} \mathrm{HL}$	-	-	0.10	$\mu \mathrm{s}$	See note
Clock pulse rise time	${ }^{\text {t }}{ }_{\phi} \mathrm{LH}$	-	-	0.10	$\mu \mathrm{s}$	
Clock pulse space	$\mathrm{t}_{\phi} \mathrm{H}$	0.	-	50	$\mu \mathrm{s}$	
Clock pulse voltage level $\begin{aligned} & \text { HIGH } \\ & \text { LOW } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\phi \mathrm{H}} \\ & \mathrm{~V}_{\phi \mathrm{L}} \end{aligned}$	-2	0 -12	+0.3 -9	V	
Data input logic levels   HIGH   LOW	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	-2	0 -12	+0.3 -9	V	
Data lead time	${ }^{\text {e }}$ ¢ I		-	-	ns	
Data hold time	$\mathrm{thI}_{\text {I }}$		-	-	ns	
Supply voltages	$\begin{aligned} & \mathrm{V}_{\mathrm{P}_{1}} \\ & \mathrm{~V}_{\mathrm{P}_{1}} \\ & \mathrm{~V}_{\mathrm{P}_{2}} \end{aligned}$	-28 -28 -2	-26 -27 -	$\begin{array}{r} -24 \\ -26 \\ +0.3 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$	$\begin{gathered} \mathrm{f}_{\phi} \leq 750 \mathrm{kHz} \\ \mathrm{f}_{\phi} \geq 750 \mathrm{kHz} \end{gathered}$

## Note

The fall time specified for the FDN206 is to ensure that output data will meet the input hold time requirements of other shift registers, when more shift registers are operating in series from a common clock. If a register does not drive other registers the clock fall time may be longer.

CHARACTERISTICS (continued)
Test conditions: $\mathrm{V}_{\mathrm{P}_{1}}=-26 \mathrm{~V}$ to $-28 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}_{2}}=-12 \mathrm{~V}$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$; $\mathrm{P}_{0}=$ grounded; standard load; 50 pF in parallel with $20 \mathrm{k} \Omega$ to $\mathrm{P}_{0}$.

	Symbol	$\min$.	typ.	$\max$.	Conditions and references
ELECTRICAL DATA					
Output levels					
HIGH	$\mathrm{V}_{\mathrm{QH}}$	-0.5	-	0 V	
LOW	$\mathrm{V}_{\text {QL }}$	-14	-	-10 V	
Data input capacitance	$\mathrm{C}_{\mathrm{I}}$	-	2	3.5 pF	bias: $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz}$
Clock input capacitance	$\mathrm{C}_{\phi}$	-	6	10 pF	bias: $\mathrm{V}_{\phi}=0 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz}$
Leakage currents					
Data input currents	${ }^{-1} \mathrm{I}_{\text {L }}$	-	-	$1 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \mathrm{I}_{\mathrm{I}} \\ \text { terminals at } \mathrm{V}_{\mathrm{P}} \\ \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{array}\right.$
Clock input current	$-\mathrm{I}_{\phi} \mathrm{L}$	-	-	$100 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \mathrm{V}_{\phi}=-28 \mathrm{~V} \text {; all other } \\ \text { terminals at } \mathrm{V}_{\mathrm{P}_{0}} ; \\ \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{array}\right.$
Output resistance					
HIGH	$\mathrm{R}_{\mathrm{QH}}$	-	250	$500 \Omega$	
LOW	$\mathrm{R}_{\mathrm{QL}}$	-	250	$500 \Omega$	$\mathrm{VP}_{2}=-5 \mathrm{~V}$
Drive capability (see note 1) (see note 1)	VQL		$-4.8$	$-4.6 \mathrm{~V}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{P}_{2}}=-5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \\ \text { to reference } \mathrm{P}_{0} \end{array}\right.$
Supply current (see note 2)	${ }^{-1} \mathrm{P}_{2}$		1.0	1.5 mA	$\begin{aligned} & \mathrm{V}_{\mathrm{P}_{2}}=-13 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$
	${ }^{-1} \mathrm{P}_{1}$		5.0	8.0 mA	$\begin{aligned} & \mathrm{V}_{\mathrm{P}_{1}}=-27 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$
Output transition times:					
fall time	${ }^{\text {t }}$ THL		100	- ns	
rise time Delay times: fall time	${ }^{\text {t }}$ TLH		100 300	- ns	
Delay times: fall time   rise time	${ }^{\text {t } \mathrm{DHL}}$		$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & -\quad \mathrm{ns} \\ & -\quad \mathrm{ns} \end{aligned}$	
D. C. noise margin	$\mathrm{M}_{\mathrm{L}}$	1	-	- V	
	$\mathrm{M}_{\mathrm{H}}$			- V	

## Note 1

The maximum capacitive load that can be driven depends only on the speed desired and the power dissipation allowable. See the output buffer description on pages 7 and 8 for further information on output drive capability.

Note 2
The output buffer supply current $\mathrm{I}_{\mathrm{P}_{2}}$ is almost entirely dependent on the external load.

## CHARACTERISTICS (continued)

TIMING DIAGRAM


Note
The indicated points on the vertical axis are specified in the glossary of terms.

## CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Clock pulse width: $\mathrm{t}_{\phi} \mathrm{L}$

The time for which the clock pulse is LOW: $\mathrm{V}_{\phi \mathrm{L}} \leq-9 \mathrm{~V}$.
2. Clock pulse fall time: $\mathrm{t}_{\phi} \mathrm{HL}$

The time between the $10 \%$ and $90 \%$ voltage points as the clock pulse goes from HIGH to LOW.
3. Clock pulse rise time: $\mathrm{t}_{\phi \mathrm{LH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the clock pulse goes from LOW to HIGH.
4. Clock pulse space: $\mathrm{t}_{\phi \mathrm{H}}$

The least allowable time between the end of one clock pulse ( $\phi$ ) and the start of the next.
5. Data lead time: $t_{\ell I}$

The time before the $10 \%$ point on the clock pulse for which the voltage at the data input must be at its specified logic level in order to ensure that the data will be entered in the register.
6. Data hold time: $\mathrm{t}_{\mathrm{hI}}$

The time after the clock pulse $\phi$ reaches LOW for which the input data must remain stable to guarantee that it will be entered in the register.
7. Output fall transition time: ${ }^{\mathrm{t}} \mathrm{THL}$

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.
8. Output rise transition time: $\mathrm{t}_{\mathrm{TLH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
9. Fall delay time: $\mathrm{t}_{\mathrm{DHL}}$

The delay between the clock pulse $\phi$ reaching LOW and the output beginning to change from HIGH to LOW.
10. Rise delay time: ${ }^{t}$ DLH

The delay between the clock pulse $\phi$ reaching LOW and the output beginning to change from LOW to HIGH.

## OUTPUT BUFFER DESCRIPTION

1. The curves below are typical output buffer voltage-current characteristics for the FDN206. They show $\mathrm{V}_{\mathrm{Q}}$ versus $\mathrm{I}_{\mathrm{Q}}$ for the bias $\mathrm{V}_{\mathrm{P}_{1}}$ at -5 V and -12 V , for both HIGH and LOW output. The circuit shown may be used to obtain LOW output curves for other values of $\mathrm{VP}_{2}$.
Note: When operating with high output current levels, the maximum power rating must not be exceeded.



## OUTPUT BUFFER DESCRIPTION (continued)

2 Biasing circuit A may be used to drive TTL or DTL loads direct. The MOS input logic levels must be referenced to $\mathrm{V}_{\mathrm{P}_{0}}$. TR1 and TR2 are the push-pull output driver transistors of the FDN206.

$\mathrm{M}_{\mathrm{L}} \geq 368 \mathrm{mV}$
$\mathrm{M}_{\mathrm{H}} \geq 458 \mathrm{mV}$ Steady HIGH state dissipation $\leq 13 \mathrm{~mW}$

Biasing circuit A
3. Biasing circuit B allows the MOS device to be interfaced with TTL or DTL at both input and output using only passive interface components. Note that the TTL or DTL integrated circuit must be able to withstand +10 V applied to the output lead (point A); most non $-R_{c}$ type circuits of our FC series and most FJ gates satisfy this requirement. Some open collector FJ gates have a minimum output breakdown voltage guarantee of 15 V (FJH301; FJH311; FJH321).


Biasing circuit $B$
4. To drive MOS loads direct, the bias $\mathrm{V}_{\mathrm{P}_{0}}$ should be between -12 and -14 V to $\mathrm{P}_{0}$.

TYPICAL PERFORMANCE




The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enhancement mode technology.

## DUAL 32-BIT STATIC REGISTER


$P_{0}$ connected to the metal bottom


$P_{0}$ connected to the metal case

QUICK REFERENCE DATA			
Supply voltages	VP1   Vp2	$\begin{aligned} & -24 \text { to }-28 \\ & -12 \text { to }-14 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Clock frequency	$\mathrm{f}_{\phi}$	0 to 1.5	MHz
Power consumption per bit at $\mathrm{f}_{\phi}=1.5 \mathrm{MHz}$	$\mathrm{Pav}^{\text {a }}$	typ. 2	mW
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-55 to +85	${ }^{\circ} \mathrm{C}$
D. C. noise margin	$\mathrm{M}_{\mathrm{H}}, \mathrm{M}_{\mathrm{L}}$	$>\quad 1$	V

PACKAGE OUTLINE: FND506; 14 lead ceramic dual in -line (See General Section) FDN516A; TO-100 (See General Section)

## GENERAL DESCRIPTION

The FDN506 and FDN516A are dual 32-bit static shift registers. They require a single phase, low voltage, external clock signal, and may be operated down to d.c. without loss of stored information. Both devices utilize common power and clock lines; the output buffer supplies are separated to facilitate independent biasing for MOS or TTL load drive.
The FDN506 contains the gating, external SELECT command and data inputs for selection of two independent data streams.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages on all data inputs, clock inputs, outputs
and supply terminals with reference to $\mathrm{P}_{0}$
Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Junction temperature
Storage temperature
Total current through terminals $\mathrm{P}_{3}, \mathrm{P}_{4}$
Output current (per output)
THERMAL RESISTANCE
From junction to ambient
$\left\{\begin{array}{lllll} & & +0.5 \text { to } & -30 & \mathrm{~V} \\ \text { FDN506 } & P_{\text {tot }} & \max . & 800 & \mathrm{~mW} \\ \text { FDN516A } & \mathrm{P}_{\text {tot }} & \max . & 625 & \mathrm{~mW}\end{array}\right]$

FDN506 $\quad R_{\text {th } j \text {-a }}=156{ }^{\circ} \mathrm{C} / \mathrm{W}$
FDN516A Rth j-a $=200^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$

	Symbol	min.	typ. max.	Conditions and references
Clock rate	$\mathrm{f}_{\phi}$	0	- 1.5 MHz	
Clock pulse width	${ }_{\text {t }}^{\phi}$ H	0.24	- $50 \mu \mathrm{~s}$	gram for parameter definitions
Clock pulse fall time	${ }^{\text {t }}$ ¢ ${ }^{\text {HL}}$	-	- $0.10 \mu \mathrm{~s}$	See note
Clock pulse rise time	$\mathrm{t}_{\phi} \mathrm{LH}$		- $1.0 \mu \mathrm{~s}$	
Clock pulse space	${ }^{t}{ }_{\phi} \mathrm{L}$	0.36	- - $\mu \mathrm{s}$	
Clock pulse voltage level HIGH		-2	$0+0.3 \mathrm{~V}$	
LOW	$\begin{aligned} & V_{\phi H} \\ & V_{\phi L} \end{aligned}$		-12-9 V	
Data/select input logic levels HIGH   LOW	$\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{CH}}$   $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{CL}}$	-2 -28	$0+0.3 \mathrm{~V}$ $-12-9 \mathrm{~V}$	
Data/select lead time	${ }^{t} \ell{ }^{\prime}, t_{\ell C}$	50	-	
Data/select hold time	$\mathrm{th}_{\text {I }}$, $\mathrm{th}^{\text {c }}$	100	-	

## Note:

The fall time specified for the FDN506 and FDN516A is to ensure that output data will meet the input hold time requirements of other registers, when more shift registers are operating in series from a common clock. If a register does not drive other registers the clock fall times may be longer.

CHARACTERISTICS (continued)
Test conditions:
$\mathrm{V}_{\mathrm{P}_{1}}=-24 \mathrm{~V}$ to $-28 \mathrm{~V} ; \mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{\mathrm{P}_{4}}=-12 \mathrm{~V}$ to -14 V ; $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded; standard load : 50 pF in parallel with $20 \mathrm{k} \Omega$ to $\mathrm{P}_{0}$.

	Symbol	min.	typ.	$\max$.	Conditions and references
ELECTRICAL DATA					
Output levels HIGH LOW	$\mathrm{V}_{\mathrm{QH}}$   $\mathrm{V}_{\mathrm{QL}}$		-	$\begin{array}{r} 0 \mathrm{~V} \\ -10 \mathrm{~V} \end{array}$	
Data/select input capacitance	$\mathrm{C}_{\mathrm{I}}, \mathrm{C}_{\mathrm{C}}$		2	3.5 pF	bias: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Clock input capacitance   Leakage currents	$\mathrm{C}_{\phi}$			8 pF	bias: $\mathrm{V}_{\phi}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Data/select input currents	$\begin{aligned} & -\mathrm{I}_{\mathrm{IL}}, \\ & -\mathrm{I}_{\mathrm{CL}} \end{aligned}$		-	$1 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{C}}=-15 \mathrm{~V} \text {; all other } \\ \text { terminals at } \mathrm{V}_{\mathrm{P}} ; \\ \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\phi}=-28 \mathrm{~V} ; \text { all other } \end{array}\right.$
Clock input current Output resistance	$-\mathrm{I}_{\phi} \mathrm{L}$	-	-	$100 \mu \mathrm{~A}$	$\begin{aligned} & \text { terminals at } \mathrm{VP}_{0} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$
HIGH	${ }^{\mathrm{R}} \mathrm{QH}^{\text {en }}$	-	360	$600 \Omega$	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
LOW	$\mathrm{R}_{\mathrm{QL}}$	-	220	$500 \Omega$	$\mathrm{V}_{\mathrm{P} 3}=\mathrm{V}_{\mathrm{P} 4}=-5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
	$\mathrm{R}_{\mathrm{QL}}$	-	330	- $\Omega$	$\mathrm{VP}_{3}=\mathrm{VP}_{4}=-10 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Drive capability	$\mathrm{V}_{\mathrm{QL}}$	-	-10	-8 V	$\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$ to reference $\mathrm{P}_{0}$
(See note 1) Supply current	$\mathrm{V}_{\mathrm{QL}}$		-4.7	4.4 V	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{P} 3}=\mathrm{V}_{\mathrm{P} 4}=-5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \\ \text { to reference } \mathrm{P}_{0} \end{array}\right.$
(See note 2)	- IP2		4.0	6.0 mA	$\begin{aligned} & \mathrm{VP}_{2}=-13 \mathrm{~V} ; \mathrm{f}=1.5 \mathrm{MHz} \\ & \mathrm{Tamb}^{2}=25^{\circ} \mathrm{C} \end{aligned}$
Output transition times:	$-\mathrm{IP}_{1}$		3.0	4.5 mA	$\begin{aligned} & \mathrm{V}_{\mathrm{P}_{1}}=-26 \mathrm{~V} ; \mathrm{f}=1.5 \mathrm{MHz} \\ & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$
fall time	${ }^{\text {t }}$ THL	-	80	- ns	
rise time	${ }^{\text {t }}$ TLH	-	80	- ns	
Delaytimes:fall time	${ }^{\text {t }}$ DHL		260	- ns	
rise time	${ }^{\text {TLH }}$	-	260	- ns	
D. C. noise margin	M ${ }_{\text {L }}$ $\mathrm{M}_{\mathrm{H}}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	-	$\begin{array}{ll} - & V \\ - & V \end{array}$	

## Note 1

The maximum capacitive load that can be driven depends only on the speed desired and the power dissipation allowable. See the output buffer description on pages 5 and 6 for further information on output drive capability.

## Note 2

The outpur buffer power supply current is almost entirely dependent on the external load.

## CHARACTERISTICS (continued)

## TIMING DIAGRAM



## Notes:

1. Clock pulse $\phi$ is normally kept LOW.
2. The data and select inputs must remain valid for the shaded interval to ensure proper selection and entry of input data.
3. Data is kept in the register for arbitrarity long periods by keeping the clock LOW.

## CHARACTERISTICS (continued)

## GLOSSERY OF TERMS

1. Clock pulse width: $t_{\phi} \mathrm{H}$

The time for which the clock pulse is HIGH: $\mathrm{V}_{\phi \mathrm{H}} \geq-2 \mathrm{~V}$
2. Clock pulse fall time: $\mathrm{t}_{\phi} \mathrm{HL}$

The time between the $10 \%$ and $90 \%$ voltage points as the clock pulse goes from HIGH to LOW.
3. Clock pulse rise time: $\mathrm{t}_{\phi \mathrm{LH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the clock pulse goes from LOW to HIGH.
4. Clock pulse space: $t_{\phi L}$

The least allowable time between the end of one clock pulse ( $\phi$ ) and the start of the next, measured at -9 V .
5. Data lead time: $\mathrm{t}_{\ell L}$

The time before the -2 V point on the clock pulse for which the voltage at the data/select input must be at its specified logic level in order to ensure that the data will be entered in the register.
6. Data hold time: thi

The time after the clock pulse $\phi$ reaches LOW ( -9 V ) for which the data/select inputs must remain stable in order to ensure that the data will be entered in the register.
7. Output fall transition time: tTHL

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.
8. Output rise transition time: ${ }^{\mathrm{T}} \mathrm{TLH}$

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
9. Fall delay time: $\mathrm{t}_{\mathrm{DHL}}$

The delay between the clock pulse $\phi$ reaching LOW and the output beginning to change from HIGH to LOW.
10. Rise delay time: tDLH

The delay between the clock pulse $\phi$ reaching LOW and the output beginning to change from LOW to HIGH.

## OUTPUT BUFFER DESCRIPTION

1. The curves below are typical output buffer voltage-current characteristics for the FDN506 and FDN516A.
The output buffer supply voltages may be varied between 0 and -14 V according to the output voltage swing required. It does not affect the operating speed of the register.


Note
When operating with high output current levels, the maximum power rating must not be exceeded.

## OUTPUT BUFFER DESCRIPTION (continued)

2. Biasing circuit A may be used to drive TTL or DTL loads direct. The MOS input logic levels must be referenced to VP0. TR1 and TR2 are the push-pull output driver transistors of the FDN506 and FDN516A.


$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=22 \pm 5 \% \mathrm{k} \Omega \\
& \mathrm{M}_{\mathrm{L}} \geq 450 \mathrm{mV} \\
& \mathrm{M}_{\mathrm{H}} \geq 1.5 \mathrm{~V}
\end{aligned}
$$

Steady HIGH state dissipation $<1 \mathrm{~mW}$

## Biasing circuit A

3. Biasing circuit Ballows the MOS device to be interfaced with TTL or DTL at both input and output using only passive interface components. Note that the TTL or DTL integrated circuit must be able to withstand +12 V applied to the output lead (point A), mostcircuits of our FC series (non- $\mathrm{R}_{\mathrm{C}}$ types) satisfy this requirement. The open collector FJ gates FJH301, FJH311 and FJH321 have a minimum output breakdown voltage guarantee of 15 V .


Biasing circuit B
4. To drive MOS loads direct, the bias $V_{P 3}$ and $V_{P 4}$ should be between -12 and -14 V to $\mathrm{P}_{0}$.

TYPICAL PERFORMANCE at $\mathrm{P}_{0}=$ grounded; standard load : 50 pF in parallel with $20 \mathrm{k} \Omega$ to $\mathrm{P}_{0}$.
Test condition: $\mathrm{V}_{\mathrm{P}_{1}}=-26 \mathrm{~V} ; \mathrm{VP}_{2}=-13 \mathrm{~V}$





TYPICAL PERFORMANCE (continued)
Test conditions: $\mathrm{P}_{0}=$ grounded; $\mathrm{VP}_{1}=-26 \mathrm{~V} ; \mathrm{VP}_{2}=-13 \mathrm{~V}$


The FD family is a series of complex monolithic integrated circuits utilizing MOS $P$-channel enhancement mode technology.

## DUAL 100-BIT STATIC SHIFT REGISTER



$P_{0}$ connected to metal case

## QUICK REFERENCE DATA

QUICK REFERENCE DATA					
Clock rate	$\mathrm{f}_{\phi}$	0 to	3	MHz	
Supply voltage	$\mathrm{V}_{\mathrm{P}_{1}}$	-24 to	-28	V	
Power consumption per bit					
at $\mathrm{f}_{\phi}=3 \mathrm{MHz}$	$\mathrm{P}_{\mathrm{av}}$	typ.	2	mW	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +85	${ }^{\circ} \mathrm{C}$		
D. C. noise margin	$\mathrm{M}_{\mathrm{H}}, \mathrm{M}_{\mathrm{L}}$	$>$	1	V	

PACKAGE OUTLINE: TO-100 (See General Section)

## GENERAL DESCRIPTION

The FDN526A is a monolithic dual 100 -bit shift register. The two shift registers have each one serial input and output. They operate from common clocks and supply lines. The device has low impedance push-pull output buffers, which, when appropriately biased, are capable of interfacing direct with MOS, TTL, DTL and other loads.
The buffer supply terminal $\mathrm{P}_{2}$ is a separate supply which determines the output LOW signal only. This provides an output level that is independent of supply voltage $\mathrm{V}_{\mathrm{P}}{ }_{1}$, the amplitude and width of the clock pulses.
All inputs, outputs, supply terminals and clock inputs are protected against static voltages.
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage on all data inputs, clock inputs, outputs and supply terminals with reference to $P_{0}$
Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Junction temperature
Storage temperature
Total current through terminal $\mathrm{P}_{2}$
Output current (per output)

+0.5 to	-30	V
max.	625	mW
max.	150	${ }^{\circ} \mathrm{C}$
-65 to	+150	${ }^{\circ} \mathrm{C}$
max.	40	mA
max.	20	mA

THERMAL RESISTANCE
From junction to ambient
$R_{\text {th } j-a}=200{ }^{\circ} \mathrm{C} / \mathrm{W}$

DRIVE REQUIREMENTS at $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded

	Symbol	min.	typ.	max.		Conditions and references
Clock rate	$\mathrm{f}_{\phi}$	0	-	2	MHz	$\begin{aligned} & \mathrm{V}_{\mathrm{P}_{1}}, \mathrm{~V}_{\phi \mathrm{L}}=-24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{P}}, \mathrm{~V}_{\phi \mathrm{L}}=-26 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{P}}, \mathrm{~V}_{\phi \mathrm{L}}=-24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{P}}, \mathrm{~V}_{\phi \mathrm{L}}=-26 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{P}}, \mathrm{~V}_{\phi \mathrm{L}}=-24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{P}}, \mathrm{~V}_{\phi \mathrm{L}}=-26 \mathrm{~V} \end{aligned}$
		0	-	3	MHz	
Clock pulse width ${ }^{1}$ )	$\mathrm{t}_{\phi 1 \mathrm{~L}}$	0.2	-	10	$\mu \mathrm{s}$	
		0.1	-	10	$\mu \mathrm{s}$	
	$t_{\phi} 2 \mathrm{~L}$	0.2 0.15	-	-	$\mu \mathrm{s}$	
Clock pulse rise time	$\mathrm{t}_{\phi} \mathrm{LH}$	-	-	0.5	$\mu s$	
Clock pulse fall time	${ }^{\text {t }}$ ¢ ${ }^{\text {L }}$	-	-	0.5	$\mu \mathrm{s}$	
Clock delay	$\mathrm{t}_{\phi 1 \phi 2}, \mathrm{t}_{\phi}{ }^{\text {d }}$ 1	0	-	-	$\mu \mathrm{s}$	
Clock pulse voltage levels						
HIGH	$\mathrm{V}_{\phi} \mathrm{H}$	-2	-	+0.3	V	
LOW	$\mathrm{V}_{\phi \mathrm{L}}$	-28	-26	-24	V	
Data input logic levels						
HIGH	$\mathrm{V}_{\text {IH }}$	$-2.0$	0	+0.3	V	
LOW	$\mathrm{V}_{\text {IL }}$	-28	-12	-9	V	
Data lead time	$\mathrm{t}_{\ell} \mathrm{I}$	20	-	-	ns	

[^62]
## CHARACTERISTICS

Test conditions: $\mathrm{VP}_{1}=-24$ to -28 V ; $\mathrm{VP}_{2}=-12$ to -14 V ; $\mathrm{Tamb}=-55$ to $+85^{\circ} \mathrm{C}$; $\mathrm{P}_{0}=$ grounded; standard load: 25 pF in parallel with $20 \mathrm{k} \Omega$ to $\mathrm{P}_{0}$.

	Symbol	min .	typ. ${ }^{1}$		ax.	Conditions and references
Output levels						
HIGH	$\mathrm{V}_{\mathrm{QH}}$	-1	-	0	V	
LOW	${ }^{\text {Q }}$ QL	-14	-	-10	V	
Data input   capacitance						
Clock input capacitances	$\mathrm{C}_{\phi 1}, \mathrm{C}_{\phi 2}$	-	17	25		$\mathrm{V}_{\phi}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
	$\mathrm{C}_{\phi 1}, \mathrm{C}_{\phi 2}$		15	22		$\mathrm{V}_{\phi}=-26 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
Leakage currents $\quad$ (						
Data input current	${ }^{-1} \mathrm{IL}$	-	-	1	$\mu \mathrm{A}$	$\left\{\begin{array}{l}\text { all other terminals at VPO }\end{array}\right.$
Clock input current	$\mathrm{I}_{\boldsymbol{\prime}} \mathrm{L}$		-	100		$\left\{\begin{array}{l} \mathrm{V}_{\phi}=-28 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ \text { all other terminals at } \mathrm{VP}_{0} \end{array}\right.$
Output resistance						
HIGH	$\mathrm{R}_{\mathrm{QH}}$	-	400	750	$\Omega$	$V_{Q}=-1 \mathrm{~V}$
Drive capability	$\mathrm{V}_{\mathrm{QL}}$		-11.3	-8		$\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega$ to $\mathrm{P}_{0} ; \mathrm{VP}_{2}=-5 \mathrm{~V}$
Supply currents	${ }^{-I} \mathrm{P}_{1}$		1.1	1.8		$\left\{\begin{array}{l} \mathrm{V}_{1}=-26 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{MHz} \end{array}\right.$
	$-\mathrm{IP}_{2}$		9.3	18		$\left\{\begin{array}{l} \mathrm{VP}_{2}=-13 \mathrm{~V} ; \mathrm{f}=1.5 \mathrm{MHz} \\ \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{MHz} \end{array}\right.$
Delay times						
Clock to output	${ }^{t} \mathrm{D}$		150	275		
D. C. noise margin	$\mathrm{M}_{\mathrm{H}}, \mathrm{M}_{\mathrm{L}}$	1	-	-	V	



## CHARACTERISTICS (continued)

## TIMING DIAGRAM



## Notes

1. Data inputs must remain valid for the shaded interval to ensure proper entry into the register.
2. For d.c. operation $\phi 2$ should be kept LOW.

## CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Clock pulse width: $\mathrm{t}_{\phi \mathrm{L}}$

The time for which the clock pulse is LOW: $\mathrm{V}_{\phi \mathrm{L}}=-26 \mathrm{~V}$
2. Clock pulse space: $\mathrm{t}_{\phi} 2 \mathrm{H}$

The time for which the clock pulse $\phi_{2}$ is HIGH ( $\mathrm{V}_{\phi}>-2 \mathrm{~V}$ ).
3. Clock pulse fall time: $t_{\phi} \mathrm{HL}$

The time between the $10 \%$ and $90 \%$ voltage points as the clock pulse goes from HIGH to LOW.
4. Clock pulse rise time: $\mathrm{t}_{\phi \mathrm{LH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the clock pulse goes from LOW to HIGH.
5. Clock delay time: $\mathrm{t}_{\phi 1 \phi 2}, \mathrm{t}_{\phi} 2 \phi 1$

The least allowable time between the end of the $\phi_{1}$ (or $\phi_{2}$ ) clock pulse and the start of the $\phi_{2}$ (or $\phi_{1}$ ) clock pulse, defined at -2 V .
6. Data lead time: $t_{\ell I}$

The time before the $90 \%$ point on the clock pulse for which the voltage at the data input must be at its specified logic level in order to ensure that the data will be entered in the register.
7. Delay time: $\mathrm{t}_{\mathrm{D}}$

The delay between the clock pulse reaching LOW and the output reaching its logic level.

The FD family is a series of complex monolithic integrated circuits utilizing MOS $P$-channel enhancement mode technology.

## READ/WRITE RANDOM ACCESS MEMORY, 128-BIT, 64 WORD, 2 BITS PER WORD


$W C=$ write control $; C D=$ chip disable


Po and metal package bottom are connected

QUICK REFERENCE DATA			
Supply voltage	$\mathrm{V}_{\mathrm{P}_{1}}$	-26 to -28	V
Standby power per bit (required clock power)		typ. 3	$\mu \mathrm{W}$
Total power consumption at 1 MHz read-rate	$\mathrm{P}_{\text {tot }}$	typ. 135	mW
Read access time	${ }^{\text {t }}$ AR	$<1$	$\mu \mathrm{s}$
D.C. noise margin	$\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{H}}$	$>\quad 1$	V
Data read rate	${ }^{\text {f }} \mathrm{DR}$	$<1$	MHz
Data write rate	${ }^{\text {f }}$ DW	$<1$	MHz
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-55 to +85	${ }^{\circ} \mathrm{C}$

PACKAGE OUTLINE: 16 lead metal-ceramic dual in-line (See general section)

## GENERAL DESCRIPTION

The FDQ106 is a monolithic, 128 bit random access read/write memory. It is organized as two 64 bit memories with 6 common single-rail address inputs and two separate outputs; it is used as a 64 word, 2 -bits per word memory. It requires a single-phase clock strobe pulse to refresh the data stored in all the memory cells simultaneously and to change the data stored in a cell in the write mode.
It also incorporates a chip disable that inhibits both data inputs and output buffers for expanded memory applications. The memory is activated in the write mode by applying a write control pulse; at all other times it is in the read mode.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage on all data inputs, clock inputs, outputs
and supply terminals, with reference to $\mathrm{P}_{0}$
Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Junction temperature
Storage temperature
Total current through terminal $\mathrm{P}_{2}$
Output current (per output)

	+0.5	to	-30
	V		
$\mathrm{P}_{\text {tot }}$	max.	800	mW
$\mathrm{~T}_{\mathrm{j}}$	max.	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	-65 to	+150	${ }^{\circ} \mathrm{C}$
$-\mathrm{IP}_{2}$	max.	40	mA
$\pm \mathrm{I}_{\mathrm{Q}}$	max.	20	mA

## THERMAL RESISTANCE

From junction to ambient

$$
R_{\text {th } j-a}=156{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$


CHARACTERISTICS (continued)
Test conditions: $\mathrm{V}_{\mathrm{P}_{1}}=-26 \mathrm{~V}$ to $-28 \mathrm{~V} ; \mathrm{V}_{2}=-12 \mathrm{~V}$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85{ }^{\circ} \mathrm{C}$; $\mathrm{P}_{0}=$ grounded; standard load: 50 pF in parallel with $50 \mathrm{k} \Omega$ to $\mathrm{P}_{0}$.

	Symbol	min. typ. max.	Conditions and references
ELECTRICAL DATA			
Read access timeData output logic levels	${ }_{\text {t }}$ R	$0.20 .51 .0 \mu \mathrm{~s}$	
HIGH	$\mathrm{V}_{\mathrm{QH}}$	-1.0-0 V	
LOW	${ }^{\text {V QL }}$	$-14--10 \mathrm{~V}$	
Address and data input capacitance	$\mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{D}}$	- 4.56 .0 pF	bias: $\mathrm{V}_{\mathrm{A}} ; \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz}$
Chip disable input capacitance	${ }^{\text {CD }}$	- 7.09 .0 pF	bias: $\mathrm{V}_{\mathrm{CD}}=0 \mathrm{~V} ; \mathrm{f} \phi=1 \mathrm{MHz}$
Strobe input capacitance	$\mathrm{C}_{\phi}$	- 5668 pF	bias: $\mathrm{V}_{\phi}=0 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz}$
	$\mathrm{C}_{\phi}$	- 2835 pF	bias: $\mathrm{V}_{\phi}=-26 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz}$
Write control input capacitance	$\mathrm{C}_{\mathrm{W}}$	- 7.99 .2 pF	bias: $\mathrm{V}_{\mathrm{WC}}=0 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz}$
	$\mathrm{C}_{\mathrm{W}}$	- $\quad 5.87 .0 \mathrm{pF}$	bias: $\mathrm{V}_{\mathrm{WC}}=-26 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz}$
Data output capacitance	$\mathrm{C}_{\mathrm{Q}}$	- 3.54 .5 pF	bias: $\mathrm{V}_{\mathrm{Q}}=0 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{Mriz}$
Leakage currents:			
Address, data, chip disable input currents	- $\mathrm{IAL},-\mathrm{IDL},-\mathrm{I}_{\mathrm{CDL}}$	- $\quad-1 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \text { bias: } \mathrm{V}_{A} ; \mathrm{V}_{\mathrm{D}} ; \mathrm{V}_{\mathrm{CD}}=-15 \mathrm{~V} ; \\ \text { see note } 2 \end{array}\right.$
Strobe and write control input currents	-I $\chi_{\text {L }}$, -IWL	- $100 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \text { bias: } \mathrm{V}_{\phi} ; \mathrm{V} W \mathrm{WC}=-28 \mathrm{~V} \text {; all } \\ \text { see note } 2 \end{array}\right.$
Output leakage current Output resistances:	-IQ	- - $10 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \mathrm{VQ}=10 \mathrm{~V} ; \mathrm{CD}=\mathrm{LOW} \\ \mathrm{~T} a \mathrm{mb}=25^{\circ} \mathrm{C} \end{array}\right.$
HIGH	$\mathrm{R}_{\mathrm{QH}}$	- $250600 \Omega$	
LOW	$\mathrm{R}_{\mathrm{QL}}$	- $250600 \Omega$	$\mathrm{V}_{\mathrm{P}_{2}}=-5 \mathrm{~V}$
$\frac{\text { Power supply current }}{\text { drain: at } \mathrm{V}_{\mathrm{P}}}$	-IP	$-\quad 4.57 .5 \mathrm{~mA}$	$\left\{\begin{array}{l}\mathrm{V}_{\mathrm{P}_{1}}=-28 \mathrm{~V} \\ \mathrm{f} \mathrm{\phi}^{\prime}=1 \mathrm{MHz}\end{array}\right.$
			$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{P}_{2}}=-13 \mathrm{~V}$
$\begin{array}{r} \text { at } \mathrm{VP}_{2} \\ \text { (see note 1) } \\ \text { Output transition times: } \end{array}$	$-\mathrm{IP} 2$	- 0.81 .0 mA	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{P}}=-13 \\ \mathrm{f}_{\phi}=1 \mathrm{MHz} \\ \mathrm{~T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C} \end{array}\right.$
fall time	${ }^{\text {t THL }}$	$\begin{aligned} & -\quad 100-\mathrm{ns} \\ & -\quad 100-\mathrm{ns} \end{aligned}$	
rise time   D.C. noise margin	${ }^{t}$ TLH   $\mathrm{M}_{\mathrm{L}}, \mathrm{H}_{\mathrm{M}}$	$\begin{array}{cc} -100 & -\mathrm{ns} \\ 1- & -\mathrm{V} \end{array}$	

## Notes

1. $\mathrm{IP}_{2}$ is almost entirely dependent on the external load.
2. $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; all other terminals at VP 0

## CHARACTERISTICS (continued)

## STAND-BY POWER CONSIDERATIONS

If the FDQ106 is to be kept in stand-by condition with all d.c. power to it shut off, the stored data can be preserved by maintaining a 10 kHz strobe clock rate. Since essentially all d.c. power dissipation is in the address input inverters, decode circuits and output buffers, the power required to preserve the stored data is limited to reactive strobe power and whatever leakage current occurs at the strobe input lead. Since the reactive strobe power is frequency dependent, the lowest allowable frequency should be used for stand-by operation. A strobe frequency of less than 10 kHz may be used if the ambient temperature is less than $+85^{\circ} \mathrm{C}$.
D. C. power may be switched on and off only at those moments when a change of address is also allowable.
After re-application of d.c. power, a series of about 10 strobe pulses is required before the circuit is fully operational.

## CHARACTERISTICS (continued)

## TIMING DIAGRAM



## CHARACTERISTICS (continued)

## Timing diagram notes

1. To avoid destroying data in non-addressed memory cells, the address inputs must not be made to change state during the shaded intervals in the timing diagrams.
2. When the CD input is LOW, the WRITE logic is inoperative and the output is float ing. The CD input affects the output directly, with a propagation delay of about 100 ns . It may change state an any time except during the shaded interval in the timing diagram.
3. No strobe pulse is required during a READ cycle; however, a minimum strobe frequency of 10 kHz is required and strobe pulsesmay occur during READ cycles if the requirement of note 1 is observed.
4. To write into the device, a WRITE control pulse and a strobe pulse are required, and the CD input must be HIGH.
During a WRITE cycle the memory outputs are active and the new data will appear at the outputs after ${ }^{\text {t DWQ }}$ ( $\leq 200 \mathrm{~ns}$ ).
However, data is actually written into the memory cell by the trailing edge of the strobe pulse.
5. Wheter they are in READ or WRITE cycles, all memory cells are simultaneously refreshed during a strobe pulse. No cycling through addresses is required.
6. If the address inputs remain unchanged, the data outputs appear as d.c. levels, no return to zero.

## GLOSSARY OF TERMS

1. Strobe pulse width: $\mathrm{t}_{\phi} \mathrm{H}$

The time for which the strobe pulse is in the HIGH state ( $\phi$ is nominally LOW)
2. Write control pulse width: tWL

The time for which the WRITE control pulse is LOW (VWL $\leq-26 \mathrm{~V}$ )
3. Pulse fall time: twHL and $\mathrm{t}_{\phi} \mathrm{HL}$

The time between the $10 \%$ and $90 \%$ voltage points as the pulse goes from HIGH to LOW.
4. Pulse rise time: $\mathrm{t}_{\mathrm{WLH}}$ and $\mathrm{t}_{\phi \mathrm{LH}}$

The time between the $90 \%$ and $10 \%$ voltage points as the pulse goes from LOW to HIGH.
5. Strobe address lead time: $t_{\ell \phi} A$

The time before the $10 \%$ strobe pulse voltage point for which the address must be present.
6. Write address lead time: tlWA

The time before the $10 \%$ write control pulse voltage point for which the address must be present.
7. Write data lead time: $t_{\ell}$ WD

The time before the $10 \%$ write control pulse voltage point for which the data must be present at the data inputs ( ${ }^{\ell}$ WD $\geq 0$ )
8. Read access time: tAR

After the address inputs reach the correct level, the time that elapses before the outputs start to change state.

## CHARACTERISTICS (continued)

9. Write-pulse-to-output propagation time: tDWQ

After the write control pulse reaches the LOW state, the time that elapses before the outputs start to change state.
10. Output fall transition time: t THL

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.
11. Output rise transition time: tTLH

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
12. Write address and write data hold times: thWA and thWD

The time for which the write control pulse must be in the HIGH state before the address or inputs may change state ( $\mathrm{t}_{\mathrm{h} W A} \geq 0$ and $\mathrm{t}_{\mathrm{hWD}} \geq 0$ ).
13. Strobe address hold time: th $\phi \mathrm{A}$

The time for which the strobe pulse must be LOW before the address may change state ( $\mathrm{th} \phi \mathrm{A} \geq 0$ )
14. Write control-strobe pulse lead times: $\mathrm{t}_{\ell} \mathrm{W} \phi L H$ and $t_{\ell} W \phi H L$

The time before the $10 \%$ voltage point on the strobe pulse leading edge, or the $90 \%$ voltage point on the strobe pulse trailing edge, for which the write control pulse must be in the LOW state ( $t_{\ell} W \phi L H \geq 0 ; t_{\ell} W \phi H L \geq 400 \mathrm{~ns}$ ).
15. Write control-strobe pulse hold time: thW $\phi$

The time after the strobe pulse has returned to LOW for which the write control pulse remain LOW ( $\mathrm{thW}_{\mathrm{h} \phi} \geq 0$ ).

## OUTPUT BUFFER DESCRIPTION

The output buffers used on the FDQ106 are identical to these used on the FDN106, FDN116, FDN126 and FDN136 dynamic shift registers. The $\mathrm{V}_{\mathrm{Q}}$ versus $\mathrm{I}_{\mathrm{Q}}$ characteristics shown in the data sheets for these shift registers also apply, therefore. to the FDQ106. The Vp supply voltage may be varied between 0 and -28 V according to the load requirements.

1. Biasing circuit A may be used to drive MOS loads.
Normal MOS input signals must drive the address and other input signals in accordance with the specifjed electrical characteristics.


Biasing circuit A
2. Biasing circuit B allows the MOS device to be interfaced with TTL or DTL at both data inputs and data outputs. Note that the TTL or DTL integrated circuit must be able to withstand +12 Vapplied to the output lead, most of our FC gates ${ }^{1}$ ) and FJ gates ${ }^{1}$ ) satisfy this requirement. Some open collector FJ gates have a minimum output breakdown voltage guarantee of 15 V . (1) non-RC types)


Fan-out $=1$
R1 $=1.2 \mathrm{k} \Omega$
$R 2=1 \mathrm{k} \Omega$
$R 3=10 \mathrm{k} \Omega$
$\mathrm{M}_{\mathrm{H}}=600 \mathrm{mV}$ $\mathrm{M}_{\mathrm{L}}=750 \mathrm{mV}$ $\mathrm{P}_{\mathrm{HIGH}}=13 \mathrm{~mW}$

Fan-out $=2$
$\left.\begin{array}{lr}\begin{array}{l}\mathrm{R} 1=560 \\ \mathrm{R} 2= \\ \mathrm{R} \\ \mathrm{R} 3=4.7\end{array} & \mathrm{k} \Omega \\ \mathrm{k} \Omega\end{array}\right\} \begin{aligned} & \mathrm{M}_{\mathrm{H}}=450 \mathrm{mV} \\ & \mathrm{M}_{\mathrm{L}}=500 \mathrm{mV} \\ & \mathrm{P}_{\mathrm{HIGH}}=41 \mathrm{mV}\end{aligned}$

Biasing circuit $B$

## TYPICAL PERFORMANCE




EXPANDED MEMORIES


64 word, 4 bits per wor


128 word, 2 bits per word

A LOW state at the chip disable input will cause both push-pull output buffers to turn off. In the off state, the output impedance of the output transistors becomes very high (approximately $5 \mathrm{M} \Omega$ ) making it possible to use wired-or configurations with other FDQ106 outputs.
Chip disable also inhibits write, which allows common bussing of data input lines.

The FD family is a series of complex monolithic integrated circuits utilizing MOS P -channel enhancement mode technology.

## READ ONLY MEMORY, 256 WORD, 9 BITS PER WORD



QUICK REFERENCE DATA				
Read access time	$\mathrm{t}_{\mathrm{AR}}$	$\max$	1	$\mu \mathrm{~s}$
Clock rate	$\mathrm{f}_{\phi}$	$\max$.	1	MHz
Power dissipation at $\mathrm{f}_{\phi}=1 \mathrm{MHz}$	$\mathrm{P}_{\phi}$	typ.	90	mw
D.C. noise margin	$\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{H}}$	$>$	1	V
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +85	${ }^{\circ} \mathrm{C}$	

PACKAGE OUTLINE 24 lead ceramic dual in-line. (See General Section)

## GENERAL DESCRIPTION

The FDR106Z is a monolithic 2304 bit read only memory. When ordering an FDR106Z the customer must send a bit pattern matrix (see example on pages 10 to 15 ) with the desired content. For performance evaluation, we can supply specimens of FDR106Z1, which is identical to the FDR106Z but contains a bit pattern of our own. The FDR106Z requires a two phase clock, but the outputs remain steady as long as the address remains unchanged. The normal configuration is as a $2 \overline{5} 6$ word, 9 bits per word, parallel output ROM. However, by means of two output inhibit controls it can be set up for 512 4-bit words.
The memory matrix is programmed with the aid of a mask pattern during manufacture. The only d.c. supply is the output buffer supply, which is variable and can be biased to drive bipolar output loads direct.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages on all data inputs, clock inputs, outputs and supply terminals, with reference to $\mathrm{P}_{0}$
Power dissipation up to $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
Junction temperature
Storage temperature
Total current through terminal $P_{1}$
Output current (per output)

	+0.5	to	-30
	V		
$\mathrm{P}_{\text {tot }}$	max.	1	W
$\mathrm{~T}_{\mathrm{j}}$	max.	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-65	to +150	${ }^{\circ} \mathrm{C}$
$-\mathrm{I}_{\mathrm{P} 1}$	max.	40	mA
$\pm \mathrm{I}_{\mathrm{Q}}$	max.	20	mA

## THERMAL RESISTANCE

From junction to ambient

$$
\mathrm{R}_{\mathrm{th} \mathrm{j}-\mathrm{a}}=125{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$,

$\begin{aligned} & \text { ELECTRICAL DRIVE } \\ & \hline \text { REQUIREMENTS } \\ & \hline \end{aligned}$	Symbol	min. typ.	max.	Conditions and references
Clock rate	$\mathrm{f}_{\phi}$	0.01 -	1.0 MHz	see timing diagram for parameter definitions
Clock pulse width	${ }^{t}{ }_{\phi 1} \mathrm{~L}$	0.50 -	$5.0 \mu \mathrm{~s}$	
	$t_{\phi 2 L}$	0.35 -	$5.0 \mu \mathrm{~s}$	
Clock pulse fall time	${ }^{\text {t }}{ }_{\text {HL }}$	- -	$0.10 \mu \mathrm{~s}$	see note
Clock pulse rise time	${ }^{\text {t }}{ }_{\text {L }} \mathrm{LH}$		$0.10 \mu \mathrm{~s}$	see note
Clock delay time	$t_{\phi 1 \phi 2}$	0 -	$45 \mu \mathrm{~s}$	
Clock delay time	${ }^{\text {t }}{ }^{2} \phi 1$	0 -	$45 \mu \mathrm{~s}$	
Clock input voltage level HIGH LOW	$\begin{aligned} & \mathrm{v}_{\phi \mathrm{H}} \\ & \mathrm{v}_{\phi \mathrm{L}} \end{aligned}$	$\begin{array}{cc} -2 & 0 \\ -28 & -26 \end{array}$	$\begin{array}{r} +0.3 \mathrm{~V} \\ -24 \mathrm{~V} \end{array}$	
Adress input and output inhibit input logic levels:				
HIGH	$\mathrm{V}_{\text {AH }}, \mathrm{V}_{\mathrm{CH}}$	-2 0	$+0.3 \mathrm{~V}$	
LOW	$\mathrm{V}_{\text {AL }}, \mathrm{V}_{\mathrm{CL}}$	-28-12	-9 V	

Note
At frequencies higher than $800 \mathrm{kHz},{ }_{\phi}{ }_{\phi}$ Lmin and $\mathrm{t}_{\phi 2}$ Lmin will be determined by $t_{\text {}}^{\text {LHMax }}$ and $t_{\text {}}{ }_{\text {HLmax }}$.

## CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{P} 1}=-12 \mathrm{~V}$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded; standard load: 30 pF in parallel with $150 \mathrm{k} \Omega$ to $\mathrm{P}_{0}$.

ELECTRICAL DATA	Symbol	min.	typ.	max.		Conditions and references
Output levels:						
HIGH	$\mathrm{V}_{\mathrm{QH}}$	-1	-	0	V	
LOW	VQL	-14	-	-10	V	
Address input capacitance Output inhibit input capacitance	$\mathrm{C}_{\text {A }}$	-	3.2	4.0	pF	bias: $\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz}$
	$\mathrm{C}_{\mathrm{C}}$	-	5.0	6.0	pF	
Clock input capacitance	$\mathrm{C}_{\underline{\text { ¢ }}}^{1}$	-	15	17	pF	bias: $\mathrm{V}_{\phi} ; \mathrm{V}_{\mathrm{C}}=0 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz}$
	$\mathrm{C}_{\phi} 2$	-	18		pF	
	$\mathrm{C}_{\phi 1}$	-	8.1	10.5	pF	\} bias: $\mathrm{V}_{\phi}=-26 \mathrm{~V} ; \mathrm{f}_{\dot{\phi}}=1 \mathrm{MHz}$
	$\mathrm{C}_{\phi} 2$	-	11.2	14.5	pF	$)^{\text {dias. }} \phi^{\prime}=-26 \mathrm{~V}$, - $^{-1} \mathrm{MHz}$
Output capacitance	CQ	-	4.0	5.0	pF	bias:VQ $=0 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz}$
Leakage currents:						
Address input and						
output inhibit input currents	${ }^{-1}{ }_{\text {AL }}$,	-	-	1	$\mu \mathrm{A}$	$\left.\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{C}}=-15 \mathrm{~V}^{1}\right)$
Clock input current	$-_{-\mathrm{I}_{\phi} \mathrm{L}} \mathrm{L}$ L	-	-		$\mu \mathrm{A}$	$\mathrm{V}_{\phi}=-28 \mathrm{~V}^{1}$ )
Output current	$\mathrm{I}^{\mathrm{I}} \mathrm{Q}$	-	-	10	$\mu \mathrm{A}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{Q}}=-10 \mathrm{~V} ; \mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\mathrm{C} 2}=\mathrm{LOW} \\ \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{array}\right.$
Output resistance						
HIGH	$\mathrm{R}_{\mathrm{QH}}$	-	700		$\Omega$	
LOW	$\mathrm{R}_{\mathrm{QL}}$	-	300		$\Omega$	$\mathrm{V}_{\mathrm{P}_{1}}=-5 \mathrm{~V}$
Clock power dissipation (see note 1)	$\mathrm{P}_{\phi 1}, \mathrm{P}_{\phi 2}$	-	36	-	mW	$\mathrm{f}_{\phi}=1 \mathrm{MHz}$
Input current (See note 2)	$-\mathrm{I}_{\mathrm{P}_{1}}$	-	4. 8	-	mA	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{P}_{1}}=-13 \mathrm{~V} \\ \mathrm{f}_{\phi}=1 \mathrm{MHz} \\ \mathrm{~T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C} \end{array}\right.$
$\frac{\text { Output transition times: }}{\text { fall time }}$	tTHL	-	100		ns	
rise time	${ }^{\text {t }}$ TLH		350		ns	
Delay times: fall time	${ }^{\text {t }}$ DHL	-	20	-	ns	*
rise time	${ }^{\text {t }}$ L LH		20			
D. C. noise margin	$\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{H}}$	1	-		V	

Note 1: No d.c. power is dissipated in the decoder or memory matrix; the quoted power dissipation is a.c. only.
Note 2: $\mathrm{I}_{\mathrm{P}_{1}}$ is almost entirely dependent on the external load.
${ }^{1}$ ) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; all other terminals at $\mathrm{V}_{\mathrm{P}}$.

CHARACTERISTICS (continued)
TIMING DIAGRAM


Address and output inhibit timing requirements:

1. Address input signals are clocked into the memory during $\phi_{1}$, and must remain present throughout $\phi_{1}$. Address lead time ( $t_{\ell A}$ ) must be $\geq 0$.
2. Output inhibit signals act without delay. If output signals are to be read during phase 1 , output inhibit signals must be delayed with respect to their associated address until phase $2\left({ }^{\mathrm{CL}}\right)$.
3. The output signals remain steady for as many clock cycles as the address and output inhibit signals remain unchanged.

## Note:

The indicated points on the vertical axis are specified in the glossary of terms.

CHARACTERISTICS (continued)

## GLOSSARY OF TERMS

1. Clock pulse width: $\mathrm{t} \phi \mathrm{L}$

The time for which the clock pulse is LOW; $\mathrm{V}_{\phi} \leq-24 \mathrm{~V}$
2. Clock pulse fall time: $t_{\phi H L}$

The time between the $10 \%$ and $90 \%$ voltage points as the clock pulse goes from HIGH to LOW.
3. Clock pulse rise time: $t_{\phi L H}$

The time between the $90 \%$ and $10 \%$ voltage points as the clock pulse goes from LOW to HIGH.
4. Clock delay time: $\mathrm{t}_{\phi 1 \phi 2} ; \mathrm{t}_{\phi 2 \phi 1}$

The least allowable time between the end of the $\phi_{1}$ (or $\phi_{2}$ ) clock pulse and the start of the $\phi_{2}$ (or $\phi_{1}$ ) clock pulse, defined at -2 V .
5. Fall delay time: tDHL

After the clock pulse $\phi_{2}$ reaches LOW, the time that elapses before the output starts to change from HIGH to LOW.
6. Rise delay time: t DH

After the clock pulse $\phi_{2}$ reaches LOW, the time that elapses before the output starts to change from LOW to HIGH.
7. Output fall transition time: $\mathrm{t}_{\mathrm{THL}}$

The time between the $10 \%$ and $90 \%$ voltage points as the output goes from HIGH to LOW.
8. Output rise transition time: ${ }^{\mathrm{t}} \mathrm{TLH}$

The time between the $90 \%$ and $10 \%$ voltage points as the output goes from LOW to HIGH.
9. Output inhibit time: ${ }^{\mathrm{t}} \mathrm{CL}$

The minimum time that the output inhibit signal must be present during $\phi_{2}$ in order to inhibit the output, defined at -2 V .
10. Read access time: $t_{A R}$

The time between the $90 \%$ point on the negative going edge of the clock pulse $\phi_{1}$ and the time at which the output is present, defined at $90 \%$.

## OUTPUT BUFFER DESCRIPTION

The only d.c. supply required is $V_{P_{1}}$, the push-pull output buffer supply. $V_{P_{1}}$ may be varied between 0 and -28 V according to the output voltage swing required. It does not affect the operating speed of the memory.

1. Biasing circuit A is used when driving MOS loads. Normal MOS input signals must drive the address and inhibit inputs.


Biasing circuit A
2. Biasing circuit B is used when driving TTL or DTL loads direct from each output buffer.
Note the neither active nor passive interface components are required. The circuit assumes MOS input excursions from $+5 \mathrm{~V}(\mathrm{VP} 0)$ to $\leq 4 \mathrm{~V}$.


Biasing circuit B .
Note: The negative voltage is $26 \mathrm{~V} \pm 5 \%$ below VP0.

## WIRED-OR APPLICATIONS

Use of wired-or output capability:
Applying a LOW signal to the output inhibit leads will cause both of the push pull output transistors associated with each output driver to turn off. Their output impedances are then very high (about $5 \mathrm{M} \Omega$ ) and they can be wired-or with other ROM output buffers without affecting the output drive capability of any buffer operating in the lowimpedance mode ${ }^{1}$ ). $C_{1}$ controls output buffers 1 to 5 , and $C_{2}$ controls output buffers 6 to 9 . This output inhibit wired-or capability makes it possible to use the FDR106Z type ROM in many different applications, such as those shown here.
Note that the terminals $\mathrm{A}_{9}$ and $\overline{\mathrm{A}_{9}}$ although shown as address inputs, must actually be output inhibit signals synchronous with the addressed data word rather than the address.

ROM
512 word
4 bits


ROM
512 word
9 bits


1) Except for the effect of leakage current and capacitive load.

## PROCEDURE FOR ORDERING A SPECIAL BIT PATTERN

To ensure accuracy when ordering a special bit pattern for a Read Only Memory (ROM) mask, customers should make use of the form on page 12. Four forms are needed for 256 word memories, The completed forms enable us to transfer any desired bit pattern into a standard ROM without error. After receipt of the forms our procedure is as follows:

1. An IBM card is punched for each row of each sheet of the form. (If he prefers to do so, the customer may punch his own cards and supply them to us, provided their format is identical with that of the forms).
2. The punched card are incorporated in a computer program that originates the following:

- a duplicate of the ordered bit pattern, for verification.
- a control tape for programming final electrical testing of the customers's ROM.
- a control tape embodying the ordered pattern of ones and zeros to govern the movement of the automatic plotter used in mask making.

3. The computer print-out is checked against the original order forms; a copy is also sent to the customer for his verification and signature.
4. Upon receipts of the customer's signed verification, full scale masks embodying the desired pattern are made.

## INSTRUCTION FOR COMPLETING THE FORMS

A. Customer block: ON EACH FORM

Enter Name, Date and Authorized Signature in the spaces provided.
B. The ADDRESS INPUTS and CONTENTS

Each page of the ROM Bit Pattern Form is laid out for 64 consecutive words; 16 in each of the four columns ( $00,01,10$ and 11).

1. ADDRESS INPUTS .
a) There are nine Address Inputs; the right-hand bit is always bit 1 and is the least sifnificant bit; the left-hand bit is bit 9 , it is the most sinificant. The Address Input leads on the ROM package are labelled $A_{1}, A_{2}$, etc., to correspond.
b) The states of bits 1 to 4 are listed consecutively down the page. The state of bits 5 and 6 are at the head of each of four output columns. The Address Input of 64 consecutive words are thus uniquely specified on each page.
c) Bit 7,8 , and 9 (or bits 7 and 8 only, for 256 word memories) specify sets of memory locations, 1 set of 64 words per page. These spaces should be filled by the customer using a consecutive full binary code. The first position on page 1 of your specification should be three (or two) zeros. ${ }^{1}$ ) Memories of 256 words need 4 pages, of specifications.
d) Only ones ( $1=$ LOW) or zeros $(0=\mathrm{HIGH})$ should be used in completing the form except where, as with 256 word memories, column 9 is unused and is, therefore, left blank.
1) See example on page 12 .
2. CONTENTS (DATA OUTPUTS)
a) Each column has provision for words of 9 bits numbered 1 to 9 , bit 1 is always the right-hand bit. The output leads of the ROM package are labelled $Q_{1}, Q_{2}$, etc., to correspond.
b) The requisite bit pattern should be inserted under headings 1 to 9 using only ones ( $1=$ LOW) and zeros ( $0=$ HIGH).
3. AUTHORIZED SIGNATURE

Having completed the bit pattern, the customer should check that the forms are numbered, dated, and signed, as they constitute formal evidence of his request. In the event that the customer provides his own punched cards the signature on the computer duplicate will serve as formal evidence.

	$\stackrel{\mu}{5}$													
		(		$=$				$1$						
릉				-			I							




Note: $1=$ LOW; $0=\mathrm{HIGH}$

## APPLICATIONS

The bit patterns stored in the FDR106Zl allow this ROM to perform the following functions:

## 1. STARBURST ALPHA-NUMERIC CHARACTER GENERATION

Generation of activating signals for 64 17-segment starburst pattern character using an ASCII input code ( 128 words).

## 2. STARBURST PATTERN GENERATION

Generation of x and y deflection signal to produce a 22 stroke starburst pattern on a CRT (22 words).

## 3. SEVEN SEGMENT DECODE NUMERIC BLANKING CHARACTER GENERATOR (16 WORDS)

## 4. SELECTRIC TO ASCII CODE CONVERSION

Conversion of IBM selectric input/output writer keyboard code to ASCII code with even or odd parity ( 88 words).

## PATTERN 1

## STARBURST CHARACTER GENERATION

For a starburst character, 17 activating signals are used for the 17 segments of the pattern. Since only 9 output lines are available in the FDR106Z1, the complete bit pattern for each character must be stored in two 9-bit words; thus a total of 128 words are used for 64 characters. Fig. 1 shows the segments controlled by the output bits of the first ( S ) and second ( T ) word for each character. The S word contains 9 segment signals and the $T$ word 8 . The nineth bit of ROM T(T6)is notused. A logic 1 output signal (nominally -12 V ) represents an activated (ON) segment signal. The starburst character generation function is selected by setting address bit A 8 to 0 V (V $\mathrm{P}_{0}$ or HIGH signals). S words are selected by setting address bit $\mathrm{A}_{5}$ to 0 V (HIGH) and $T$ words by setting address bit $\mathrm{A}_{5}$ to -10 V (LOW).
Address bits $A_{1}, A_{2}, A_{3}, A_{4}, A_{6}$ and $A_{7}$ are used to select any one of the characters. The input character code is a subset of the standard ASCII 7 bit code derived by using ASCII bits $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}, \mathrm{~b}_{5}$ and $\mathrm{b}_{7}$ according to the following table:

FDR106Z1   address input	ASCII bit
$\mathrm{A}_{1}$	$\mathrm{~b}_{4}$
$\mathrm{~A}_{2}$	$\mathrm{~b}_{3}$
$\mathrm{~A}_{3}$	$\mathrm{~b}_{2}$
$\mathrm{~A}_{4}$	$\mathrm{~b}_{1}$
$\mathrm{~A}_{6}$	$\mathrm{~b}_{5}$
$\mathrm{~A}_{7}$	$\mathrm{~b}_{7}$

PATTERN 1 (continued)
为

		$\square \square$			



O


응

~
四


Fig. 3. Wiring diagram for segment activation of a 17 segment illuminated display

## PATTERN 2

## 2. 1 STARBURST STROKE PATTERNS GENERATION

In this configuration, the ROM is used to produce x and y deflection signals to generate the pattern of Fig. 4 on a CRT. For this purpose the FDR 106 Z1 is connected as shown in Fig. 5, with certain of the ROM outputs connected back to the address input lines ${ }^{1}$ ). Each word in this sequence contains (in addition to the x and y steering signal outputs for a CRT) the address of the next word of the group used for this function. One clock power is applied, the memory steps in turn to a next word of the group each clock period and will thus continuously cycle through the group, as shown in Fig. 6 where the address and contents (outputs) of each word are sequentially listed. The $+x,-x,+y$ and $-y$ signals are rate signals and must be integrated as shown in Figs. 7a, b and c to produce the x and y deflection signals for a CRT.


Fig. 4 Starburst stroke pattern


Fig. 5 Wiring diagram for starburst stroke pattern generator

[^63]PATTERN 2 (continued)


Fig. 6 Starburst pattern sequence


Fig. 7a x integrator circuit:
Note: $1=$ LOW; $0=\mathrm{HIGH}$ identical circuit for $y$

PATTERN 2 (continued)


Fig. 7b and 7c x and y deflection signal generation
2. 2 Generation of blanking signal


Fig. 8

## PATTERN 3

## SEVEN SEGMENT DECODE

This portion of the FDR106Z1 generates seven driver signals, a zero indicator signal, and an "over-nine" indicator signal for a seven segment display device. The input code is BCD augmented by special characters. The segment activation patterns are shown, together with the BCD code at the ROM inputs, in Fig.9.
Fig. 10 is the connection diagram for seven segment function configuration.


Fig. 9 Seven segment character forms and their binary input code (8421)


Fig. 10 Wiring diagram for a seven segment decode
*) Typical segment driver amplifier

## PATTERN 4

## SELECTRIC TO ASCII CODE CONVERTER

When used in the selectric to ASCII code converter configuration, the FDR106Z1 translates seven input line signals from a selectric input/output writer (correspondence model) to ASCII code with even or odd parity. Fig. 11 shows the wiring connections for this function. The conncetion of selectric contacts is shown for a machine with standard wiring. Selectric keyboards provide six signal lines ( $\mathrm{R}_{1}, \mathrm{R}_{2}$, $R_{2} A, R_{5}, T_{1}$ and $T_{2}$ ) and a parity line which is not used in this application. The keyboard shift contact provides the seventh input line ( $\mathrm{A}_{7}$ ) to the FDR106Z1 (upper case is LOW, lower case is HIGH). Fig. 12 shows the selectric contact signals and FDR106Z1 address bits for which the code converter is patterned. The ASCII code for $>$ is generated when the selectric $\not \subset$ key is depressed, and the code for $<$ when the selectric ${ }^{\circ}$ (degrees) key is depressed.


Fig. 11 Wiring diagram for selectric to ASCII code converter

SELECTRIC CODE

FDR106Z1   address bit selectric contact	$A_{7}$	$A_{6}$   $\mathrm{T}_{1}$	$\begin{aligned} & \mathrm{A}_{1} \\ & \mathrm{~T}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{2} \\ & \mathrm{R}_{1} \end{aligned}$	A3   $\mathrm{R}_{2}$	$\begin{gathered} \mathrm{A}_{4} \\ \mathrm{R}_{2 \mathrm{~A}} \end{gathered}$	$\begin{aligned} & \mathrm{A}_{5} \\ & \mathrm{R}_{5} \end{aligned}$	FDR106Z1 address bit selectric contact	Az	$\begin{aligned} & \mathrm{A}_{6} \\ & \mathrm{~T}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{1} \\ & \mathrm{~T}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{2} \\ & \mathrm{R}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{3} \\ & \mathrm{R}_{2} \end{aligned}$	$\begin{gathered} \mathrm{A}_{4} \\ \mathrm{R}_{2 \mathrm{~A}} \end{gathered}$	$\begin{aligned} & A_{5} \\ & R_{5} \end{aligned}$
character	case							character	case						
	$\begin{aligned} & \hline \mathrm{U} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
$\begin{array}{ll} \mathrm{B} & - \\ \hline \end{array}$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{r} x \\ \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$
$\left[\begin{array}{l} \mathrm{C} \\ \mathrm{c} \end{array}\right.$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	Z	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$(\ldots,-\cdots)$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$
$\mathrm{F}, \ldots-\cdots$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	@	$\begin{aligned} & \hline \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	\＃ －ーーーーー 3	$\begin{aligned} & \hline \mathrm{U} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$
$\begin{gathered} \mathrm{H} \\ \\ \end{gathered}$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$
	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{r} \% \\ 5 \end{array}$	$\begin{aligned} & \hline \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$
$\mathrm{J}$	$\begin{aligned} & \hline \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} \phi \\ \ldots,--- \\ 6 \end{array}$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	\＆	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$
L	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$
	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & \hline \mathrm{U} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
$0$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$					
	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 . \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
$\left[\begin{array}{ll} \mathrm{S} \\ \mathrm{~s} \end{array}\right.$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	＂	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	$\begin{aligned} & \hline \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{array}{lll} \mathrm{U} & \\ , & \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	$\begin{aligned} & \hline \mathrm{U} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{U} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$

Note： $1=$ LOW； $0=\mathrm{HIGH}$
COMPLETE FDR106Z1 BIT PATTERN

ADDRESS INPUTS		ROM CONTENTS			
		outputs	$\begin{gathered} 01 \\ \text { outputs } \end{gathered}$	$\begin{gathered} 10 \\ \text { outputs } \end{gathered}$	$\begin{gathered} 11 \\ \text { outputs } \end{gathered}$
	87654321	987654321	987654321	987654321	98765432
1	$00 \times \mathrm{X} 0000$	000000000	0000000000	$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$	100000100
2	$00 \times \mathrm{X} 0001$	000000000	100000100000	$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	0000000001111
3	$00 \times \mathrm{X} 0010$	011011010	01110000111	00001110000	00000000111
4	$00 \times \mathrm{X} 0011$	00000001110	000000000000	$\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1\end{array}$	100000000
5	$00 \times \mathrm{X} 0100$	0001100000	01000000000	$\begin{array}{lllllllll}1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0\end{array}$	1000000010
6	$00 \times \mathrm{X} 0101$	000000001	$\begin{array}{lllllllllll}1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$	$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}$	000900000
7	$00 \times \mathrm{X} 0110$	010011011	01000111000	$\begin{array}{lllllllll}1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0\end{array}$	0000000001111
8	$00 \times \mathrm{X} 0111$	000000100	0000000000	$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0\end{array}$	0000011000
9	$00 \times \mathrm{X} 11000$	000000100	01110000000	$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$	$0 \begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
10	$00 \times \mathrm{X} 1001$	000000001	00000001000	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	0000000001111
11	$00 \times \mathrm{X} 1010$	0100111001	$\begin{array}{lllllllllll}1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\end{array}$	$\begin{array}{llllllllll}0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0\end{array}$	000000001111
12	$00 \times \mathrm{X} 1011$	000000000	0000000011	0000000010010	000000000011
13	$00 \times \mathrm{X} 11100$	0111110000	0111000011	$\begin{array}{llllllllll}0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0\end{array}$	1000000001
14	$00 \times \mathrm{X} 11101$	000000000		000000001110	0000000000
15	$00 \times \mathrm{X} 1110$	000000000	100000000000	011100000001	1000000000
16	$00 \times \mathrm{X} 1111$	000000001	100000000	0111100100	0010000001

[^64]COMPLETE FDR 106 Z 1 BIT PATTERN

ADDRESS INPUTS		ROM CONTENTS			
	$\square$	utputs	01 outputs	$\begin{gathered} 10 \\ \text { outputs } \end{gathered}$	$\begin{gathered} 11 \\ \text { outputs } \end{gathered}$
	87654321	987654321	987654321	987654321	987654321
17	$01 \times \mathrm{X} 0000$	1111001010	110000000101	111100000	00000000111
18	01 XX 0001	1001110000	0000000111	000000001	100011000
19	01 XX 0010	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	0111000000	011000000	0111000000
20	01 XX 0011	100000010010	000000001100	000000000	00000111000
21	01 XX 0100	1111001010	1100010110	$\begin{array}{llllllllll}1 & 1 & 1 & 0 & 0 & 0\end{array}$	0000010111
22	$01 \times \mathrm{X} 0101$	100011110010	000000000000	$0 \begin{array}{lllllllllll}0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1\end{array}$	100000000
23	01 X X 0110	111000000	0000000110	100000001	1000000100
24	01 XX 0111	100110000	000011100	000000001	000010000
25	01 XX 1000	111110000	00000011	$\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 0\end{array}$	000010100
26	01 XX 1001	000000000	0111000000	000000000	101001000
27	01 XX 1010	111001010	000000110	1000111010	000000100
28	$01 \times \mathrm{X} 1011$	1000110000	100001100	$0 \begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 0 & 1 & 0\end{array}$	0110000000
29	$01 \times \mathrm{X} 11100$	1111001010	000000100	00010111010	010000001
30	$01 \times \mathrm{X} 1101$	1000000000	100010110	00010001000	0111000000
31	$01 \times \mathrm{X} 1110$	11110111010	0000000101	$1 \begin{array}{llllllllll}1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$	00000010100
32	$01 \times \mathrm{X} 1111$	$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	000000100	000001010	000000000

[^65]COMPLETE FDR106Z 1 BIT PATTERN (continued)

ADDRESS INPUTS		ROM CONTENTS			
		- 00 outputs	01 outputs	$\begin{aligned} & 10 \\ & \text { outputs } \end{aligned}$	$\begin{gathered} 11 \\ \text { outputs } \end{gathered}$
	87654321	987654321	987654321	987654321	987654321
33	$10 \times \mathrm{X} 0000$	101110110		0000011111101	$0 \begin{array}{llllllllll}0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1\end{array}$
34	$10 \times \mathrm{X} 0001$	1001101110	100000010001	$\begin{array}{lllllllllll}1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0\end{array}$	$\begin{array}{lllllllllll}0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1\end{array}$
35	$10 \times \mathrm{X} 0010$	110011001	011000110010	10010011110	$0 \begin{array}{llllllllll}0 & 1 & 1 & 0 & 1 & 1 & 0\end{array}$
36	$10 \times \mathrm{X} 0011$	011011110	01011010001		$1 \begin{array}{lllllllll}1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$
37	$10 \times \mathrm{X} 0100$	111011010	$1 \begin{array}{lllllllll}1 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	0001100011110	$1 \begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1\end{array}$
38	$10 \times \mathrm{X} 0101$	011000111101	$\begin{array}{lllllllll}1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1\end{array}$	$\begin{array}{lllllllll}1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	00000111110
39	$10 \times \mathrm{X}$	000011110110		$1 \begin{array}{lllllllll}1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}$	$1 \begin{array}{llllllllll}1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0\end{array}$
40	$10 \times \mathrm{X} 0111$	10000001110	1000110111001	$0 \begin{array}{llllllllll}0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$	10000011111001
41	$10 \times \mathrm{X} 1000$	00100001100	00000000000	$1 \begin{array}{lllllllll}1 & 1 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$	00000010100
42	$10 \times \mathrm{X} 1001$	$\begin{array}{llllllllll}0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0\end{array}$	$\begin{array}{llllllllll}0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}$	$\begin{array}{lllllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}$	0000100100001
43	$10 \times \mathrm{X} 1010$	$\begin{array}{llllllllll}1 & 1 & 0 & 1 & 1 & 1 & 0 & 1\end{array}$	$0 \begin{array}{lllllllll}0 & 1 & 0 & 1 & 0 & 0 & 0\end{array}$	$1 \begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$	0 0000111110000
44	$10 \times \mathrm{X} 1011$	01111111000	01001100010	$1 \begin{array}{lllllllll}1 & 0 & 1 & 1 & 1 & 0 & 0\end{array}$	$\begin{array}{lllllllllll}1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$
45	$10 \times \mathrm{X} 1100$	0001001110110	0000001110001	$0 \begin{array}{lllllllll}0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1\end{array}$	0000010011110
46	$10 \times \mathrm{X} 11101$	$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1\end{array}$	$1 \begin{array}{llllllllll}1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0\end{array}$	$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$	1 00001111111110
47	$10 \times \mathrm{X} 1110$	000100000100	$1 \begin{array}{lllllllll}1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	$\begin{array}{llllllllll}1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0\end{array}$	$\begin{array}{lllllllllll}0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0\end{array}$
48	$10 \times \mathrm{X} 1111$	$\begin{array}{llllllllll}0 & 1 & 1 & 0 & 1 & 1 & 0 & 0\end{array}$	$\begin{array}{llllllllll}1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1\end{array}$	$\begin{array}{llllllllll}0 & 1 & 1 & 0 & 0 & 1 & 0 & 0\end{array}$	$\begin{array}{llllllllll}1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}$

Note: $1=$ LOW; $0=\mathrm{HIGH}$
CCMPLETE FDR106Z1 BIT PATTERN (continued)

ADDRESS INPUTS		ROM CONTENTS			
	$87654321$		$$	$$	$\begin{gathered} 11 \\ \text { outputs } \\ 987654321 \end{gathered}$
49	$11 \times \mathrm{X} 0000$	$\begin{array}{llllllllll}1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0\end{array}$	$\begin{array}{lllllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1\end{array}$	$\begin{array}{llllllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0\end{array}$	000100101110
50	$11 \times \mathrm{X} 0001$	1011100101	0001111100	$\begin{array}{lllllllll}1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1\end{array}$	$\begin{array}{llllllllll}0 & 1 & 1 & 1 & 0 & 1 & 1\end{array}$
51	$11 \times \mathrm{X} 0010$	110001010	0000000110	10101010101	$\begin{array}{llllllllll}0 & 1 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
52	$11 \times \mathrm{X}$	011101010101	$0 \begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	$\begin{array}{lllllllllll}0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0\end{array}$	$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 0 & 1\end{array}$
53	11 X X 0100	011001010	$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0\end{array}$	$\begin{array}{llllllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1\end{array}$	101000110
54	11 X X 0101	01100100110	0110001001	$0 \begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	00000101101
55	$11 \times \mathrm{X} 0110$	010101010	0111111010	111000001110	1101000101
56	11 XX 011	1000000101	$\begin{array}{lllllllll}1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$	000111011010	100010110
57	11 X X 1000	1010001000	10000000001	$1 \begin{array}{lllllllll}1 & 1 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$	100010110
58	$11 \times \mathrm{X} 100$	111001000	1100010011	11111110	101011000
59	$11 \times \mathrm{X} 1010$	111111100	$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$	$\begin{array}{lllllllll}1 & 1 & 0 & 0 & 1 & 1 & 1 & 0\end{array}$	100110001
60	$11 \times \mathrm{X} 101$	000000011	1110111010	$\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 0 & 1 & 1 & 0\end{array}$	001110010
61	11 X X 1100	0011001001	1000110110110	$\begin{array}{llllllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$	000100101
62	11 X X 1 1 01	11111000110	$\begin{array}{llllllllll}1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1\end{array}$	$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$	100110101
63	11 X X 1110	11111001100	00010100	$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$	0100000101
64	$11 \times \mathrm{X} \mid 111$	000100010	111010110	000000010	11111100101

The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enhancement mode technology.

## READ-ONLY MEMORY, 512 WORD, 5 BITS PER WORD



QUICK REFERENCE DATA				
Read access time	$\mathrm{t}_{\mathrm{AR}}$	$\max$.	850	ns
Clock rate	$\mathrm{f}_{\phi}$	$\max$.	1.2	MHz
Power dissipation at $\mathrm{f}_{\phi}=1 \mathrm{MHz}$	$\mathrm{P}_{\phi}$	typ.	90	mw
D.C. noise margin	$\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{H}}$	$>$	1	V
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +85	${ }^{\circ} \mathrm{C}$	

PACKAGE OUTLINE 24 lead metal-ceramic dual in-line (See General Section)

## GENERAL DESCRIPTION

The FDR116Z is a monolithic 2560 bit read only memory. When ordering an FDR116Z the customer must send a bit pattern matrix with the desired content. For performance evaluation, we can supply specimens of FDR116Z1, which is identical to the FDR116Z but contains a bit pattern of our own. The FDR116Z requires a two phase clock, but the outputs remain steady as long as the address remains unchanged. The normal configuration is as a 512 word, 5 bits per word, parallel output ROM. An output inhibit control allows the use of multiple FDR116Z in a wired-OR configuration.
The memory matrix is programmed with the aid of a mask pattern during manufacture. The only d.c. supply is the output buffer supply, which is variable and can be biased to drive bipolar output loads direct.
The patterns permanently stored in the memory matrix of the FDR116Z1 are described in the following data sheets.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages on all data inputs, clock inputs, outputs and supply terminals, with reference to $\mathrm{P}_{0}$

Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Junction temperature
Storage temperature
Total current through terminal $\mathrm{P}_{2}$
Output current (per output)

	+0.5 to	-30	V
$\mathrm{P}_{\text {tot }}$	max.	1	W
$\mathrm{~T}_{\mathrm{j}}$	max.	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$	
$-\mathrm{IP}_{2}$	max.	40	mA
$\pm \mathrm{IQ}$	$\max$.	20	mA

## THERMAL RESISTANCE

From junction to ambient
$R_{\text {th j-a }}=125 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$

$\begin{aligned} & \hline \text { ELECTRICAL DRIVE } \\ & \hline \text { REQUIREMENTS } \end{aligned}$	Symbol	min. typ.	max.	Conditions and references
Clock rate	$\mathrm{f}_{\phi}$	0.1	1.2 MHz	see note
Clock pulse width	$\begin{aligned} & { }_{t_{\phi 1} \mathrm{~L}} \\ & \mathrm{t}_{\phi 2 \mathrm{~L}} \end{aligned}$	$\begin{array}{ll} 0.50 & - \\ 0.25 & - \end{array}$	$\begin{aligned} & 1.0 \mu \mathrm{~s} \\ & 1.0 \mu \mathrm{~s} \end{aligned}$	see timing diagram for parameter definitions
Clock pulse fall time	${ }^{\text {t }}$ ¢ ${ }^{\text {HL }}$	- -	$0.10 \mu \mathrm{~s}$	see note
Clock pulse rise time	t $\phi$ LH		$0.10 \mu \mathrm{~s}$	
Clock delay time	${ }^{\text {t }}{ }_{1}{ }^{\prime} 2$	0 -	$4.5 \mu \mathrm{~s}$	
Clock delay time	${ }^{\dagger} \phi 2 \phi 1$	0 -	$4.5 \mu \mathrm{~s}$	
Clock input voltage level $\mathrm{HIGH}$ LOW	$\mathrm{V}_{\phi \mathrm{H}}$ $\mathrm{V}_{\phi \mathrm{L}}$	$\begin{array}{rr} -2 & 0 \\ -28 & -26 \end{array}$	$\begin{array}{r} +0.3 \mathrm{~V} \\ -24 \mathrm{~V} \end{array}$	
```Address input and output inhibit input logic levels: HIGH LOW```	$\mathrm{V}_{\text {AH }}, \mathrm{V}_{\text {CH }}$ $\mathrm{V}_{\text {AL }}, \mathrm{V}_{\text {CL }}$	$\begin{array}{rr} -2 & 0 \\ -14 & -12 \end{array}$	$\begin{array}{r} +0.3 \mathrm{~V} \\ -9 \mathrm{~V} \end{array}$	

Note

At frequencies higher than $870 \mathrm{kHz}, \mathrm{t}_{\phi 1 \mathrm{Lmax}}$ and $\mathrm{t}_{\phi 2 \mathrm{Lmin}}$ will be determined by $\mathrm{t}_{\phi \text { LHmax }}$ and $\mathrm{t}_{\phi \text { HLmax }}$.

CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{P}_{1}}=-12 \mathrm{~V}$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded; standard load: 30 pF in parallel with $150 \mathrm{k} \Omega$ to P_{0}.

ELECTRICAL DATA	Symbol	min. typ. max.	Conditions and references
Read access time	${ }^{\text {A }}$ AR	- 750850 ns	see note 1
Output levels:			
HIGH	V_{QH}	-1 - 0 V	
LOW	$\mathrm{V}_{\text {QL }}$	-14--10 V	
Address input capacitance	C_{A}	- 3.24 .0 pF	bias: $\mathrm{V}_{\text {A }} \quad=0 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz}$
Output inhibit input capacitance	${ }^{\text {C }}$ C	- 3.24 .0 pF	
Clock input capacitance	$\mathrm{C}_{\phi 1}$	- 2130 pF	bias: $\mathrm{V}_{\mathrm{C}} ; \mathrm{V}_{\phi}=0 \mathrm{~V} ; \mathrm{f}_{\phi}=1 \mathrm{MHz}$
	$\mathrm{C}_{\phi}{ }^{2}$	- $\quad 13 \quad 18 \mathrm{pF}$	
	${ }^{\text {C }}$ ¢1	- $\quad 1318 \mathrm{pF}$	bias: $\mathrm{V}_{\phi}=-26 \mathrm{~V} ; \mathrm{f} \phi=1 \mathrm{MHz}$
	$\mathrm{C}_{\phi 2}$	- 7.410 pF	fbias. $\mathrm{V}_{\phi}=-26 \mathrm{~V}, \mathrm{r}^{\prime}=1 \mathrm{MHz}$
Leakage currents:			
Address input and output inhibit input currents	${ }^{-1} \mathrm{~A}_{\text {L }},{ }^{\text {I }}$ CL	- - $\quad 1 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{C}}=-15 \mathrm{~V} ; \text { all } \\ \text { other terminals at } \mathrm{V}_{\mathrm{P}_{0}} \\ \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C} \end{array}\right.$
Clock input current	$-\mathrm{I}_{\phi L}$	- - $100 \mu \mathrm{~A}$	$\left\{\begin{array}{l} \text { terminals at } \mathrm{V}_{\mathrm{P}_{0}} \\ \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{array}\right.$
Output resistance			
HIGH	R_{QH}	- $300-\Omega$	
LOW	RQL	- $170-\Omega$	$\mathrm{V}_{\mathrm{P}_{1}}=-5 \mathrm{~V}$
Clock power dissipation (see note 2)	P_{ϕ}	- 36-mW	$\mathrm{f}_{\phi}=1 \mathrm{MHz}$
Input current (see note 3)	$-\mathrm{I}_{1}$	- $4.0-\mathrm{mA}$	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{P} 1}=-13 \mathrm{~V} \\ \mathrm{f}_{\phi}=1 \mathrm{MHz} \\ \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{array}\right.$
Output transition times:			
fall time	${ }^{\text {t }}$ THL	- 100 - ns	
rise time	${ }^{\text {t }}$ TLH	- 100 - ns	
Delay times: fall time	${ }^{\text {t }} \mathrm{DHL}$	- $20-\mathrm{ns}$	
rise time	${ }^{\mathrm{t}} \mathrm{DLH}$ $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{H}}$	- $20-\mathrm{ns}$	

Note 1: The minimum access time assumes the summation of the rise time of ϕ_{1} and the fall time of ϕ_{2} is less than 40 ns .
Note 2: No d.c. power is dissipated in the decoder or memory matrix; the quoted power dissipation is a.c. only.
Note 3: I_{1} is almost entirely dependent on the external load.

CHARACTERISTICS (continued)
TIMING DIAGRAM

Note
The indicated points on the vertical axis are specified in the glossary of terms. Address and output inhibit iming requirements:

1. Address input (and output inhibit input) signals are clocked into the memory during ϕ_{1}, and must remain present throughout ϕ_{1}. Address lead time (${ }_{\ell}$ A) must be ≥ 0.
2. The output signals remain steady for as many clock cycles as the address and output inhibit signals remain unchanged.

CHARACTERISTICS (continued)

GLOSSARY OF TERMS

1. Clock pulse width: $\mathrm{t}_{\boldsymbol{\phi}}$ The time for which the clock pulse is LOW; $\mathrm{V}_{\phi} \leq-24 \mathrm{~V}$
2. Clock pulse fall time: $t_{\phi H L}$

The time between the 10% and 90% voltage points as the clock pulse goes from HIGH to LOW.
3. Clock pulse rise time: $\mathrm{t}_{\boldsymbol{\phi} \mathrm{LH}}$

The time between the 90% and 10% voltage points as the clock pulse goes from LOW to HIGH.
4. Clock delay time: $\mathrm{t}_{\phi 1 \phi 2}$; $\mathrm{t} \phi 2 \phi 1$

The least allowable time between the end of the ϕ_{1} (or ϕ_{2}) clock pulse and the start of the ϕ_{2} (or ϕ_{1}) clock pulse, defined at -2 V .
5. Fall delay time: tDHL

After the clock pulse ϕ_{2} reaches LOW, the time that elapses before the output starts to change from HIGH to LOW.
6. Rise delay time: tDLH

After the clock pulse ϕ_{2} reaches LOW, the time that elapses before the output starts to change from LOW to HIGH.
7. Output fall transition time: ${ }^{\mathrm{t}} \mathrm{THL}$

The time between the 10% and 90% voltage points as the output goes from HIGH to LOW.
8. Output rise transition time: t TLH

The time between the 90% and 10% voltage points as the output goes from LOW to HIGH.
9. Read access time: tAR

The time between the 90% point on the negative going edge of the clock pulse ϕ_{1} and the time at which the output is present, defined at 90%.

OUTPUT BUFFER DESCRIPTION

The only d.c. supply required is $\mathrm{V}_{\mathrm{P}_{1}}$, the push-pull output buffer supply. $\mathrm{V}_{\mathrm{P}_{1}}$ may be varied between 0 and -28 V according to the output voltage swing required. It does not affect the operating speed of the memory.

1. Biasing circuit A is used when driving MOS loads. Normal MOS input signals must drive the address and inhibit inputs.

2. Biasing circuit B may be used to interface with TTL, both at the input and the output of the ROM. Note that no active interface devices are required. At the address and C inputs any TTL devices can be used that will sustain a minimum of +12 V at their output terminals.

WIRED-OR APPLICATIONS

Use of wired-or output capability:
Applying a LOW signal to the output inhibit leads will cause both of the push pull output transistors associated with each output driver to turn off. Their output impedances are then very high (about $5 \mathrm{M} \Omega$) and they can be wired-OR with other ROM output buffers without affecting the output drive capability of any buffer operating in the low impedance mode. This output inhibit wired-OR capability makes it possible to use the FDR116Z type ROM in many different applications, such as the one shown here.

1024 words, 5 bits per word ROM

PROCEDURE FOR ORDERING A SPECIAL BIT PATTERN

To ensure accuracy when ordering a special bit pattern for a Read Only Memory (ROM) mask, customers should make use of the form on page 12. Eight forms are needed for 512 word memories. The completed forms enable us to transfer any desired bit pattern into a standard ROM without error. After receipt of the forms our procedure is as follows:

1. An IBM card is punched for each row of each sheet of the form. (If he prefers to do so, the customer may punch his own cards and supply them to us, provided their format is identical with that of the forms).
2. The punched card are incorporated in a computer program that originates the following:

- a duplicate of the ordered bit pattern, for verification.
- a control tape for programming final electrical testing of the customers's ROM.
- a control tape embodying the ordered pattern of ones and zeros to govern the movement of the automatic plotter used in mask making.

3. The computer print-out is checked against the original order forms; a copy is also sent to the customer for his verification and signature.
4. Upon receipts of the customer's signed verification, full scale masks embodying the desired pattern are made.

INSTRUCTION FOR COMPLETING THE FORMS

A. Customer block: ON EACH FORM

Enter Name, Date and Authorized Signature in the spaces provided.
B. The ADDRESS INPUTS and CONTENTS

Each page of the ROM Bit Pattern Form is laid out for 64 consecutive words; 16 in each of the four columns ($00,01,10$ and 11).

1. ADDRESS INPUTS
a) There are nine Address Inputs; the right-hand bit is always bit 1 and is the least significant bit; the left-hand bit is bit 9, it is the most significant. The Address Input leads on the ROM package are labelled A_{1}, A_{2}, etc., to correspond.
b) The states of bits 1 to 4 are listed consecutively down the page. The state of bits 5 and 6 are at the head of each of four output columns. The Address Input of 64 consecutive words are thus uniquely specified on each page.
c) Bit 7,8 and 9 specify sets of memory locations, 1 set of 64 words per page. These spaces should be filled by the customer using a consecutive full binary code. The first position on page 1 of your specification should be three (or two) zeros. ${ }^{1}$)
Memories of 512 words need 8 pages, of specifications.
d) Only ones ($1=$ LOW) or zeros $(0=\mathrm{HIGH})$ should be used in completing the form.
[^66]
PROCEDURE FOR ORDERING A SPECIAL BIT PATTERN (continued)

2. CONTENTS (DATA OUTPUTS)
a) Each column has provision for words of 10 bits numbered 1 to 10 , bit 1 is always the right-hand bit. The output leads of the ROM package are labelled Q1, Q_{2}, etc., to correspond.
b) The requisite bit pattern should be inserted under headings 1 to 5 using only ones ($1=$ LOW $)$ and zeros $(0=\mathrm{HIGH})$.
3. AUTHORIZ ED SIGNATURE

Having completed the bit pattern, the customer should check that the forms are numbered, dated, and signed, as they constitute formal evidence of his request. In the event that the customer provides his own punched cards the signature on the computer duplicate will serve as formal evidence.

CHARACTER GENERATION

The FDRIl6Z1 is meant for generating ASCII characters for display in a system in which each character is made up of seven 5 -bit rows that are traced one at a time. It is capable of storing 64 different characters, each having its own 6 -bit address.

To generate a line of characters for display, word addresses are applied in sequence to the WORD SELECT inputs A_{1} to A_{3} and character addresses to the CHARACTER SELECT inputs A_{4} to Ag. First, the row to be traced is selected by applying its address (3 bits) to inputs A_{1} to A_{3}; then the desired characters are selected by apply ing their addresses (6 bits each) to inputs A_{4} to A 9 . When one row in a line of characters has been traced, the next row is generated by applying a new word address (inputs A_{1} to A_{3}) and repeating the same sequence of character addresses as before. After the sequence of character addresses has been repeated in conjunction with the word addresses for all seven rows, the full line of characters has been generated. Of the FDR 116 Z 1 , a selection is available, which has a maximum read rating of 1.67 MHz (cycle time 600 ns).

	$\begin{aligned} & \bar{g} \\ & \text { O} \\ & \text { g } \\ & \text { g } \\ & \text { g } \end{aligned}$	$=$	0 H 0 0 0 0 0 0 H 0 -1 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0	$\left.\begin{array}{lllllll} 0 & -1 & 0 & 0 & 0 & - & - \\ 0 & -1 & 0 & 0 & 6 & 0 \\ 0 & - & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right]$		
	$\begin{aligned} & \bar{\sigma} \\ & \dot{\sigma} \\ & \tilde{\sigma} \\ & \bar{\sigma} \\ & \overline{8} \end{aligned}$	-			$\left[\begin{array}{lllllll\|l} 0 & 0 & 0 & 0 & 0 & 0 & 0 & H \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & - \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & - \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & - \\ 0 & F & - & - & - & - & - \end{array}\right]$	
	$\begin{aligned} & \bar{\sigma} \\ & \tilde{\sigma} \\ & \overline{3} \\ & \bar{\sigma} \\ & 8 \end{aligned}$	$\bar{\square}$				
	$\begin{aligned} & \bar{\sigma} \\ & \text { O} \\ & \tilde{0} \\ & \bar{\sigma} \\ & \text { dig } \end{aligned}$	8			0 F - - 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - 0 0 0 0 0 0 0 0 0 - - 0	
	$\begin{aligned} & \overline{<} \\ & \text { ষ্d } \\ & \text { § } \end{aligned}$		$\begin{array}{llll} 0 & -0 & 0 & -0 \end{array}$	$\begin{array}{\|cccccc} 0 & - & 0 & - & 0 & - \\ 0 & 0 & - & - \\ 0 & 0 & - & 0 & 0 & - \\ 0 & 0 & 0 & - & - & - \end{array}$	$\left.\begin{array}{\|cccccc} 0 & - & 0 & -0 & - & 0 \\ 0 & 0 & - & - & 0 & 0 \end{array}\right]$	$\begin{array}{\|cccccc} 0 & - & 0 & - & 0 & - \\ 0 & 0 & - & - & - & 0 \\ 0 & 0 & - & - \\ 0 & 0 & 0 & 0 & - & - \end{array}$
	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 2 \\ & 2 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\left[\begin{array}{l} x \\ x \end{array}\right.$	$\begin{aligned} & 0 \\ & \times \\ & \times \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & \times \\ & \times \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \circ \\ \times \\ \times \\ \times \\ \hline 0 \\ 0 \end{gathered}$	$\begin{aligned} & - \\ & \times \\ & \times \\ & - \\ & 0 \\ & 0 \end{aligned}$

		E			$00000 / 700$ 0000000 $000 \ll 0000$ 0000000	$\begin{array}{lllllll\|l} 0 & 0 & 0 & 0 & 0 & 0 & 0 & H \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & H \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & H \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & H \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & H \end{array}$
	$\begin{aligned} & \bar{o} \\ & \tilde{y} \\ & \tilde{y} \\ & 0 \\ & y \\ & y \end{aligned}$	안	0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - - - - - - 0 - 0 0 0 0 0 0 0 0 0 0 0 0			
	$\begin{aligned} & \overline{3} \\ & \tilde{O} \\ & \\ & \bar{\delta} \\ & \dot{y} \end{aligned}$	5				$\left[\begin{array}{lllllll}0 & H & 0 & 0 & 0 & 0 & f \\ 0 & - & 0 & 0 & 0 & 0 & 0 \\ 0 & - & 0 & 0 & 0 & 0 & 0 \\ 0 & - & - & - & - & - & - \\ 0 & - & - & - & - & - & -\end{array}\right]$
		8				
	$\begin{aligned} & \overline{<} \\ & \text { z } \\ & \text { Z } \end{aligned}$		$\begin{array}{\|ccccccc} 0 & - & 0 & - & 0 & - & 0 \\ 0 & 0 & - & - & - & 0 & - \\ 0 & 0 & 0 & 0 & - & - & - \\ \hline \end{array}$	$\begin{array}{lllllll} 0 & - & 0 & - & 0 & - & 0 \\ \hline \end{array}$	$\begin{array}{lllllll} 0 & - & 0 & - & 0 & - & 0 \\ 0 & 0 & - & - & 0 & 0 & - \\ 0 & 0 & 0 & 0 & - & - & - \end{array}$	$\begin{array}{llllll} 0 & - & 0 & - & - & 0 \end{array}$
	2 2 2 2 2 2 2	$\left[\begin{array}{l}x \\ x\end{array}\right.$	$\begin{gathered} 0 \\ \times \\ \times \\ 0 \\ - \\ 0 \end{gathered}$	$\begin{gathered} - \\ \times \\ \times \\ 0 \\ - \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ \times \\ \times \\ - \\ - \\ 0 \end{gathered}$	$\begin{aligned} & - \\ & \times \\ & \times \\ & - \\ & - \\ & 0 \end{aligned}$

ASCII CHARACTER ADDRESS INPUTS	WORD SELECT INPUTS	OUTPUTS			
$A_{9} A_{88} A_{7} A_{6} A_{5} A_{4}$	$A_{3} A_{2} A_{1}$	$Q_{5} Q_{4} Q_{3} Q_{2} Q_{1}$			
$\sqrt{x \times 1}$		00	01	10	11
100×0	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & \eta & 0 & \eta & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{array}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{array}$
$100 \times \times 1$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{array}$		$\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \\ {\left[\begin{array}{lll} 1 & 1 & 0 \end{array}\right.} & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 / \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 / 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{array}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$
101×0	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 7 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{array}$		$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline \end{array}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline \end{array}$
101×1	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}$			$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$	00000 00000 000071 $000 / 1 \%$ 001100 0110000 110000 00000

		$=$				
	$\begin{aligned} & \bar{\sigma} \\ & \tilde{y} \\ & \tilde{\sigma} \\ & \ddot{\sigma} \\ & \tilde{\delta} \end{aligned}$	안				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 H 0 0 0 0 0 0 0 0
		5			00000000 － 0000000 ○○○曰○日○。 00000000 00000000	－ 0000000 00000000 －○ 日 ロ F－ － $00000-1$ 00000000
		8				
	$\begin{aligned} & \bar{\alpha} \\ & \text { ¿ै } \\ & \text { ¢ } \end{aligned}$		$\left.\begin{array}{\|cccccc} 0 & - & 0 & - & 0 & - \\ 0 & 0 & - \\ 0 & 0 & - & - & 0 & 0 \end{array}\right]-$	$\begin{array}{\|cccccc} 0 & - & 0 & - & 0 & - \\ 0 & 0 & - & - \\ 0 & 0 & - & 0 & 0 & - \\ 0 & 0 & 0 & 0 & - & - \\ \hline \end{array}$	$\left\|\begin{array}{ccccccc} 0 & - & 0 & - & 0 & - & 0 \\ 0 & 0 & - & - & 0 & 0 & - \\ 0 & 0 & 0 & 0 & - & - & - \end{array}\right\|$	$\begin{array}{lllllll} 0 & - & 0 & - & 0 & - & 0 \\ 0 & 0 & - & - & 0 & 0 & - \\ 0 & 0 & 0 & 0 & - & - & - \end{array}$
	$\begin{aligned} & \mathbb{y} \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\left\{\begin{array}{l} x \\ x \end{array}\right.$	$\begin{gathered} 0 \\ \times \\ \times \\ 0 \\ \hline- \\ \hline- \end{gathered}$	$\begin{gathered} - \\ \times \\ \times \\ 0 \\ - \\ - \end{gathered}$	$\begin{gathered} 0 \\ \times \\ \times \\ - \\ \hline- \end{gathered}$	$\begin{aligned} & - \\ & \times \\ & \times \\ & - \\ & - \\ & - \end{aligned}$

ROM ORGANIS ATION

In this example, with the word select input address fixed, the ASCII character addresses are sequentially altered to produce one line of three different characters, left to right. After 8 sequential binary word select iterations using the same character address sequence, the complete line of characters is formed, including a SPACE line.

$\begin{gathered} \mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \\ \text { word select } \\ \text { inputs } \end{gathered}$		ASCII character address for R applied to A_{4} to A_{9} $\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 0\end{array}$	ASCII character address for O applied to A_{4} to A_{9} $\begin{array}{llllll}0 & 0 & 1 & 1 & 1 & 1\end{array}$		
$0 \quad 0 \quad 0$	row_{1}	$\rightarrow 000000$	$\rightarrow 000000$		$\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}$
0 0 1	row2	$\begin{array}{llll}1 & 1 & 1\end{array}$	$\rightarrow 0110$		000
$\begin{array}{lll}0 & 1 & 0\end{array}$	row3	$\rightarrow 1 \begin{array}{llll}1 & 0 & 0 & 0 \\ 1\end{array}$	$\rightarrow 100$		$1 \mathrm{~N} / 1 / 1$
$\begin{array}{lll}0 & 1 & 1\end{array}$	row $_{4}$	$\rightarrow 1$1 1 0 0 0	$\rightarrow 1000001$		1
100	row $_{5}$	1	$\longrightarrow 11$ 0 0 0 1		$\begin{array}{llllll}1 & 0 & 1 & 0 & 1\end{array}$
$\begin{array}{lll}1 & 0 & 1\end{array}$	row6	$\rightarrow 1$	- 1 0 0 0 1		1100000011
110	row7	$\longrightarrow \mathrm{I}$	$\left.\rightarrow 1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)$		11 0 0 0 1
$1 \begin{array}{lll}1 & 1 & 1\end{array}$	row8	$\rightarrow 1100001$	$\rightarrow 011$		1.0000010

(ancencele

The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enhancement mode technology.

READ ONLY MEMORY, 256 WORD, 10 BITS PER WORD

P_{0} and metal package bottom are connected.

QUICK REFERENCE DATA					
Read access time	t_{AR}	max.	1	$\mu \mathrm{~s}$	
Clock rate	f_{ϕ}	0.1	to	1	MHz
Power dissipation at $\mathrm{f}_{\phi}=1 \mathrm{MHz}$	P_{av}	typ.	100	mw	
D. C. noise margin	$\mathrm{M}_{\mathrm{H}}, \mathrm{M}_{\mathrm{L}}$	$>$	1.0	V	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55	to	+85	${ }^{\circ} \mathrm{C}$

PACKAGE OUTLINE 24 lead ceramic dual in-line. (See General Section)

GENERAL DESCRIPTION

The FDR126Z is a monolithic 2560 bit read only memory. When ordering an FDR126Z the customer must send a bit pattern matrix (see example on pages 12,14 to 17) with the desired content. For performance evaluation, we can supply specimens of FDR126Z1, which is identical to the FDR126Z but contains a bit pattern of our own. The FDR126Z requires a two phase clock; the outputs remain steady as long as the address remains unchanged.
The memory matrix is programmed with the aid of a mask pattern during manufacture. The only d.c. supply is the output buffer supply, which is variable and can be biased to drive bipolar output loads direct.
The FDR126Z1 is a pre-programmed version of the FDR126Z READ-ONLY memory. It is intended to convert from ASCII to SELECTRIC line code and vice versa.
When 7-bit address of either code is applied to the inputs of the ROM, the corresponding 7 -bits of the other code will appear at the outputs.
The three remaining outputs are used for parity and control code indications. The electrical characteristics of the FDR126Z1 are equal to those of the FDR126Z.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages on all data inputs, clock inputs, outputs and supply terminals, with reference to P_{0}

Power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Junction temperature
Storage temperature
Total current through terminal P_{1}
Output current (per output)

	+0.5 to	-30	V
Ptot	max.	1	W
$\mathrm{~T}_{\mathrm{j}}$	max.	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	-65 to	+150	${ }^{\circ} \mathrm{C}$
$-\mathrm{IP}_{1}$	max.	40	mA
$\pm \mathrm{I}_{\mathrm{Q}}$	\max.	20	mA

THERMAL RESISTANCE

From junction to ambient

$$
R_{\text {th } j-a}=125{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

Note

All terminals are protected against over-voltage caused by static charges.

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=-55$ to $+85^{\circ} \mathrm{C}$

CHARACTERISTICS (continued)

Test conditions: $\mathrm{V}_{\mathrm{P} 1}=-12 \mathrm{~V}$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+85{ }^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded; standard load: 30 pF in parallel with $150 \mathrm{k} \Omega$ to P 0 .

Note 1: No d.c. power is dissipated in the decoder or memory matrix; the quoted power dissipation is a.c. only.
Note 2 : IP_{1} is almost entirely dependent on the external load.

CHARACTERISTICS (continued)

TIMING DIAGRAM

Address and output inhibit timing requirements:
1."Address and output inhibit signals are clocked into the memory during ϕ_{1}, and must remain present throughout ϕ_{1}. Address and output inhibit lead time (${ }^{(} \ell_{A}$) must be ≥ 0, during the shaded interval.
2. The output signals remain steady for as many clock cycles as the address and output inhibit signals remain unchanged.

Note:
The indicated points on the vertical axis are specified in the glossary of terms.

CHARACTERISTICS (continued)

GLOSSARY OF TERMS

1. Clock pulse width: $t_{\phi L}$

The time for which the clock pulse is LOW; $\mathrm{V}_{\phi} \leq-24 \mathrm{~V}$.
2. Clock pulse fall time: $\mathrm{t}_{\phi \mathrm{HL}}$

The time between the 10% and 90% voltage points as the clock pulse goes from HIGH to LOW.
3. Clock pulse rise time: $t_{\phi L H}$

The time between the 90% and 10% voltage points as the clock pulse goes from LOW to HIGH.
4. Clock delay time: $\mathrm{t}_{\phi 1 \phi 2} ; \mathrm{t}_{\phi 2 \phi 1}$

The least allowable time between the end of the ϕ_{1} (or ϕ_{2}) clock pulse and the start of the ϕ_{2} (or ϕ_{1}) clock pulse, defined at -2 V .
5. Fall delay time: $\mathrm{t}_{\mathrm{DHL}}$

After the clock pulse ϕ_{2} reaches LOW, the time that elapses before the output starts to change from HIGH to LOW.
6. Rise delay time: tDLH

After the clock pulse ϕ_{2} reaches LOW, the time that elapses before the output starts to change from LOW to HIGH.
7. Output fall transition time: ${ }^{\text {t THL }}$

The time between the 10% and 90% voltage points as the output goes from HIGH to LOW.
8. Output rise transition time: t TLH

The time between the 90% and 10% voltage points as the output goes from LOW to HIGH.
9. Output inhibit time: t_{CL}

The minimum time that the output inhibit signal must be present during ϕ_{2} in order to inhibit the output, defined at -2 V .
10. Read access time: taR

The time between the 90% point on the leading edge of the clock pulse ϕ_{1} and the time at which the output is present.

OUTPUT BUFFER DESCRIPTION

The only d.c. supply required is $\mathrm{V}_{\mathrm{P}_{1}}$, the push-pull output buffer supply. $\mathrm{V}_{\mathrm{P}_{1}}$ may be varied between 0 and -28 V according to the output voltage swing required. It does not affect the operating speed of the memory.

1. Biasing circuit A is used when driving MOS loads. Normal MOS input signals must drive the address and inhibit inputs.

Biasing circuit A
2. Biasing circuit B is used when driving TTL loads direct from each output buffer. This circuit allows also to drive MOS circuits direct from TTL. For this purpose special TTL gates are available (FJH301, FJH311 and FJH321), with a guaranteed minimum output breakdown voltage of 15 V .

$\mathrm{R} 1=820 \quad \Omega$
$\mathrm{R} 2=820 \quad \Omega$
$\mathrm{R} 3=12 \mathrm{k} \Omega$
All resistors: $\pm 5 \%$
Biasing circuit B

WIRED-OR APPLICATIONS

Use of wired-or output capability:
Applying a LOW signal to the output inhibit leads will cause both of the push pull output transistors associated with each output driver to turn off. Their output impedances are then very high (about $5 \mathrm{M} \Omega$) and they can be wired-or with other ROM output buffers without affecting the output drive capability of any buffer operating in the low impedance mode. This output inhibit wired-or capability makes it possible to use the FDR126Z type ROM in many different applications, such as those shown here. Note that the terminals A_{9} and $\overline{\mathrm{A}_{9}}$ although shown as address inputs, must actually be output inhibit signals synchronous with the address.

PROCEDURE FOR ORDERING A SPECIAL BIT PATTERN

To ensure accuracy when ordering a special bit pattern for a Read Only Memory (ROM) mask, customers should make use of the form on page 12. Four forms are needed for 256 word memories. The completed forms enable us to transfer any desired bit pattern into a standard ROM without error. After receipt of the forms our procedure is as follows:

1. An IBM card is punchedfor each row of each sheet of the form. (If he prefers to do so, the customer may punch his own cards and supply them to us, provided their format is identical with that of the forms).
2. The punched card are incorporated in a computer program that originates the following:

- a duplicate of the ordered bit pattern, for verification.
- a control tape for programming final electrical testing of the customers's ROM.
- a control tape embodying the ordered pattern of ones and zeros to govern the movement of the automatic plotter used in mask making.

3. The computer print-out is checked against the original order forms; a copy is also sent to the customer for his verification and signature.
4. Upon receipts of the customer's signed verification, full scale masks embodying the desired pattern are made and the unique type number suffix is assigned.

INSTRUCTION FOR COMPLETING THE FORMS
A. Customer block: ON EACH FORM

Enter Name, Date and Authorized Signature in the spaces provided.
B. The ADDRESS INPUTS and CONTENTS

Each page of the ROM Bit Pattern Form is laid out for 64 consecutive words; 16 in each of the four columns (00, 01, 10 and 11).

1. ADDRESS INPUTS
a) There are nine Address Inputs; the right-hand bit is always bit 1 and is the least significant bit; the left hand bit is bit 9 , it is the most significant. The Address Input leads on the ROM package are labelled $\mathrm{A}_{1}, \mathrm{~A}_{2}$, etc., to correspond.
b) The states of bits 1 to 4 are listed consecutively down the page. The state of bits 5 and 6 are at the head of each of four output columns. The Address Input of 64 consecutive words are thus uniquely specified on each page.
c) Bits 7,8 and 9 (or bits 7 and 8 only, for 256 word memories) specify sets of memory locations, 1 set of 64 words per page. These spaces should be filled by the customer using a consecutive full binary code. The first position on page 1 of your specification should be three (or two) zeros. ${ }^{1}$) Memories of 256 words need 4 pages, of specifications.
d) Only ones $(1=$ LOW $)$ or zeros ($0=$ HIGH) should be used in completing the form except where, as with 256 word memories, column 9 is unused and is, therefore, left blank.
$\overline{1_{)} \text {See example on page } 12 .}$
2. CONTENTS (DATA OUTPUTS)
a) Each column has provision for words of 10 bits numbered 1 to 10 , bit 1 is always the right -hand bit. The output leads of the ROM package are labelled Q1, Q2, etc., to correspond.
b) The requisite bit pattern should be inserted under headings 1 to 10 using only ones ($1=$ LOW $)$ and zeros ($0=$ HIGH $)$, except wherea column is unused and is, therefore, left blank.
3. AUTHORIZED SIGNATURE

Haying completed the bit pattern, the customer should check that the forms are numbered, dated, and signed, as they constitute formal evidence of his request. In the event that the customer provides his own punched cards the signature on the computer duplicate will serve as formal evidence.
pHlups Electronic Components
Integrated Circuits
CUSTOMER NAME:

Note: $1=$ LOW; $0=\mathrm{HIGH}$

GENERAL DESCRIPTION of FDR126Z1

The FDR126Z1 is a version of the FDR126Z pre-programmed to convert from ASCII to SELECTRIC line code and vice versa.
When any 7-bit address of either code is presented to the input the FDR126Z1 will deliver the corresponding word at its output.
The direction of conversion is selected with the eighth address input.
The correspondence between code bits and inputs and outputs is shown in the table below.

address input	ASCII bit	SELECTRIC bit	output
A_{1}	$\mathrm{~b}_{1}$	1	Q_{1}
$\mathrm{~A}_{2}$	$\mathrm{~b}_{2}$	2	Q_{2}
$\mathrm{~A}_{3}$	$\mathrm{~b}_{3}$	4	Q_{3}
$\mathrm{~A}_{4}$	$\mathrm{~b}_{4}$	8	Q_{4}
$\mathrm{~A}_{5}$	$\mathrm{~b}_{5}$	A	Q_{5}
$\mathrm{~A}_{6}$	$\mathrm{~b}_{6}$	B	Q_{6}
$\mathrm{~A}_{7}$	$\mathrm{~b}_{7}$	S	Q_{7}

$\mathrm{A}_{8}=$ LOW: conversion from SELECTRIC line code to ASCII.
A8 $=$ HIGH: conversion from ASCII to SELECTRIC line code.
Output Q_{8} adds an odd parity bit to the 7-bit output code on Q_{1} to Q_{7} (see note).
Output Q_{9} LOW indicates odd parity at the input.
Comparison of the Q_{9} output with the parity bit added to the input word indicates whether or not the input code is correct.

If Q_{10} is LOW, the word on outputs Q_{1} to Q_{7} is a line control code.

Note:
$\overline{1=}$ LOW; $0=\mathrm{HIGH}$

FD family
ASCII CODE

[^67]
SELECTRIC LINE ÇODE TO ASCII CODE CORRESPONDENCE

SELECTRIC LINE CODE TO ASCII CODE CORRESPONDENCE (continued)

The FD family is a series of complex monolithic integrated circuits utilizing MOS P-channel enchancement mode technology.

READ ONLY MEMORY, 512 WORD, 8 BITS PER WORD

P_{0} and metal lid on bottom of the package are connected

QUICK REFERENCE DATA					
Read access time	t_{AR}	\max.	1.5	$\mu \mathrm{~s}$	
Clock rate	f_{ϕ}	\max.	0.66	MHz	
Power dissipation (MOS load)	$\mathrm{P}_{\text {tot }}$	typ.	100	mW	
D. C. noise margin	$\mathrm{M}_{\mathrm{H}}, \mathrm{M}_{\mathrm{L}}$	$>$	1.0	V	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0	to	70	
${ }^{\circ} \mathrm{C}$					

PACKAGE OUTLINE 24 lead ceramic dual in-line. (See page 18)

GENERAL DESCRIPTION

The FDR131Z is a monolithic 4096-bit READ-only memory (ROM) with a capacity of 512 words, 8 bits per word. With two output-inhibit control lines C_{1} and C_{2} it can also operate as a 1024 -word, 4 bits per word memory. The memory matrix is given the desired content by means of a special mask. When ordering, customers have to complete a set of forms specifying the bit pattern to be associated with each address. The output-inhibit control make it possible to use several FDR131Z memories in wired-OR configuration.
The only d.c. supply is the output buffer supply (P_{1}), which may be adapted to inter face direct with either MOS or bipolar DTL/TTL. All terminals of the FD circuits are effectively protected against over voltage caused by static charge.
A pre-programmed specimen of the FDR131Z is the FDR131Z1 given on page 14.

RATINGS Limiting values inaccordance with the Absolute Maximum System (IEC 134)
Voltages on all data inputs, clock inputs, outputs and supply terminals, with reference to P_{0}
Power dissipation up to $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
Junction temperature
Storage temperature
Total current through terminal P_{1}
Output current (per output)

	+0.5	to	-30
	V		
$\mathrm{P}_{\text {tot }}$	max.	1	W
$\mathrm{~T}_{\mathrm{j}}$	max.	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-65	to	+150

THERMAL RESISTANCE

From junction to ambient

$$
R_{\text {th } j-\mathrm{a}}=125{ }^{\circ} \mathrm{C} / \mathrm{W}
$$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=0$ to $+70^{\circ} \mathrm{C}$

Note:
At frequencies higher than 191 kHz the maximum clock pulse rise and fall times will be determined by the minimum ϕ_{1} and ϕ_{2} pulse width.

CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{P} 1}=-12 \mathrm{~V}$ to $-14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{P}_{0}=$ grounded; standard load: 30 pF in parallel with $150 \mathrm{k} \Omega$ to P_{0}.

Note 1: Assuming the fall time of ϕ_{1} and rise time of ϕ_{2} is less than 40 ns .
Note 2: No d.c. power is dissipated in the decoder or memory matrix; the quoted power dissipation is a.c. only.
Note 3: I_{1} is almost entirely dependent on the external load.

CHARACTERISTICS (continued)

TIMING DIAGRAM

Address and output inhibit requirements:

1. Address and output inhibit signals are clocked into the memory during ϕ_{1}, and must remain present during the shaded interval. Address lead time (t_{ℓ} A) must be $=0$.
2. The output signals remain steady when the address and output inhibit signals remain unchanged.

Note:

The indicated points on the vertical axis are specified in the glossary of terms.

CHARACTERISTICS (continued)

GLOSSARY OF TERMS

1. Clock pulse width: $\mathrm{t} \phi \mathrm{L}$

The time for which the clock pulse is LOW; $\mathrm{V}_{\phi} \leq-24 \mathrm{~V}$
2. Clock pulse fall time: $\mathrm{t}_{\mathrm{\phi}} \mathrm{HL}$

The time between the 10% and 90% voltage points as the clock pulse goes from HIGH to LOW.
3. Clock pulse rise time: $t_{\phi L H}$

The time bstween the 90% and 10% voltage points as the clock pulse goes from LOW to HIGH.
4. Clock delay time: $t_{\phi 1 \phi 2} ; t_{\phi} 2 \phi 1$

The least allowable time between the end of the ϕ_{1} (or ϕ_{2}) clock pulse and the start of the ϕ_{2} (or ϕ_{1}) clock pulse, defined at -2 V .
5. Fall delay time: tDHL

After the clock pulse ϕ_{2} reaches LOW, the time that elapses before the output start to change from HIGH to LOW.
6. Rise delay time: tDLH

After the clock pulse ϕ_{2} reaches LOW, the time that elapses before the output starts to change from LOW to HIGH.
7. Output fall transition time: tTHL

The time between the 10% and 90% voltage points as the output goes from HIGH to LOW.
8. Output rise transition time: $\mathrm{t}_{\mathrm{TLH}}$

The time between the 90% and 10% voltage points as the output goes from LOW to HIGH.
9. Read acces time: tAR

The time between the 90% point on the leading edge of the clock pulse ϕ_{1} and the time at which the output is present, defined at 90%.

OUTPUT BUFFER DESCRIPTION

The only d.c. supply required is VP_{1}, the push-pull output buffer supply. VP_{1} may be varied between 0 and -28 V according to the output voltage swing required. It does not affect the operating speed of the memory.

1. Biasing circuit A is used when driving MOS loads. Normal MOS input signals must drive the address and inhibit inputs.

Biasing circuit A

OUTPUT BUFFER DESCRIPTION (continued)

2. Biasing circuit B is used to interface direct with TTL on both the inputs and outputs of the READ-only memory. No active interface components are required. The TTL circuits on the inputs of the ROM must be able to sustain at least +12 V at their outputs.
The quadruple NAND gate FJH301 and the sextuple inverter FJH321 are especially manufactured with a guaranteed breakdown voltage of 15 V for this purpose.

WIRED-OR APPLICATIONS

Use of wired-or output capability:
Applying a LOW signal to the output inhibit leads will cause both of the push pull output transistors associated with each output driver to turn off. Their output impedances are then very high (about $5 \mathrm{M} \Omega$) and they can be wired-or with other ROM output buffers without affecting the output drive capability of any buffer operating in the low impedance mode. C_{1} controls output buffers 1 to 4 , and C_{2} controls output buffers 5 to 8 . This output inhibit wired-or capability makes it possible to use the FDR131Z type ROM in many different applications, such as those shown here.

1024 words
4 -bits per word

1024 words
8 -bits per word

PROCEDURE FOR ORDERING A SPECIAL BIT PATTERN

To ensure accuracy when ordering a special bit pattern for a Read Only Memory (ROM) mask, customers should make use of the form on page 13. Eight forms are needed for 512 word memories. The completed forms enable us to transfer any desired bit pattern into a standard ROM without error. After receipt of the forms our procedure is as follows:

1. An IBM card is punched for each row of each sheet of the form. (If he prefers to do so, the customer may punch his own cards and supply them to us, provided their format is identical with that of the forms).
2. The punched cards are incorporated in a computer program that originates the following:

- a duplicate of the ordered bit pattern, for verification.
- a control tape for programming final electrical testing of the customer's ROM.
- a control tape embodying the ordered pattern of ones and zeros to govern the movement of the automatic plotter used in mask making.

3. The computer print-out is checked against the original order forms; a copy is also sent to the customer for his verification and signature.
4. Upon receipts of the customer's signed verification, full scale masks embodying the desired pattern are made and the unique type number suffix is assigned.

INSTRUCTION FOR COMPLETING THE FO RMS
A. Customer block: ON EACH FORM

Enter Name, Date and Authorized Signature in the spaces provided.
B. The ADDRESS INPUTS and CONTENTS

Each page of the ROM Bit Pattern Form is laid-out for 64 consecutive words; 16 in each of the four columns ($00,01,10$ and 11).

1. ADDRESS INPUTS
a) There are nine Address Inputs; the right hand bit is always bit 1 and is the least significant bit; the left-hand bit is 9, it is the most significant. The Address Input leads on the ROM package are labelled $\mathrm{A}_{1}, \mathrm{~A}_{2}$, etc., to correspond.
b) The states of bits 1 to 4 are listed consecutively down the page. The state of bits 5 and 6 are at the head of each of four output columns. The Address Input of 64 consecutive words are thus uniquely specified on each page.
c) Bit 7,8 , and 9 (or bits 7 and 8 only, for 256 word memories) specify sets of memory locations, 1 set of 64 words per page. These spaces should be filled by the customer using a consecutive full binary code. The first position on page 1 of your specification should be three (or two) zeros. 1) Memories of 256 words need 4 pages, of specifications.
d) Only ones ($1=$ LOW) or zeros ($0=\mathrm{HIGH}$) should be used in completing the form except where, a column is unused and is, therefore, left blank.

[^68]2. CONTENTS (DATA OUTPUTS)
a) Each column has provision for words of 10 bits numbered 1 to 10 , bit 1 is always the right-hand bit. The output leads of the ROM package are labelled $\mathrm{Q}_{1}, \mathrm{Q}_{2}$, etc., to correspond.
b) The requisite bit pattern should be inserted under headings 1 to 10 using only ones $(1=$ LOW $)$ and zeros $(0=\mathrm{HIGH})$, except where a column is unused and is, therefore, left blank.
3. AUTHORIZED SIGNATURE
\bar{H} aving completed the bit pattern, the customer should check that the forms are numbered, dated, and signed, as they constitute formal evidence of his request. In the event that the customer provides his own punched cards the signature on the computer duplicate will serve as formal evidence.
FDR 131... " mo "
 Read Only Memory Bit Pattern

and Materials

Note: $1=$ LOW; $0=\mathrm{HIGH}$

GENERAL DESCRIPTION of FDR131Z 1

The FDR $131 Z 1$ is a version of the FDR131Z pre-programmed to convert from ASCII to EBCDIC and vice versa.
When the standard 7-bit ASCII code plus parity is presented to address inputs A_{1} to A8, the FDR131Z1 will deliver the corresponding 8-bit EBCDIC code at its outputs when the A9 input is HIGH. Conversely, when the standard 8-bit EBCDIC code is presented to inputs A_{1} to A_{8}, the corresponding ASCII code plus parity will be delivered at the outputs when A_{9} is LOW. The code conversion circuits from ASCII to EBCDIC are provided in duplicate to accomodate either odd or even parity. The correspondence between code bits and inputs and outputs is shown in the tables below and on the following pages.

Conversion from ASCII to EBCDIC

ASCII -bits	ROM inputs 1)	ROM outputs	EBCDIC -bit s
b $_{1}$ (least significant bit)	A $_{1}$	Q $_{1}$	7 (least significant bit)
b2 $_{2}$	$\mathrm{~A}_{2}$	Q_{2}	6
b3 $_{3}$	$\mathrm{~A}_{3}$	Q_{3}	5
$\mathrm{~b}_{4}$	$\mathrm{~A}_{4}$	Q_{4}	4
b5	A_{5}	Q_{5}	3
b6 (most significant bit)	A_{6}	Q_{6}	2
b7 (odd or even paratity)	A_{7}	Q_{7}	1
b8 (most significant bit)			

Correspondence of $\operatorname{ASCII}(\mathrm{A})$ to $\mathrm{EBCDIC}(\mathrm{E})$ code
To find the 7 -bit ASCII code for a particular symbol, (see table on page 15) write down the binary coded decimal number belonging to that symbol; e.g., the number belonging to the letter g is 103 , which means that the corresponding binary digits for bits b_{7} to b_{1} of the ASCII code are 1100111 .

[^69]Correspondence of ASCII(A) to EBCDIC(E) code (continued)

	0-15		16-31		32-47		48-63		64-79		80-95		96-111		112-127	
	A	E	A	E	A	E	A	E	A	E	A	E	A	E	A	E
0	NUL	NUL	DLE	DLE	SP	SP	0	0	(a)	(P	P	1	1	p	p
1	SOH	SOH	DC1	DC1	!	!	1	1	A	A	Q	Q	a	a	q	q
2	STX	STX	DC2	DC2	"	"	2	2	B	B	R	R	b	b	r	r
3	ETX	ETX	DC3	DC3	\#	\#	3	3	C	C	S	S	c	c	s	S
4	EOT	EOT	DC4	DC4	\$	\$	4	4	D	D	T	T	d	d	t	t
5	ENQ	ENQ	NAK	NAK	\%	\%	5	5	E	E	U	U	e	e	u	u
6	ACK	ACK	SYN	SYN	\&	\&	6	6	F	F	V	V	f	f	v	v
7	BEL	BEL	ETB	EOB	$\%$		7	7	G	G	W	W	g	g	w	w
8	BS	BS	CAN	CAN	((8	8	H	H	X	X	h	h	x	x
9	HT	HT	EM	EM))	9	9	I	I	Y	Y	i	i	y	y
10	LF	LF	SUB	SUB	*	*	:	:	J	J	Z	Z	j	j	z	Z
11	VT	VT	ESC	PRE	+	+	;	;	K	K	[(k	k	\{	(
12	FF	FF	FS	IFS	,		<	$<$	L	L	\}	/	1	1	:	
13	CR	CR	GS	IGS	-	-	$=$	=	M	M])	m	m])
14	SO	SO	RS	IRS				$>$	N	N		\square	n	n		\$
15	SI	SI	US	IUS	/	1	?	.	0	0	-	-	0	0	DE	DEL

Explanation of symbols

NUL = null	DLE = data link escape
SOH $=$ start of heading	DC1 to DC4 = device control
STX $=$ start of text	NAK $=$ negative acknowledge
ETX $=$ end of text	SYN $=$ synchronous idle
EOT $=$ end of transmission	ETB $=$ end of transmission block
ENQ $=$ enquiry	CAN $=$ cancel
ACK = acknowledge	EM $=$ end of medium
BEL $=$ bell	SUB $=$ substitute
BS $=$ backspace	ESC $=$ escape
HT $=$ horizontal tab	FS $=$ file separator
FF $=$ form-feed	GS $=$ group separator
CR $=$ carriage return	RS $=$ record separator
SO $=$ shift out	US $=$ unit separator
SI $=$ shift in	DEI $=$ delete (rub out)

The ASCII to EBCDIC characters for which there was no correspondence have been converterd as follows:

128-ASCII	256-EBCDIC	128-ASCII	256-EBCDIC
[(1	(1)
1	/	,	(
])	\})
\bigcirc	\square	\sim	\$

[^70]
Conversion from EBCDIC to ASCII

When the standard 8 -bit EBCDIC code is presented to inputs A_{1} to A_{8}, the corresponding ASCII code plus parity will be delivered at the outputs when A9 is LOW.

EBCDIC -bits	ROM -inputs ${ }^{1}$;	ROM -outputs	ASCII-bits
7 (least significant bit)	A_{1}	Q_{1}	$\mathrm{~b}_{1}$ (least significant bit)
6	$\mathrm{~A}_{2}$	Q_{2}	$\mathrm{~b}_{2}$
5	$\mathrm{~A}_{3}$	Q_{3}	$\mathrm{~b}_{3}$
4	$\mathrm{~A}_{4}$	Q_{4}	$\mathrm{~b}_{4}$
3	$\mathrm{~A}_{5}$	Q_{5}	$\mathrm{~b}_{5}$
2	$\mathrm{~A}_{6}$	Q_{6}	$\mathrm{~b}_{6}$
1	$\mathrm{~A}_{7}$	Q_{7}	$\mathrm{~b}_{7}$ (most significant bit)
0 (most significant bit)	A_{8}	Q_{8}	$\mathrm{~b}_{8}$ (even parity)

Correspondence of EBCDIC to ASC II code

	0-15		16-31		32-47		48-63		64-79		80-95		96-111		112-127	
	E	A	E	A	E	A	E	A	E	A	E	A	E	A	E	A
0	NUL	NUL	DLE	DLE	DS	-	-			SP	\&	\&	-	-	-	-
1	SOH	SOH	DC1	DC1	SOS	-	-	-	-		-		1	,	-	-
2	STX	STX	DC2	DC2	FS	-	SYN	SYN	-	-	-	-	-	-	-	-
3	ETX	ETX	DC3	DC3	-	-	-	-	-	-	-	-	-	-	-	-
4	PF	-	RES	-	BYP	-	PN	-	-	-	-	-	-	-	-	-
5	HT	HT	NL	-	LF	LF	RS	-	-	-	-	-	-	-	-	-
6	LC	-	BS	BS	EOB	ETB	VC	-	-	-	-	-	-	-	-	-
7	DEL	DEL	IL	-	PRE	ESC	EOT	EOT	-	-	-	-	-	-	-	-
8	-	-	CAN	CAN	-	-	-	-	-	-	-	-	-	-	-	-
9	-	-	EM	EM	-	-	-	-	-	-	-	-	-	-	-	-
10	SMM	-	CC	-	SM	-	-	-	\$	-	!	!	-	-	:	:
11	VT	VT	-	-	-	-	-	-	-		\$	\$,		\#	\#
12	FF	FF	IFS	FS	-	-	DC4	DC4		$<$		*	\%	\%	(a)	@
13	CR	CR	IGS	GS	ENQ	ENQ	NAK	NAK	()		-	,	\bigcirc
14	SO	SO	IRS	RS	ACK	ACK	-	-				;		$>$	$=$	$=$
15	SI	SI	IUS	US	BEL	BEL	SUB	SUB			\neg	-	?	?	"	"

[^71]
Correspondence of EBCDIC to ASCII code (continued)

To find the 8-bit EBCDIC code for a particular symbol (see table below and on page 16), write down the decimal number belonging to that symbol; e.g., the number belonging to the letter g is 135 , which means the corresponding number for the bit positions 0 to 7 of the EBCDIC code is 10000111 .

128-143	144-159		160-175		176-191		192-207		208-223		224-239		240-255	
E A	E	A	E	A	E	A	E	A	E	A	E	A	E	A
- -	-	-	-	-	-	-	-	-	-	-	-	-	0	0
a a	j	j	-	-	-	-	A	A	J	J	-	-	1	1
b b	k	k	s	S	-	-	B	B	K	K	S	S	2	2
c c	1	1	t	t	-	-	C	C	L	L	T	T	3	3
d d	m	m	u	u	-	-	D	D	M	M	U	U	4	4
e e	n	n	v	v	-	-	E	E	N	N	V	V	5	5
f f	0	\bigcirc	w	W	-	-	F	F	0	0	W	W	6	6
$\mathrm{g} \quad \mathrm{g}$	p	p	x	x	-	-	G	G	P	P	X	X	7	7
h h	q	q	y	y	-	-	H	H	Q	Q	Y	Y	8	8
i i	r	r	z	z	-	-	I	I	R	R	Z	Z	9	9
- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-
- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-
- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-
- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-		-				-		-		-	-	

PACKAGE OUTLINE 24 lead metal-ceramic dual in-line

Notes

1. Leads on opposite sides are designed to fit in holes 15.24 mm apart.
2. Pin 1 is marked by a notch and connected to the metal lid on the bottom of the package.

Linear integrated circuits

INTEGRATED CIRCUIT AMPLIFIER FOR IN THE EAR HEARING AID

Monolithic semiconductor integrated-circuit amplifier in a plastic envelope, primarily intended for in the ear hearing aids.

QUICK REFERENCE DATA				
For meaning of symbols: see page 3 fig. 1 .				
Supply voltage	V_{1-3}	max.	5	V
Output current	I_{2}	max.	5	mA
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	25	mW
In a practical circuit as given on page 3 fig. 1 :				
Total supply current	$\mathrm{I}_{\text {tot }}$	typ.	1	mA
Transducer gain	$\mathrm{G}_{\text {tr }}$	$>$ typ.	$\begin{aligned} & 75 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Power output at $\mathrm{d}_{\text {tot }}=10 \%$	P_{0}	>	0.2	mW
Cut-off frequency (-3 dB)	f_{C}	>	20	kHz

PACKAGE OUTLINE
Dimensions in mm

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

RATINGS (Limiting values) ${ }^{1}$)
(for meaning of symbols see page 3 , fig.1)
Voltages

Supply voltage	V_{1-3}	\max.	5	V
Output voltage	$\mathrm{V}_{2}-3$	\max.	5	$\left.\mathrm{~V}^{2}\right)$
Input voltage	$-\mathrm{V}_{4}-3$	\max.	5	V

Currents

Output current	I_{2}	\max.	5	mA
Input current	I_{4}	\max.	5	mA

Power dissipation

Total power dissipation (See page 6) $\quad \mathrm{P}_{\text {tot }} \quad \max .25 \mathrm{~mW}$

Temperatures

Storage temperature $\quad \mathrm{T}_{\text {stg }} \quad-20$ to $+80{ }^{\circ} \mathrm{C}$

Ambient temperature
CHARACTERISTICS at $\mathrm{V}_{1-3}=1.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified I_{2} see figure 1

Supply current (no signal)	$\mathrm{I}_{\text {tot }}$	$<$	1.2	mA
	I_{1}	typ.	0.34	mA
$\underline{\text { Transducer gain }}{ }^{3}$) at $\mathrm{f}=1 \mathrm{kHz}$	$\mathrm{G}_{\text {tr }}$	$>$ typ.	75 80	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{V}_{1-3}=1.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-10^{\circ} \mathrm{C}$	$\mathrm{G}_{\text {tr }}$	typ.	78	dB
$\mathrm{V}_{1-3}=1.1 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{G}_{\text {tr }}$	typ.	76	dB

[^72]CHARACTERISTICS (continued)
at $\mathrm{V}_{1-3}=1.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified I_{2} see figure 1
Total distortion at $\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{P}_{\mathrm{O}}=100 \mu \mathrm{~W}$
$\mathrm{P}_{\mathrm{O}}=200 \mu \mathrm{~W}$

| | $d_{\text {tot }}$ | $\left.\begin{array}{ccc}\text { typ. } \\ < & 4 & \% \\ & 6 & \% \\ \mathrm{~d}_{\text {tot }} & < & 10\end{array}\right) \%$ |
| :--- | :--- | :--- | :--- |

Noise figure at $\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega$
Bandwidth $\mathrm{f}=400$ to 3200 Hz
Cut-off frequency (-3 dB)

Value of R_{F} to adjust I_{2} at 0.7 mA

F	$<$	6	dB
f_{C}	$>$	20	kHz
	$>$	50	$\mathrm{k} \Omega$
R_{F}	typ.	300	$\mathrm{k} \Omega$
	$<$	700	$\mathrm{k} \Omega$

$I_{2}=0.7 \mathrm{~mA}$, adjusted by means of R_{F}.
$\mathrm{V}_{1-3}=1.3 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 1

SOLDERING RECOMMENDATION

A: Iron soldering

At a maximum iron temperature of $300^{\circ} \mathrm{C}$ the maximum permissible soldering time is 3 seconds, provided the soldering spot is at least 0.5 mm from the seal and the leads are not soldered at the same time. Soldering in immediate subsequence is allowed.

B: Dip soldering
At a maximum solder temperature of $250{ }^{\circ} \mathrm{C}$ the maximum permissible soldering time is 3 seconds, provided the soldering spot is at least 0.5 mm from the seal.

TAA263

LOW-LEVEL AMPLIFIER

The TAA263 is a semiconductor integrated amplifier in a 4-lead TO-72 metal envelope. It comprises a three-stage, direct coupled low-level amplifier for use from d.c. up to frequencies of 600 kHz .

QUICK REFERENCE DATA					
Supply voltage	V_{B}	\max.	8	V	
Output voltage	V_{3-4}	\max.	7	V	
Output current	I_{3}	\max.	25	mA	
Transducer gain at $\mathrm{P}_{\mathrm{O}}=10 \mathrm{~mW}$					
$\mathrm{R}_{\mathrm{L}}=150 \Omega ; \mathrm{f}=1 \mathrm{kHz}$	G_{tr}	typ.	77	dB	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to +100	${ }^{\circ} \mathrm{C}$		

PACKAGE OUTLINE

Dimensions in mm
TO-72

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Supply voltage
Output voltage
Input voltage

V_{B}	max.	8	V
V_{3-4}	max.	7	V
$-V_{1-4}$	max.	5	V

Currents
Output current
Input current
Power dissipation
Total power dissipation up to $\mathrm{T}_{\text {amb }}=65^{\circ} \mathrm{C}$
Ptot max. $\quad 70 \mathrm{~mW}$

Temperatures
Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-65 to +100	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-20 to +100	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$$
\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}
$$

Test circuit:

Currents

Output current

Total current drain (no signal)
Over-all small signal current gain

$$
\mathrm{f}=1 \mathrm{kHz}
$$

Transducer gain
$\mathrm{f}=1 \mathrm{kHz} ; \mathrm{P}_{\mathrm{O}}=10 \mathrm{~mW}$
$h_{f \text { tot }}$ typ. 5.10 ${ }^{5}$

Output power at $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{d}_{\text {tot }}=10 \%$

$$
d_{\text {tot }}=5 \%
$$

I_{3}	typ.	12	mA
$\mathrm{I}_{2}+\mathrm{I}_{3}$	$<$	16	mA

CHARACTERISTICS (continued)

$$
\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}
$$

y parameters (point 4 common connection)
$\mathrm{V}_{\mathrm{B}}=6 \mathrm{~V} ; \mathrm{I}_{3}=3 \mathrm{~mA} ; \mathrm{V}_{3-4}=4.2 \mathrm{~V}$
$\mathrm{f}=1 \mathrm{kHz}$
Input admittance
Transfer admittance
Output admittance
$\mathrm{f}=450 \mathrm{kHz}$
Input conductance
Input capacitance
Transfer admittance
Phase angle of transfer admittance
Output conductance
Output capacitance

$$
\begin{array}{llll}
y_{i}=g_{i} & \text { typ. } & 20 & \mu \Omega^{-1} \\
y_{f}=g_{f} & \text { typ. } & 11 & \Omega^{-1} \\
y_{o}=g_{0} & \text { typ. } & 60 & \mu \Omega^{-1}
\end{array}
$$

GENERAL PURPOSE AMPLIFIER

The TAA293 is a general purpose integrated amplifier which can be applied in various audio and i.f. applications. It configuration furthermore allows the use of the TAA293 in multivibrators, pulse amplifiers, trigger circuits, etc.

QUICK REFERENCE DATA				
Supply voltage	V_{7-4}	nom. +6.0	V	
Small signal current gain of first transistor				
$\mathrm{I}_{8}=1 \mathrm{~mA} ; \mathrm{V}_{8-1}=1 \mathrm{~V}$	$\mathrm{~h}_{\mathrm{fe}}$	typ.	80	
Transducer gain	G_{tr}	typ.	80	
dB				
Noise figure (30 to 15000 Hz$)$	F	typ.	6	
Frequency response $(-3 \mathrm{~dB})$		typ.	600	
FrHz				
Output power	P_{O}	$>$	10	

PACKAGE OUTLINE

Dimensions in mm
TO-74; reduced height

CIRCUIT DIAGRAM

Note:

The diodes drawn with dotted lines are the parasitic diodes formed by the P-N junction of the resistor-diffusions in the N -isle and of the N -isle to the P -substrate respectively. Taking account of the parasitic diodes one can prevent any unwanted effects due to their becoming conducting under certain conditions of d.c. potentials or signal voltages.

RATINGS Limiting values in Accordance with the Absolute Maximum System (IEC134)
Voltages

V_{9-1}	\max.	7.0	V
$\mathrm{~V}_{8-1}$	\max.	7.0	V
$\mathrm{~V}_{8-10}$	\max.	7.0	V
$\mathrm{~V}_{9-3}$	\max.	7.0	V
$\mathrm{~V}_{9-4}$	\max.	7.0	V
$\mathrm{~V}_{8-4}$	\max.	7.0	V
$\mathrm{~V}_{7-4}$	\max.	7.0	$\left.\mathrm{~V}^{1}\right)$
V_{6-4}	\max.	7.0	V
$\mathrm{~V}_{5-4}$	\max.	7.0	V
$\mathrm{~V}_{1-10}$	\max.	6.0	V
$\mathrm{~V}_{3-2}$	\max.	6.0	V

Currents

I_{5}	\max.	40	mA
$-\mathrm{I}_{4}$	\max.	40	mA
$-\mathrm{I}_{1}$	\max.	20	mA
I_{8}	\max.	20	mA
$-\mathrm{I}_{3}$	\max.	10	mA
I_{10}	\max.	10	mA
I_{2}	\max.	10	mA

$\longrightarrow \overline{1^{1} \text { Pin } 7 \text { must be at the highest potential to avoid unwanted influence of the parasite }}$ diodes.

RATINGS (continued)
Total power dissipation

Temperatures

Storage temperature
Ambient temperature

$$
\begin{aligned}
& \mathrm{T}_{\text {stg }} \\
& \mathrm{T}_{\mathrm{amb}}
\end{aligned}
$$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{7-4}=6 \mathrm{~V}$
Collector current
of the last transistor
I_{5} typ.
12 mA

Small signal current gain
of first transistor
$\mathrm{I}_{8}=1 \mathrm{~mA} ; \mathrm{V}_{8-1}=1 \mathrm{~V}$
$h_{\text {fe }}$
$>\quad 30$
typ. 80
Saturation voltages

$$
\begin{array}{lllll}
V_{7-1} & =6 \mathrm{~V} ; \mathrm{R}_{9-10}=35 \mathrm{k} \Omega & \mathrm{~V}_{8-1} \text { sat } & \text { typ. } & 100 \mathrm{mV} \\
\mathrm{~V}_{7-4}=6 \mathrm{~V} ; \mathrm{R}_{4}=2 \mathrm{k} \Omega ; \mathrm{V}_{2-3}=0 & \mathrm{~V}_{5-4} \text { sat } & \text { typ. } & 600 \mathrm{mV}
\end{array}
$$

Noise figure of first transistor
$\mathrm{I}_{1}=100 \mu \mathrm{~A} ; \mathrm{R}_{\mathrm{S}}=2 \mathrm{k} \Omega ; \mathrm{V}_{8-1}=6 \mathrm{~V}$
B $=30 \mathrm{~Hz}$ to 15000 Hz

typ.	6	dB
$<$	10	dB

Transducer gain at $\mathrm{f}=1 \mathrm{kHz}$

$P_{0}=10 \mathrm{~mW}$			
Output power at $\mathrm{d}_{\text {tot }}=10 \%$	G_{tr}		$>$
typ.	70 dB		
80 dB			

Test circuit for measuring the transducer gain and the output power

INTEGRATED I WATT AUDIO AMPLIFIER

A complete a.f. amplifier in monolithic integrated form incorporating special measures to prevent cross-over distortion throughout an exceptionally wide usable range of supply voltage (4.5 V to 10 V . This, in combination with its low drain current, makes the TAA300 ideally suited for use in battery operated equipment. Due to the high a.c. feedback $(\approx 20 \mathrm{~dB}$) the distortion and spread in gain is very low.

	QUICK REFERENCE DATA			
Supply voltage	V_{B}	nom.	9	V
Output power	P_{O}	typ.	1	W
Input signal for $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$	$\mathrm{~V}_{\mathrm{i}}$	typ.	8.5	mV
Input impedance	$\left\|\mathrm{Z}_{\mathrm{i}}\right\|$	typ.	15	$\mathrm{k} \Omega$
Load impedance	R_{L}		8	Ω
Total current (no signal)	$\mathrm{I}_{\text {tot }}$	typ.	8	mA

PACKAGE OUTLINE

Dimensions in mm
TO-74; reduced height

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134) Voltages (see test set-up on page 4)

V_{4-1}	max.	10.5	V
$\mathrm{~V}_{7-8}$	max.	6	V
$\mathrm{~V}_{8-7}$	max.	6	V
$\mathrm{~V}_{2-9}$	max.	6	V
$\mathrm{~V}_{2-1}$	max.	10.5	V
$\mathrm{~V}_{4-2}$	\max.	10.5	V

Currents (see test set-up on page 4)

Total power dissipation
Temperatures
Storage temperature
Operating ambient temperature

$-I_{1}$	max. 600 mA
$\pm \mathrm{I}_{2}$	max. 600 mA
$+\mathrm{I}_{4}$	max. 600 mA
$\mathrm{P}_{\text {tot }}$	see next page
$\mathrm{T}_{\text {stg }}$	-55 to +150
$\mathrm{~T}_{\text {amb }}$	-55 to +150
${ }^{\circ} \mathrm{C}$	

RATINGS (continued)

Maximum allowable total power dissipation versus ambient temperature

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{B}}=9 \mathrm{~V}$

Measured in the test set-up on page 4

Output power at $\mathrm{d}_{\text {tot }}=10 \%$
Bandwidth (-3 dB)
Total current (d.c.)
no signal and excluding output transistors:
with signal at $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$:

Total distortion at $\mathrm{P}_{0}=0.5 \mathrm{~W}$
Input signal at $P_{0}=1 \mathrm{~W}$

$$
P_{0}=0.5 \mathrm{~W}
$$

Input impedance

Efficioncy

Signal to noise ratio related to $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$
$R_{\mathrm{S}}=2 \mathrm{k} \Omega ; \mathrm{B}=30 \mathrm{~Hz}$ to 15 kHz
Noise output power
input short circuited; $\mathrm{B}=30 \mathrm{~Hz}$ to 15 kHz
$\underline{\text { Preset resistor for } I_{\text {tot }}=8 \mathrm{~mA}}$

P_{O}	typ.	1	W
B	>	10	kHz
	typ.	25	kHz
$\mathrm{I}_{\text {tot }}$	typ.	4	mA
$\mathrm{I}_{\text {tot }}$	typ.	180	mA
$\mathrm{d}_{\text {tot }}$	typ.	0.7	\%
	<	3	\%
V_{i}	typ.	8.5	mV
V_{i}	<	8.5	mV
$\left\|z_{i}\right\|$	>	10	$k \Omega$
	typ.	15	$k \Omega$
η	typ.	60	\%
S	>	70	dB
N	typ.	75	dB
P_{N}	typ.	10	nW
		20	nW
R_{pr}		- 25	$k \Omega$

TEST SET-UP

To prevent high-frequency instability, the following precautions must be taken.
a. Keep the lead inductance from the positive voltage supply to pin 4 to a minimum .
b. Because of the high internal resistance of batteries (especially at end of life) a large capacitance should be connected between pin 4 and ground.
C. Acapacitor of at least 47 nF should be connected between pin 2 and ground to prevent instability of the lower Darlington output transistor (see also test set-up).
d. Avoid coupling between output and input leads (especially those carrying signals from a high-impedance source). This coupling can be reduced by using short leads, shielded input cable or by limiting the upper frequency to 15 kHz by means of a capacitor of 560 pF between pin 7 and ground.

7209715

A.F. PREAMPLIFIER

The TAA310 is a monolithic integrated circuit designed for use as an a.f. high-gain preamplifier, with a very low noise figure ($<4 \mathrm{~dB}$) and a high voltage gain of at least 90 dB . Because this gain can be achieved at a low load impedance ($1 \mathrm{k} \Omega$) and the input impedance is high, the TAA310 is specially suited for the recording and playback amplifier in tape recorders.

QUICK REFERENCE DATA				
Supply voltage	V_{B}	nom.	+7	V
Voltage gain	G_{V}	typ.	100	dB
Noise figure ($B=30$ to 15.000 Hz)	F	typ.	2.5	dB
Input impedance	z_{i}	typ.	20	$k \Omega$

PACKAGE OUTLINE

Dimensions in mm
TO-74; reduced height

Pins 1 and 6 are not connected

TAA310

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages

V_{5-2}	\max.	9.5	V
$\mathrm{~V}_{3-2}$	\max.	9.5	V
$\mathrm{~V}_{10}-8$	\max.	6	V
$\mathrm{~V}_{8}-7$	\max.	6	V
$\mathrm{~V}_{9}-10$	\max.	6	V
$\mathrm{~V}_{4-2}$	\max.	6	V

The pins 3, 4, 5 and 10 must never have a negative potential with respect to pin 2 (substrate).

Currents

I_{3}	\max.	20	mA
I_{7}	\max.	3	mA
$-\mathrm{I}_{8}$	\max.	10	mA
$-\mathrm{I}_{9}$	\max.	10	mA
I_{10}	\max.	10	mA
I_{4}	\max.	3	mA

Total power dissipation

Temperatures

Storage temperature
Operating ambient temperature

Tstg $\quad-20$ to $+125{ }^{\circ} \mathrm{C}$
Tamb $\quad-20$ to $+75 .{ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

D.C. current gain

of first transistor
$\mathrm{I}_{10}=100 \mu \mathrm{~A} ; \mathrm{V}_{10-7}=0 \quad \mathrm{hFE}>{ }^{2}$
Input impedance at $\mathrm{f}=1 \mathrm{kHz}$

$$
\mathrm{I}_{10}=100 \mu \mathrm{~A} ; \mathrm{V}_{10-7}=0
$$

Voltage gain

		typ.	20
z_{i}	$\mathrm{k} \Omega$		
G_{v}		93	dB
	typ.	100	dB

Noise figure
$\mathrm{R}_{\mathrm{S}}=2 \mathrm{k} \Omega ; \mathrm{B}=30$ to 15000 Hz

Output voltage at $\mathrm{d}_{\text {tot }}=10 \%$
$\mathrm{V}_{\mathrm{o}}(\mathrm{rms})$ typ. 2 V
Cut-off frequency (-3 dB)
f_{C}
\geq
15 kHz

Saturation voltage

$$
\text { of output transistor at } \mathrm{I}_{3}=7 \mathrm{~mA}
$$

D.C. collector voltage
of output transistor at $\mathrm{I}_{9}=200 \mu \mathrm{~A}$
V_{3-2} sat

typ.	0.8	V
$<$	1.2	V

V_{3-2}
typ. 3.8 V
3.4 to 4.2 V

Test circuit for measuring $G_{V}, F, V_{o(r m s)}$, f_{c} and V_{3-2} at $V_{B}=7 \mathrm{~V}$

APPLICATION INFORMATION

Practical tape-recorder preamplifier with a TAA310.

Data for use as recording amplifier (measured at $f=1 \mathrm{kHz}$)
Voltage gain
G_{v}
$64 \pm 2 \mathrm{~dB}$
Frequency response (see page 6)
Distortion at $\mathrm{V}_{\mathrm{o}}(\mathrm{rms})=0.5 \mathrm{~V}$
Volume control range
$\mathrm{d}_{\text {tot }}<0.5 \%$

Signal handling
typ. 75 dB

Gain variation at V_{B} decreasing from 7 to $5 \mathrm{~V} \quad \Delta \mathrm{G}_{\mathrm{V}} \quad$ typ. 3 dB
Data for use as play-back amplifier (measured at $f=1 \mathrm{kHz}$)
Voltage gain
G_{V}
$64 \pm 2 \mathrm{~dB}$
Frequency response (see page 6)
Distortion at $\mathrm{V}_{\mathrm{O}(\mathrm{rms})}=0.5 \mathrm{~V}$
$\mathrm{d}_{\text {tot }}<0.5$
\%
Gain variation
at V_{B} decreasing from 7 to 5 V
$\Delta G_{V} \quad$ typ. 3 dB

INTEGRATED MOST AMPLIFIER

The TAA320 is a silicon monolithic integrated circuit, consisting of a MOS transistor and an n-p-n transistor in a TO-18 metal envelope.
The device is primarily intended for audio amplifiers with a very high input resis tance (e.g. for crystal pick-ups).
Besides this application the TAA320 is also suitable for other applications where a high input resistance is required, like impedance converters, timing circuits, mi-crophone-amplifiers, etc.

QUICK REFERENCE DATA				
Drain-source voltage $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$-\mathrm{V}_{\mathrm{DSS}}$	\max.	20	V
Drain current	$-\mathrm{I}_{\mathrm{D}}$	\max.	25	mA
Gate-source voltage				
$-\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	$-\mathrm{V}_{\mathrm{GS}}$	typ.	11	V
Gate-source resistance				
$-\mathrm{V}_{\mathrm{GS}}$ up to $20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}$ up to $125{ }^{\circ} \mathrm{C}$	r_{GS}	$>$	100	$\mathrm{G} \Omega$
Transfer admittance at $\mathrm{f}=1 \mathrm{kHz}$ $-\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	$\|\mathrm{yfs}\|$	typ.	75	$\mathrm{~m} \Omega^{-1}$

PACKAGE OUTLINE

bottom view
Source connected to the case
Accessories available: 56246, 56263

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Drain-source voltage $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$
Gate-source voltage ($I_{D}=0$)
Non repetitive peak gate-source voltage ($\mathrm{t} \leq 10 \mathrm{~ms}$)

$-\mathrm{V}_{\text {DSS }}$	max.	20	V
$-\mathrm{V}_{\text {GSO }}$	max.	20	V

Current
Drain current
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$P_{\text {tot }} \quad \max .200 \mathrm{~mW}$

Temperatures

Storage temperature
Junction temperature

$\mathrm{T}_{\text {Stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$	
T_{j}	max.	125	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient in free air

$$
R_{\text {th } \mathrm{j}-\mathrm{a}}=0.5{ }^{\circ} \mathrm{C} / \mathrm{mW}
$$

CHARACTERISTICS

Drain current

$$
-\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0
$$

Gate-source voltage ${ }^{1}$)
$-\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$

$$
\begin{array}{cccc}
-\mathrm{V}_{\mathrm{GS}} & \text { typ. } & 11 & \mathrm{~V} \\
9 \text { to } & 14 & \mathrm{~V}
\end{array}
$$

Gate-source resistance
$-\mathrm{V}_{\mathrm{GS}}$ up to 20 V ; T_{j} up to $125^{\circ} \mathrm{C} \quad \mathrm{r}_{\mathrm{GS}} \quad>\quad 100 \mathrm{G} \Omega$
Equivalent noise voltage
$-\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$
$B=50 \mathrm{~Hz}$ to 15 kHz
y parameters at $\mathrm{f}=1 \mathrm{kHz}$

Output conductance
$\mathrm{v}_{\mathrm{n}} \quad$ typ. $25 \mu \mathrm{~V}$

$$
\nabla_{\mathrm{n}} \text { cyp. }<v \mu v
$$

$-\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$
Transfer admittance
Input capacitance
Feedback capacitance
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$$
\begin{array}{llll}
- \text { IDSS } & \text { typ. } & 5 & \mathrm{nA} \\
< & 1 & \mu \mathrm{~A}
\end{array}
$$

$|y f s|$
$\begin{array}{ll}\text { typ. } & 75 \mathrm{~m} \Omega^{-1} \\ 40 & \end{array}$
$\mathrm{C}_{\text {is }}$ typ. 8 pF
$-\mathrm{C}_{\mathrm{rs}}$ typ. 1.5 pF
g_{os} typ. $0.65 \mathrm{~m} \Omega^{-1}$

NOTE

To exclude the possibility of damage to the gate oxide layer by an electrostatic charge building up on the high resistance gate electrode, the leads of the device have been short circuited by a clip. The clip has been arranged so that it need not be removed until the device has been mounted in the circuit.

[^73]
APPLICATION INFORMATION 2 W audio amplifier with TAA320 and BD115

* The voltage dependent resistor (2322 552 03381) suppresses voltage transients that might otherwise exceed the safe operating limits of the BD115.

Supply voltage
Collector current of BD115
Drain current of TAA320
Primary d.c. resistance of output transformer
Primary inductance of output transformer
A.C. collector load for BD115
$\mathrm{V}_{\mathrm{B}} \quad=100 \mathrm{~V}$

Performance at $\mathrm{f}=1 \mathrm{kHz}$; feedback $=16 \mathrm{~dB}$
Output power at $\mathrm{d}_{\text {tot }}=10 \%$
(on primary of the output transformer)
Input voltage for $\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$
Input voltage for $\mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}$
Total distortion at $\mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}$
Minimum frequency response (-3 dB)
Signal-noise ratio at $\mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}$

Mounting instruction for BD115
Proper continuous operation is ensured up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$, provided the BD115 is directly mounted on a 1.5 mm blackened Al. heatsink of $30 \mathrm{~cm}^{2}$ with a clamping washer of type 56218 .
If the transistor is mounted on a heatsink with a mica washer, the heatsink should have an area of $50 \mathrm{~cm}^{2}$.
Recommended diameter of hole in heatsink: 7.7 mm .

TAA320

APPLICATION INFORMATION (continued)

4 W audio amplifier with TAA320 and 2 transistors of type BD115.

Supply voltage
Collector current of a BD115
Drain current of TAA320
V_{B}
${ }^{\text {I }}{ }_{C}$
$=$
typ. 52 mA
$-I_{D} \quad$ typ.
8.6 mA

Performance at $\mathrm{f}=1 \mathrm{kHz}$; feedback $=12 \mathrm{~dB}$
Output power at $\mathrm{d}_{\text {tot }}=10 \%$
Input voltage for $\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$
Input voltage for $\mathrm{P}_{\mathrm{O}}=4 \mathrm{~W}$
Total distortion at $\mathrm{P}_{\mathrm{O}}=4 \mathrm{~W}$
Minimum frequency response (-3 dB)
Signal-noise ratio at $\mathrm{P}_{\mathrm{O}}=4 \mathrm{~W}$
Mounting instruction for BD115 see page 4

7208127

7208128

WIDEBAND DIFFERENTIAL LIMITING AMPLIFIER

A monolithic integrated i.f. amplifier for f.m. Differential amplification with current driven long-tailed paires gives high a.m. rejection, making the amplifier suitable for use with very simple f.m. detectors. The TAA350 can be driven either symmetri cally or asymmetrically.

QUICK REFERENCE DATA			
Supply voltage	6	V	
Frequency		5.5	MHz
Total current	typ.	20	mA
Voltage gain	typ. 80	dB	
Input limiting voltage	typ. 100	$\mu \mathrm{~V}$	
Frequency response $(-3 \mathrm{~dB})$	typ. 12	MHz	
Output impedance	typ.	75	Ω

PACKAGE OUTLINE

Dimensions in mm
TO-74; reduced height

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
$\underline{\text { Voltages }}$ with respect to pin 3
Pin No. 1 when $V_{2-3}=V_{1-3} \leq V_{9-3}$
Pin No. 2 when $V_{1-3}=V_{2-3} \leq V_{9-3}$
Pin No. 4 (do not apply an external voltage source)
Pin No. 5 when at $\left|\mathrm{I}_{5}\right|<20 \mathrm{~mA} ; \mathrm{V}_{5-3} \leq \mathrm{V}_{9-3}$
Pin No. 6 when at $\left|\mathrm{I}_{6}\right|<20 \mathrm{~mA} ; \mathrm{V}_{6-3} \leq \mathrm{V}_{9-3}$
Pin No. 7 (do not apply an external voltage source)
Pin No.9(with lower d.c. potential on all other terminals)

V_{1-3}	0 to +10	V
$\mathrm{~V}_{2-3}$	0 to +10	V
$\mathrm{~V}_{4-3}$	0 to +10	V
$\mathrm{~V}_{5-3}$	0 to +10	V
$\mathrm{~V}_{6-3}$	0 to +10	V
$\mathrm{~V}_{7-3}$	0 to +10	V
$\mathrm{~V}_{9-3}$	0 to +10	V

Do not connect pins 8 and 10 , except to earth.
The maximum signal voltage between pins 1 and 2 is 6 V .
Total power dissipation

Temperatures
Storage temperature
Operating ambient temperature

CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Because the TAA350 has a low ohmic output impendance and is usually driven by a bandpass or parallel tuned filter, the characteristics are described in terms of four pole hybrid k parameters.
The four-pole equations are:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{i}}=\mathrm{k}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}+\mathrm{k}_{\mathrm{r}} \mathrm{I}_{\mathrm{O}} \\
& \mathrm{~V}_{\mathrm{O}}=\mathrm{k}_{\mathrm{f}} \mathrm{~V}_{\mathrm{i}}+\mathrm{k}_{\mathrm{O}} \mathrm{I}_{\mathrm{O}}
\end{aligned}
$$

Total current (d.c. ${ }^{1}$)

$\underline{\text { Test circuit for measuring } I_{\text {tot }}=\left(V_{9}-3\right)}$

k parameters (see pages 6 to 9)
$\mathrm{f}=5.5 \mathrm{MHz} ; \mathrm{V}_{\mathrm{g}}-3=6 \mathrm{~V}$

Input conductance (input pin 2)
Input susceptance (input pin 2)
Reverse current transfer ratio (output pin 6, input pin 2) ${ }^{2}$)
Small signal voltage gain (input pin 2, output pin 6)
Real part of output impedance (output pin 6)
Imaginary part of output impedance (output pin 6)
$\mathrm{f}=10.7 \mathrm{MHz} ; \mathrm{V}_{9-3}=6 \mathrm{~V}$
Reverse current transfer ratio (output pin 6, input 2) ${ }^{2}$)
Small signal voltage gain (input pin 2, output pin 6)
Input limiting voltage (see pp 5 and 8) ${ }^{3}$)
$\mathrm{f}=5.5 \mathrm{MHz} ; \mathrm{V}_{9-3}=6 \mathrm{~V}$
$\begin{array}{llll}g_{i} & \text { typ. } & 400 & \mu \Omega^{-1} \\ b_{i} & \text { typ. } & 550 & \mu \Omega^{-1}\end{array}$

$\left\|\mathrm{k}_{\mathrm{r}}\right\|$	typ.	-90	dB
$\left\|\mathrm{k}_{\mathrm{f}}\right\|$	typ.	67	dB
$\operatorname{Re}\left(\mathrm{k}_{\mathrm{o}}\right)$	typ.	75	Ω
$\operatorname{Im}\left(\mathrm{k}_{\mathrm{o}}\right)$	typ.	20	Ω

) The power dissipation is obtained from $V_{9-3} \times I_{\text {tot }}$.
${ }^{2}$) The output is considered open for $R_{L} \geq 10 \mathrm{k} \Omega$ and $C_{L} \leq 10 \mathrm{pF}$.
${ }^{3}$) $\mathrm{V}_{\mathrm{i} \text { lim }}$ is defined as the input signal voltage which reduces the output voltage 3 dB from its max. level (see also page 5).

CHARACTERISTICS (continued)

Test circuit for measuring the output characteristic

CHARACTERISTICS (continued)
Test circuit for measuring the input characteristic

CHARACTERISTICS (continued)

Test circuit for measuring the reverse current transfer ratio

CHARACTERISTICS (continued)

Test circuit for measuring the small signal voltage gain and the input limiting voltage

$\overline{k_{f}}=\left|k_{f}\right| \cdot e^{j \varphi f}$, where
$\left|\mathrm{k}_{\mathrm{f}}\right|=\left(20 \log \frac{\mathrm{~V}_{\mathrm{B}}}{\mathrm{V}_{\mathrm{A}}}+40\right) \mathrm{dB} ; \varphi_{\mathrm{f}}=\varphi_{\mathrm{AB}}-\varphi_{\mathrm{a}}$
$\varphi_{A B}=$ phase angle between V_{A} and V_{B}
$\mathrm{V}_{\mathrm{i} \text { lim }}=\mathrm{V}_{\mathrm{Bmax}}-3 \mathrm{~dB}$
To find $V_{B m a x}$ raise V_{A} until V_{B} remains constant

HEARING-AID AMPLIFIER

Integrated monolithic a.f. amplifier for use in hearing aids. The collector current of the class A output transistor can be determined externally, making the circuit suitable for a wide range of output powers at a low current consumption. Provision is made for the use of peak-clipping and frequency compensation circuits, and special measures have been taken to minimize the influence of temperature and supply voltage variations.

QUICK REFERENCE DATA							
Supply voltage	V_{B}	nom.	1.3	V			
Transducer gain	G_{tr}	typ.	90	dB			
Output power at $\mathrm{d}_{\text {tot }}=10 \%$	P_{O}	typ.	1.5	mW			
Saturation voltage of TR7 at $\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA} ; \mathrm{V}_{6}-2=1.3 \mathrm{~V}$ Current consumption of all stages except output stage Noise figure	$\mathrm{V}_{3-2 \text { sat }}$	$<$	300	mV			

PACKAGE OUTLINE

TO-89

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages	V_{6-2}	\max.	5	V
	$\mathrm{~V}_{3-2}$	\max.	5	V
Currents	V_{8-2}	\max.	5	V
	$\mathrm{~V}_{5-9}$	\max.	5	V
	I_{2}	\max.	20	mA
	I_{3}	\max.	20	mA

Maximum allowable total power dissipation versus ambient temperature

Temperatures
Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-55 to +85	${ }^{\mathrm{O}} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-55 to +85	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS(see also test circuit)
Supply voltage
Voltage gain of first 3 transistors (pin 9 to 7)
Transconductance of last 3 transistors (pin 1 to 3)
Saturation voltage of last transistor (TR7)

$$
\text { at } \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA} ; \mathrm{V}_{6-2}=1.3 \mathrm{~V}
$$

Current consumption of all stages except
output stage
$\frac{\text { Noise figure }}{R_{S}=5 \mathrm{k} \Omega ; B}=400$ to 3200 Hz
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
VB
G_{V}
g_{f}
nom. 1.3 V
$\mathrm{V}_{3-2 \text { sat }}<300 \mathrm{mV}$
typ. 0.35 mA
$<0.5 \mathrm{~mA}$
$\begin{array}{lll}\text { typ. } & 3 & \mathrm{~dB} \\ < & 6 & \mathrm{~dB}\end{array}$

Test circuit

APPLICATION INFORMATION

The TAA370 in a 1.5 mW amplifier

$$
\begin{aligned}
& \mathrm{I}_{3}=2.5 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{tot}}=2.85 \mathrm{~mA} \\
& \mathrm{R}_{\mathrm{pr}}=4 \mathrm{k} \Omega
\end{aligned}
$$

LOW FREQUENCY AMPLIFIER

The TAA435 is a silicon monolithic integrated a.f. preamplifier and driver stage. Combined with a complementary output stage an output power of 4 W can be achieved.

QUICK REFERENCE DATA				
with AD161/AD162 output stage				
Supply voltage	V_{B}	nom.	14	V
Ambient temperature	Tamb	nom.	25	${ }^{\circ} \mathrm{C}$
Voltage gain	G_{V}	typ.	80	dB
Output power at $\mathrm{d}_{\text {tot }}<10 \%$	P_{0}	$>$	4	W
Noise figure at B=60 Hz to 10 kHz	F	typ.	6	dB

PACKAGE OUTLINE
TO-74
reduced height

Dimensions in mm

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply current

V_{6-10}	max.	18	V
$-\mathrm{V}_{9-10}$	max.	5	V
$\mathrm{~V}_{4-10}$	max.	24	V
$\mathrm{~V}_{3-10}$	\max.	20	V
I_{4}	\max.	70	mA

Total power dissipation
Maximum allowable total power dissipation versus ambient temperature.

Temperatures
Operating ambient temperature
Storage temperature

Tamb -25 to $+85{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }} \quad-35$ to $+125{ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{\mathrm{B}}=10$ to 18 V ; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Forward voltage at $-\mathrm{I}_{2}=30 \mathrm{~mA}$
$\underline{\text { Collector-emitter voltage }}$ at $\mathrm{I}_{4}=50 \mathrm{~mA}$
V_{3-2} typ. 0.8 V
$\mathrm{V}_{4-3}<3.5 \mathrm{~V}$

CHARACTERISTICS at $\mathrm{V}_{\mathrm{B}}=14 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$ (measured in circuit below)
Voltage gain at $\mathrm{f}=1 \mathrm{kHz}$; without feedback
with feedback
$\mathrm{G}_{\mathrm{V}} \quad$ typ. 80 dB
$\mathrm{G}_{\mathrm{V}} \quad$ typ. 50 dB
Input impedance at $\mathrm{f}=1 \mathrm{kHz}$
$\left|Z_{9-10}\right|>\quad 70 \mathrm{k} \Omega$
Noise figure at B $=60 \mathrm{~Hz}$ to 10 kHz F typ. 6 dB
Cut-off frequency $(-3 \mathrm{~dB}) \quad \mathrm{f}_{\mathrm{C}} \gg 10 \mathrm{kHz}$
Output power at $\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{d}_{\text {tot }}=10 \%$
$\mathrm{P}_{\mathrm{O}} \gg 4 \mathrm{~W}$
Total distortion at $\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$
$\mathrm{d}_{\text {tot }}<$
1 \%

Input signal for $\mathrm{P}_{\mathrm{O}}=4 \mathrm{~W}$
$\mathrm{V}_{\mathrm{i}}(\mathrm{rms})$ typ. $\quad 15 \mathrm{mV}$
Test circuit:

(1accelle

FM CHANNEL AMPLIFIER

The TAA450 is a monolithic integrated circuit containing an i.f. amplifier with limiting characteristics for use up to frequencies of 10 MHz , a ratio detector and an 1.f. amplifier with connections brought out for remote volume control.

QUICK REFERENCE DATA				
Operating characteristics of i.f. amplifier at $f=5.5 \mathrm{MHz}$ Supply voltage $\mathrm{V}_{\mathrm{B}}=7.5 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$				
Voltage gain	G_{V}	typ.	69	dB
Start of limiting	V_{i}	typ.	300	$\mu \mathrm{V}$

PACKAGE OUTLINE

Dimensions in mm
TO-74; reduced height

CIRCUIT DIAGRAM

RATINGS (Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (d.c.) i.f. amplifier

> a.f. amplifier

Total power dissipation
Storage temperature
Operating ambient temperature

$\mathrm{V}_{7}=\mathrm{V}_{3}$	max.	12	V
$\mathrm{~V}_{2}$	max.	18	$\mathrm{~V}^{1}$)
$\mathrm{P}_{\text {tot }}$	max. 380	mW	
$\mathrm{~T}_{\text {stg }}$	-20 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	-20 to	+60	${ }^{\circ} \mathrm{C}$

${ }^{1}$) During warming-up in tube receivers this value may be exceeded up to 30 V .

CHARACTERISTICS for i.f. amplifier part at $V_{B}=7.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Voltage gain

$\mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V}: \mathrm{f}=1 \mathrm{MHz}$	G_{V}	typ.	71	dB
$\mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V}: \mathrm{f}=4.5 \mathrm{MHz}$	G_{V}	typ.	69	dB
$\mathrm{V}_{\mathrm{i}}=100 \mu \mathrm{~V}: \mathrm{f}=5.5 \mathrm{MHz}$	G_{V}	$\begin{gathered} > \\ \text { typ. } \end{gathered}$	66	dB dB
	Vi	typ.	300	$\mu \mathrm{V}$
Output current (peak to peak) at $\mathrm{V}_{\mathrm{i}}=5 \mathrm{mV}$	$\mathrm{I}_{7(\mathrm{p}-\mathrm{p})}$	typ.	2.8	mA
Input resistance	R_{i}	>	2.5	$\mathrm{k} \Omega$
Input capacitance	C_{i}	$\begin{gathered} \text { typ. } \\ < \end{gathered}$	10	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Output resistance	R_{O}	$>$	10	$\mathrm{k} \Omega$
Output capacitance	C_{0}	$\begin{gathered} \text { typ. } \\ < \end{gathered}$	4	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Total current	I_{B}	typ.	18	mA

APPLICATION INFORMATION

Circuit with the TAA450 inani.f.-1.f. amplifier of a television receiver.

Primary: frame core AP3014/02
Secondary: no frame core
$\mathrm{L} 1=19$ turns 0.12 mm stranded Cu wire
$\mathrm{L} 2=2 \times 17$ turns 0.12 mm stranded Cu wire; bifilarly wounded
$\mathrm{L} 3=14$ turns 0.12 mm stranded Cu wire; bifilarly wounded with L 1
Top-top distance of frequency response curve: $\geq 250 \mathrm{kHz}$

Intermediate frequency	f_{0}	$=5.5 \mathrm{MHz}$
Frequency deviation	$\Delta \mathrm{f}$	$\pm 15 \mathrm{kHz}$
Modulation frequency	f_{m}	$=400 \mathrm{~Hz}$
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}=$	25 oC

Start of limiting
I. F. output voltage at pin 7 with $\mathrm{V}_{\mathrm{i}} \geq 300 \mu \mathrm{~V}$
L. F. output voltage at $\mathrm{V}_{\mathrm{i}} \geq 300 \mu \mathrm{~V}$
A.M. suppression
$\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; \mathrm{m}=0.3 ; \mathrm{V}_{\mathrm{i}} \geq 2 \mathrm{mV}$
Volume control range
Distortion at $\Delta \mathrm{f} \pm 15 \mathrm{kHz}$ without volume control with volume control
$\Delta \mathrm{f} \pm 50 \mathrm{kHz}$ without volume control with volume control
Supply current l.f. part (pin 2)

V_{i}	typ.	300	$\mu \mathrm{~V}$
$\mathrm{~V}_{7}$	typ.	1.2	V
$\mathrm{~V}_{\mathrm{O}(\mathrm{rms})}$	typ.	600	mV
	\geq	42	dB
$\Delta \mathrm{~V}_{\mathrm{o}}$	\geq	30	dB
d	typ. 0.015		
d	typ.	0.02	
d	typ. 0.025		
d	typ.	0.05	
I_{2}	typ.	1	mA

OPERATIONAL AMPLIFIER

The TAA521 is a silicon monolithic integrated operational amplifier in an XA8 (TO-99) metal envelope.
It has a high gain, low offset, high input impedance, high output voltage swing and low power dissipation. The operating temperature range is 0 to $+70{ }^{\circ} \mathrm{C}$.

QUICK REFERENCE DATA				
Positive supply voltage	V_{P}		15	V
Negative supply voltage	$-\mathrm{V}$		15	V
Characteristics at $\mathrm{Tamb}=25^{\circ} \mathrm{C}$				
Voltage gain	G_{V}	typ.	5000	
Common mode rejection ratio	CMRR	typ.	90	dB
Input offset voltage drift; $\mathrm{R}_{\mathrm{S}}=50 \Omega$	$\frac{\Delta V_{i o}}{\Delta T}$	typ.	6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	$\frac{\Delta V_{\text {io }}}{\Delta T}$	typ.	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Differential input resistance	R_{i}	typ.	250	$k \Omega$
Peak output voltage swing at $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	${ }^{\text {OM }}$	typ.		V
Power dissipation	$\mathrm{P}_{\text {tot }}$	typ.	80	mW

PACKAGE OUTLINE

Dimensions in mm
TO-99

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Positive supply voltage
Negative supply voltage
Common mode voltage
Differential mode voltage

V_{P}	max.	18	V
$-\mathrm{V}_{\mathrm{N}}$	\max.	18	V
$\mathrm{~V}_{\mathrm{i}}$	\max.	± 10	V
$\mathrm{~V}_{2-3}$	\max.	± 5	V

Power dissipation up to $\mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max .250 \mathrm{~mW}$
Output short circuit duration ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)
t max. 5 s

Temperatures

Operating ambient temperature
Storage temperature

$\mathrm{T}_{\text {amb }}$	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Voltage gain; $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	G_{V}	$\begin{aligned} & > \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & 15000 \\ & 45000 \end{aligned}$	
Input offset voltage; $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$				
$\mathrm{V}_{\mathrm{P}}=-\mathrm{V}_{\mathrm{N}}=9$ to 15 V	$\mathrm{V}_{\text {io }}$	$\stackrel{\text { typ. }}{<}$	2.0	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input bias current	I_{i}	$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	0.3	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Input offset current	$\mathrm{I}_{\text {io }}$	$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	0.1 0.5	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Common mode rejection ratio; $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	CMRR	$\begin{aligned} & > \\ & \text { typ. } \end{aligned}$	65	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input voltage range	V_{i}	$\begin{aligned} & > \\ & \text { typ. } \end{aligned}$	$\begin{array}{r} \pm 8.0 \\ \pm 10 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Differential input resistance	R_{i}	$\begin{aligned} & > \\ & \text { typ. } \end{aligned}$	50 250	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Output resistance	R_{0}	typ.	150	Ω
$\underline{\text { Supply voltage rejection ratio; } \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega}$	SVRR	$\stackrel{\text { typ. }}{<}$	25 200	$\begin{aligned} & \mu \mathrm{V} / \mathrm{V} \\ & \mu \mathrm{~V} / \mathrm{V} \end{aligned}$
Peak output voltage swing at $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	$\mathrm{V}_{\text {OM }}$	$>$ typ.	± 12	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	V OM	> typ .	$\pm \begin{aligned} & \pm 10 \\ & \pm 13\end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\underline{\text { Power dissipation at } \mathrm{V}_{\mathrm{O}}=0}$	$\mathrm{P}_{\text {tot }}$	$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	80 200	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=15 \mathrm{~V} ;-\mathrm{V}_{\mathrm{N}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0$ to $+70{ }^{\circ} \mathrm{C}$ unless otherwise specified
Voltage gain; $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \quad \mathrm{G}_{\mathrm{V}}>12000$
Input offset voltage; $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$;

Input offset voltage drift; $\mathrm{R}_{\mathrm{S}}=50 \Omega$
$\mathrm{V}_{\text {io }}<10 \mathrm{mV}$

$$
\mathrm{V}_{\mathrm{P}}=-\mathrm{V}_{\mathrm{N}}=9 \text { to } 15 \mathrm{~V}
$$

$\frac{\Delta V_{\text {io }}}{\Delta T} \quad$ typ. $\quad 6 \quad \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

$$
\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega
$$

$$
\frac{\Delta V_{\text {io }}}{\Delta T} \quad \text { typ. } \quad 10 \quad \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
$$

Input bias current
Input offset current

I_{i}	$<$
I_{io}	$<0.7 \mathrm{~A}$
I_{A}	

Frequency compensation circuit :

[^74]
7210187.1

OPERATIONAL AMPLIFIER

The TAA522 is a silicon monolithic integrated operational amplifier in an XA8 (TO-99) metal envelope. It has a high gain, low offset, high input impedance, high output voltage swing and low power dissipation. The operating temperature range is -55 to $+125^{\circ} \mathrm{C}$.

QUICK REFERENCE DATA				
Positive supply voltage	V_{P}		15	V
Negative supply voltage	$-\mathrm{V}_{\mathrm{N}}$		15	V
Characteristics at $\mathrm{T}_{\mathrm{amb}}=-55$ to $+125^{\circ} \mathrm{C}$				
Voltage gain	G_{V}	typ.	000	
Common mode rejection ratio	CMRR	typ.	90	dB
Input offset voltage drift; $\mathrm{R}_{\mathrm{S}}=50 \Omega$	$\frac{\Delta V_{\text {io }}}{\Delta T}$	typ.	3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	$\frac{\Delta V_{\text {io }}}{\Delta T}$	typ.	6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Differential input resistance	R_{i}	typ.	100	$\mathrm{k} \Omega$
Peak output voltage swing at $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	V_{OM}	typ.		V

PACKAGE OUTLINE

Dimensions in mm

TO-9C

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Positive supply voltage	V_{P}	\max.	18	V
Negative supply voltage	$-\mathrm{V}_{\mathrm{N}}$	\max.	18	V
Common mode voltage	V_{i}	\max.	± 10	V
Differential mode voltage	V_{2-3}	\max.	± 5	V
Power dissipation up to $\left.\mathrm{T}_{\text {case }}=125^{\circ} \mathrm{C}^{1}\right)$	$\mathrm{P}_{\text {tot }}$	\max.	300	mW
Output short circuit duration $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$	t	\max.	5	s
Temperatures				
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$	

CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=-\mathrm{V}_{\mathrm{N}}=9$ to $15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Input offset voltage; $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$

$\mathrm{V}_{\text {io }}$	typ.	1.0	mV
	<	5.0	mV
I_{i}	typ.	0.2	$\mu \mathrm{A}$
	$<$	0.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {io }}$	typ.	50	nA
	<	200	nA
R_{i}	>	150	$k \Omega$
	typ.	400	$k \Omega$
R_{0}	typ.	150	Ω
$\mathrm{P}_{\text {tot }}$	typ.	8 C	mW
	<	165	mW

Transient reponse (see also test circuit on page 4)
Rise time

Overshoot

| | typ.
 ${ }^{2}$
 r | 0.3 | $\mu \mathrm{~s}$ |
| :--- | :--- | :--- | ---: | :--- |
| | | 1.5 | $\mu \mathrm{~s}$ |
| $\Delta \mathrm{~V}$ | typ. | 10 | $\%$ |
| $\mathrm{~V}_{\mathrm{O}}$ | $<$ | 30 | $\%$ |

${ }^{1}$) Rating applies to case temperatures up to $125^{\circ} \mathrm{C}$; derate linearly at $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $95{ }^{\circ} \mathrm{C}$.

CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=-\mathrm{V}_{\mathrm{N}}=9$ to $15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+125{ }^{\circ} \mathrm{C}$ unless otherwise specified
Voltage gain at $\mathrm{V}_{\mathrm{P}}=-\mathrm{V}_{\mathrm{N}}=15 \mathrm{~V}$

$$
\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}
$$

Input offset voltage; $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$
Input offset voltage drift; $\mathrm{R}_{\mathrm{S}}=50 \Omega$

$$
\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega
$$

Input voltage range at $\mathrm{V}_{\mathrm{P}}=-\mathrm{V}_{\mathrm{N}}=15 \mathrm{~V}$
Peak output voltage swing at $\mathrm{V}_{\mathrm{P}}=-\mathrm{V}_{\mathrm{N}}=15 \mathrm{~V}$

$R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$				
	V_{OM}	typ.	± 12	V
			± 14	V
$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	V_{OM}		typ.	± 10
V				
			± 13	V

Common mode rejection ratio; $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$
CMRR
25000 to 70000
typ. 45000
$R_{L} \geq 10 k \Omega$
$R_{L} \geq 2 k \Omega$

Supply voltage rejection ratio; $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$
Input bias current
at $\mathrm{T}_{\mathrm{amb}}=-55^{\circ} \mathrm{C}$
Input offset current

at $\mathrm{T}_{\mathrm{amb}}=-55{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {io }}$	$\stackrel{\text { typ. }}{<}$	$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
at $\mathrm{T}_{\mathrm{amb}}=+125{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {io }}$	$\stackrel{\text { typ. }}{<}$	$\begin{array}{r} 20 \\ 200 \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\underline{\text { Differential input resistance }}$	R_{i}	$\xrightarrow{\text { typ. }}$	$\begin{array}{r} 40 \\ 100 \end{array}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$

TAA550

VOLTAGE STABILIZER

The TAA550 is an integrated monolithic voltage stabilizer, especially designed to provide the supply voltage for variable capacitance diodes in television tuners independent of supply voltage and temperature variations.
The TAA550 is supplied in 3 voltage groups, identified by a coloured dot on the envelope:
Stabilized voltage V_{12} : 31 to 32 V red dot
32 to 34 V yellow dot
34 to 35 V green dot

QUICK REFERENCE DATA			
Supply current	I_{1}	typ. 5	mA
Stabilized voltage	V_{12}.	31 to 35	V
Differential internal resistance	r_{12}	typ. 10	Ω

PACKAGE OUTLINE

Dimensions in mm

pin 1 connected to the case

RECOMMENDED CIRCUIT

$\mathrm{V}_{\mathrm{B}} \gg \mathrm{V}_{12}$
I_{1} typ. 5 mA
$\mathrm{R} \geq 22 \Omega$
$\mathrm{C}_{1}=300$ to 4700 pF
C_{2} : to be connected if decoupling for low frequent noise is necessary.
In practice values up to $10 \mu \mathrm{~F}$ are used.
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Maximum allowable supply current versus temperature

Temperatures
Storage temperature
Operating ambient temperature

CHARACTERISTICS

Recommended supply current
Stabilized voltage
Differential internal resistance at $\mathrm{f}=1 \mathrm{kHz}$ $\mathrm{I}_{1}=5 \mathrm{~mA}$
$\underline{\text { Temperature coefficient at }} \mathrm{T}_{\text {amb }}=10$ to $50^{\circ} \mathrm{C} \quad \frac{\Delta \mathrm{V}_{12}}{\Delta \mathrm{~T}_{\mathrm{amb}}}$

$$
\begin{aligned}
& -20 \text { to }+150{ }^{{ }^{\circ} \mathrm{C}} \\
& -20 \text { to }+150
\end{aligned}{ }^{\circ} \mathrm{C}
$$

$\mathrm{T}_{\text {stg }}$
Tamb

	$>$	2	mA
I_{1}	typ.	5	mA

V_{12}
31 to 35 V

typ.	10	Ω
$<$	25	Ω

typ. $\quad-0.13 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
-3.1 to $+1.55 \mathrm{mV} /{ }^{\circ} \mathrm{C}$

LEVEL DETECTOR

The TAA560 is a silicon monolithic integrated level detector in a (TO-72) metal envelope. A Darlington input circuit forms a Schmitt-trigger that operates at a low current level. Due to the three-stage current amplifier an output current of maximum 50 mA can be delivered.
It is primarily intended for battery fed timing circuits, such as in camera shutter control.

QUICK REFERENCE DATA			
Total supply voltage	V3-4	2.5	V
Ambient temperature	Tamb	25	${ }^{\circ} \mathrm{C}$
Threshold voltage (switching off TR8)	V_{2-4}	1.4 to 1.6	V
OFF-state of TR8			
Output current	I_{1}	≤ 0.1	$\mu \mathrm{A}$
ON-state of TR8			
Output current	I_{1}	max. 50	mA
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to +60	${ }^{\circ} \mathrm{C}$

PACKAGE OUTLINE

Dimensions in mm
(TO-72)

bottom view

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Total supply voltage
Input voltage
Output voltage
Output current
Total power dissipation
Storage temperature
Operating ambient temperature

V_{3-4}	max.	4.5	V
$\mathrm{~V}_{2-4}$	max.	4.5	V
$\mathrm{~V}_{1-4}$	max.	12.5	V
I_{1}	max.	50	mA
$\mathrm{P}_{\text {tot }}$	max.	120	mW
$\mathrm{~T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	0 to +60	${ }^{\circ} \mathrm{C}$	

CHARACTERISTICS

Recommended circuit for camera shutter time control:

Notes:

a. For shutter time range of 2 ms to $2 \mathrm{~s} ; \mathrm{C} \approx 100 \mathrm{nF} ; \mathrm{R}_{1} \leq 20 \mathrm{M} \Omega$
b. Solenoid inductance $\mathrm{L}_{\mathrm{S}} \leq 40 \mathrm{mH}$ and resistance $\mathrm{R}_{\mathrm{S}}=91 \Omega ; \mathrm{V}_{3-4}=2.5 \mathrm{~V}$

CHARACTERISTICS (continued) at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{1} \leq 20 \mathrm{M} \Omega ; \mathrm{R}_{\mathrm{L}}=91 \Omega$
Threshold voltage
Switching TR8 to OFF-state
at $V_{3-4}=2.5 \mathrm{~V}$
at $V_{3-4}=4.5 \mathrm{~V}$
$\left.\begin{array}{c}\left\{\begin{array}{lll}\mathrm{V}_{2-4(\mathrm{H})} & \begin{array}{l}1.4 \text { to } 1.6 \\ \mathrm{~V}_{2-4(\mathrm{H})} \\ \text { typ. }\end{array} & 1.5\end{array} \mathrm{~V}^{1}\right.\end{array}\right)$

Switching TR8 to ON-state
at $V_{3-4}=2.5 \mathrm{~V}$
at $\mathrm{V}_{3-4}=4.5 \mathrm{~V}$

$\mathrm{V}_{2-4(\mathrm{~L})}$	typ.	1.2	V
$\mathrm{~V}_{2-4(\mathrm{~L})}$	typ.	1.4	V

ON-state of TR8 (switch S closed)
Output voltage at $V_{3-4}=2.5 \mathrm{~V}$
Output current at $V_{3-4}=2.5 \mathrm{~V}$
Current drain at $\mathrm{V}_{3-4}=2.5 \mathrm{~V}$

V_{1-4}	\leq	300 mV
I_{1}	\leq	26.5 mA
I_{3}	typ. 3.5 mA	

OFF-state of TR8 (switch S open)
Output current at $\mathrm{V}_{3-4}=2.5 \mathrm{~V}$
Current drain
Transfer characteristic:
Test circuit:

[^75]
LIMITER-AMPLIFIER

The TAA570 is a four-stage limiter-amplifier in a TO-74 metal envelope, with $\mathrm{f} . \mathrm{m}$. detector and remote control stage.
Excellent a.m. suppression is obtained by the use of a differential amplifier equipped with long-tailed pairs. The f.m. detector is a symmetrical phasedetector. The remote control stage has a control range of about 80 dB .on the a.f. output signal.

QUICK REFERENCE DATA				
Supply voltage	V_{P}	typ.	12	V
Frequency	f_{O}		5.5	MHz
Total current drain	$\mathrm{I}_{\text {tot }}$	typ.	19	mA
Input limiting voltage	Vilim	typ.	100	$\mu \mathrm{V}$
A.M. rejection at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$		typ.	47	dB
Output at 50 kHz frequency deviation	V_{O} (rms)	typ.	1.8	V
Distortion at a frequency deviation of of 50 kHz and full gain	d	typ.	2.5	\%

MECHANICAL DATA

Dimensions in mm

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Pin No. 1 voltage (do not apply an external voltage source)
Pin No. 2 voltage (do not apply an external voltage source)
Pin.No. 3 voltage
Pin No. 4 voltage; $\mathrm{I}_{4}<1 \mathrm{~mA}$
Pin No. 5 voltage

V_{3-10}	0 to +18	V
$\mathrm{~V}_{4-10}$	0 to +6	V
$\mathrm{~V}_{5-10}$	0 to +18	V

Pin No. 6 voltage (do not apply an external voltage source)
Pin No. 7 voltage; $\mathrm{I}_{7}<1 \mathrm{~mA}$
Pin No. 8 voltage; I8 $<1 \mathrm{~mA}$
Pin No. 9 voltage

V_{7-10}	0 to +6	V
$\mathrm{~V}_{8-10}$	0 to	+6
V		
$\mathrm{~V}_{9-10}$	0 to	+6
V		

RATINGS (continued)
Total power dissipation

CHARACTERISTICS

Input limiting voltage

$$
\mathrm{f}_{\mathrm{O}}=5.5 \mathrm{MHz} ; \Delta \mathrm{f}= \pm 15 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}
$$

Test circuit for measuring $\mathrm{V}_{\mathrm{O}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{i}}\right)$

CHARACTERISTICS (continued)

A.M. suppression
F.M. : $\mathrm{f}_{\mathrm{O}}=5.5 \mathrm{MHz} ; \Delta \mathrm{F}= \pm 15 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$
A.M. : $\mathrm{f}_{\mathrm{O}}=5.5 \mathrm{MHz} ; \mathrm{m}=0.3 ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$

Test circuit for measuring $\boldsymbol{\propto}(\mathrm{AM}$-suppression $)=\mathrm{f}\left(\mathrm{V}_{\mathrm{i}}\right)$

CHARACTERISTICS (continued)

Distortion at full gain and $\Delta \mathrm{f}= \pm 15 \mathrm{kHz}$ $\Delta \mathrm{f}= \pm 50 \mathrm{kHz}$
$\begin{array}{lrr}\text { d } & \text { typ. } \quad 1 \% \\ \text { d } & \text { typ. } & 2.5 \%\end{array}$

$$
\text { measuring conditions: } \begin{aligned}
\mathrm{f}_{\mathrm{O}} & =5.5 \mathrm{MHz} \\
\mathrm{f}_{\mathrm{m}} & =1 \mathrm{KHz}
\end{aligned}
$$

The distortion measurements are made with the test circuit on page 4.
Total current

CHARACTERISTICS (continued)
y parameters.
Input admittance at $f_{0}=5.5 \mathrm{MHz}$

$$
y_{i} \cdot \operatorname{typ} \cdot(230+j 450) \quad \mu \Omega^{-1}
$$

Test circuit for measuring $y_{i}=f(f)$

CHARACTERISTICS (continued)
Output admittance at $\mathrm{f}_{\mathrm{O}}=5.5 \mathrm{MHz} \quad y_{\mathrm{O}} \quad \operatorname{typ} .(120+j 330) \quad \mu \Omega^{-1}$
Test circuit for measuring $y_{0}=f(f)$

CHARACTERISTICS (continued)

Feedback admittance at $\mathrm{f}_{\mathrm{o}}=5.5 \mathrm{MHz}$
$y_{r} \operatorname{typ} .|65| e^{j 1500} n \Omega^{-1}$
Test circuit for measuring $y_{r}=f(f)$

CHARACTERISTICS (continued)
Transfer admittance at $f_{0}=5.5 \mathrm{MHz}$
yf typ. $|0.76| e^{-j 6^{\circ}} \Omega^{-1}$
Test circuit for measuring $y_{f}=f(f)$

APPLICATION INFORMATION

Practical circuit

The input bandpass filter is connected to the video detector via a small capacitor of 3.3 pF . The input bandpass filter $(\mathrm{kQ}=1)$ has the following characteristics:

$$
\begin{aligned}
& \mathrm{L} 1=18 \mu \mathrm{H} ; \mathrm{G}_{\mathrm{L} 1}=56 \mu \Omega^{-1} ; \mathrm{Q}_{\mathrm{L} 1}=42 ; \mathrm{C}=47 \mathrm{pF} \\
& \mathrm{~L} 2=2.2 \mu \mathrm{H} ; \mathrm{G}_{\mathrm{L} 2}=490 \mu \Omega^{-1} ; \mathrm{Q}_{\mathrm{L} 2}=23 ; \mathrm{C}=390 \mathrm{pF}
\end{aligned}
$$

The transfer voltage is $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=0.54$
The detector coil $\mathrm{L} 3=8.3 \mu \mathrm{H} ; \mathrm{C}=100 \mathrm{pF}$, has a loaded Q of 25 .
A typical output voltage at this Q and full gain is 550 mV for $\Delta \mathrm{f}=15 \mathrm{kHz}$ with output signal distortion of 1%.

TAA580

LEVEL DETECTOR

The TAA580 is a plastic encapsulated silicon monolithic level detector. The circuit consists of a Schmitt-trigger, a three stage current amplifier and two further transistors to give flexibility in coupling to other circuits. The trigger voltage is adjustable within a limited range. The output stage can deliver 70 mA . The TAA580 is designed primarily for timing functions as in camera shutter control. Two TAA580 can be combined for a delayed action shutter.

QUICK REFERENCE DATA				
Total supply voltage	V_{8-5}	nom.	2	V
Threshold voltage (adjustable)	V_{2-5}	1.4 to	1.9	V
On-state of TR9:				
Output current	I_{4}	max.	70	mA
Output voltage at $\mathrm{I}_{4}=28 \mathrm{~mA}$	V_{4-5}	$<$	200	mV
OFF-state of TR9:				
Output current at $\mathrm{V}_{8-5}=4.5 \mathrm{~V} ; \mathrm{V}_{2-5}=3.15 \mathrm{~V}$	I_{4}	\leq		$\mu \mathrm{A}$

PACKAGE OUTLINE see page 2

PACKAGE OUTLINE

Pin 5 and 7 are internally
connected

Dimensions in mm

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Total supply voltage
Output voltage

Output current

Total power dissipation
Storage temperature
Operating ambient temperature

V_{8-5}	max.	4.5	V
$\mathrm{~V}_{4-5}$	max.	12.5	V
I_{4}	max.	70	mA
$\mathrm{P}_{\text {tot }}$	max.	180	mW
$\mathrm{~T}_{\text {stg }}$	-55 to	+100	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-20 to	+60	${ }^{\circ} \mathrm{C}$

$$
\text { CHARACTERISTICS at } \mathrm{T}_{\mathrm{amb}}=-20 \text { to }+60^{\circ} \mathrm{C} ; \mathrm{R} 1 \leq 70 \mathrm{M} \Omega ; \mathrm{R}_{\mathrm{L}}=64 \Omega
$$

Threshold voltage range at pin 6

$$
\begin{array}{llll}
\mathrm{V}_{8-5}=2 \mathrm{~V} ; \mathrm{V}_{3-5}=0 & \mathrm{~V}_{2-5} & 1.4 \text { to } 1.9 & \mathrm{~V} \\
\mathrm{~V}_{8-5}=4.5 \mathrm{~V} ; \mathrm{V}_{3-5}=0 & \mathrm{~V}_{2-5} & 3.6 \text { to } 4.2 & \mathrm{~V}
\end{array}
$$

Output voltage at pin 6

$$
\left.\mathrm{V}_{8-5}=4.5 \mathrm{~V} ; \mathrm{V}_{2-5}=3.15 \mathrm{~V}^{\mathrm{l}}\right)
$$

$$
\left.\mathrm{v}_{6-5} \quad \leq \quad 300 \mathrm{mV}^{2}\right)
$$

Output voltage at pin 4

$$
\left.\left.\mathrm{V}_{8-5}=2 \mathrm{~V} ; \mathrm{V}_{2-5}=1.9 \mathrm{~V}^{1}\right) \quad \mathrm{~V}_{4-5} \quad \leq \quad 200 \mathrm{mV}^{3}\right)
$$

Output current

$$
\begin{aligned}
& \mathrm{V}_{8-5}=2 \mathrm{~V} \\
& \left.\mathrm{~V}_{8-5}=4.5 \mathrm{~V} ; \mathrm{V}_{2-5}=3.15 \mathrm{~V}^{1}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{I}_{4} & \leq \\
\mathrm{I}_{4} & \leq \\
& \left.20.5 \mathrm{~mA}^{2}\right) \\
\left.\mathrm{IA}^{3}\right)
\end{array}
$$

Current drain

$\mathrm{V}_{8-5}=4.5 \mathrm{~V}$

Test circuit:

$\mathrm{I}_{8} \quad$ typ. 35 mA
Transfer characteristic:

[^76]
CHARACTERISTICS (continued)

Camera shutter time control

Delayed action shutter

Notes:
a. For shutter time range of 1 ms to $20 \mathrm{~s} ; \mathrm{C}_{1} \approx 270 \mathrm{nF} ; \mathrm{R}_{1} \leq 70 \mathrm{M} \Omega$.
$\left.\begin{array}{l}\text { b. Solenoid inductance } \mathrm{L}_{\mathrm{S}} \leq 180 \mathrm{mH} \\ \mathrm{R}_{\mathrm{S}} \text { values: } 64 \Omega \text { to } 114 \Omega\end{array}\right\}$ DATA for RB and RA
R_{S} values: 64Ω to 114Ω

TAA630

SYNCHRONOUS DEMODULATOR FOR COLOUR DIFFERENCE DRIVE

The TAA630 is a synchronous demodulator for direct drive of colour difference output stages with clamping circuits in television sets. The circuit consists of 2 am plifying synchronous demodulators for the $B-Y$ and $R-Y$ signals, a matrix, a PAL switch, a bistable multivibrator and colour killer switch.

QUICK REFERENCE DATA				
Supply voltage	V_{6-16}	nom.	12	V
Ambient temperature	Tamb		25	
Gain of R-Y demodulator	$\mathrm{G}_{\mathrm{V}}(\mathrm{R}-\mathrm{Y})$	typ.	7	
Gain of B-Y demodulator	$\mathrm{G}_{\mathrm{V}}(\mathrm{B}-\mathrm{Y})$	typ.	12.5	
Input impedance of $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ channel	$\left\|Z_{9}-16\right\|$	typ.	1	$k \Omega$
	$\left\|Z_{13-16}\right\|$	typ.	1	$k \Omega$
Output impedance of $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and				
G-Y channel	$\left\|Z_{4}-16\right\|$	\leq		Ω
	$\left\|Z_{5-16}\right\|$	\leq		Ω
	$\left\|Z_{7-16}\right\|$	\leq	100	Ω

PACKAGE OUTLINE: 16 lead plastic dual in-line (type A) See General Section

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Supply voltage

$\mathrm{V}_{6}-16$	$\max \cdot 13.2$	V
$\mathrm{~V}_{6-16}$	$\max \cdot 16$	$\left.\mathrm{~V}^{1}\right)$

Currents
Pin No. 4 current
Pin No. 5 current
Pin No. 7 current

I_{4}	\max.	5	mA
I_{5}	\max.	5	mA
I_{7}	\max.	5	mA

Power dissipation
Total power dissipation

$P_{\text {tot }}$	\max.	550	mW
$\mathrm{P}_{\text {tot }}$	\max.	800	mW

Storage temperature
Operating ambient temperature

$$
\begin{array}{lll}
\mathrm{T}_{\text {stg }} & -20 \text { to }+80 & { }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{amb}} & -20 \text { to }+60 & { }^{\circ} \mathrm{C}
\end{array}
$$

${ }^{1}$) Permissible while tubes are heating up.

CHARACTERISTICS at $\mathrm{V}_{6-16}=12 \mathrm{~V} ; \mathrm{V}_{10-16}=0.9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}} \doteq 25{ }^{\circ} \mathrm{C}$
Gain of colour difference signals
$\left.\begin{array}{lllll}V_{i}(p-p)=50 \mathrm{mV} ; \mathrm{f}=4.4 \mathrm{MHz} & \mathrm{G}_{\mathrm{V}(\mathrm{R}-\mathrm{Y})} & \text { typ. } & 7 & 1\end{array}\right)$

Input impedance of $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ channels
$\mathrm{V}_{\mathrm{i}(\mathrm{rms})}=20 \mathrm{mV}$ (sine wave): $\mathrm{f}=4.4 \mathrm{MHz}$

at input $\mathrm{F}_{\mathrm{R}-\mathrm{Y}}$; input resistance	R_{13-16}	typ.	1000	Ω
input capacitance	$\mathrm{C}_{13}-16$	\leq	10	pF
at input $\mathrm{FB}-\mathrm{Y} ;$	input resistance	$\mathrm{R}_{9}-16$	typ.	1000
input capacitance	$\mathrm{C}_{9}-16$	\leq	10	pF

Input impedance of reference inputs
$V_{i(r m s)}=400 \mathrm{mV}$ (sine wave): $\mathrm{f}=4.4 \mathrm{MHz}$
at reference $\mathrm{R}-\mathrm{Y}$ input

$\left\|Z_{2}-16\right\|$	typ.	900	Ω
$\left\|Z_{8}-16\right\|$	typ.	900	Ω

Colour difference output voltages

(peak to peak values)output $\mathrm{R}-\mathrm{Y}$	$\mathrm{V}_{4-16(\mathrm{p}-\mathrm{p})}$	\leq	$\left.3.2 \mathrm{~V}^{2}\right)^{3}$)	
output $\mathrm{B}-\mathrm{Y}$	$\mathrm{V}_{7-16(\mathrm{p}-\mathrm{p})}$	\leq	4.0	$\left.\left.\mathrm{~V}^{2}\right)^{3}\right)$
output G-Y	$\mathrm{V}_{5-10}(\mathrm{p}-\mathrm{p})$	\leq	1.8	$\left.\left.\mathrm{~V}^{2}\right)^{3}\right)$

Output impedances of $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and $\mathrm{G}-\mathrm{Y}$ channels

at output R-Y	$\left\|Z_{4-16}\right\|$	\leq	100	Ω
at output B-Y	$\left\|Z_{7-16}\right\|$	\leq	100	Ω
at output G-Y	$\left\|Z_{5}-16\right\|$	\leq	100	Ω

[^77]
CHARACTERISTICS (continued)

Colour difference d.c. output voltages
at output B-Y
at output R-Y
at output G-Y

V7-16
typ. 7.4 V^{1})
adjustable to the same level as $\left.\mathrm{V} 7-16^{1}\right)^{2}$) adjustable to the same level as $\left.\mathrm{V}_{7-16}{ }^{1}\right)^{2}$)

Output voltage; 7.8 kHz (square wave; peak to peak value)
$\mathrm{R}_{\text {load }} \geq 10 \mathrm{k} \Omega ; \mathrm{V}_{14-16}=\mathrm{V}_{15}-16=2.5$ to $5 \mathrm{~V} \quad \mathrm{~V}_{3-10}(\mathrm{p}-\mathrm{p}) \quad$ typ. 3 V

Input voltages

Reference voltages (peak to peak value)
at reference $\mathrm{R}-\mathrm{Y}$
at reference $B-Y$

$$
\begin{array}{llll}
V_{2}-16(p-p) & \text { typ. } & 1 & \left.V^{3}\right) \\
V_{8}-16(p-p) & \text { typ. } & 1 & \left.V^{3}\right)
\end{array}
$$

Horizontal deflection pulses (peak value)
at pin No. 14
at pin No. 15
Identification signal (peak to peak value)
Colour killer voltage

colour "on"	V_{10-16}	$\geq 0.9 \mathrm{~V}$
colour "off"	V_{10-16}	$\leq 0.3 \mathrm{~V}$

$-\mathrm{V}_{14}-16 \mathrm{M}$	2.5 to 5
- $\mathrm{V}_{15}-16 \mathrm{M}$	2.5 to 5
$\mathrm{~V}_{1-16(\mathrm{p}-\mathrm{p})}$	typ. 4

colour "on"
colour "off"
$\mathrm{V}_{10-16} \leq 0.3 \mathrm{~V}$
${ }^{1}$) Measured in the test circuit on page 6 .
2) To be adjusted with a variable voltage $(\mathrm{V} \leq 1.2 \mathrm{~V})$ or with resistors connected between pin 11 and pin 16 for $\mathrm{G}-\mathrm{Y}$ and between pin 12 and pin 16 for $\mathrm{R}-\mathrm{Y}$.
3) Permissible range 0.5 to 5 V .

CHARACTERISTICS (continued)

Test circuit

APPLICATION INFORMATION

LIMITER AMPLIFIER

The TAA640 is a monolithic integrated four-stage limiter amplifier with f.m. detector and a.f. pre-amplifier. The envelope is TO-116. A differential amplifier with long-tailed pairs ensures excellent limiting action. The f.m. detector is a modified slope detector. Volume of the a.f. output can be remotely controlled over a range of 60 dB .

QUICK REFERENCE DATA				
Supply voltage	V_{7-12}	typ.	22	V
Total current drain	Itot	typ.	26.7	mA
Input limiting voltage	$\mathrm{V}_{\text {ilim }}$	typ.	100	$\mu \mathrm{V}$
A.M. rejection at $\mathrm{V}_{\mathrm{i}}=5 \mathrm{mV} ; \Delta \mathrm{f}= \pm 15 \mathrm{kHz}$		typ.	44	dB
A.F. output voltage at $\Delta \mathrm{f}= \pm 50 \mathrm{kHz}$	V_{o} (rms)	typ.	1.6	V
Total distortion at $\Delta \mathrm{f}= \pm 50 \mathrm{kHz}$	$\mathrm{d}_{\text {tot }}$	\leq	5	\%
Total distortion at $\Delta \mathrm{f}= \pm 15 \mathrm{kHz}$	$\mathrm{d}_{\text {tot }}$	typ.	1.6	\%

PACKAGE OUTLINE

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
$\left.\begin{array}{lllrll}\text { Supply voltages } & \mathrm{V}_{7-12} & \max . & 32 & \mathrm{~V} & 1\end{array}\right)$

CHARACTERISTICS at $\mathrm{I}_{\text {tot }}=26.7 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{f}=5.5 \mathrm{MHz} ; \mathrm{f}_{\bmod }=1 \mathrm{kHz}$ measured in the test circuit on page 3.

Voltages

Current
I.F. voltage gain

Input limiting voltage (-3 dB)
I.F. output voltage at $V_{i}=5 \mathrm{mV}$
A.F. output voltage at $\mathrm{V}_{\mathrm{i}}=5 \mathrm{mV} ; \Delta \mathrm{f}= \pm 50 \mathrm{kHz} \quad \mathrm{V}_{\mathrm{O}}$

Total distortion

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{i}}=5 \mathrm{mV} ; \Delta \mathrm{f}= \pm 50 \mathrm{kHz} \\
& \mathrm{~V}_{\mathrm{i}}=5 \mathrm{mV} ; \Delta \mathrm{f}= \pm 15 \mathrm{kHz}
\end{aligned}
$$

Remote volume control range (a.f.)
AM rejection at $V_{i}=5 \mathrm{mV}$
$\Delta \mathrm{f}= \pm 15 \mathrm{kHz}, \mathrm{m}=0.3$
V_{1-12}
V_{7-12}
I_{7}
G_{V}
o(p-p)
$\mathrm{d}_{\text {tot }}$ $\mathrm{d}_{\text {tot }}$
ΔV_{0}

$\begin{array}{lll}\text { typ. } & 7.4 & \mathrm{~V} \\ \leq & 8.5 & \mathrm{~V}\end{array}$
typ. 22 V
typ. 0.7 mA
$\geq \quad 70 \mathrm{~dB}$
typ. 76 dB
typ. $100 \mu \mathrm{~V}$
typ. - 1.7 V
typ. 1.6 V
$\leq \quad 5 \%$
typ. 1.6%
$\geq \quad 60 \mathrm{~dB}$
typ. 44 dB

[^78]
APPLICATION INFORMATION

Detector coil L: 6.5 turns 0.5 mm Cu wire.
Coil former: AP3016/02 (used without Ferroxcube frame)
Can: AP3015/02
Screw core: 312210493040

TELEVISION SIGNAL PROCESSING CIRCUIT

The TAA700 is a silicon monolithic integrated signal processing circuit for television receivers. It combines following functions:

- video pre-amplifier with emitter follower output.
- gateda.g.c. detector supplying thea.g.c. voltages for the vision i.f. amplifier and tuner (delayed)
- noise inverter for gating the a.g.c. and sync separator circuits
- sync. separator
- automatic horizontal synchronisation
- vertical sync. pulse separator
- blanking facility for the video amplifier

The circuit is designed for receivers equipped with tubes or transistors in the deflection and video output stages, and with $n-p-n t r a n s i s t o r s ~ i n ~ t h e ~ t u n e r ~ a n d ~ i . f . ~ a m-~$ plifier.
Only signals with negative modulation can be handled by the circuit.

QUICK REFERENCE DATA				
Supply voltage	VP	typ.	12	V
Ambient temperature	$\mathrm{T}_{\text {amb }}$		25	${ }^{\circ} \mathrm{C}$
Video input voltage (peak to peak value)	$\mathrm{V}_{10}-16$ (p-p)	typ.	2	V
Voltage gain of the video amplifier	G_{V}	typ.	9.5	dB
A.G.C. voltage for i.f. part ($\left.\mathrm{R}_{1}=2 \mathrm{k} \Omega\right)$	V_{4-16}	typ.	0 to 8	V
A.G.C. voltage for tuner ($\left.\mathrm{R}_{1}=1 \mathrm{k} \Omega\right)$	V_{6-16}	typ.	0 to 7	V
Output voltage horizontal phase detector	$\pm \mathrm{V}_{2-1}$	typ.	3	V
Vertical sync. output voltage (positive going pulse; peak to peak value)	$\mathrm{V}_{15-16}(\mathrm{p}-\mathrm{p})$	>	10	V

MECHANICAL DATA (See page 7)

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage	V_{P}	max.	16
Power dissipation	$\mathrm{P}_{\text {tot }}$	max.	600

Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-25	to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-25	to +125	${ }^{\circ} \mathrm{C}$

[^79]
CHARACTERISTICS

Supply voltage range $\quad \mathrm{V}_{\mathrm{P}} \quad 10$ to 14 V
Measured in circuit on page 6 at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=12 \mathrm{~V}$ Video amplifier

Input resistance (detector load)
Input capacitance
Bandwith (3dB)
Voltage gain
Video input voltage (peak to peak value)
Video output voltage (peak to peak value)
Tolerances on video output voltage:
I. C. processing spreads

Temperature drift
Spreads over a.g. c. expansion (entire range)

Black level at the output
Tolerances on the black level at the output:
$\left.\begin{array}{llllll}\text { I. C. processing spreads } & \pm \Delta \mathrm{v}_{12-16} & <300 \mathrm{mV} \\ \text { Temperature drift } & \Delta \mathrm{v}_{12-16} & < & 7 \mathrm{mV} /{ }^{\circ} \mathrm{C}^{3} \text {) }\end{array}\right\}$

1) Negative going video signal (no pre-bias needed for the detector)
${ }^{2}$) Video signal with negative going sync pulse.
2) Because the integrated circuit reaches 95% of its final working temperature in 100 seconds, the temperature variations to be considered are those caused by the slower rise in cabinet temperature and by changes in room temperature.
3) Variation about a nominal condition, the i.f. being fully controlled and the tuner uncontrolled. The video signal increases and the black level decreases with increasing antenna signal.
4) Only valid if the video signal is in accordance with the CCIR standard.
5) To this must be added $0.7 \Delta V_{P}$, if operation of the a.g.c. causes a change in V_{P}.
6) The total load on pin 12 must be such that under nominal conditions $\mathrm{I}_{12 \mathrm{M}} \leq 14 \mathrm{~mA}$.

CHARACTERISTICS (continued)

Video blanking

Input voltage (peak to peak value)
Input resistance
A.G.C. circuit

Control voltage i.f. amplifier
Control voltage tuner
Signal expansion for full control of i.f. amplifier and tuner

Keying input pulse (peak to peak value)
Input resistance
Synchronisation circuit

Sync. separator

$\mathrm{V}_{11-16}(\mathrm{p}-\mathrm{p})$ $\mathrm{R} 11-16$	$\begin{array}{r} 1 \text { to } 5 \\ \text { typ. } \quad 1 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{k} \Omega \end{aligned}$
V_{4-16}	0 to 8	V^{1})
V_{6-16}	0 to 7	V 1)
	<15	\% 1)
$\mathrm{V}_{3-16}(\mathrm{p}-\mathrm{p})$	1 to 5	V 2)
R3-16	typ.	$\mathrm{k} \Omega$

Control voltage line oscillator
Output voltage vertical sync.pulse separator (peak to peak value)
Output impedance

APPLICATION INFORMATION

A) Centre-lines of all leads are within $\pm 0.254 \mathrm{~mm}$ of the nominal positions shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0.51 \mathrm{~mm}$.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.
2. By dip or wave
$260^{\circ} \mathrm{C}$ is the maximum allowable temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the allowable limit.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

INTEGRATED A.M. RADIO RECEIVER CIRCUIT

The TAA840 is a monolithic integrated circuit for use in a.m. radio; it incorporates an r.f. amplifier, mixer-oscillator, i.f. amplifier, a.g.c., detector, audio preamplifier and driver.
An audio output stage suiting the requirements of the receiver must be added separately.
The detection capacitor and resistor of the series detector are integrated. The i.f. amplifier incorporates provision for the use of a tuning indicator. Since the circuit is adapted to operate in conjunction with i.f. filters having low input and output impedance, pre-aligned i.f. block-filters can be used.

QUICK REFERENCE DATA			
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	25	${ }^{\circ} \mathrm{C}$
Supply voltage	V_{P}	typ.	V
$\begin{aligned} & \text { A.F. output power at } d_{\text {tot }}=10 \% \\ & \text { (with AC187/AC188) } \end{aligned}$	P_{0}	typ. 900	mW
Total quiescent current (except output stages)	$\mathrm{I}_{\text {tot }}$	typ. 17	mA
R.F. input voltage (at pin 1) for a signal to noise ratio of 26 dB	V_{i}	typ. 20	$\mu \mathrm{V}$
A.G.C. range (change in r.f. input voltage for 10 dB expansion in audio range)		typ. 64	dB
R.F. signal handling (at pin 1)		typ. 20	mV
R.F. input voltage (at pin l) for full output (start of clipping at $\mathrm{P}_{\mathrm{O}}=650 \mathrm{~mW}$)		typ. 3	$\mu \mathrm{V}$
Harmonic distortion of h.f. part (over most of a.g.c. range) $m=-30 \%$	$\mathrm{d}_{\text {tot }}$	typ. 1.2	\%
$\mathrm{m}=80 \%$	$\mathrm{d}_{\text {tot }}$	typ. 2.6	\%

PACKAGE OUTLINE : 14 lead dual in-line (See General Section)

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum system (IEC 134)
Voltages (tolerated minimum: 0 V)

Pin No. 2 voltage
Pin No. 3 voltage
Pin No. 4 voltage
Pin No. 5 voltage
Pin No. 7 voltage
Pin No. 8 voltage
Pin No. 11 voltage
Pin No. 13 voltage
Currents (tolerated minimum: 0 mA)
Pin No. 1 current
Pin No. 9 current
Pin No. 10 current
Pin No. 12 current
Dissipation

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125
	${ }^{\circ} \mathrm{C}$	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to +55

V_{2-6}	max.	12	V
$\mathrm{~V}_{3}-6$	\max.	6	V
$\mathrm{~V}_{4}-6$	\max.	1	V
$\mathrm{~V}_{5}-6$	\max.	12	V
$\mathrm{~V}_{7}-6$	\max.	12	V
$\mathrm{~V}_{8}-6$	\max.	12	V
$\mathrm{~V}_{11-6}$	\max.	12	V
$\mathrm{~V}_{13-6}$	\max.	12	V

I_{1}	\max.	80	$\mu \mathrm{~A}$
I 9	\max.	80	$\mu \mathrm{~A}$
I_{10}	\max.	80	$\mu \mathrm{~A}$
I_{12}	\max.	80	$\mu \mathrm{~A}$
$\mathrm{P}_{\text {tot }}$	\max.	260	mW

$$
\begin{array}{lll}
\mathrm{T}_{\text {stg }} & -55 \text { to }+125 & { }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{amb}} & -20 \text { to }+55 & { }^{\circ} \mathrm{C}
\end{array}
$$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=6 \mathrm{~V}^{1}$)
Measured in the circuit on page 5

Breakdown voltage of driver stage
Saturation voltage of driver stage
Pin No. 5 voltage at $V_{P}=6 \mathrm{~V}$ (via a series resistor of 68Ω)

Current drain

Quiescent current of a.f. output stage with AC187/AC188

Total chip dissipation
Supply voltage for 20 mV (r.m.s value)
oscillator operation at $\mathrm{f}=1 \mathrm{MHz}$
A.C. characteristics
A.F. output power at $\mathrm{d}_{\text {tot }}=10 \%$
(with AC187/AC188)f $=1000 \mathrm{~Hz}$
A.F. output power (onset of clipping) $f=1000 \mathrm{~Hz} P_{o}$
R.F. input voltage (at pin 1) for signal to noise ratio of 26 dB
A.G.C. range (change in r.f. input voltage for 10 dB expansion in audio range)

$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	>	12	V
${ }^{\mathrm{V}}$ CE sat	$<$	0.6.	V
V_{5-6}	typ	5.5	V
$\mathrm{I}_{2}+\mathrm{I}_{5}+\mathrm{I}_{13}$	typ	8	mA
$\mathrm{I}_{7}+\mathrm{I}_{8}$	typ	8.4	mA^{2})

$\mathrm{I}_{2}+\mathrm{I}_{5}+\mathrm{I}_{13}$
$\begin{array}{lrl}\text { typ. } & 8 & \mathrm{~mA} \\ \text { typ. } & 8.4 & \mathrm{~mA}^{2} \text {) }\end{array}$
typ. 5 mA
typ. 65 mW
< 125 mW
$>3 \mathrm{~V}$

I_{Q}	typ.	65 mW	
$\mathrm{P}_{\text {tot }}$	$<$	125	mW

typ. 900 mW
typ. 650 mW
typ. $\left.20 \mu \mathrm{~V}^{3}\right)^{4}$)
typ. $\left.64 \quad \mathrm{~dB}{ }^{3}\right)^{4}$)

[^80]CHARACTERISTICS (continued)

Signal handling:
R.F. input voltage (at pin 1) to obtain 10% distortion at 80% modulation, $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$
typ. $20 \mathrm{mV}^{\mathrm{l}}$)
R.F. input voltage (at pin 1) for 10 mV (a.f.) across volume control
A.F. voltage across volume control for $100 \mu \mathrm{~V}$ (r.f.) input voltage (at pin 1)

Input conductance of r.f. amplifier (at pin 1)
Input conductance of i.f. amplifier at $\mathrm{f}=500 \mathrm{kHz}$ (at pin 12)
typ. $\left.2.7 \mu \mathrm{~V}^{1}\right)^{2}$)

Signal to noise ratio for 1 mV (r.f.) input voltage (at pin 1)
A.F. voltage (at pin 9)
for 50 mW output power
typ. $30 \mathrm{mV}^{1} \mathrm{l}^{2}$)
typ. $0.5 \mathrm{~m} \Omega^{-1} 1$)
typ. $0.5 \mathrm{~m} \Omega^{-1}$
A.F. voltage (at pin 9) for output power at onset of clipping
typ. $\left.46 \mathrm{~dB}^{\mathrm{l}}\right)^{2}$)

Loss of overall receiver sensivity at cell voltage of 0.9 V and 50 mW output power typ. $\left.\quad 4 \quad \mathrm{~dB}{ }^{1}\right)^{2}$)

Oscillator frequency shift over range of supply voltage at $f_{\text {osc }}=2 \mathrm{MHz}$
$<1.3 \mathrm{kHz} / \mathrm{V}$
\rightarrow Note
Tuning indicator inserted in pin 13

1) Measured at 1 MHz with the antenna circuit connected (source resistance of about
$1 \mathrm{k} \Omega$ for pin 1)
2) 30% modulation, $\mathrm{f}_{\mathrm{m}}=1000 \mathrm{~Hz}$
APPLICATION INFORMATION
Circuit of a medium wave-long wave radio receiver, with TAA840 (given for m.w.)

Oscillator coils:
N1 : N2 = 135: 2
$\left.\begin{array}{ll}\mathrm{C} 3=0 \text { to } 195 \mathrm{pF} & \mathrm{C} 9=0 \text { to } 80 \mathrm{pF} \\ \mathrm{C} 4=\text { trimmer } & \mathrm{C} 8=\text { trimmer }\end{array}\right\} \quad \begin{array}{ll}222280710039\end{array}$

[^81]$\overline{\underline{\underline{\underline{\underline{\underline{2}}}}}}$

APPLICATION INFORMATION (continued)

Total harmonic distortion of the audio part versus a.f. output power at 1 kHz

APPLICATION INFORMATION (continued)

Current flowing through lead (pin 13) in which tuning indicator may be inserted versus r.f. input voltage and field strength. ${ }^{1}$)

A.F. signal and noise voltage across volume control and a.f. noise voltage across volume control versus r.f. input voltage and field strength. ${ }^{1}$)
${ }^{1}$) Field strength scale valuable for ferrite aerial of 200 mm length and 10 mm diameter; R.F. input signal 30% modulated with 1 kHz sine wave.

APPLICATION INFORMATION (continued)

Total harmonic distortion of the h.f. part measured across volume control versus r.f input voltage and field strength.

Input signal 30% and 80% modulated with 1 kHz sinewave.
Field strength scale valuable for ferrite aerial of 200 mm length and 10 mm diameter.

TRIPLE AMPLIFIER FOR ACTIVE FILTERS

The TAA960 consists of three identical general-purpose amplifiers integrated in a single silicon chip. The amplifiers can be used separately or can be cascaded to give a voltage gain of 117 dB . One of the amplifiers has an additional emitter-follower stage. The TAA960 is very suitable for use in an active RC band-pass filter with Q up to 60 .

QUICK REFERENCE DATA				
Supply voltage	V_{3-10}	nom.	6	V
Supply current	I_{3}	typ.	2	mA
Transfer admittance (each amplifier)	$\left\|\mathrm{y}_{\mathrm{fs}}\right\|$	typ.	9.5	$\mathrm{~m} \Omega^{-1}$
Voltage gain (each amplifier)	G_{V}	typ.	39	dB
Input resistance (on pins 1, 7 and 8)	R_{i}	$>$	25	$\mathrm{k} \Omega$
Output resistance (on pins 2, 5 and 6)	R_{O}	typ.	9	$\mathrm{k} \Omega$
	(on pin 4)	R_{O}	typ.	500
Q factor (in typical RC filter)	Q	typ.	45	

PACKAGE OUTLINE TO-74; reduced height
Dimensions in mm

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages with respect to pin 10

Supply voltage ${ }^{1}$)	V_{3}	\max	10	V
Input voltage	$\mathrm{V}_{8}, \mathrm{~V}_{7}, \mathrm{~V}_{1}$	\max.	4	V
Output voltage	$\mathrm{V}_{6}, \mathrm{~V}_{5}, \mathrm{~V}_{4}, \mathrm{~V}_{2}$	\max.	10	V

Currents

Input current	$\mathrm{I}_{8}, \mathrm{I}_{7}, \mathrm{I}_{1}$	\max.	50	$\mu \mathrm{~A}$
Total power dissipation		$\mathrm{P}_{\text {tot }}$	\max.	250
Temperatures		mW		
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$	
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-55 to +65	${ }^{\circ} \mathrm{C}$	

CIRCUIT DIAGRAM

[^82]CHARACTERISTICS at $\mathrm{V}_{3}=6 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Supply current ${ }^{1}$)	I_{3}		1.5 to 2.5	mA
		typ.	2.0	mA
Supply current ${ }^{1}$) at $\mathrm{V}_{3}=10 \mathrm{~V}$	I_{3}		1.5 to 3.8	mA
		typ.	2.6	mA
Voltage gain (each amplifier)	G_{v}	$*$	60 to 150	
		typ.	90	
Input resistance (each amplifier)	R_{i}	>	25	$\mathrm{k} \Omega$
Output resistance on terminals 2, 5 and 6	R_{0}	>	8	k ת
		typ.	9	k ¢
on terminals 4	R_{0}		135 to 750	Ω

1) Terminal 8 connected to terminal 6
" 7 " " $\quad . \quad 5$
" 1 " " " 2

APPLICATION INFORMATION

Active RC filter for frequencies up to 150 kHz

$$
\mathrm{R}=10 \mathrm{k} \Omega
$$

Frequency	f	typ.	$\frac{1}{2 \pi \mathrm{RC}}$	
Supply voltage	V_{P}	typ.	6	V
$\begin{aligned} & \frac{\text { Filter performance }}{\text { at } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}} \\ & \text { at } \mathrm{T}_{\mathrm{amb}}=-30 \text { to }+65^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{Q} \end{aligned}$	typ.	$\begin{gathered} 40 \text { to } 55 \\ 45 \\ 35 \text { to } 55 \end{gathered}$	
Input voltage	V_{i}	typ.	400	mV
Output voltage	V_{0}	typ.	400	mV
Distortion at $\mathrm{V}_{0}=350 \mathrm{mV}$	$\mathrm{d}_{\text {tot }}$	typ.	2	\%
S / N ratio at $\mathrm{V}_{\mathrm{O}}=400 \mathrm{mV}$	S/N	>	50	dB
Input resistor ${ }^{1}$)	R_{S}	typ.	470	$\mathrm{k} \Omega$

1) Value of input resistor to be determined for $\frac{V_{0}}{V_{i}}=0.90$ to 1.1 .

MICROPHONE AMPLIFIER

The TAA970 is a monolithic integrated microphone amplifier for use in telephone systems. It is compatible with both piezo-electric and dynamic microphones of suitable impedance and sensitivity.
Special features are:

- almost constant voltage gain andd.c. voltage drop with supply current variations of 10 to 100 mA
- output voltage before limiting: 1 V (r.m.s. value)
- operation is independent of supply voltage polarity
- gain can be set to either of two values
- only one external capacitor required
- output impedance determined by internal feed back

QUICK REFERENCE DATA			
Supply current	$\pm \mathrm{I} 2$	10 to 100	mA
Supply voltage drop	$\pm \mathrm{V}_{2-4}$	typ. 4.	V
Voltage gain pin 9 not connected pin 9 connected to pin 10	$\begin{aligned} & \mathrm{G}_{\mathrm{v}} \\ & \mathrm{G}_{\mathrm{v}} \end{aligned}$	$\begin{array}{ll} \text { typ. } & 130 \\ \text { typ. } & 180 \end{array}$	
Output impedance pin 9 not connected pin 9 connected to pin 10	$\begin{aligned} & \mathrm{R}_{\mathrm{O}} \\ & \mathrm{R}_{\mathrm{o}} \end{aligned}$	$\begin{array}{lr} \text { typ. } & 80 \\ \text { typ. } & 115 \end{array}$	Ω

PACKAGE OUTLINE

TO-74 (reduced height) Dimensions in mm

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance to the Absolute Maximum System (IEC 134).
Currents

CHARACTERISTICS at $\mathrm{R}_{\mathrm{L}}=200 \Omega ; \mathrm{f}=2 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified. (see test circuit below).

Supply voltage drop at $R_{\text {th }} \mathrm{j}-\mathrm{a}=100^{\circ} \mathrm{C} / \mathrm{W}$

$$
\begin{array}{lllll}
\pm \mathrm{I}_{2}=10 \mathrm{~mA} & \pm \mathrm{V}_{2-4} & < & 5.4 & \mathrm{~V} \\
\pm \mathrm{I}_{2}=50 \mathrm{~mA} & \pm \mathrm{V}_{2-4} & < & 4.5 & \mathrm{~V} \\
\pm \mathrm{I}_{2}=100 \mathrm{~mA} & \pm \mathrm{V}_{2-4} & < & 5.8 & \mathrm{~V} \\
\hline & & 6.3 & \mathrm{~V}
\end{array}
$$

Voltage gain
pin 9 not connected $\begin{cases} \pm I_{2}=10 \mathrm{~mA} & \mathrm{G}_{\mathrm{V}} \\ \pm \mathrm{I}_{2}=50 \mathrm{~mA} & \mathrm{G}_{\mathrm{V}}\end{cases}$
pin 9 connected to pin $10\left\{\begin{array}{l} \pm \mathrm{I}_{2}=10 \mathrm{~mA} \\ \pm \mathrm{I}_{2}=50 \mathrm{~mA}\end{array}\right.$
Change of voltage gain
due to change of supply voltage polarity
Gain reduction at $\mathrm{f}=300 \mathrm{~Hz}$
(with respect to $\mathrm{f}=2 \mathrm{kHz}$)
Output impedance at $\pm \mathrm{I}_{2}=50 \mathrm{~mA}$
pin 9 not connected
pin 9 connected to pin 10
Noise output voltage at $B=0.3 \mathrm{kHz}$ to 4 kHz
pin 9 not connected
pin 9 connected to pin 10
Output voltage

$$
I_{2}=50 \mathrm{~mA} ; \mathrm{d}_{\mathrm{tot}}=5 \%
$$

$$
\Delta G_{v}
$$

G_{V}
G_{v}
G_{V}
ΔG_{V} ΔG_{V}
$\mathrm{R}_{\mathrm{o}} \quad$ typ. $\quad 80 \quad \Omega$
R_{o}
$\mathrm{V}_{\mathrm{n}(\mathrm{rms})}<1 \mathrm{mV}$
$\mathrm{V}_{\mathrm{n}}(\mathrm{rms})<1.3 \mathrm{mV}$
V_{0}
$\begin{array}{lll}> & 0.7 & \mathrm{~V} \\ \text { typ. } & 1.0 & \mathrm{~V}\end{array}$

Test circuit:

TAB101

RING (DE)MODULATOR FOR TELEPHONY AND INDUSTRIAL EQUIPMENT

The TAB101 is a monolithic integrated circuit comprising a 4-transistor modulator and demodulator circuit. The circuit being made on a single crystal ensures a great similarity in characteristics of the transistors and optimal tracking of their parameters with temperature variations. Consequently, the TAB101 gives a better balancing and therefore less carrier leakage than a conventional circuit. The use of transistors instead of diodes provides a better isolation between input and output circuits.

QUICK REFERENCE DATA			
Collector cut-off current			
$\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	${ }^{\text {I }} \mathrm{CBO}$	< 100	nA
Base-emitter voltage differences between transistors $1,2,3,4$$\quad\left\|\mathrm{~V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\right\|<5 \mathrm{mV}$			
$\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V} ;-\mathrm{I}_{\mathrm{E}}=150 \mu \mathrm{~A}$	$\left\|\mathrm{V}_{\text {BE3 }}-\mathrm{V}_{\mathrm{BE} 4}\right\|$	<5	mV
$\left.$Common-base current gain differences between transistors 1, 2, 3, 4$\quad \right\rvert\, \mathrm{h}_{\mathrm{FB} 1^{-\mathrm{h}} \mathrm{FB} 2 \mid<0.008}$			
$\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V} ;-\mathrm{I}_{\mathrm{E}}=150 \mu \mathrm{~A}$	$\mid \mathrm{h}_{\mathrm{FB}} 3^{-\mathrm{h}_{\mathrm{FB}}}$ \|	<0.008	

PACKAGE OUTLINE

Dimensions in mm
TO-74 (reduced height)

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages (each transistor)

Collector-base voltage (open emitter)
Emitter-base voltage (open collector)
Collector-substrate voltage
Currents (each transistor)
Collector current
Power dissipation (4 transistors)
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=100{ }^{\circ} \mathrm{C}$
Temperatures
Storage temperature
Operating ambient temperature
$\mathrm{P}_{\text {tot }}$

$\mathrm{V}_{\text {CBO }}$	\max.	10	V
$\mathrm{~V}_{\mathrm{EBO}}$	\max.	5	V
$\mathrm{~V}_{\mathrm{CS}}$	\max.	12	V

IC max. 10 mA

$$
P_{\text {tot }}
$$

max. 100 mW

$\mathrm{T}_{\text {stg }}$	-35 to +125	${ }^{\circ} \mathrm{C}$
$\dot{T}_{\text {amb }}$	-25 to +100	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS (each transistor)
Collector cut-off current

$$
\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}
$$

Collector-substrate leakage current

$$
\mathrm{V}_{\mathrm{CS}}=9.5 \mathrm{~V}
$$

Emitter cut-off current

$$
I_{C}=0 ; V_{E B}=1 \mathrm{~V}
$$

IEBO
Break down voltages

$$
\begin{aligned}
\mathrm{I}_{\mathrm{E}} & =0 ; \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \\
\mathrm{I}_{\mathrm{B}} & =0 ; \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \\
-\mathrm{I}_{\mathrm{S}} & =10 \mu \mathrm{~A} \\
\mathrm{I}_{\mathrm{C}} & =0 ; \mathrm{I}_{\mathrm{E}}=200 \mu \mathrm{~A}
\end{aligned}
$$

D.C. current gain

$$
\mathrm{I}_{\mathrm{C}}=150 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}
$$

$V_{(B R) C B O}$
$V_{(B R) C E O}$
$V_{(B R) C S}$
$V_{(B R) E B O}$

$$
>\quad 20
$$

$$
\text { typ. } \quad 75
$$

Spot noise figure at $\mathrm{f}=1 \mathrm{kHz}$

$$
-I_{E}=150 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}
$$

$R_{S}=1 \mathrm{k} \Omega$; Bandwidth: 200 Hz

Base-emitter voltage difference

between transistors TR1 and TR2 at

$$
-\mathrm{I}_{\mathrm{E} 1}=-\mathrm{I}_{\mathrm{E} 2}=150 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CB} 1}=\mathrm{V}_{\mathrm{CB} 2}=5 \mathrm{~V} \quad\left|\mathrm{~V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\right| \quad \underset{ }{\text { typ. }} \ll \begin{array}{ll}
2 & \mathrm{mV} \\
5 & \mathrm{mV}
\end{array}
$$

between transistors TR3 and TR4 at

$$
-\mathrm{I}_{\mathrm{E} 3}=-\mathrm{I}_{\mathrm{E} 4}=150 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CB}}=\mathrm{V}_{\mathrm{CB} 4}=5 \mathrm{~V} \quad\left|\mathrm{~V}_{\mathrm{BE} 3}-\mathrm{V}_{\mathrm{BE} 4}\right| \quad \underset{\mathrm{typ}}{<} \quad \begin{array}{ll}
2 & \mathrm{mV} \\
5 & \mathrm{mV}
\end{array}
$$

Current amplification factor difference

between transistors TR1 and TR2 at

$$
-\mathrm{I}_{\mathrm{E} 1}=-\mathrm{I}_{\mathrm{E} 2}=150 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CB} 1}=\mathrm{V}_{\mathrm{CB} 2}=5 \mathrm{~V} \quad\left|\mathrm{~h}_{\mathrm{FB} 1}-\mathrm{h}_{\mathrm{FB} 2}\right| \quad \underset{<}{\text { typ. }} 0.002
$$

between transistors TR3 and TR4 at

$$
-\mathrm{I}_{\mathrm{E} 3}=-\mathrm{I}_{\mathrm{E} 4}=150 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CB}}=\mathrm{V}_{\mathrm{CB} 4}=5 \mathrm{~V} \quad\left|\mathrm{~h}_{\mathrm{FB} 3}-\mathrm{h}_{\mathrm{FB} 4}\right| \quad \underset{<}{\text { typ. }} 0.002
$$

APPLICATION INFORMATION

Telephony carriers ring modulator

Performance at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Conversion gain at $f_{a}=1 \mathrm{kHz}$,
$\mathrm{V}_{\mathrm{i}}=0.4 \mathrm{~V} ; \mathrm{f}_{\mathrm{p}}=34 \mathrm{kHz}$
Carrier leakage power in R_{O} at $\mathrm{f}_{\mathrm{p}}=34 \mathrm{kHz}$

G_{c}	typ.	-0.75	dB
P_{oc}	typ.	3	nW

INTEGRATED A.M.-RADIO RECEIVER CIRCUIT

The TAD100 is a monolithic integrated circuit, primarily intended for a.m.-radio receivers. The circuit incorporates the mixer, oscillator, i.f. amplifier, a.g.c., detector, audio pre-amplifier and driver stages. The audio output transistors are not included. This enables the use of different power output stages to suit individual receiver requirements. The frequency response of the circuit is such that the front half of the circuit may be used as part of an i.f. amplifier at 10.7 MHz forf.m. receivers.

QUICK REFERENCE DATA					
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$		25		${ }^{\circ} \mathrm{C}$
Supply voltages	VP	nom.	6.0	9.0	V
Output power at $\mathrm{d}_{\text {tot }}=10 \%$ (with AC187/AC188)		typ.	0.7	1.5	W
Total quiescent current (except output stages)		typ.	15	23	mA
R.F. input signal level (at pin 1) for a signal to noise ratio of 26 dB		typ.	30	25	$\mu \mathrm{V}$
A.G.C. range (change in R.F. input voltage for 10 dB expansion in audio range)		typ.	62	62	dB
R.F. signal handling (at pin 1)		typ.	30	30	mV
Harmonic distortion of h.f. part (over most of a.g.c. range)		$<$	2.5	2.5	\%

PACKAGE OUTLINE; 14 lead dual in-line (See General Section)

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Pin No. 6 voltage
Pin No. 2 voltage
Pin No. 9 voltage (via 150Ω)

V_{6-7}	max.	12	V
$\mathrm{~V}_{2-7}$	\max.	9	V
$\mathrm{~V}_{9-7}$	\max.	9	V

Currents

Pin No. 6 current (peak value)
Pin No. 6 average current

$I_{6 M}$	max.	30	mA
$\mathrm{I}_{6 \mathrm{AV}}$	max.	20	mA

Power dissipation

Total power dissipation
$P_{\text {tot }} \quad \max . \quad 150 \mathrm{~mW}$
Temperatures
Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-25 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	-10 to +55	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
A.F. driver saturation voltage $\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}$

Measured in the circuit on page 5:
Output power at $\mathrm{d}_{\text {tot }}=10 \%$ (with AC187/AC188)

Total receiver current drain (excepting the output matched pair AC187/AC188)
R.F. input voltage (at pin 1) for a signal to noise ratio of 26 dB
A.G.C. range (change in r.f. input voltage for 10 dB expansion in audio range)

Harmonic distortion of h.f. part (over most of a.g.c. range)

Signal handling:
R.F. input voltage (at pin 1) to obtain 10% distortion at 80% modulation; $f_{m}=400 \mathrm{~Hz} ;$ R. $\mathrm{F} .=1 \mathrm{MHz}$
R.F. input voltage (at pin 1) for 10 mV a.f. at detector load
A.F. voltage at detector load for $100 \mu \mathrm{~V}$ r.f. at pin 1

Signal to noise ratio for r.f. input voltage of 1 mV (at pin 1)
A.F. voltage (at pin 4) for 50 mW output power
Loss of overall receiver sensitivity for 50 mW output power at cell voltage of 0.9 V
Oscillator voltage at pin 13 (r.m.s. value) at a battery voltage of 3.6 V to 9 V
Oscillator-frequency shift at 2 MHz over a.g.c. range
Oscillator-frequency shift at 2 MHz over range of supply voltage
Typical overall fidelity (flat within 3 dB)

	$\begin{cases}\text { typ. } & 0 \\ <\end{cases}$ $>$	$\begin{array}{ll}.82 & \mathrm{~V} \\ 1.0 & \mathrm{~V} \\ .70 & \mathrm{~V}\end{array}$
$\mathrm{V}_{\mathrm{P}}=9$	6	V
typ. 1.5	0.7	W
17 to 26	11 to 15	mA
typ. 20	13	mA
typ. 25	30	$\mu \mathrm{V}{ }^{1}$)
typ. 62	62	dB ${ }^{1}$)
<2.5	2.5	\% ${ }^{1}$)
typ. 30	30	mV
typ. 3.3	5	$\mu \mathrm{V}{ }^{\text {l }}$)
< 6.0	10	$\left.\mu \mathrm{V}^{1}\right)$
> 30	30	$\mathrm{mV} \mathrm{1)}$
typ. 50	50	$\mathrm{mV}{ }^{1}$)
typ. 40	41	dB^{l})
<5.0	5.0	mV
typ. 7	11	dB 1)
> 95	95	mV
< 350	350	Hz
typ. 300	300	Hz
12	0 to 2000	Hz

[^83]CHARACTERISTICS (continued)

APPLICATION INFORMATION

Medium-wave receiver using the TAD100

Medium wave aerial coil:
$\mathrm{L} 1=310 \mu \mathrm{H} ;$ Qloaded $=100$ at $1 \mathrm{MHz} ;$ FXC rod for 2 MHz
$\frac{\mathrm{V}_{\mathrm{L} 1}}{\mathrm{~V}_{\mathrm{L} 2}} \approx 11$
Medium wave oscillator coil:
$\mathrm{L} 3=165 \mu \mathrm{H} ; \mathrm{Q}_{0}=100$ at 1.4 MHz ; tapping ratio $\mathrm{L} 3 \approx \frac{1}{46}$
$\frac{\mathrm{V}_{\mathrm{L} 3}}{\mathrm{~V}_{\mathrm{L} 4}} \approx 9$
Quiescent current (adjusted by R1): 5 mA
Modification for 9 V supply voltage:
Values in brackets refer only to a 9 V supply, the others apply to 6 V and 9 V supplies.
AC187 and AC188 with cooling clip 56227 on 1.5 mm blackened Al. heatsinks of $9 \mathrm{~cm}^{2}$.

APPLICATION INFORMATION bulletins available on request

1) For 6 V supply: 130Ω; disk type NTC resistor (2322 610 90004)

For 9 V supply: 50Ω; disk type NTC resistor on metal strip (2322 61090016)

OPERATIONAL AMPLIFIER

The TBA221 is a silicon monolythic integrated operational amplifier for use at temperatures from 0 to $70^{\circ} \mathrm{C}$. Special features are:

- no frequency compensation required
- continuous short circuit protection
- offset voltage adjustable to zero
- large input voltage range
- low power consumption
- no latch up

The TBA221 is equivalent to 741 C .

QUICK REFERENCE DATA				
Positive supply voltage	V_{P}		15	V
Negative supply voltage	$-\mathrm{V}_{\mathrm{N}}$		15	V
Characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$				
Voltage gain at $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	G_{V}	typ.	000	
Common mode rejection ratio	CMRR	typ.	90	dB
Differential input resistance	R_{i}	typ.	1	$\mathrm{M} \Omega$
Peak output voltage swing at $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	V_{OM}	>	± 12	V
Input voltage range	V_{i}	>	± 12	V
Power dissipation	$\mathrm{P}_{\text {tot }}$	typ.	50	mW

PACKAGE OUTLINE TO-99

Dimensions in mm

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Positive supply voltage	V_{P}	max.	18	V
Negative supply voltage	$-\mathrm{V}_{\mathrm{N}}$	max.	18	V
Common mode input voltage ${ }^{1)}$	V_{i}	max.	± 15	V
Differential input voltage	V_{2-3}	max.	± 30	V
Power dissipation	$P_{\text {tot }}$	max.	500	mW
Output short circuit duration ${ }^{2)}$		indefinite		
Temperatures				
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$		70	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to	150	${ }^{0} \mathrm{C}$

1) For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
${ }^{2)}$ Continuous short circuit is allowed to ground or either supply.

CIRCUIT DIAGRAM

CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=15 \mathrm{~V}:-\mathrm{V}_{\mathrm{N}}=15 \mathrm{~V}: \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

| Voltage gain; $R_{L} \geq 2 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$ | $\mathrm{G}_{\mathrm{V}} \quad20.000\quad$ typ. 100.000 |
| :--- | :--- | :--- |

$\underline{\text { Input offset voltage; } \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega}$	$\mathrm{V}_{\text {io }}$	$\stackrel{\text { typ. }}{ }$	$\begin{aligned} & 2.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input bias current	I_{i}	typ.	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input offset current	$\mathrm{I}_{\text {io }}$	$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	$\begin{array}{r} 30 \\ 0.2 \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
Common mode rejection ratio; $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	CMRR	$\begin{aligned} & > \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & 70 \\ & 90 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input voltage range	V_{i}	typ.	$\begin{aligned} & \pm 12 \\ & \pm 13 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\underline{\text { Differential input resistance }}$	R_{i}	$\xrightarrow{>}$ typ.	$\begin{array}{r} 0.3 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
Supply voltage rejection ratio; $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	SVRR	$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	$\begin{array}{r} 30 \\ 150 \end{array}$	$\begin{aligned} & \mu \mathrm{V} / \mathrm{V} \\ & \mu \mathrm{~V} / \mathrm{V} \end{aligned}$
Peak output voltage swing at $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	V_{OM}		$\begin{aligned} & \pm 12 \\ & \pm 14 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	V_{OM}	$\begin{aligned} & > \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 13 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Power dissipation at $\mathrm{V}_{\mathrm{O}}=0$	$\mathrm{P}_{\text {tot }}$	typ.	50 85	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

Transient response (unity gain)

$$
\mathrm{V}_{\mathrm{i}}=20 \mathrm{mV} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}
$$

Rise time

Overshoot

$$
\begin{array}{lll}
\text { typ. } & 0.3 & \mu \mathrm{~s} \\
\text { typ. } & 5.0 & \%
\end{array}
$$

Slew rate (unity gain)

$$
\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega
$$

typ.
0.5
$\mathrm{V} / \mu \mathrm{s}$

CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=15 \mathrm{~V} ;-\mathrm{V}_{\mathrm{N}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified

Voltage gain; $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{o}}= \pm 10 \mathrm{~V}$
G_{V}
15. 000

Input offset voltage; $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$;
$\mathrm{V}_{\text {io }}$
7.5
mV

Input bias current
Input offset current

Peak output voltage swing;
$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$
I_{i}
$\mathrm{I}_{\text {io }}$
$<$
0.8
$\mu \mathrm{A}$
io
$<$
0.3
$\mu \mathrm{A}$

Offset voltage zeroing circuit

Transient response test circuit

OPERATIONAL AMPLIFIER

The TBA222 is a silicon monolithic integrated operational amplifier for use at temperatures from -55 to $+125^{\circ} \mathrm{C}$. Special features are:

- no frequency compensation required
- continuous short-circuit protection
- offset voltage adjustable to zero
- large input voltage raing.
- low power consumptica
- no latch-up

The TBA222 is equivalent to 741.

QUICK REFERENCE DATA				
Positive supply voltage	V_{P}		15	V
Negative supply voltage	$-\mathrm{V}_{\mathrm{N}}$		15	V
Characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$				
Voltage gain at $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega ; \mathrm{VO}= \pm 10 \mathrm{~V}$	G_{V}	typ.	200000	
Common mode rejection ratio	CMRR	typ.	90	dB
Differential input resistance	R_{i}	typ.	1	$\mathrm{M} \Omega$
Peak output voltage swing at $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	V_{OM}	$>$	± 12	V
Input voltage range	V_{i}	>	± 12	V
Power dissipation	$\mathrm{P}_{\text {tot }}$	typ.	50	mW

PÁCKAGE OUTLINE TO-99

Dimensions in mm

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Positive supply voltage
Negative supply voltage
Common mode input voltage ${ }^{1}$)
Differential input voltage
Power dissipation ${ }^{2}$)
Output short circuit duration ${ }^{3}$)
Temperatures
Operating ambient temperature
Storage temperature

V_{P}	\max.	22	V
$-\mathrm{V}_{\mathrm{N}}$	\max.	22	V
$\mathrm{~V}_{\mathrm{i}}$	\max.	± 15	V
$\mathrm{~V}_{2-3}$	\max.	± 30	V
$\mathrm{P}_{\text {tot }}$	\max.	500	mW

indefinite

$\mathrm{T}_{\mathrm{amb}}$	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

[^84]
CIRCUIT DIAGRAM

CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=15 \mathrm{~V} ;-\mathrm{V}_{\mathrm{N}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Voltage gain; $R_{L} \geq 21 \Omega ; V_{O}= \pm 10 \mathrm{~V}$	G_{V}	$>$	50000

Input offset voltage; $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	Vio	$\stackrel{\text { typ. }}{<}$	1.0 5.0	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input bias current	I_{i}	$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	0.2 0.5	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input offset current	$\mathrm{I}_{\text {io }}$	$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	30 0.2	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
$\underline{\text { Common mode rejection ratio; } \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega}$	CMRR	typ.	70 90	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input voltage range	V_{i}	$>$ typ.	$\begin{aligned} & \pm 12 \\ & \pm 13 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\underline{\text { Differential input resistance }}$	R_{i}	$\begin{aligned} & > \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & 0.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
$\underline{\text { Supply voltage rejection ratio; } \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega}$	SVRR	typ.	30 150	$\begin{aligned} & \mu \mathrm{V} / \mathrm{V} \\ & \mu \mathrm{~V} / \mathrm{V} \end{aligned}$
$\underline{\text { Peak output voltage swing at } \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega}$	V_{OM}	$>$ typ.	± 12 ± 14	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	V_{OM}	> typ.	± 10 ± 13	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$\underline{\text { Power dissipation }}$ at $\mathrm{V}_{\mathrm{O}}=0$	$\mathrm{P}_{\text {tot }}$	typ.	50 85	mW mW

Transient response (unity gain)
$\mathrm{V}_{\mathrm{i}}=20 \mathrm{mV} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$

Rise time
Overshoot
$\frac{\text { Slew rate }}{R_{L} \geq 2}$ (unity gain)

$$
\begin{array}{lll}
\text { typ. } & 0.3 & \mu \mathrm{~s} \\
\text { typ. } & 5.0 & \%
\end{array}
$$

typ.
$0.5 \mathrm{~V} / \mu \mathrm{s}$

CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=15 \mathrm{~V} ;-\mathrm{V}_{\mathrm{N}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-55$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified.

Voltage gain; $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$
Input offset voltage; $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$
Input bias current
Input offset current

G_{V}	$>$	25.000	
$\mathrm{~V}_{\text {io }}$	$<$	6	mV
I_{i}	$<$	1.5	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {io }}$	$<$	0.5	$\mu \mathrm{~A}$

$\frac{\text { Peak output voltage swing }}{\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega}$
± 10
V

Offset voltage zeroing circuit

Transient response test circuit

AUTOMATIC LINE SYNCHRONISATION CIRCUIT

The TBA240 is a monolithic integrated noise detector and inverter, sync separator, catching circuit, and line discriminator. It can be used in a wide variety of $b-w$ and colour television receivers and is designed for best operation with negative-modulated video signals but is also compatible with positive modulation. The required supply voltages are +5.5 V and +12 V .

QUICK REFERENCE DATA			
Supply voltages	V_{7-16}	typ. 5.5	V
	V_{1-16}	typ. 12	V
Ambient temperature	Tamb	typ. 25	${ }^{\circ} \mathrm{C}$
Total average power dissipation	$\mathrm{P}_{\text {tot }}$	typ. 100	mW
Required input signals			
Typical composite peak white to peak sync voltage	V10-16	0.5 to 3	V
Negative noise pulse current (peak value)	$\mathrm{I}_{13 \mathrm{M}}$	>100	$\mu \mathrm{A}$
Positive noise pulse current (peak value)	$\mathrm{I}_{15 \mathrm{M}}$	>10	$\mu \mathrm{A}$
Delivered output signals			
Discriminator output voltage (peak to peak value)	$\mathrm{V}_{3-16}(\mathrm{p}-\mathrm{p})$	<4	V
Positive going sinc pulse voltage (peak to peak value)	V_{5-16} (p-p)	typ. 7.5	V
Negative going noise pulse voltage (peak to peak value)	V9-16(p-p)	typ. 2	V
Typical composite video, with inverted noise pulses, peak white to peak sync voltage	V_{11-16}	0.5 to 3	V

PACKAGE OUTLINE : 16 lead quadruple in-line (See page 8)

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages
Pin No. 1 voltage ($\mathrm{V}_{1-16}>\mathrm{V}_{7-16}$)
Pin No. 2 voltage
Pin No. 3 voltage
Pin No. 4 voltage (via $R_{2} \geq 1 \mathrm{k} \Omega$)
Pin No. 6 voltage (connect pin 6 to
pin 1 , via $\mathrm{R}_{3} \leq 2 \mathrm{k} \Omega$); $\mathrm{V}_{6-16}>\mathrm{V}_{7-16}$
$\mathrm{V}_{\text {1-16 }} \max .13 \mathrm{~V}^{1}$)
see test circuit on page 5
do not apply external voltage
$\mathrm{V}_{4-16} \quad-5$ to $+1.5 \mathrm{~V} \quad{ }^{2}$)

V6-16 max. $\left.13 \quad V^{1}\right)^{2}$)

[^85]RATINGS (continued)
Pin No. 7 voltage
Pin No. 8 voltage (connect pin 8 to pin 7 , via $R 4>50 \mathrm{k} \Omega$)
Pin No. 9 voltage (connect pin 9 to pin 7, via R5 $<10 \mathrm{k} \Omega$)
$\mathrm{V}_{7-16} \max . \quad 7 \mathrm{~V}^{1}$)

Pin No. 10 voltage (via R6>2k)
$\mathrm{V}_{10-16}<\mathrm{V}_{7-16}$
Pin No. 11 voltage
Pin No. 12 voltage
Pin No. 13 voltage (via $R_{7}>1 \mathrm{k} \Omega$)
Pin No. 15 voltage

Currents

Pin No. 5 current	I_{5}	-5 to	+0.5	mA
Pin No. 11 current	$\pm I_{11}$	\max.	250	$\mu \mathrm{~A}$
Pin No. 13 current	$-\mathrm{I}_{13}$	\max.	1	mA
Pin No. 14 current	$\pm \mathrm{I}_{14}$	\max.	1	mA
Pin No. 15 current	I_{15}	\max.	1	mA
Total power dissipation	$P_{\text {tot }}$	\max.	260	mW

[^86]$\underline{\text { Total average power dissipation }} \quad \mathrm{P}_{\text {tot }} \quad$ typ. 100 mW
Required input signals
Typical composite peak white to peak sync voltage
V_{10-16}
0.5 to 3 V

Negative noise pulse current (peak value)
Positive noise pulse current (peak value)

Delivered output signals
Discriminator output voltage (peak to peak value)
Positive going sync pulse voltage (peak to peak voltage)

Negative going noise pulse voltage (peak to peak value)
Typical composite video, with inverted noise pulses, peak white to peak sync voltage (to be utilized if external frame sync is applied)

Frequency response for signal voltages:
$\mathrm{V}_{2-16}, \mathrm{~V}_{5-16}$ and V_{9-16} with respect to V_{10-16}

$$
\begin{array}{ll}
\mathrm{t}_{\mathrm{pdr}}+\mathrm{t}_{\mathrm{r}} & \leq 600 \mathrm{~ns} \\
\mathrm{t}_{\mathrm{pdf}}+\mathrm{t}_{\mathrm{f}} & \leq 600 \mathrm{~ns}
\end{array}
$$

Symmetry fault in discriminator
Pin No. 2 and No. 3 voltage difference
(for symmetrical saw tooth of $3 \mathrm{Vp}-\mathrm{p}$)

CHARACTERISTICS (continued)

Test circuit:

APPLICATION INFORMATION

Example of a circuit for negative modulated signals

Notes:

1. The video signal is d.c. coupled to the clipping circuit and the sync pulse is sliced about 30% below top sync.
2. For positive modulation a.c. coupling is preferred (see figure below); slicing then varies between 10% and 30% below top sync, depending on picture content.

APPLICATION INFORMATION (continued)

3. In the top circuit on page 6 , pin 13 gives amplitude selective and pin 15 frequency selective noise inversion. The amplitude selective inversion starts when impulses pass zero in the negative direction; the frequency selective inversion, when the peak voltage across the coil exceeds 0.7 V .
4. The keying voltage on pin 4 (top circuit on page 6) is derived from the voltage across the capacitor in series with the line deflection coils; alternatively, it can be derived from a positive flyback voltage across the coils (less components), but in that case the vertical pulse may exercise a stronger influence on the line flywheel.
5. In the out-of-sync conditions the phase discriminator operates as a frequency detector; to keep the catching range from being shifted, the d.c. load at pin 3 should not be allowed to exceed about $6 \mu \mathrm{~A}$. Good results are obtained with a reactance stage sensitivity of $1 \mathrm{kHz} / \mathrm{V}(\pm 700 \mathrm{~Hz}$ catching range).
6. An integral stabilization circuit (TR12) establishes the level of the comparison sawtooth at pin 2. To avoid overloading the stabilization circuit, the direct current from pin 2 to earth must not exceed 1 mA .
7. The clipper input (pin 10) calls for a video signal with negative-going sync pulses. The figure below shows the optimum levels.
The clipped slice is proportional to the difference between the top sync level and +5.5 V (i.e. to 3 V in figure below).

16 LEAD QUADRUPLE IN-LINE

A) Centre-lines of all leads are within $\pm 0.254 \mathrm{~mm}$ of the nominal positions shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0.51 \mathrm{~mm}$.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.
2. By dip or wave
$260{ }^{\circ} \mathrm{C}$ is the maximum allowable temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the allowable limit.
3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

VOLTAGE REGULATOR

The TBA281 is a monolithic voltage regulator. It comprises a temperature compensated reference amplifier, an error amplifier, a power series pass transistor and current limit circuitry. External series pass transistors may be added if the load current exceeds the maximum limit. The circuit can be used with adjustable current limiting and remote shut down. It features lowstand-by current drain, low temperature drift and high ripple rejection. The TBA281 can be used with positive or negative supply voltages as a series, shunt, switching or floating regulator in the ambient temperature range 0 to $+70^{\circ} \mathrm{C}$. The TBA281 is equivalent to the 723 C .

QUICK REFERENCE DATA								
Line regulation								
$\mathrm{V}_{\mathrm{i}}=12 \mathrm{~V}$ to 40 V	typ.	0.1	$\% \mathrm{~V}_{\mathrm{O}}$					
Load regulation								
$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$ to 50 mA	typ.	0.03	$\% \mathrm{Vo}_{0}$					
Stand-by current drain								
$\mathrm{V}_{\mathrm{i}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0$	typ.	2.3	mA					
Input voltage range		9.5 to 40	V					
Output voltage range	2.0 to 37	V						
Input-output voltage difference	3.0 to 38	V						

PACKAGE OUTLINE

Dimensions in mm

For details of pin numbering see page 3 .

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Input voltage	V_{7}	\max.	40	V
Supply voltage	V_{8}	\max.	40	V
Input-output voltage difference	V_{7-6}	\max.	40	V

Currents

Output current	$-\mathrm{I}_{6}$	\max	150	mA
Current from reference amplifier output	$-\mathrm{I}_{4}$	\max.	15	mA
Power dissipation 1)	$P_{\text {tot }}$	\max.	800	mW

Temperatures
Operating ambient temperature
Storage temperature
$\mathrm{T}_{\mathrm{amb}}$

0 to	+70
-65 to	+150

${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }} \quad-65$ to $+150 \quad{ }^{\circ} \mathrm{C}$

[^87]
CIRCUIT DIAGRAM

PINNING

1. Current sense
2. Inverting input
3. Non-inverting input
4. Reference voltage ($V_{r e f}$)
5. Negative supply voltage $\left(-\mathrm{V}_{\mathrm{N}}\right)$
6. Output voltage (V_{O})
7. Collector voltage $\left(\mathrm{V}_{\mathrm{C}}\right)$
8. Positive supply voltage (V_{P})
9. Frequency compensation
10. Current limit

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V} ;-\mathrm{V}_{\mathrm{N}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V} ; \mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA}$, $\mathrm{R}_{\mathrm{SC}}=0 ; \mathrm{C}_{1}=100 \mathrm{pF} ; \mathrm{C}_{\mathrm{ref}}=0$ unless otherwise specified;
(for testcircuit see figs. 1, 2 and 3 on page 5)
Line regulation
at $\mathrm{V}_{\mathrm{i}}=12$ to $\mathrm{V}_{\mathrm{i}}=15 \mathrm{~V}$
at $\mathrm{V}_{\mathrm{i}}=12$ to $\mathrm{V}_{\mathrm{i}}=40 \mathrm{~V}$
at $\mathrm{V}_{\mathrm{i}}=12$ to $\mathrm{V}_{\mathrm{i}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0$ to $+70^{\circ} \mathrm{C}$
$\frac{\text { Load regulation }}{\text { at } I_{L}=1 \text { to } I_{L}}=50 \mathrm{~mA}$
at $I_{L}=1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA} ; \mathrm{T}_{\mathrm{amb}}=0$ to $+70^{\circ} \mathrm{C}$
Ripple rejection at $\mathrm{f}=50 \mathrm{~Hz}$ to 10 kHz
$C_{\text {ref }}=0$
$\mathrm{C}_{\text {ref }}=5 \mu \mathrm{~F}$
verage temperature coefficient
of output voltage at $\mathrm{T}_{\mathrm{amb}}=0$ to $+70^{\circ} \mathrm{C}$
$\frac{\text { Short circuit current limit }}{\mathrm{R}_{\mathrm{SC}}=10 \Omega ; \mathrm{V}_{\mathrm{O}}=0}$
Reference voltage

Output noise voltage at $\mathrm{B}=100 \mathrm{~Hz}$ to 10 kHz
$\mathrm{C}_{\text {ref }}=0$
$C_{\text {ref }}=5 \mu \mathrm{~F}$
$\frac{\text { Long term stability }}{\text { over } 1000 \text { hours }}$
Stand-by current drain

$\mathrm{I}_{\mathrm{L}}=0 ; \mathrm{V}_{\mathrm{i}}=30 \mathrm{~V}$	IP	$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	$\begin{aligned} & 2.3 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Input voltage range	V_{i}		9.5 to 40	V
Output voltage range	V_{0}		2.0 to 37	V
Input-output voltage difference			3.0 to 38	V

CHARACTERISTICS (continued)

[^88]Formulae for intermediate output voltages
Outputs from +2 V to +7 V (fig. 1)

$$
\begin{aligned}
& V_{0}=V_{\text {ref }} \quad x \frac{R_{2}}{R_{1}+R_{2}} \\
& V_{0}=V_{\text {ref }} \quad x \frac{R_{1}+R_{2}}{R_{2}}
\end{aligned}
$$

Resistor values ($k \Omega$) for standard output voltages.

positive output voltage (V)	figure	fixed output $\pm 5 \%$		adjustable output ${ }^{1}$) $\pm 10 \%$ (see fig. 3)		
		R_{1}	R_{2}	R_{1}	R_{V}	R_{2}
+3.0	1	4.12	3.01	1.8	0.5	1.2
+3.6	1	3.57	3.65	1.5	0.5	1.5
+5.0	1	2.15	4.99	0.75	0.5	2.2
+6.0	1	1.15	6.04	0.5	0.5	2.7
+9.0	2	1.87	7.15	0.75	1.0	2.7
+12	2	4.87	7.15	2.0	1.0	3.0
+15	2	7.87	7.15	3.3	1.0	3.0
+28	2	21.0	7.15	5.6	1.0	2.0

1) For adjustable output voltage replace R_{1} / R_{2} in fig. 1 and 2 with divider circuit shown in fig. 3 (on page 5).

INDEX OF TYPE NUMBERS

The inclusion of a type number in this publication does not necessarily imply its availability.

Type No,	Section	Type No.	Section	Type No.	Section
FCH101	DTL	FCY101	DTL	FDR126Z1	MOS
FCH111	DTL	FDH106	MOS	FDR131Z	MOS
FCH121	DTL	FDH116	MOS	FDR131Z1	MOS
FCH131	DTL	FDH126	MOS	FJH101/7430	TTL
FCH141	DTL	FDH136	MOS	FJH111/7420	TTL
FCH151	DTL	FDH146	MOS	FJH121/7410	TTL
FCH161	DTL	FDH156	MOS	FJH131/7400	TTL
FCH171	DTL	FDJ106	MOS	FJH141/7440	TTL
FCH181	DTL	FDN106	MOS	FJH151/7450	TTL
FCH191	DTL	FDN116	MOS	FJH161/7451	TTL
FCH201	DTL	FDN126	MOS	FJH171/7453	TTL
FCH211	DTL	FDN136	MOS	FJH181/7454	TTL
FCH221	DTL	FDN146	MOS	FJH191/7480	TTL
FCH231	DTL	FDN146A	MOS	FJH201/7482	TTL
FCH281	DTL	FDN156	MOS	FJH211/7483	TTL
FCH291	DTL	FDN156A	MOS	FJH221/7402	TTL
FCH301	DTL	FDN166A	MOS	FJH231/7401	TTL
FCH311	DTL	FDN186	MOS	FJH241/7404	TTL
FCH321	DTL	FDN196A	MOS	FJH251/7405	TTL
FCJ101	DTL	FDN206	MOS	FJH261/7442	TTL
FCJ111	DTL	FDN206A	MOS	FJH291/7403	TTL
FCJ121	DTL	FDN506	MOS	FJH301/7426	TTL
FCJ131	DTL	FDN516A	MOS	FJH311/7401-S1	TTL
FCJ141	DTL	FDN526A	MOS	FJH321/7403-S1	TTL
FCJ191	DTL	FDQ106	MOS	FJJ101/7470	TTL
FCJ201	DTL	FDR106Z	MOS	FJJ111/7472	TTL
FCJ211	DTL	FDR106Z1	MOS	FJJ121/7473	TTL
FCJ221	DTL	FDR116Z	MOS	FJJ131/7474	TTL
FCL111	DTL	FDR116Z1	MOS	FJJ141/7490	TTL
	DTL	FDR126Z	MOS	FJJ151/7491A	TTL

DTL $=$ FC family
MOS $=$ FD family
TTL = FJ family

Type No.	Section	Type No.	Section	Type No.	Section
FJJ181/7475	TTL	TAA370	L	TAB101	L
FJJ191/7476	TTL	TAA435	L	TAD100	L
FJJ211/7493	TTL	TAA450	L	TBA221	L
FJJ251/7492	TTL	TAA521	L	TBA222	L
FJJ261/74107	TTL	TAA522	L	TBA240	L
FJK101/74121	TTL	TAA550	L	TBA281	L
FJL101/7441A	TTL	TAA560	L		
FJY101/7460	TTL	TAA570	L		
OM200	L	TAA580	L		
TAA263	L	TAA630	L		
TAA293	L	TAA640	L		
TAA300	L	TAA700	L		
TAA310	L	TAA840	L		
TAA320	L	TAA960	L		
TAA350	L	TAA970	L		

TTL = FJ family

L = Linear integrated circuits

General

DTL
FC family
FJ family

MOS
FD family
Linear integrated circuits

[^0]: *The version letter denotes a variant with respect to electrical performance and/or encapsulation

[^1]: *) See appendix for drawing dimensions.

[^2]: ${ }^{1}$) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
 2) For negative output voltage.
 3) At this limit, input voltage type.: -1.5 V .

[^3]: ${ }^{1}$) per gate

[^4]: 1) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
 2) For negative output voltage in LOW state
 3) At this limit input voltage typ.: -1.5 V .
[^5]: $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
 $\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
 $\mathrm{X}=$ state is immaterial

[^6]: 1) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
 2) For negative output voltage in LOW state.
 3) At this limit, input voltage typ. : -1.5 V .
 ${ }^{4}$) Both gates together; outputs not short-circuited.
[^7]: $\overline{1) \text { Including }}$ probe and jig capacitance.

[^8]: 1) For negative output voltage.
 2) At this limit input voltage typ. : -1.5 V .
[^9]: ${ }^{1}$) Including probe and jig capacitance

[^10]: 1) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
 ${ }^{2}$) For negative output voltage in LOW state.
 3) At this limit input voltage typ. : -1.5 V .
[^11]: ${ }^{1}$) For negative output voltage.
 2) At this limit input voltage typ.: -1.5 V .

[^12]: ${ }^{1}$) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
 ${ }^{2}$) For negative output voltage in LOW state.
 3) At this limit input voltage typ. : -1.5 V

[^13]: ${ }^{1}$) For negative output voltage in LOW state.
 2) At this limit input voltages typ. : -1.5 V .

[^14]: ${ }^{1}$) Both flip-flops together

[^15]: 1) For negative output voltage in LOW state.
 2) At this limit input voltage typ. : -1.5 V
[^16]: 1) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
 2) For negative output voltage.
 3) At this limit input voltage type.: -1.5 V .
[^17]: ${ }^{1}$) For negative output voltage in LOW state.
 2) At this limit input voltage typ. -1.5 V .

[^18]: ${ }^{1}$) At negative input voltage

[^19]: ${ }^{1}$) for negative output voltage in LOW state.
 ${ }^{2}$) at this limit, input voltage typ: -1.5 V .
 ${ }^{3}$) $\mathrm{C}_{\mathrm{t}} \min 30 \mathrm{pF}$ is not a rating, but is to be considered as the minimum value at which the circuit still performs its function.

[^20]: ${ }^{1}$) In addition the voltage difference between any two inputs max. 5.5 V
 2) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $\mathrm{f}=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}} \geq 75 \Omega$.

[^21]: ${ }^{1}$) In addition, peak voltage difference between any two inputs $=\max .5 .5 \mathrm{~V}$.
 ${ }^{2}$) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $\mathrm{f}=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}} \geq 75 \Omega$.

[^22]: ${ }_{\text {1 }}$) In addition, the voltage between any two inputs must not exceed 5.5 V .
 ${ }^{2}$) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $\mathrm{f}=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}} \geq 75 \Omega$.

[^23]: 1) Including probe and jig capacitance.
[^24]: ${ }^{1}$) In addition the voltage between any two inputs must not exceed 5.5 V .
 ${ }^{2}$) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $f=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}} \geq 75 \Omega$.

[^25]: 1) Including probe and jig capacitance.
[^26]: 1) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $f=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}}>75 \Omega$
[^27]: ${ }^{1}$) Including probe and jig capacitance

[^28]: 1) In addition, the voltage between any two inputs must not exceed 5.5 V .
 ${ }^{2}$) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $f=5 \mathrm{MHz}$; source resistance $R_{S} \geq 75 \Omega$
[^29]: 1) Only one output to be shorted at a time
[^30]: 1) In addition, the voltage between any two inputs max. 5.5 V
 2) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $\mathrm{f}=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}} \geq 75 \Omega$
[^31]: ${ }^{1}$) Not more than one output must be shorted at a time

[^32]: ${ }^{1}$) In addition, the voltage between any two inputs must not exceed 5.5 V .
 ${ }^{2}$) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $\mathrm{f}=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}} \geq 75 \Omega$.

[^33]: ${ }^{1}$) In addition, the voltage between any two inputs must not exceed 5.5 V .
 2) Pulse duration $t_{p}=20 \mathrm{~ms}$; repetition frequency $f=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}} \geq 75 \Omega$.

[^34]: ${ }^{1}$) Including probe and jig capacitance
 ${ }^{2}$) $R_{L}=390 \Omega$ for $t_{\text {pdf }}$
 $R_{L}=3900 \Omega$ for $t_{p d r}$

[^35]: 1) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $\mathrm{f}=5 \mathrm{MHz}$; source resistance $R_{S} \geq 75 \Omega$.
[^36]: ${ }^{1}$) In addition, the voltage between any two inputs must not exceed 5.5 V .

[^37]: 1) Only one output to be shorted at a time.
[^38]: 1) In addition, the voltage between any two inputs must not exceed 5.5 V
 2) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequencyf $=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}} \geq 75 \Omega$
[^39]: *) $\mathrm{J}=\mathrm{J}_{1}$ or J_{2}
 $K=K_{2}$ or K_{3}

[^40]: 1) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $f=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}} \geq 75 \Omega$.
[^41]: ${ }^{1}$) Including probe and jig capacitance

[^42]: ${ }^{1}$) In addition the voltage between any two inputs must not exceed 5.5 V .
 2) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $f=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}} \geq 75 \Omega$.

[^43]: ${ }^{1}$) In addition the voltage between any two input must not exceed 5.5 V .
 2) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $f=5 \mathrm{MHz}$; source resistance $R_{S} \geq 75 \Omega$.

[^44]: ${ }^{1}$) In addition the voltage between any two inputs must not exceed 5.5 V .
 ${ }^{2}$) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $f=5 \mathrm{MHz}$; source resistance $R_{S} \geq 75 \Omega_{\text {o }}$

[^45]: 1) In addtion the input voltage between any two T inputs or between any two S inputs: max. 5.5 V .
 2) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $f=5 \mathrm{MHz}$; source resistance $R_{S} こ 75 \Omega$.
[^46]: ${ }^{1}$) Including probe and jig capacitance.

[^47]: ${ }^{1}$) In addition the input voltage between any two T inputs or between any two S inputs: max. 5.5 V .
 ${ }^{2}$) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $f=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}} \geq 75 \Omega$.

[^48]: ${ }^{1}$) Including probe and jig capacitance.

[^49]: ${ }^{1}$) In addition, the voltage between any two inputs must not exceed 5.5 V .
 ${ }^{2}$) Pulse duration $t_{p}=20$ ns; repetition frequency $f=5 \mathrm{MHz}$; source resistance $R_{S} \geq 75 \Omega$.

[^50]: ${ }^{1}$) Only one input to be shorted at a time.

[^51]: $\overline{\text { 1) N.I.T.; Numerical Indicator Tube. }}$

[^52]: 1) When used with FJH151/7450 or FJH171/7453 as applicable.
[^53]: ${ }^{1}$) In addition the voltage between any two inputs: max. 5.5 V .
 ${ }^{2}$) Pulse duration $t_{p}=20 \mathrm{~ns}$; repetition frequency $\mathrm{f}=5 \mathrm{MHz}$; source resistance $\mathrm{R}_{\mathrm{S}} \geq 75 \Omega$.

[^54]: 1) When used in conjunction with the FJH151/7450
[^55]: $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
 L = LOW state (the less positive voltage)
 $\mathrm{X}=$ state is immaterial

[^56]: ${ }^{1}$) Typical values are measured at $\mathrm{V}_{\mathrm{P}_{1}}=-26 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}_{2}}=-13 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

[^57]: ${ }^{1}$) All typ. values are measured at: $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P} 1}=-26 \mathrm{~V} ; \mathrm{V}_{\mathrm{P} 2}=-13 \mathrm{~V}$.

[^58]: ${ }^{1}$) Non return to zero.

[^59]: ${ }^{1}$) External behaviour: 512-bit shift register.

[^60]: 1) Non return to zero.
[^61]: 1) Above $f_{\phi}=1.54 \mathrm{MHz} t_{\phi 1} \mathrm{Lmin}$ and $t_{\phi} 2 \mathrm{Lmin}$ determine the maximum value of $t_{\phi H L}$ and $t_{\phi L H}$.
[^62]: ${ }^{1}$) See timing diagram on page 5 .

[^63]: $\overline{1_{)} \text {In doing so, the ROM runs at the } \phi_{1}, \phi_{2}}$
 clock-rate through a sequence of 22 addresses.

[^64]: Note: 1 = LOW; $0=\mathrm{HIGH}$

[^65]: Note: $1=$ LOW; $0=\mathrm{HIGH}$

[^66]: 1) See example on page 12
[^67]: Note: $1=$ LOW; $0=\mathrm{HIGH}$

[^68]: ${ }^{1}$) See example on page 13

[^69]: 1) Condition: A9 is HIGH
[^70]: 1) The EBCDIC to ASCII is ' to ρ
[^71]: 1) Condition: $\mathrm{A}_{9}=$ LOW
[^72]: ${ }^{1}$) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.
 ${ }^{2}$) This value may be exceeded during inductive switch-off for transient energies $<10 \mu \mathrm{Ws}$.
 ${ }^{3}$) The transducer gain is defined as the ratio of the output power in the load of $|\mathrm{Z}|=1.5 \mathrm{k} \Omega$ and the available input power of the source with $R_{S}=5 \mathrm{k} \Omega$

 $$
 G_{t r}=\frac{P_{o}}{V_{i}^{2} / 4 R_{S}}
 $$

[^73]: 1) $-\mathrm{V}_{\mathrm{GS}}$ decreases about $6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ with increasing ambient temperature at a constant $-I_{D}$.
[^74]: *) For operation with a capacitive load use R2 $=50 \Omega$.

[^75]: 1) See transfer characteristic.
[^76]: ${ }^{1}$) Unloaded voltage at potentiometer tap.
 ${ }^{2}$) Switch S1 closed; switch S2 in position b.
 ${ }^{3}$) Switch S1 closed; switch S2 in position a.

[^77]: ${ }^{1}$) Ratio of peak to peak values of input and output voltage measured in test circuit on page 6 .
 $G_{V(R-Y)}=\frac{V_{4}-16}{V_{13-16}} ; G_{V}(B-Y)=\frac{V 7-16}{V_{9}-16}$
 ${ }^{2}$) Linearity of gain ≥ 0.7
 ${ }^{3}$) Measured in the test circuit on page 6 .

[^78]: ${ }^{1}$) Permissible while tubes are heating up.
 ${ }^{2} \mathrm{I}_{\text {tot }}=\mathrm{I}_{1}+\mathrm{I}_{7}+\mathrm{I}_{8}$

[^79]: 1) Permissible while tubes are heating up.
[^80]: 1) Circuit designed for use in receivers with 6 V or 9 V battery.

 Voltage at pin 5 to be adjusted 5.5 V regardless of battery voltage; a.f. driver (pin No.8) can be fed direct from either 6 V or 9 V .
 ${ }^{2}$) $I_{7}+I_{8}$ depend on the load resistances at pins 7 and 8 .
 3) Measured at 1 MHz with the antenna circuit connected (source resistance of about $1 \mathrm{k} \Omega$ for pin 1)
 4) 30% modulation, $f_{m}=1000 \mathrm{~Hz}$.

[^81]: Ferrite rod aerial coils

 | Medium wave: | $\mathrm{N} 1: \mathrm{N} 2=65: 3.5$ |
 | :--- | :--- |
 | | $\mathrm{~L} 1=450 \mu \mathrm{H} ; \mathrm{Q} 0=100$ at 1 MHz |
 | Long wave: | $\mathrm{N} 1: \mathrm{N} 2=200: 10$ |
 | | $\mathrm{~L} 2=3.5 \mathrm{mH} ; \mathrm{Q} 0=75$ at 200 kHz |

[^82]: ${ }^{1}$) With lower d.c. potential on all other terminals.

[^83]: ${ }^{1}$) R.F. $=1 \mathrm{MHz}$; 30% modulation; $\mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz}$

[^84]: ${ }^{1}$) For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
 2) Rating applies for case temperatures up to $125{ }^{\circ} \mathrm{C}$; derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $75^{\circ} \mathrm{C}$.
 ${ }^{3}$) Continuous short circuit is allowed for case temperatures up to $125^{\circ} \mathrm{C}$ and ambient temperatures up to $70^{\circ} \mathrm{C}$. Short circuit is allowed to ground or either supply.

[^85]: 1) Tolerated minimum voltage: 0 V
 ${ }^{2}$) See test circuit on page 5.
[^86]: 1) Tolerated minimum voltage: 0 V
 ${ }^{2}$) Tolerated minimum current: 0 mA
 ${ }^{3}$) Derated from $\mathrm{T}_{\mathrm{amb}} \geq 60^{\circ} \mathrm{C}$ with $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
[^87]: -) For operation above ambient temperature of $25^{\circ} \mathrm{C}$ derate linearly at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^88]: 1) $R_{3}=\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}}$ for minimum temperature drift. R_{3} may be eliminated for mini-
 mum component count.
 ${ }^{2}$) For adjustable output voltage replace $\mathrm{R}_{1} / \mathrm{R}_{2}$ in fig. 1 and 2 with divider circuit
 shown in fig. 3.
