HHMulder.

VACUUM DEVICES

MARCH 1969

VACUUM DEVICES

March 1969

	And the Color of Colo
Pumps	
Gauge Heads	
Taps	
Fittings	
Apparatus	

PUMPS

PUMP PERFORMANCE OF SPUTTER ION PUMPS

It has been established that the performance of all sputter ion pumps varies according to the treatment of the pump and the quantity and nature of the gas being pumped. Since no standard is yet available, the data presented here is based on experiments carried out according to the recommendations of a working group of the International Union for Vacuum Science Techniques and Applications (I.U.V.S.T.A.). These recommendations have the support of many international workers and will, it is hoped, form the basis of a standard of the International Standards Organisation (I.S.O.).

The ultimate pressure is determined in a specially constructed apparatus after preparing the equipment according to a well defined procedure. In this way the total gas load evolved from the measuring equipment is controlled, and comparisons between different pumps can be made.

The pumping speed for dry air is recommended as the basic performance data. The experiments are carried out in an apparatus with well-defined geometry. Two curves are given. The regenerated curve corresponds to the condition immediately after bakeout, when high values of pumping speed are obtained. At pressures below 5×10^{-9} torr, these pumping speeds are maintained for many hours, and can be determined under equilibrium conditions; at higher pressures pumping causes a more rapid fall in the pumping speed, and the speed tends to fall to a lower steady value. This value is the saturated speed plotted in the lower curve. The time taken to saturate depends on the quantity of gas pumped, and varies approximately inversely with the operating pressure.

The techniques for preparing the pump and the measuring equipment and the method of data presentation are carried out according to the recommendations of the I.U.V.S.T.A. group.

EIP-12

EVAPORATION ION PUMP

One-shot evaporation ion pump, consisting of a Bayard-Alpert gauge with the addition of a zirconium getter filament. The getter is evaporated from the getter filament, the pumping speed being enhanced by the ionising action of the gauge.

The Bayard-Alpert gauge can be used independently for measuring purposes.

CHARACTERISTICS

Pressure range, pumping measurement	10 ⁻³ to 10 ⁻¹¹ 10 ⁻³ to 10 ⁻¹⁰	torr torr
Pumping speed average (for nitrogen) at 10 mA emission current	0.4	1/ s
		-,
Gauge sensitivity (for nitrogen)	approx. 12	per torr
Gauge filament characteristics	see page 3	
Gauge emission current range	$1 \ \mu A$ to 75	mA
Insulation resistance before pumping Collector to other electrodes Grid to other electrodes	min. 10 ¹⁴ min. 10 ¹²	Ω

TYPICAL OPERATING CONDITIONS

Gauge emission current (see also page 2) measurement outgassing

100 μA, 1 mA or 10 mA 75 mA

¹) Getter filament current at the given supply voltage

8 A

March 1968

LIMITING VALUES

Gauge filament voltage	max.	8	V
Gauge emission current	max.	75	mА
Getter filament current	max.	10	А
Grid wattage	max.	40	W
Bulb temperature during operation	max.	100	oC
Bake-out temperature	max.	450	oC

MECHANICAL DATA

Material W1 glass

Dimensions in mm

ASSOCIATED EQUIPMENT

Gauge control unit

GCU-1

Note: The getter filament supply cannot be derived from the above mentioned control unit.

EIP-12

SORPTION PUMP

Molecular sieve sorption pump, based on the absorption of gasses by molecular sieve when the latter is cooled to, for example, liquid nitrogen temperature. The pump will pump a closed volume of maximal two litres from atmospheric pressure down to approx. 10^{-3} torr. Pump-down time depends on a number of local factors such as water vapour content and internal impedance; generally with a system of 1 litre pumping is completed in less than 10 minutes.

The device consists of a stainless steel tube to which a flange is fitted, the latter being designed for use with gold wire seals. A glass Dewar vase, which can be suspended from the fitting provided on the pump, is supplied with the pump. For carrying off the absorded gasses, which are freed when the pump is allowed to recever to room temperature, an outlet is provided; normally the outlet is closed with a rubber bung.

CHARACTERISTICS

Closed volume to be pumped	max.	2	litres
Refrigeration temp. (liquid nitrogen)		-196	°C
Final pressure	<	₁₀ -3	torr
Pump down time to 10^{-2} torr for a volume of 1 litre (see also page 3)			
with prechill	*	10	min.
without prechill	*	15	min.
Temperature for reactivating the molecular sieve after contamination with water			
and hydrocarbonates		250	°C
Weight of molecular sieve charge		68	gram

LIMITING VALUES	
Bake-out temperature	max. 300 °C
ASSOCIATED COMPONENTS	
Mating flange	VMF-18 series
Gold wire seal	VMS-18 series
Insulating tap (non bakeable)	VT-18F
Insulating tap (bakeable)	VTB-18F
Set of nuts, bolts, washers and studding	V - 1018
CDADE DADEC	

SPARE PARTS

Glass dewar

Charge of molecular sieve

DIMENSIONS

V-1001 V-1005

Dimensions in mm

SORPTION PUMP

Molecular sieve sorption pump, based on the absorption of gasses by molecular sieve when the latter is cooled to, for example, liquid nitrogen temperature. The pump will pump a closed volume of maximal twenty litres from atmospheric pressure down to approx. 10^{-3} torr. Pumpdown time depends on a number of local factors such as water vapour content and internal impedance; generally with a system of 10 litres pumping is completed in less than 10 minutes.

The device consists of a stainless steel tube to which a flange is fitted, the latter being designed for use with gold wire seals. The pump is provided with a fitting from which a Dewar vase can be suspended; both a glass and a stainless steel dewar are available. For carrying off the absorded gasses, which are freed when the pump is allowed to recover to room temperature, an outlet is provided; normally the outlet is closed with a rubber bung.

CHARACTERISTICS

Closed volume to be pumped	max.	20	litres
Refrigeration temp. (liquid nitrogen)	-	-196	oC
Final pressure	< 1	10-3	torr
<pre>Pump-down time to 10⁻² torr for a volume of 10 litres (see also page 3) with prechill without prechill</pre>	5	≈ 10 ≈ 15	min. min.
Temperature for reactivating the molecular sieve after contamination with water and hydrocarbonates		250	°C
Weight of molecular sieve charge		650	gram
LIMITING VALUES			
Bake-out temperature	max.	300	oC

ASSOCIATED COMPONENTS

Class Dewar	V-1002
Stainless steel Dewar	V-1003
Heater (230 V, 325 Watt)	V-1004
Mating flange	VMF-25 series
Gold wire seal	VMS-25 series
Insulating tap (non bakeable)	VT-25F
Insulating tap (bakeable)	VTB-25F
Set of nuts, bolts, washers and studding	V-1019

SPARE PARTS

Charge of molecular sieve

DIMENSIONS

rubber bung

Note

Minimum height, required by pump in combination with Dewar

700 mm

Dimensions in mm

V-1006

VKP-1 VKP-1F VKP-1K VKP-1P

"K" TYPE MAGNETRON SPUTTER ION PUMP

1 litre/s sputter ion pump based on the Penning principle with magnetron structure cells, featuring a highly stable pumping action and a high pumping speed for Argon; pressure range 10^{-2} torr to 10^{-11} torr.

Pumping action starts immediately as soon as the operating voltage is switched on. Bake-out temperatures up to 450 °C may be used with the magnets in position; however, when higher bake-out temperatures and/or a low thermal inertia are preferred, the magnets can easily be removed.

> Type VKP-1 has a stainless steel tubulation Type VKP-1F has a metal flange Type VKP-1K has a Kodial glass tubulation Type VKP-1P has a Pyrex glass tubulation

CHARACTERISTICS

(pump in combination with the power supply type KPS-1)

Pressure range	10^{-2} to 10^{-11} tor	r
Pumping speed, air	see page 4	
argon	$12 \mbox{ to } 20\%$ of that of nitroge	n
Operating voltage, D.C.	4.9 kV	
Discharge current	see page 5	
Average life at 10^{-6} torr (below 10^{-4} torr inversely propertional to pressure)	50 000 h	

LIMITING VALUES

Striking pressure	max.	2x10-2	torr
Operating voltage, d.c.	max.	8	kV
Input power	max.	25	W 1)
Bake-out temperature, with magnets without magnets	max. max.	450 500	°C °C
Ambient temperature during operation (See also data KPS-1)	max.	300	°С

 The regulation of the power supply should be such that this input power is not exceeded at any pressure.

MECHANICAL DATA

Dimensions in mm

Mounting position: any. The distance to adjacent ferro-magnetic materials should be at least 75 mm.

VKP-1

VKP-1F

VKP-1 VKP-1F VKP-1K VKP-1P

VKP-1K VKP-1P

ASSOCIATED EQUIPMENT

Power supply

KPS-1

December 1968

VKP-8

"K" TYPE MAGNETRON SPUTTER ION PUMP

8 litre/s sputter ion pump based on the Penning principle with magnetron structure cells, featuring a highly stable pumping action and a high pumping speed for Argon; pressure range 10^{-2} torr to 10^{-11} torr.

Pumping action starts immediately as soon as the operating voltage is switched on. Bake-out temperatures up to 400 °C may be used with the magnets in position; however, when higher bake-out temperatures and/or a low thermal inertia are preferred, the magnets can easily be removed.

Also the complete h.t. connector assembly is removable for cleaning purposes without disassembling the rest of the pump.

The pump is provided with a flange.

CHARACTERISTICS

(pump in combination with the power supply type KPS-8)

Pressure range	10^{-2} to 10^{-11}	torr
Pumping speed, air	see page 3	
argon	12 to $20%$ of that of nitro	ogen
Operating voltage, D.C.	4.9	kV
Discharge current	see page 4	
Average life at 10^{-6} torr (below 10^{-4} torr inversely proportional to pressure)	50 000	h

LIMITING VALUES

Striking pressure	max.	2x10-2	torr
Operating voltage, d.c.	max.	8	kV
Input power	max.	100	W 1)
Bake-out temperature, with magnets without magnets	max. max.	400 500	оС 0С
Ambient temperature during operation (See also data $KPS-8$)	max.	300	oС

¹) The regulation of the power supply should be such that this input power is not exceeded at any pressure.

MECHANICAL DATA

VMF-18¹)

Dimensions in mm

Flange type

¢6.6(5x)

Mounting position: any The distance to adjacent ferro-magnetic materials should be at least 75 mm.

Remark

The pump is supplied in evacuated condition and should be kept sealed until ready for use.

ASSOCIATED EQUIPMENT AND COMPONENTS

Power supply	KPS-8
Mating flange	VMF-18series
Gold wire seal	VMS-18series
Set of nuts, bolts, washers and studding	V-1018

¹⁾ Special flanges to customer design can be fitted on request.

VKP-8

Decembra Maria Ma

December 1968

VKP-15

"K" TYPE MAGNETRON SPUTTER ION PUMP

15 litre/s sputter ion pump based on the Penning principle with magnetron structure cells, featuring a highly stable pumping action and a high pumping speed for Argon; pressure range 10^{-2} torr to 10^{-11} torr.

Pumping action starts immediately as soon as the operating voltage is switched on. Bake-out temperatures up to 400 ^{OC} may be used with the magnets in position; however, when higher bake-out temperatures and/or a low thermal inertia are preferred, the magnets can easily be removed.

Also the complete h.t. connector assembly is removable for cleaning purposes without disassembling the rest of the pump.

The pump is provided with a flange.

CHARACTERISTICS

(pump in combination with the power supply type KPS-15)

Pressure range	10^{-2} to 10^{-11}	torr
Pumping speed, air	see page 3	
argon	12 to 20% of that of nitroge	en
Operating voltage, D.C.	4.9	kV
Discharge current	see page 4	
Average life at 10^{-6} torr (below 10^{-4} torr inversely proportional to pressure)	50 000	h

LIMITING VALUES

Striking pressure	max. 2x	10 ⁻² torr
Operating voltage, d.c.	max.	8 kV
Input power	max.	200 W ¹)
Bake-out temperature, with magnets without magnets	max. max.	400 °C 500 °C
Ambient temperature during operation (See also data $KPS = 15$)	max.	300 °C

¹) The regulation of the power supply should be such that this input power is not exceeded at any pressure.

December 1968		

MECHANICAL DATA

Dimensions in mm

Flange type VMF-25 1)

Mounting position: any. The distance to adjacent ferro-magnetic materials should be at least $75\ \mathrm{mm}$.

Remark

The pump is supplied in evacuated condition and should be kept sealed until ready for use.

ASSOCIATED EQUIPMENT AND COMPONENTS

Power supply	KPS-15	
Mating flange	VMF - 25	series
Gold wire seal	VMS-25	series
Set of nuts, bolts, washers and studding	V-1019	

 1) Special flanges to customer design can be fitted on request.

December 1968

VKP-50

"K" TYPE MAGNETRON SPUTTER ION PUMP

50 litre/s sputter ion pump based on the Penning principle with magnetron structure cells, featuring a highly stable pumping action and a high pumping speed for Argon; pressure range 10^{-2} torr to 10^{-11} torr.

Pumping action starts immediately as soon as the operating voltage is switched on. Bake-out temperatures up to 400 $^{\rm O}$ C may be used with the magnets in position; however, when higher bake-out temperatures and/or a low thermal inertia are preferred, the magnets can easily be removed.

Also the pumping elements and the complete h.t. connector assembly are removable for cleaning purposes without disassembling the rest of the pump.

The pump is provided with a flange. If required, an extra flange connection can be provided opposite the existing entry to accommodate a sublimation pump or a bakeout heater.

CHARACTERISTICS

(pump in combination with the power supply type KPS-50)

Pressure range	10-2 to 1	0-11	torr
Pumping speed, air	see page	3	
argon	12 to 209 that of ni	% of itroger	1
Operating voltage, D.C.		4.9	kV
Discharge current	see page	4	
Average life at 10 ⁻⁶ torr (below 10 ⁻⁴ torr inversely proportional to pressure)	5	0000	h
LIMITING VALUES			
Striking pressure	max.2x	10 - 2	torr
Operating voltage, d.c.	max.	8	kV
Input voltage	max.	300	W 1)
Bake-out temperature, with magnets	max.	400	oC
without magnets	max.	500	oC

Ambient temperature during operation (See also data KPS-50)

1) The regulation of the power supply should be such that this input power is not exceeded at any pressure.

1

300 °C

max.

MECHANICAL DATA

Dimensions in mm

Flange type VMF-51 1)

Mounting position: any. The distance to adjacent ferro-magnetic materials should be at least 75 mm.

Remark

The pump is supplied in evacuated condition and should be kept sealed until ready for use.

ASSOCIATED EQUIPMENT AND COMPONENTS

Power supply	KPS -50	
Mating flange	VMF-51	series
Gold wire seal	VMS - 51	series
Set of nuts, bolts, washers and studding	V-1019	
Bake-out jacket	V-1056	

¹) Special flanges to customer design can be fitted on request.

December 1968

VKP-50

December 1968

"K" TYPE MAGNETRON SPUTTER ION PUMP

100 litre/s sputter ion pump based on the Penning principle with magnetron structure cells, featuring a highly stable pumping action and a high pumping speed for Argon; pressure range 10^{-2} torr to 10^{-11} torr.

Pumping action starts immediately as soon as the operating voltage is switched on. Bake-out temperatures up to 400 °C may be used with the magnets in position; however, when higher bake-out temperatures and/or a low thermal inertia are preferred, the magnets can easily be removed.

Also the pumping elements and the complete h.t. connector assembly are removable for cleaning purposes without disassembling the rest of the pump.

The pump is provided with a flange. If required, an extra flange connection can be provided opposite the existing entry to accommodate a sublimation pump or a bakeout heater.

CHARACTERISTICS

(pump in combination with the power supply type KPS-100)

Pressure range	10^{-2} to 10^{-11} torr
Pumping speed, air	see page 3
argon	12 to 20 $\%$ of that of nitrogen
Operating voltage, D.C.	4.9 kV
Discharge current	see page 4
Average life at 10^{-6} torr (below 10^{-4} torr inversely proportional to pressure)	50 000 h

LIMITING VALUES

Striking pressure	max. 2:	x 10-2	torr
Operating voltage, d.c.	max.	8	kV
Input power	max.	400	W 1)
Bake-out temperature, with magnets without magnets	max. max.	400 500	оС 0С
Ambient temperature during operation	max.	300	oC

1) The regulation of the power supply should be such that this input power is not exceeded at any pressure.

MECHANICAL DATA

Dimensions in mm

Flange type

VMF-100¹)

Mounting position: any. The distance to adjacent ferro-magnetic materials should be at least 75 $\,\rm mm$.

Remark

The pump is supplied in evacuated condition and should be kept sealed until ready for use.

ASSOCIATED EQUIPMENT AND COMPONENTS

Power supply	KPS-100
Mating flange	VMF-100 series
Gold wire seal	VMS-100 series
Set of nuts, bolts, washers and studding	V-1020
Bake-out jacket	V-1057

1) Special flanges to customer design can be fitted on request.

December 1968

"K" TYPE MAGNETRON SPUTTER ION PUMP

150 litre/s sputter ion pump based on the Penning principle with magnetron structure cells, featuring a highly stable pumping action and a high pumping speed for Argon; pressure range 10^{-2} torr to 10^{-11} torr.

Pumping action starts immediately as soon as the operating voltage is switched on. Bake-out temperatures up to 400 °C may be used with the magnets in position; however, when higher bake-out temperatures and/or a low thermal inertia are preferred, the magnets can easily be removed.

Also the pumping elements and the complete h.t. connector assembly are removable for cleaning purposes without disassembling the rest of the pump.

The pump is provided with a flange. If required, an extra flange connection can be provided opposite the existing entry to accommodate a sublimation pump or a bake-out heater.

CHARACTERISTICS

ķ

ł

k

1

(pump in combination with the power supply type KPS-150)

Pressure range	10^{-2} to 10^{-11} torr
Pumping speed, air	see page 3
argon	12 to 20 $\%$ of that of nitrogen
Operating voltage, D.C.	4.9 kV
Discharge current	see page 4
Average life at 10^{-6} torr (below 10^{-4} torr inversely proportional to pressure)	50 000 h

LIMITING VALUES

Striking pressure	max.	2x10-2	torr
Operating voltage, d.c.	max.	8	kV
Input power	max.	400	W ¹)
Bake-out temperatures, with magnets without magnets	max. max.	400 500	оС 0С
Ambient temperature during operation (See also data KPS-150)	max.	300	⁰ C

1) The regulation of the power supply should be such that this input power is not exceeded at any pressure.

MECHANICAL DATA

Flange type VMF-100 1)

Mounting position: any

The distance to adjacent ferro-magnetic materials should be at least 75 mm

Remark

286

The pump is supplied in evacuated condition and should be kept sealed until ready for use.

415

ASSOCIATED EQUIPMENT AND COMPONENTS

Power supply	KPS-150
Mating flange	VMF-100 series
Gold wire seal	VMS-100 series
Set of nuts, bolts, washers and studding	V-1020
Bake-out jacket	V-1055

 $^{\rm 1})$ Special flanges to customer design can be fitted on request.

Dimensions in mm

December 1968

ž

"K" TYPE MAGNETRON SPUTTER ION PUMP

200 litre/s sputter ion pump based on the Penning principle with magnetron structure cells, featuring a highly stable pumping action and a high pumping speed for Argon; pressure range 10^{-2} torr to 10^{-11} torr.

Pumping action starts immediately as soon as the operating voltage is switched on. Bake-out temperatures up to 400 $^{\circ}$ C may be used with the magnets in position; however, when higher bake-out temperatures and/or a low thermal inertia are preferred, the magnets can easily be removed.

Also the pumping elements and the complete h.t. connector assembly are removable for cleaning purposes without disassembling the rest of the pump.

The pump is provided with a flange. If required, an extra flange connection can be provided opposite the existing entry to accommodate a sublimation pump or a bakeout heater.

CHARACTERISTICS

(pump in combination with the power supply type KPS-200)

Pressure range	10^{-2} to 1	10-11	torr
Pumping speed, air	see pag	e 3	
argon	12 to 20 that of ni	% of trogen	
Operating voltage, D.C.		4.9	kV
Discharge current	see pag	e 4	
Average life at 10 ⁻⁶ torr (below 10 ⁻⁴ torr inversely proportional to pressure)	5	50 000	h

LIMITING VALUES

Striking pressure	max.	2x10-2	torr
Operating voltage, d.c.	max.	8	kV
Input power	max.	400	W 1)
Bake-out temperature, with magnets without magnets	max. max.	400 500	оС 0С
Ambient temperature during operation (See also data KPS-200)	max.	3 00	oC

1) The regulation of the power supply should be such that this input power is not exceeded at any pressure.

MECHANICAL DATA

Flange type VMF-150 1)

Mounting position: any

The distance to adjacent ferro-magnetic materials should be at least 75 mm

Remark

The pump is supplied in evacuated condition and should be kept sealed until ready for use.

ASSOCIATED EQUIPMENT AND COMPONENTS

Power supply	KPS-200
Mating flange	VMF-150series
Gold wire seal	VMS-150series
Set of nuts, bolts, washers and studding	V-1021
Bake-out jacket	V-1058

1) Special flange to customer design can be fitted on request.

Dimensions in mm

December 1968

"K" TYPE MAGNETRON SPUTTER ION PUMP

400 litre/s sputter ion pump based on the Penning principle with magnetron structure cells, featuring a highly stable pumping action and a high pumping speed for Argon; pressure range 10^{-2} torr to 10^{-11} torr.

Pumping action starts immediately as soon as the operating voltage is switched on. Bake-out temperatures up to 400 °C may be used with the magnets in position; however, when higher bake-out temperatures and/or a low thermal inertia are preferred, the magnets can easily be removed.

Also the pumping elements and the complete h.t. connector assembly are removable for cleaning purposes without disassembling the rest of the pump.

The pump is provided with a flange. If required, an extra flange connection can be provided opposite the existing entry to accommodate a sublimation pump or a bake-out heater.

CHARACTERISTICS

t

(pump in combination with the power supply type KPS-400)

Pressure range	10^{-2} to 10^{-11}	torr
Pumping speed, air	see page 3	
argon	12 to 20 $\%$ of that of nit	rogen
Operating voltage, D.C.	4.9	kV
Discharge current	see page 4	
Average life at 10^{-6} torr (below 10^{-4} torr inversely proportional to pressure)	50 000	h

LIMITING VALUES

Striking pressure		max. 2x1	0-2	torr
Operating voltage, d.c		max.	8	kV
Input power		max.	800	W 1)
Bake-out temperature,	with magnets without magnets	max. max.	400 500	oC oC
Ambient temperature (See also data KPS-4	during operation 00)	max.	300	oС

¹) The regulation of the power supply should be such that this input power is not exceeded at any pressure.

December 190	Decem	ber	190	58
--------------	-------	-----	-----	----

MECHANICAL DATA

Flange type

VMF-150 1)

Dimensions in mm

Mounting position: any

The distance to adjacent ferro-magnetic materials should be at least 75 mm

Remark

The pump is supplied in evacuated condition and should be kept sealed until ready for use.

ASSOCIATED EQUIPMENT AND COMPONENTS

Power supply	KPS -400
Mating flange	VMF-150 series
Gold wire seal	VMS-150 series
Set of nuts, bolts, washers and studding	V-1021
Bake-out jacket	V-1059

1) Special flanges to customer design can be fitted on request.

December 1968

"K" TYPE MAGNETRON SPUTTER ION PUMP

500 litre/s sputter ion pump based on the Penning principle with magnetron structure cells, featuring a highly stable pumping action and a high pumping speed for Argon; pressure range 10^{-2} torr to 10^{-11} torr.

Pumping action starts immediately as soon as the operating voltage is switched on. Bake-out temperatures up to 400 $^{\rm O}$ C may be used with the magnets in position; however, when higher bake-out temperatures and/or a low thermal inertia are preferred, the magnets can easily be removed.

Also the pumping elements and the complete h.t. connector assembly are removable for cleaning purposes without disassembling the rest of the pump.

The pump is provided with a flange. If required, an extra flange connection can be provided opposite the existing entry to accommodate a sublimation pump or a bakeout heater.

CHARACTERISTICS

(pump in combination with the power supply type KPS-500)

Pressure range	10^{-2} to 10^{-11}	torr
Pumping speed, air	see page 3	
argon	12 to 20 % of that of nitrogen	
Operating voltage, D.C.	4.9	kV
Discharge current	see page 4	
Average life at 10^{-6} torr (below 10^{-4} torr inversely proportional to pressure)	50 000	h

LIMITING VALUES

Striking pressure	max.	2×10^{-2}	torr
Operating voltage, d.c.	max.	8	kV
Input power	max.	800	W ¹)
Bake-out temperature, with magnets without magnets	max. max.	400 500	оС 0С
Ambient temperature during operation (See also data KPS-500)	max.	300	oC

1) The regulation of the power supply should be such that this input power is not exceeded at any pressure.

December 1968	1

MECHANICAL DATA

Flange type VMF-150¹)

Mounting position: any

The distance to adjacent ferro-magnetic materials should be at least 75 mm

Remark

The pump is supplied in evacuated condition and should be kept sealed until ready for use.

ASSOCIATED EQUIPMENT AND COMPONENTS

Power supply	KPS-500
Mating flange	VMF-150 series
Gold wire seal	VMS-150 series
Set of nuts, bolts, washers and studding	V-1021
Bake-out jacket	V-1060

 $^{1}\ensuremath{)}$ Special flanges to customer design can be fitted on request.

Dimensions in mm

December 1968

"K" TYPE MAGNETRON SPUTTER ION PUMP

1000 litre/s sputter ion pump based on the Penning principle with magnetron structure cells, featuring a highly stable pumping action and a high pumping speed for Argon; pressure range $2x10^{-2}$ torr to 10^{-11} torr.

Pumping action starts immediately as soon as the operating voltage is switched on. Bake-out temperatures up to 400 $^{\circ}$ C may be used with the magnets in position; however, when higher bake-out temperatures and/or a low thermal inertia are preferred, the magnets can easily be removed.

Also the pumping elements and the complete h.t. connector assembly are removable for cleaning purposes without disassembling the rest of the pump.

The pump is provided with a flange. If required, an extra flange connection can be provided opposite the existing entry to accommodate a sublimation pump or a bakeout heater.

CHARACTERISTICS

(pump in combination with the power supply type KPS-1000)

Pressure range	$2x10^{-2}$ to 10^{-11} torr
Pumping speed, air	see page 3
argon	12 to $20~%$ of that of nitrogen
Operating voltage, D.C.	4.9 kV
Discharge current	see page 4
Average life at 10^{-6} torr	50 000 h

(below 10^{-4} torr inversely proportional to pressure)

LIMITING VALUES

Striking pressure			max.	2×10^{-2}	torr
Input power			max.	800	W ¹)
Bake-out temperatur	e, with magnets without magnets		max. max.	400 500	оС 0С
Ambient temperatur	e during operation PS-1000)		max.	300	0C

1) The regulation of the power supply should be such that this input power is not exceeded at any pressure.

MECHANICAL DATA

Flange type VMF-250¹)

Mounting position: any

The distance to adjacent ferro-magnetic materials should be at least 75 mm

Remark

The pump is supplied in evacuated condition and should be kept sealed until ready for use.

ASSOCIATED EQUIPMENT AND COMPONENTS

Power supply	KPS-1000		
Mating flange			
Gold wire seal	supplied with pump		
Set of nuts, bolts, washers and studding	special		
Bake-out jacket	V-1061		

1) Special flanges to customer design can be fitted on request.

Dimensions in mm

7322 012 30650

56163

MERCURY DIFFUSION PUMP

2.5 litre/s two-stage mercury diffusion pump.

Pressure range, water cooling only, 8 torr to 1.5×10^{-3} torr; when used in combination with appropriate liquid air or liquid nitrogen cooler 8 torr to $< 10^{-5}$ torr. The pump has been designed to work with a backing pressure of 5 torr while its pumping action is not broken off when the backing pressure rises up to 8 torr. A centrifugal mercury trap is incorporated in this type. This trap prevents the mer-

cury being flung out of the pump when during operation the latter is let up to atmospheric pressure, and then suddenly reconnected to the backing pressure.

The delivery includes a heating element for 220 V and a female plug. It does not include mercury.

CHARACTERISTICS

Pressure range: water cooling only (including rest pressure of mercury vapour)	8 to 1.5 x 10 ⁻³	torr
when used in combination with a liquid air or liquid nitrogen cooler	8 to $< 10^{-5}$	torr
Pumping speed at 10^{-4} torr (see also page 3)	2.5	1/s
Backing pressure required for full capacity	5	torr
Backing pressure above which pump may cut off	8	torr
Mercury content	50	cm3
Heater element	220 V, 370	W
Cooling water required	36	1/h
Warming-up and cooling-down time (cooling water circulating)	15	min.
Weight without mercury	2.5	kg
LIMITING VALUES		
Outlet temperature of cooling water	max. 23	oC
MOUNTING		
The pump is mounted by clamping it around the body.		
ASSOCIATED COMPONENTS		
Coupling piece to couple the high vacuum side		
of the pump to a rubber hose with an inner	56110	
diameter of 18 mm	50110	
SPARE PARTS		
Heater element	7222 903 80020	

DIMENSIONS AND CONNECTIONS

Dimensions in mm

1

Mercury pump type 56163

7322 012 30000

56164

MERCURY DIFFUSION PUMP

30 litre/s three-stage mercury diffusion pump.

Pressure range, water cooling only, 8 torr to 1.5×10^{-3} torr; when used in combination with appropriate liquid air or liquid **nitrogen** cooler 8 torr to 10^{-7} torr. The pump has been designed to work with a backing pressure of 5 torr, while its pumping action is not broken off when the backing pressure rises up to 8 torr.

A centrifugal mercury trap is incorporated in this type. This trap prevents the mercury being flung out of the pump when during operation the latter is let up to atmospheric pressure and then suddenly reconnected to the backing pressure. A water cooled baffle is part of the pump.

The delivery includes two heating elements for 110 V and two female plugs. The pump is supplied without mercury.

CHARACTERISTICS

Pressure range: water cooling only (including rest pressure of mercury vapour)	8 to 1.	5 x 1	10 - 3	torr
when used in combination with a liquid air or liquid nitrogen cooler	8 to	<]	10-7	torr
Pumping speed at 10^{-4} torr (see also page 4)			30	1/s
Backing pressure required for full capacity			5	torr
Backing pressure above which the pump may cut off			8	torr
Mercury content			180	cm ³
Heater element: 2 elements 110 V, 330 W	total	lling	660	W
Cooling water required			120	1/h
Warming-up and cooling-down time (cooling water				
circulating)			15	min.
Weight without mercury			6.5	kg

56164

LIMITING VALUES

Outlet temperature of cooling water

MOUNTING

Three connecting lips are provided to fasten the pump on a platform

ASSOCIATED COMPONENTS

Cap nut coupling piece to connect the high vacuum side of the pump to a glass tubing with an outer diameter of 36 mm

SPARE PARTS

"0" ring for high vacuum side (d_{int} = 113.7 mm; s = 5.34 mm)

Heater element

DIMENSIONS

Cap nut coupling piece type 56111

a = rubber compression ring

2622 080 31805 7222 906 58010

Dimensions in mm

56111

February 1968

max. 23 oC

For water inlets and outlets use rubber tubing $8 \times 12 \text{ mm}$.

February 1968

7322 012 06510

56165

OIL DIFFUSION PUMP

250 litre/s, four-stage oil diffusion pump. Pressure range 10^{-1} torr to 10^{-5} torr. The pump has been designed to work with a backing pressure of < 0.2 torr.

CHARACTERISTICS

ì

ł

k

Pressure range	10^{-1} to 10^{-5}	torr
Pumping speed at 10^{-4} torr (see also page 2)	250	1/ s
Backing pressure required for full capacity	< 0.2	torr
Oil content	150	cm3 1)
Heater element	220 V, 420	W
Cooling water required	80	1/h
Warming-up and cooling-down time (cooling water circulating)	15	min
Weight	5	kg
LIMITING VALUES		
Outlet temperature of cooling water	max. 25	٥C
SPARE PARTS		
Heater element	2422 528 00037	
"0" ring for high vacuum side (d _{int} = 113.7 mm; s = 5.34 mm)	2622 080 31805	

1) Dow Corning 702 or equivalent. The pump is supplied without oil.

January 1969

56165

DIMENSIONS AND CONNECTIONS

Dimensions in mm

For water inlet and outlet use rubber tubing of 8 x 12 mm.

56500

OIL DIFFUSION PUMP

50 litre/s, two-stage fractionating oil diffusion pump. Pressure range, water cooling only, 10^{-1} torr to 10^{-5} torr; when used in combination with appropriate liquid air or liquid nitrogen cooler 10^{-1} torr to $<10^{-6}$ torr. The pump has been designed to work with a backing pressure of < 0.2 torr and is provided with rotatable flanges in accordance with the ISO Recommendations.

CHARACTERISTICS

Pressure range: water cooling only	10^{-1} to 10^{-5}	torr
when used in combination with liquid air or liquid nitrogen cooler	10 - 1 to <10 ⁻⁶	torr
Pumping speed at 10^{-4} torr (see also page 3)	50	l/s
Backing pressure required for full capacity	< 0.2	torr
Oil content	75	cm ^{3 1})
Heater element	220 V, 250	W
Cooling water required	40	l/h
Warming-up and cooling-down time (cooling water circulating)		min
Weight	4	kg
LIMITING VALUES		
Outlet temperature of cooling water	max. 25	o _C

 Dow Corning 705 or equivalent for lowest ultimate pressures, otherwise Dow Corning 702 or 704 or equivalent. The pump is supplied without oil.

March 1968

ASSOCIATED COMPONENTS

High vacuum tap	56540
Liquid air or liquid nitrogen cooler	56530
Chevron baffle	56520
Sealing ring: high vacuum side (nominal bore 63 mm)	7322 012 32940
fore vacuum side (nominal bore 25 mm)	7322 012 32500

SPARE PARTS

Heater element

DIMENSIONS AND CONNECTIONS

7322 012 00590

Dimensions in mm

56501

OIL DIFFUSION PUMP

250 litre/s, three-stage fractionating oil diffusion pump. Pressure range, water cooling only, 10^{-1} torr to 10^{-6} torr; when used in combination with appropriate liquid-air or liquid-nitrogen cooler 10^{-1} torr to 10^{-8} torr. The pump has been designed to work with a backing pressure of < 0.4 torr and is provided with rotatable flanges in accordance with the ISO Recommendations.

APPLICATION

t

High speed vacuum pumping

CHARACTERISTICS

Pressure range: water cooling only	10^{-1} to 10^{-6}	torr
when used in combination with liquid-air or liquid-nitrogen cooler	10^{-1} to 10^{-8}	torr
Pumping speed at 10^{-4} torr (see also page 3)	300	l/ s
Backing pressure required for full capacity	< 0.4	torr
Oil content	150	cm ³ 1)
Heater element	220 V, 500	W
Cooling water required	60	l/h
Warming-up and cooling-down time (cooling water circulating)	20	min
Weight	9	kg
LIMITING VALUES		
Outlet temperature of cooling water	max 25	0C

¹) Dow Corning 705 or equivalent for lowest ultimate pressures, otherwise Dow Corning 703 or equivalent. The pump is supplied without oil.

ASSOCIATED COMPONENTS

56531
56521
56541
7 3 22 012 3 2470
7322 012 32500

SPARE PARTS

Heater element

DIMENSIONS AND CONNECTIONS

Dimensions in mm

2422 528 00038

56502

OIL DIFFUSION PUMP

500 litre/s, three-stage fractionating oil diffusion pump. Pressure range (water cooling only) 3.10^{-1} torr to 10^{-6} torr; when used in combination with appropriate liquid air or liquid nitrogen cooler 3.10^{-1} torr to $<10^{-7}$ torr. The pump has been designed to work with a backing pressure of $<3x10^{-1}$ torr and is provided with rotatable flanges in accordance with the ISO Recommendations.

APPLICATION

High speed vacuum pumping

CHARACTERISTICS

Pressure range,	water cooling only	3.10^{-1} to	10-6	torr
	when used in combination with liquid air or liquid nitrogen cooler	3.10 ⁻¹ to <	<10-7	torr
Pumping speed (s	see also page 3)		500	l/s
Backing pressure	e required for full capacity	<32	x10-1	torr
Oil content			300	cm ³ 1)
Heating element		220 V,	1000	W
Cooling water required			90	l/h
Warming-up and (cooling water of	cooling-down time circulating)		20	min
Weight			20	kg
LIMITING VALU	ES			

Outlet temperature of cooling water

1) Dow Corning 705 or equivalent for lowest ultimate pressures, otherwise Dow Corning 703 or 704 or equivalent. The pump is supplied without oil.

1

25 °C

max.

ASSOCIATED COMPONENTS

Liquid air or liquid nitrogen cooler	56532
High vacuum tap	56542
Chevron baffle	56522
Sealing ring, high vacuum side (nominal bore 160 mm) fore vacuum side (nominal bore 40 mm)	7322 012 32950 7322 012 31580

SPARE PARTS

Heater element

DIMENSIONS AND CONNECTIONS

Dimensions in mm

2422 528 00044

OIL DIFFUSION PUMP

1000 litre/s, four stage fractionating oil diffusion pump. Pressure range (water cooling only) 3.10^{-1} torr to 10^{-6} torr; when used in combination with appropriate liquid-air or liquid-nitrogen cooler 3.10^{-1} torr to $<10^{-7}$ torr. The pump has been designed to work with a backing pressure of < 0.3 torr and is provided with rotatable flanges in accordance with the ISO Recommendations.

APPLICATION

High speed vacuum pumping.

CHARACTERISTICS

Pressure range	: water cooling only	3.10 ⁻¹ to	10^{-6}	torr
	when used in combination with liquid-air or liquid-nitrogen cooler	3.10 ⁻¹ to	<10-7	torr
Pumping speed	(See also page 3)		1000	1/s
Backing pressu	ce required for full capacity	i.	< 0.3	torr
Oil content			500	cm ³ 1)
Heater element		220 V,	1500	W
Cooling water r	equired		120	l/h
Warming-up and (cooling water	d cooling-down time circulating)		20	min
Weight			36	kg
LIMITING VAL	UES			
Outlet temperat	ure of cooling water	max.	25	°С
ASSOCIATED C	OMPONENTS			
Liquid-air or li	quid-nitrogen cooler	56533		
Water-cooled ba	affle	56523		
High vacuum va	lve	56543		
Sealing ring, high vacuum s fore vacuum s	side (nominal bore 200 mm) side (nominal bore 63 mm)	7322 7322	012 317 012 329	20 40

1) Dow corning 705 or equivalent for lowest ultimate pressures, otherwise Dow Corning 703 or 704 or equivalent. The pump is supplied without oil.

SPARE PARTS

Heater element

2422 528 00036

DIMENSIONS AND CONNECTIONS

Dimensions in mm

SW17-0.2

7209226

150

December 1968

CHEVRON BAFFLE

Water-cooled chevron baffle with a nominal bore of 63 mm diameter intended for use with diffusion pumps to minimize back-diffusion of vapours.

The baffle is provided with flanges in accordance with the ISO Recommendations; the upper flange is rotatable.

DIMENSIONS

Dimensions in mm

ASSOCIATED COMPONENTS

Sealing ring (nominal bore 63 mm)

7322 012 32940

7322 012 06590

CHEVRON BAFFLE

Water-cooled chevron baffle with a nominal bore of 100 mm diameter for use with diffusion pumps to minimize back-diffusion of vapours.

The baffle is provided with flanges in accordance with the ISO Recommendations; the upper flange is rotatable.

DIMENSIONS

Dimensions in mm

ASSOCIATED COMPONENTS

Sealing ring (nominal bore 100 mm)

7322 012 32470

56522

CHEVRON BAFFLE

Water-cooled chevron baffle with a nominal bore of 160 mm diameter intended for use with diffusion pumps to minimize back-diffusion of vapours.

The baffle is provided with flanges in accordance with the ISO Recommendations; the upper flange is rotatable.

DIMENSIONS

Dimensions in mm

ASSOCIATED COMPONENTS

Sealing ring (nominal bore 160 mm)

7322 012 32950

CHEVRON BAFFLE

Water-cooled chevron baffle with a nominal bore of 200 mm diameter intended for use with diffusion pumps to minimize back-diffusion of vapours.

The baffle is provided with flanges in accordance with the ISO Recommendations; the upper flange is rotatable.

DIMENSIONS

Dimensions in mm

ASSOCIATED COMPONENTS

Sealing ring (nominal bore 200 mm)

7322 012 31720

March 1968

COOLER

Cooler for high vacuum oil diffusion pumps cooled by liquid air or liquid nitrogen. The cooler is provided with flanges in accordance with the ISO Recommendations. The upper flange is rotatable.

Initial loss Subsequently required

DIMENSIONS

b

1 l nitrogen 0.75 l nitrogen/h

Dimensions in mm

ASSOCIATED COMPONENTS

Sealing ring (nominal bore 63 mm)

7322 012 32940

COOLER

Cooler for high vacuum oil diffusion pumps cooled by liquid air or liquid nitrogen. The cooler is provided with flanges in accordance with the ISO Recommendations. The upper flange is rotatable.

Initial loss Subsequently required

DIMENSIONS

2 l nitrogen

1 l nitrogen/h

Dimensions in mm

ASSOCIATED COMPONENTS

Sealing ring (nominal bore 100 mm)

7322 012 32470

COOLER

Cooler for high vacuum oil diffusion pumps cooled by liquid air or liquid nitrogen. The cooler is provided with flanges in accordance with the ISO Recommendations. The upper flange is rotatable.

Initial loss

Subsequently required

DIMENSIONS

3 l nitrogen 1.5 l nitrogen/h

Dimensions in mm

ASSOCIATED COMPONENTS

Sealing ring (nominal bore 160 mm)

7322 012 32950

7322 012 06710

COOLER

Cooler for high vacuum oil diffusion pumps cooled by liquid air or liquid nitrogen. The cooler is provided with flanges in accordance with the ISO Recommendations. The upper flange is rotatable.

Initial loss Subsequently required

DIMENSIONS

4 l nitrogen

2 l nitrogen/h

Dimensions in mm

ASSOCIATED COMPONENTS

Sealing ring (nominal bore 200 mm)

7322 012 31720

Gauge Heads

CIG-22

VACUUM GAUGE HEAD, PENNING TYPE

Glass envelope, high vacuum gauge head of the Penning type (cold-cathode, ionisation type). Pressure range $2x10^{-3}$ torr to 10^{-5} torr.

CHARACTERISTICS

Pressure range

 $2x10^{-3}$ to 10^{-5} torr

Sensitivity

see page 3

Notes:

- 1. The graph on page 3 is correct within a factor two for air, hydrogen, argon and carbon dioxide. The inaccuracy can be reduced to plus or minus 5% by calibrating for the gas composition in question.
- 2. Water vapour contamination of the gauge head may cause misreadings; in this case it is advisable to take readings some minutes after application of the anode supply voltage.

TYPICAL OPERATING CONDITIONS

CIG-22 combined with magnet type 95380

Anode supply voltage	V _{ba}	2000	Vd.c.
Anode resistor	R _a	1	MΩ

LIMITING VALUES

CIG-22 combined with magnet type 95380

Anode voltage	max.	2500	V
Anode current	max.	2	mA

MECHANICAL DATA

Material of tubulation: 01 soft glass

1) Line through the centres of the cathode plates and axis of the magnetic flux lines.

Mounting position: any

Note: When in operation the gauge has a pumping effect; to prevent misreadings due to pressure losses in the connecting tubulation, the connection to the vacuum chamber should be wide and short. Recommended dimensions are: diameter min. 10 mm and length max. 100 mm.

ASSOCIATED COMPONENTS

Magnet		95380
Socket,	unshielded	40465
Socket,	shielded	56060

Magnet type 95380

Dimensions in mm

February 1968

February 1968

VACUUM GAUGE HEAD, PENNING TYPE

All-metal, high vacuum gauge head of the Penning type (cold-cathode, ionization type). Pressure range 2×10^{-3} torr to 10^{-5} torr.

The head is provided with a flange in accordance with the ISO recommendations.

FOR THE ELECTRICAL DATA SEE TYPE CIG-22

nantan Katatan Katatan Katatan Katatan Katatan

MECHANICAL DATA

Dimensions in mm

\$6.6(4x)

Mounting position

ASSOCIATED COMPONENTS

Sealing ring (nominal bore 25 mm)7322 012 32500Socket, unshielded40465Socket, shielded56060

SPARE PARTS

Electrode system

56178

any

7322	012	07060

CIG-76

VACUUM GAUGE HEAD, PENNING TYPE

All-metal, high vacuum gauge head of the Penning type (cold-cathode, ionisation type). Pressure range 2×10^{-3} torr to 10^{-5} torr.

FOR THE ELECTRICAL DATA SEE TYPE $\underline{\text{CIG-22}}(95322)$

MECHANICAL DATA

Dimensions in mm

Glass protection tube

"0" ring (d_{int} = 37.69 mm; s = 2.62 mm)

Electrodes

1

CIG-77

VACUUM GAUGE HEAD, PENNING TYPE

Glass envelope, high vacuum gauge head of the Penning type (cold-cathode, ionisation type). Pressure range 2 x 10^{-3} torr to 10^{-5} torr.

FOR THE ELECTRICAL DATA SEE TYPE CIG-22

MECHANICAL DATA

Dimensions in mm

1) Direction of magnetic flux.

Mounting position: any

Note: When in operation the gauge has a pumping effect; to prevent misreadings due to pressure losses in the connecting tubulation, the connection to the vacuum chamber should be wide and short. Recommended dimensions are: diameter min. 10 mm and length max. 100 mm.

ASSOCIATED COMPONENTS

Magnet 95380 Socket, unshielded 40465 Socket, shielded 56060 45 86 63.5 E m 20 7203445 M4 25 58 80 Magnet type 95380

February 1968

CIG-82

 10^{-4} to 5 x 10^{-8} torr

see page 3

VACUUM GAUGE HEAD, PENNING TYPE EXTRA SENSITIVE

Glass envelope, high vacuum gauge head of the Penning type (cold-cathode, ionization type). Pressure range 10^{-4} torr to 5 x 10^{-8} torr.

CHARACTERISTICS

Pressure range

Sensitivity

Notes:

- 1. The graph on page 3 is correct within a factor two for air, hydrogen, argon and carbon dioxide. The inaccuracy can be reduced to plus or minus 5% by calibrating for the gas composition in question.
- 2. Water vapour contamination of the gauge head may cause misreadings; in this case it is advisable to take readings some minutes after application of the anode supply voltage.

TYPICAL OPERATING CONDITIONS

CIG-82 combined with magnet type 95380

Anode voltage	Vba	2000	V d.c.
Anode resistor	Ra	1	$M\Omega$
LIMITING VALUES			
CIG-82 combined with magnet type 95380			
Anode supply voltage	max.	2500	V
Anode current	max.	2	mA

MECHANICAL DATA

Dimensions in mm

Material of tubulation: G28 hard glass

Mounting position: any

Note: When in operation the gauge has a pumping effect; to prevent misreadings due to pressure losses in the connecting tubulation, the connection to the vacuum chamber should be wide and short. Recommended dimensions are diameter min. 10 mm and length max. 100 mm.

ASSOCIATED COMPONENTS

Magnet		95380
Socket,	shielded	56061

Magnet type 95380

CIG-82

CIG - 83

VACUUM GAUGE HEAD, PENNING TYPE EXTRA SENSITIVE

All-metal, high vacuum gauge head of the Penning type (cold-cathode, ionisation type). Pressure range 10⁻⁴ torr to 5 x 10⁻⁸ torr.

FOR THE ELECTRICAL DATA SEE TYPE CIG-82

MECHANICAL DATA

Dimensions in mm

ASSOCIATED COMPONENTS

Socket, shielded

SPARE PARTS

Electrodes

"0" ring (d_{int} = 39.69 mm; s = 2.62 mm)

any

56061

56089

2622 080 31748

VACUUM GAUGE HEAD, PENNING TYPE EXTRA SENSITIVE

All-metal, high vacuum gauge head of the Penning type (cold-cathode, ionization type). Pressure range 10^{-4} torr to 5 x 10^{-8} torr.

The head is provided with a flange in accordance with the ISO recommendations.

FOR THE ELECTRICAL DATA SEE TYPE CIG-82

MECHANICAL DATA

Dimensions in mm

Mounting position

ASSOCIATED COMPONENTS

Sealing ring (nominal bore 25 mm) 56061 Socket, shielded

SPARE PARTS

Electrode system

any

7322 012 32500

VACUUM GAUGE HEAD , BAYARD-ALPERT TYPE

Glass envelope, ultra-high vacuum gauge head of the Bayard-Alpert type. Measuring range 10^{-3} torr to 10^{-10} torr; sensitivity approx. 12 per torr.

The gauge head is provided with an electrically conductive layer deposited on the inside of the glass envelope. By applying a fixed potential to the layer, excess primary electrons are attracted directly to the envelope rather than oscillating around the collector thereby leading to very stable measurements of low pressure.

Moreover the gauge head features a low thermal inertia and a low filament power consumption.

CHARACTERISTICS

Pressure range Sensitivity (for nitrogen) Emission current range Filament characteristics Insulation resistance

Collector to other electrodes

Grid to other electrodes

TYPICAL OPERATING CONDITIONS

Emission current (see also page 3)

measurement

outgassing

10-3 to 10-10 torr approx. 12 per torr 1 μA to 75 mA see page 3

min.	10^{14}	Ω
min	1012	0

100 μA, 1 mA or 10 mA 75 mA

(56150)

LIMITING VALUES

MECHANICAL DATA	Dimensi	ions ii	n mm
Bake-out temperature	max.	450	оC
Bulb temperature during operation	max.	100	°С
Grid input power	max.	40	W
Emission current	max.	75	mA
Filament voltage	max.	8	V
Pressure (filament litt)	max.	10-3	torr

MECHANICAL DATA

Material tubulation G28 glass Filament Tungsten

Mounting position: any

ASSOCIATED EQUIPMENT

Gauge control unit

GCU-1 or GCU-2

January 1969

10G-12

January 1969

IOG-13 IOG_13NF

VACUUM GAUGE HEAD, BAYARD-ALPERT TYPE

1561517

Nude, ultra-high vacuum gauge head of the Bayard-Alpert type. Measuring range 10^{-3} torr to 10^{-10} torr; sensitivity approx. 12 per torr.

has a fernico skirt, prepared for easy welding. Type IOG-13

Type IOG-13NF has a flange.

The gauge head features a low thermal inertia and a low filament power consumption.

FOR THE ELECTRICAL DATA SEE TYPE IOG-12

MECHANICAL DATA

Material

Filament

Skirt

Flange (with type IOG-13NF)

Dimensions in mm

Tungsten

Fernico

Stainless steel to EN58, forged plate

Type IOG-13

December 1968

IOG_13 IOG_13NF

Type IOG-13NF

Mounting position: any

ASSOCIATED EQUIPMENT AND COMPONENTS

Gauge control unit	GCU-1 or GCU-2
For type IOG-13NF only:	000 1
Mating flange	VMF-51 series
Set of nuts, bolts, washers and studding	V-1019

VACUUM GAUGE HEAD, PIRANI/IONIZATION TYPE

Wide range, ultra-high vacuum gauge head, consisting of a Bayard-Alpert ionization gauge and a Pirani gauge, contained in one glass envelope. Overall measuring range 1 torr to 10^{-10} torr.

The Pirani gauge is designed to operate at a constant filament supply voltage over its measuring range.

The ionization gauge permits stable measurements of low pressures to be made thanks to an electrically conductive layer deposited on the inside of the envelope. This layer attracts excess primary electrons which would otherwise be oscillating around the collector.

The gauge head may be outgassed by electron bombardment.

CHARACTERISTICS

Pirani section		
Pressure range	$1 \text{ to } 10^{-4}$	torr
Filament resistance at a pressure of 10^{-3} torr	27	Ω
Ionization section		
Pressure range	10^{-3} to 10^{-10}	torr
Sensitivity (for nitrogen)	approx. 12	per torr
Emission current range	1 μA to 75	mA
Filament characteristics	see page 4	
Insulation resistance		
Collector to other electrodes	min. 10 ¹⁴	Ω
Grid to other electrodes	min. 10 ¹²	Ω

TYPICAL OPERATING CONDITIONS

Measuring

Pirani section Filament supply voltage

Ionization section

Emission current (see also page 4)

1

1.66 V d.c.

Outgassing

10.00	10.00	
	et car	
	_	
1.00	194 A.P	
-	_	
	-	
-	_	
-	-	
	-	
-	_	
100		

Emission current (see also page 4)

75 mA

LIMITING VALUES

Pressure at which the ionization gauge			
filament may be operated	max.	10 - 3	torr
Ionization gauge filament voltage	max.	8	V
Emission current	max.	75	mA
Grid input power	max.	30	W
Bulb temperature during operation	max.	100	oC
Bake-out temperature	max.	450	oC

•

MECHANICAL DATA

Material

W1 glass

ASSOCIATED EQUIPMENT

Gauge control unit

GCU-1

January 1969

Dimensions in mm

January 1969

VACUUM GAUGE HEAD , BAYARD-ALPERT TYPE

Glass envelope, ultra-high vacuum gauge head of the Bayard-Alpert type. Measuring range 10^{-3} torr to 10^{-10} torr; sensitivity approx. 12 per torr.

The gauge head is provided with two filaments, one of tungsten and one of lanthanum hexaboride.

CHARACTERISTICS

Pressure range	10 ⁻³ to	10-10	torr
Sensitivity (for nitrogen)	approx.	12	per torr
Emission current range	1 μΑ	to 75	mA
Filament characteristics	see page	e 3	
Insulation resistance			
collector to other electrodes	min.	10^{14}	Ω
grid to other electrodes	min.	10^{12}	Ω

TYPICAL OPERATING CONDITIONS

Measurement

Grid voltage, in combination with fil. 1 in combination with fil. 2

Emission current (see also page 3)

measurement

outgassing

Vg +145 V +178 V

100 μA, 1 mA or 10 mA 75 mA

March 1968

LIMITING VALUES

max.	10^{-3}	torr
max.	8	V
max.	75	mA
max.	40	W
max.	100	oС
max.	450	°С
	max. max. max. max. max.	max. 10 ⁻³ max. 8 max. 75 max. 40 max. 100 max. 450

MECHANICAL DATA

Material

Tubulation	W1 glass
Filament l	Tungsten

Filament 2 Lantha	num hexaboride (La Br 6)
-------------------	--------------------------

Mounting position: any

Dimensions in mm

IOG - 18 IOG - 18N IOG - 18NF

VACUUM GAUGE HEAD, BAYARD-ALPERT TYPE

Ultra-high vacuum gauge head of the Bayard-Alpert type. Measuring range 10^{-3} torr to 4 x 10^{-11} torr; sensitivity approx. 12 per torr.

Type IOG-18 has a glass envelope.

Type IOG-18N has a fernico skirt, prepared for easy welding.

Type IOG-18NF has a flange.

The head with a glass envelope are provided with an electrically conductive layer on the inside of the envelope. By applying a fixed potential to the layer, excess primary electrons are attracted directly to the envelope rather than oscillating around the collector thereby leading to very stable measurements of low pressure.

Moreover the gauge head features a low thermal inertia and a low filament power consumption.

CHARACTERISTICS

Pressure range	10^{-3} to 4×10^{-11}	torr
Sensitivity (for nitrogen)	approx. 12	per torr
Emission current range, type IOG-18	1 μA to 50	mA
all other types	1 μA to 30	mA
Filament characteristics	see page 4	
Insulation resistance		
Collector to other electrodes	min. 10 ¹⁴	Ω
Grid to other electrodes	min. 10 ¹²	Ω

TYPICAL OPERATING CONDITIONS

Emission current (see also page 4) measurement outgassing, type IOG-18 all other types

Data based on pre-production devices.

100 μA, 1 mA or 10 mA 50 mA 30 mA

LIMITING VALUES

Pressure (filament litt)	max.	10-3	torr
Filament voltage	max.	8	V
Emission current	max.	50	mA
Grid input power, type IOG-18 all other types	max. max.	30 20	W W
Bulb temperature during operation	max.	100	oС
Bake-out temperature	max.	450	⁰ C

MECHANICAL DATA

Material Filament Tubulation (with type IOG-18) Skirt (with type IOG-18N) Flange (with type IOG-18NF) <u>Mounting position:</u> any IOG-18 Dimensions in mm

Tungsten

Kodial

Fernico

Stainless steel to EN 58, forged plate

IOG-18NF

MECHANICAL DATA (continued)

IOG-18N

ASSOCIATED EQUIPMENT AND COMPONENTS

Gauge control unit	GCU-1 or GCU-2
For type IOG-18NF only Mating flange	VMF-25 series
Set of nuts, bolts washers and studding	V-1019

IOG – 18 IOG – 18 N IOG – 18 NF

December 1968

10G - 19**IOG - 19N IOG - 19NF**

VACUUM GAUGE HEAD, BAYARD-ALPERT TYPE

Ultra-high vacuum gauge head of the Bayard-Alpert type. Measuring range 10^{-3} torr to 4×10^{-11} torr; sensitivity approx. 12 per torr.

Type IOG-19 has a glass envelope.

Type IOG-19N has a fernico skirt, prepared for easy welding.

Type IOG-19NF has a flange.

The head with a glass envelope are provided with an electrically conductive layer on the inside of the envelope. By applying a fixed potential to the layer, excess primary electrons are attracted directly to the envelope rather than oscillating around the collector thereby leading to very stable measurements of low pressure.

Moreover the gauge headfeatures a low thermal inertia and a low filament power consumption.

FOR THE ELECTRICAL DATA SEE TYPE IOG-18

MECHANICAL DATA

Material

IOG-19

Filament

Tubulation (with type IOG-19)

Skirt (with type IOG-19N)

Flange (with type IOG-19NF)

Tungsten G28 Fernico

Stainless steel to EN58, forged plate

Data based on pre-production devices.

MECHANICAL DATA (continued)

IOG-19N

IOG-19NF

ASSOCIATED EQUIPMENT AND COMPONENTS

Gauge control unit

For type IOG-19NF only Mating flange

Set of nuts, bolts washers and studding

GCU-1 or GCU-2 VMF-51 series V-1019

VACUUM GAUGE HEAD, BAYARD-ALPERT TYPE

Ultra-high vacuum gauge head of the Bayard-Alpert type; provided with a modulator electrode. Measuring range 10^{-3} torr to 10^{-12} torr; sensitivity approx. 20 per torr Type IOG-20N has a fernico skirt, prepared for easy welding.

Type IOG-20NF has a flange

The gauge head features alow thermal inertia and a low filament power consumption.

CHARACTERISTICS

Pressure range	10^{-3} to 10^{-12}	torr
X-ray limit	2.5×10^{-11}	torr
Modulator factor (α)	0.6 to 0.7	
Sensitivity (for nitrogen)	approx. 20	torr-1
Emission current range	0.1 to 100	mA
Filament characteristic	see page 3	

TYPICAL OPERATING CONDITIONS

Emission current (see also page 3) measurement outgassing

0.1, 1 or 10 mA 100 mA

LIMITING VALUES

Pressure (filament alite)	max.	10^{-3}	torr
Filament voltage	max.	8	V
Emission current	max.	100	mA
Grid input power	max.	55	W
Skirt temperature during operation	max.	100	oС
Bake-out temperature	max.	450	oC

MECHANICAL DATA

Material

Filament Skirt (with type IOG-20N) Flange (with type IOG-20NF)

Mounting position

IOG 20N

tungsten

Fernico

any

Stainless steel to EN58

IOG 20NF

	IOG-20N IOG-20NF	
ASSOCIATED EQUIPMENT AND COMPONENTS	GCU-2	,
For type IOG-20NF only: Mating flange Set of bolds, nuts, washers; studding	VMF-51 series V-1019	
$I_{f} = 100 \text{ A at } V_{g} \neq 110 \text{ V} \text{ I}_{k} \neq 100 \text{ A} \text{ at } V_{g} \neq 110 \text{ V} \text{ I}_{k} \neq 100 \text{ A} \text{ at } V_{g} \neq 110 \text{ V} \text{ I}_{k} \neq 50 \text{ M} \text{ at } V_{g} \neq 110 \text{ V} \text{ I}_{k} \neq 50 \text{ M} \text{ at } V_{g} \neq 110 \text{ V} \text{ I}_{k} \neq 50 \text{ M} \text{ at } V_{g} \neq 100 \text{ H} \text{ A} \text{ at } V_{g} \neq 100 \text{ H} \text{ A} \text{ at } V_{g} \neq 100 \text{ H} \text{ H}$	7209946	
November 1968	3	_

10G-71

VACUUM GAUGE HEAD, TRIODE TYPE

Glass envelope, high vacuum gauge head of the triode type (hot-cathode, ionisation type). Measuring range 10^{-3} to 5 x 10^{-8} torr, sensitivity 20 per torr.

CHARACTERISTICS

Pressure range

Sensitivity (for dry air)

 10^{-3} to 5 x 10^{-8} torr

20 per torr

TYPICAL OPERATING CONDITIONS

Grid current		
above 10^{-4} torr	5	mA
below 10^{-4} torr	10	mA

LIMITING VALUES

Pressure (filament litted)	max.	5 x 10-3	torr
Filament voltage	max.	10	V
Bake-out temperature	max.	450	oC

MECHANICAL DATA

Material: W1 glass

Dimensions in mm

March 1968

March 1968

VACUUM GAUGE HEAD, PIRANI/CONVECTION TYPE

Wide range, high vacuum gauge head based on the combined use of the thermal conductivity principle and the thermal convection principle.

Pressure range 760 torr to approx. 10^{-4} torr.

The gauge is designed to operate at a constant filament temperature and hence a constant filament resistance over the measuring range, the filament supply voltage thus varying with pressure.

CHARACTERISTICS

Pressure range	5	760 to 10-4	torr
Filament characteristics (see also page 2) Resistance at 20 °C Temperature coefficient of resistance	approx.	30 0.162	Ω % per °C
TYPICAL OPERATING CONDITIONS			
Filament temperature			
during measuring	approx.	350	°C
filament resistance at this temperature	approx.	46	Ω
during outgassing (duration max. 5 s)	approx.	800	oC
filament resistance at this temperature	approx.	65	Ω
LIMITING VALUES			
Filament temperature	max.	800	oC

MECHANICAL DATA

Dimensions in mm

Material,

housing: O.F.H.C. copper, chemically blackened connection tube: G28 glass

Mounting position: Vertical, connection tube down; housing to be mounted in free air.

PIG-1

March 1968

TH-1/00

VACUUM GAUGE HEAD, THERMO-COUPLE TYPE

Vacuum gauge head of the therm	o-couple type.				
Pressure range 1 torr to 10^{-2} tor	rr.				esteratur Hamilton Utarinan Samula
CHARACTERISTICS					
Pressure range			1 to 10	-2	torr
E.M.F. of the thermo-element at a filament supply voltage of .	lVa.c.		see page	2	
Filament resistance		R_{f}	approx.	70	Ω
Resistance of thermo-element			approx.	6	Ω
Insulation resistance between file and thermo-element Filed ment and to UNITING VALUES	ament bermozeleme	nt in	min. 1 terco	50 * 42 #	monected!
Filament current		If	max.	20	mA
MECHANICAL DATA		Ι	Dimension	ıs in	mm
Material of connection tube	03 soft glass				

Mounting position: Any

March 1968

VITON/METAL TAP Viton/metal tap for ultra-high vacuum systems with a nominal bore of 1" (approx. 25 mm). Type VT-25 has stainless steel tubulations Type VT-25F has metal flanges Dimensions in mm MECHANICAL DATA 60 113 25 VT-25 77090811 25 27 52.5 60 113 \$8.2 (8x) 74.5 max \$57.0 N VT-25F Ш 72090823 62.5 48.2 (8x) **\$57.0** \$74.5 max Mounting position: any LIMITING VALUES max. 200 °C Bake-out temperature ASSOCIATED COMPONENTS VMF-25 series For VT-25F: Mating flange VMS-25 series Gold wire seal V-1019 Set of nuts, bolts, washers and studding SPARE PARTS "0" Ring V-1015 "0" Ring gasket V-1017

VTB-6 VTB-6K VTB-6P

ULTRA-HIGH VACUUM TAP

All-metal tap for ultra-high vacuum systems with a nominal bore of 1/4 " (6 mm). Open conductance is above 1/4 litre per second and the closed conductance is below 10^{-13} atmospheric litre per second. The tap is bakeable at 450 °C in open and at 400 °C in closed position.

Type VTB-6 has stainless steel tubulations Type VTB-6K has Kodial glass tubulations Type VTB-6P has Pyrex glass tubulations

CHARACTERISTICS	
Closed leak conductance	< 10 ⁻¹³ l/s
Open conductance	> 0.25 1/s
Closing torque initial to produce a closed leak conductance of 10 ⁻¹³ 1/s	2 Nm (0.2 mkg)
LIMITING VALUES	
Closing torque	max.4Nm (0.4mkg)
Bake-out temperature, open	max. 450 ^o C
closed	max. 400 °C
MECHANICAL DATA	
Dimensions	see Fig. 1 and 2
Mounting position	any
ASSOCIATED COMPONENTS	
Mounting support	V-1010 (see Fig. 3)

Fig. 1

Fig.3

V	IB		18
V	TΒ	-	18F
۷	TB	-	18K
V	TB		18P

ULTRA-HIGH VACUUM TAP

All-metal tap for ultra-high vacuum systems with a nominal bore of 3/4 " (approx. 19 mm). Open conductance is above 3 litres per second and the closed conductance is below 10^{-14} atmospheric litre per second.

The tap is bakeable at $450 \, {}^{\circ}\text{C}$ in open or closed position.

Type VTB-18 has stainless steel tubulations

Type VTB-18F has metal flanges

Type VTB-18K has Kodial glass tubulations

Type VTB-18P has Pyrex glass tubulations

CHARACTERISTICS

Closed leak conductance	< 10-14	l/s
Open conductance (see also page 3)	> 3	1/s
Closing torque initial to produce a closed leak conductance of 10 ⁻¹⁴ 1/s	11	Nm (1.1 mkg)
LIMITING VALUES		
Closing torque	max. 22	Nm (2.2 mkg)
Bake-out temperature	max. 450	oC
MECHANICAL DATA		
Dimensions	see Figs 1	, 2 and 3
Mounting position	any 1)	
ASSOCIATED COMPONENTS		
For VTB-18F: Mating flange Gold wire seal Set of nuts, bolts, washers and studding	VMF-18 se VMS-18 se V-1018	eries
For all types: Mounting support	V-1011 (se	e Fig. 4)
SPARE PARTS		
Seal pad	V-1007	

1) The body of the tap may be turned through 90° or $180^{\rm o}$ on the support bracket to accommodate alternative lay-outs.

January 1969

VTB - 18 VTB - 18F VTB - 18K VTB - 18P

Dimensions in mm

VTB-18

1/4" BSFx1" Allen caphead screw stainless steel to EN 58 (3x)

Fig.2

Fig.3

V-1011

Fig.4

January 1969

ULTRA-HIGH VACUUM TAP

All-metal tap for ultra-high vacuum systems with a nominal bore of 1" (approx. 25 mm). Open conductance is above 21 litres per second and the closed conductance is below 10^{-14} atmospheric litre per second. The tap is bakeable at 450 $^{\circ}$ C in open and at 400 $^{\circ}$ C in closed position.

Type VTB-25 has stainless steel tubulations Type VTB-25F has metal flanges

Type VTB-25K has Kodial glass tubulations

Type VTB-25P has Pyrex glass tubulations

CHARACTERISTICS

Closed leak conductance	< 10-14	l/s
Open conductance	> 21	1/s
Closing torque initial to produce a closed leak conductance of 10 ⁻¹⁴ l/s	11	Nm (1.1 mkg)

LIMITING VALUES

Closing torque	max.	22	Nm (2.2 mkg)
Bake-out temperature: open	max.	450	°C
closed	max.	400	oC

MECHANICAL DATA

Dimensions Mounting position

ASSOCIATED COMPONENTS

For VTB-25F: Mating flange	VMF-25 series
Gold wire seal	VMS-25 series
Set of nuts, bolts, washers and studding	V-1019
For all types: Mounting support	V-1012 (see Fig. 4)

SPARE PARTS

Seal pad

V-1008

any

see Figs 1, 2 and 3

CONTRACTOR
-
STREET, STREET
_
121105-005
0.0075
-
1212
1000

184

T

VTB-25 F

\$57 \$74.5

7209258

111

62.5

Fig.2

7322	012	06850

HIGH VACUUM TAP

Stainless steel high vacuum tap with a nominal bore of 60 mm diameter. On two opposite sides facilities are provided for mounting manifolds or tapse.g. forbacking pressure connection. The tap is provided with flanges in accordance with the ISO Recommendations; one is rotatable.

DIMENSIONS

Dimensions in mm

ASSOCIATED COMPONENTS

Sealing ring: for main flanges (nominal bore 63 mm)

7322 012 32940

7322 012 06860

HIGH VACUUM TAP

Stainless steel high vacuum tap with a nominal bore of 100 mm diameter. On two opposite sides facilities are provided for mounting manifolds or taps e.g. for back-ing pressure connection. The tap is provided with flanges in accordance with the ISO Recommendations; one is rotatable.

DIMENSIONS

Dimensions in mm

ASSOCIATED COMPONENTS

Sealing ring: for main flanges (nominal bore 100 mm)

7322 012 32470

December 1968

HIGH VACUUM TAP

Stainless steel high vacuum tap with a nominal bore of 150 mm diameter. On two opposite sides facilities are provided for mounting manifolds or taps e.g. for back-ing pressure connection. The tap is provided with flanges in accordance with the ISO Recommendations; one is rotatable.

DIMENSIONS

Dimensions in mm

ASSOCIATED COMPONENTS

Sealing ring: for main flanges (nominal bore 160 mm)

7322 012 32950

March 1968

HIGH VACUUM TAP

Stainless steel high vacuum tap with a nominal bore of 200 mm diameter. On one side facilities are provided for mounting manifolds or taps e.g. for backing pressure connection. The handwheel together with the driving shaft can easily be mounted on the opposite side of the tap. The tap is provided with flanges in accordance with the ISO Recommendations; one is rotatable.

DIMENSIONS

Dimensions in mm

ASSOCIATED COMPONENTS

Sealing ring: for mains flanges (nominal bore 200 mm)

7322 012 31720

March 1968

7322 012 06750			56610
Fore vacuum tap wi The tap is provided The traveling way o	FORE VACU th a nominal bore of 20 with blank flanges in aco of the valve stem is adju-	UUM TAP mm. cordance with the ISO stable.	Recommendations.
DIMENSIONS			Dimensions in mm
M6(4x)	◆35	С С С С С С С С С С С С С С С С С С С	200094
March 1968			I

7322 012 40510

FORE VACUUM TAP

Pneumatically operated fore vacuum tap with a nominal bore of 20 mm.

The tap is provided with blank flanges in accordance with the ISO Recommendations.

DIMENSIONS

Dimensions in mm

DOUBLE FORE VACUUM TAP

Double fore vacuum tap with a nominal bore of 20 mm.

The tap is provided with blank flanges in accordance with the ISO Recommendations. The traveling way of each valve stem is adjustable.

DIMENSIONS

M6(4x) Dimensions in mm

7322 012 40530

DOUBLE FORE VACUUM TAP

Pneumatically operated, double fore vacuum tap with a nominal bore of 20 mm. The tap is provided with blank flanges in accordance with the ISO Recommendations.

DIMENSIONS

Dimensions in mm

7322 012 40520

FORE VACUUM TAP

Pneumatically operated fore vacuum tap with a nominal bore of 40 mm.

The tap is provided with blank flanges in accordance with the ISO Recommendations. The traveling speed of the valve stem is adjustable by means of two throttle values.

DIMENSIONS

Dimensions in mm

7322	012	06780

DOUBLE FORE VACUUM TAP

Double fore vacuum tap with a nominal bore of 40 mm.

The tap is provided with blank flanges in accordance with the ISO Recommendations. The traveling way of each valve stem is adjustable.

DIMENSIONS

Dimensions in mm

7322 012 40540

DOUBLE FORE VACUUM TAP

Pneumatically operated, double fore vacuum tap with a nominal bore of 40 mm.

The tap is provided with blank flanges in accordance with the ISO Recommendations. The traveling speed of each valve stem is adjustable by means of two throttle valves.

Fittings

VC-300 to VC-344

CONNECTORS

Stainless steel connectors for ultra-high vacuum systems.

The range comprises the following types:

VC-300 to VC-305 VC-310 to VC-315 VC-320 to VC-325 VC-330 to VC-335 VC-340 to VC-344 right-angle connectors cross connectors T connectors flexible connectors reducing connectors

The connectors are manufactured from low vapour pressure metal to ensure minimum contamination and will not be affected by contaminations often met in high vacuum systems, such as silicone grease, molybdenum disulphide, diffusion pump oils and mercury vapours.

CHARACTERISTICS

Material

stainless steel to EN58

Dimensions

see table below

Type number	Fig.	Internal dia (nom) (mm)	Dimension a (nom) (mm)	Flange type
VC-300	1	19	63.5	VMF-18
VC-301	1	25	76	VMF - 25
VC-302	1	38	82.5	VMF-38
VC-303	1	48	89	VMF-51
VC-304	1 .	70	134	VMF-75
VC-305	1	94	157	VMF-100
VC-310	2	19	63.5	VMF-18
VC-311	2	22	76	VMF-25
VC-312	2	35	82.5	VMF-38
VC-313	2	48	89	VMF-51
VC-314	2	73	120.5	VMF-75
VC-315	2	98	133.5	VMF-100

Type number	Fig.	Internal dia (nom) (mm)	Dimension a (nom) (mm)	Flange type
VC-320	3	19	63.5	VMF-18
VC-321	3	22	76	VMF-25
VC-322	3	35	82.5	VMF-38
VC-323	3	48	89	VMF-51
VC-324	3	73	120.5	VMF-75
VC-325	3	98	133.5	VMF-100
VC-330	4	13	80	VMF-18
VC-331	4	25	85	VMF-25
VC-332	4	34	86	VMF-38
VC-333	4	44	86	VMF-51
VC-334	4	67	110	VMF-75
VC-335	4	93	110	VMF - 100
VC-340	5	25/16	85	VMF-25/VMF-18
VC-341	5	38/25	90	VMF-38/VMF-25
VC-343	5	75/48	115	VMF-75/VMF-51
VC-344	5	100/70	115	VMF-100/VMF-75

ASSOCIATED COMPONENTS

Gold wire seals	VMS-18 to VMS-100		
Set of nuts, bolts, washers and studding			
for VMF-18 flanges	V-1018		
VMF-25, VMF-38 and VMF-51 flanges	V-1019		
VMF-75 and VMF-100 flanges	V-1020		

VIEWING PORTS

Viewing ports for ultra-high vacuum systems. The ports are bakeable to 400 $^{\rm O}{\rm C}$ and are mounted on flanges.

Type number	Port diameter mm in (approx.)		Flange type
VC-350	25	1	VMF-25
VC-351	38	1.5	VMF-38
VC-352	51	2	VMF-51
VC-353	76	3	VMF-75
VC-354	100	4	VMF-100

ASSOCIATED COMPONENTS

	For	For	For	For	For
	VMF-25	VMF-38	VMF-51	VMF-75	VMF - 100
	flanges	flanges	flanges	flanges	flanges
Gold wire seals Set of bolts, nuts,	VMS-25	VMS-51	VMS-51	VMS-75	VMS-100
washers and studding	V-1019	V-1019	V-1019	V-1020	V-1020

7Z2 9176

VC-350 to VC-354

January 1968

VC-707

Linear drive of the micrometer type; overall movement 1 in (25.4 mm) with an accuracy of 0.001 in (approx. 0.03 mm).

The drive, except for the micrometer head, is bakeable to $450 \text{ }^{\circ}\text{C}$; the micrometer head can be removed easily without affecting the scaling of the system.

CHARACTERISTICS

Overall movement

l in (25.4 mm) +0.001 in (approx. 0.03 mm)

Accuracy

LIMITING VALUES

Bake-out temperature (micrometer head removed)

MECHANICAL DATA

Material: stainless steel to EN 58

max. 450 °C Dimensions in mm

VC-712

Linear drive with an overall movement of 1 in. The drive is bakeable to 450 $^{\rm O}{\rm C}$

CHARACTERISTICS

Overall movement

LIMITING VALUES

Bake-out temperature

MECHANICAL DATA

Material: stainless steel to EN 58

1 in (25.4 mm)

max. 450 °C

Dimensions in mm

VC-721 to VC-734

ELECTRICAL FEED-THROUGHS

Electrical feed-throughs for ultra-high vacuum systems.

The feed-throughs are made in metal-ceramic or in metal-glass construction.

The range comprises the following types:

VC-721 to VC-734 feed-throughs welded into flanges Glass feed-throughs can be delivered with a skirt instead of a flange. Add suffix SK to type number

	Type No.	Material	Fig.	No. of pins	Max. voltage (kV)	Max. current (A)	Flange	
	VC-721	glass	~1	9	5	5	VMF-25	
100000	VC-723	ceramic	2	1	3	50	VMF-25	
Contraction of the	VC-724	ceramic	3	1	3	200	VMF-25	
	VC-725	ceramic	4	1	12	10	VMF-25	
	VC-726	ceramic	5	10	5	1	VMF-51	
1000	VC-727	ceramic	6	3	1	30	VMF-25	
	VC-728	glass	7	14	5	2 pins "E": 12 12 pins "H": 7	VMF-51	
	VC-729	glass	8	6	8	7	VMF-51	
	VC-730	glass	9	6	1 pin "J": 12 5 pins "H": 8	1 pin "J": 12 5 pins "H": 5	VMF - 51	
of the second se	VC-731	glass	10	7	1 pin "H": 12 6 pins "J": 8	1 pin "H": 12 6 pins "J": 7	VMF-51	
	VC-732	glass	11	9	1 pin "J": 12 8 pins "H": 8	1 pin "J": 12 8 pins "H": 7	VMF-51	
000000000000000000000000000000000000000	VC-733	glass	12	9	1 pin "H": 12 8 pins "J": 5	5	VMF-25	
	VC-734	ceramic	13	2	5	12	VMF-25	
Maximum operating temperature at full ratings, for glass insulated components 20 °C for ceramic insulated components 450 °C Maximum bake-out temperature 450 °C								
	ASSOCIATH	ED COMPO	ONENT	S				
				For V	/MF-25	For VMF-51		
				fla	nges	flanges		
1	Gold wire s	seals		VM	IS-25	VMS-51		
-	Set of bolts	, nuts, wa	ashers					
	and studdi	ing		V -	1019	V-1019		
-	loo ombor 1	067					1	

CHARACTERISTICS AND LIMITING VALUES

VC-721 to VC-734

100

VC-721 to VC-734

Fig.5

December 1967

VC-721 to VC-734

Fig.9

Fig.10

December 1967

FLANGES

Ultra-high vacuum flanges designed for use with gold wire seals.

The range comprises the following types:

VMF -18 to VMF -150	plain flanges
VMF-18B to VMF-150B	blanking flanges
VMF -18K to VMF -100K	flanges with Kodial glass tubulation
VMF-18P to VMF-100P	flanges with Pyrex glass tubulation
VMF-18S to VMF-100S	flanges with stainless steel tubulation

The flanges are manufactured from low vapour pressure metal to ensure minimum contamination and will not be affected by contaminations often met in high vacuum systems, such as silicone grease, molybdenum disulphide, diffusion pump oils and mercury vapours.

The plain flanges are provided with a recess in the seal face, so a tubulation can be welded to the flange without affecting the seal face.

CHARACTERISTICS

Material	flanges	stainless steel to EN58, forged plate
	tubulation "K" series	Kodial glass
	"P" series	Pyrex glass
	"S" series	stainless steel to EN58
Dimensions	see pages 2	and 3

VMS-18 to VMS-150

ASSOCIATED COMPONENTS

Gold wire seals

Set of bolts, nuts, washers and studding

for VMF -18 series V-1018 VMF -25, VMF -38 and VMF -51 series V-1019 VMF -75 and VMF -100 series V-1020

VMF-125 and VMF-150 series V-1021

FLANGES

Dimensions in mm unless otherwise stated.

	Dimension								
Type Number	А	В	С	D	E No.	F	G	Н	J
					011	dia.		BSF	BSF H/HD
VMF -18	50.5	37.0	18.81	12.8	5	6.6	1/4"	1/4"	1/4" x l 1/4"
VMF - 38	100.5	82.5	40.81	15.2	12	8.2	5/16"	5/16"	5/16" x 1 1/2"
VMF -51	100.5	82.5	50.51	15.2	12	8.2	5/16''	5/16"	5/16" x 1 1/2"
VMF -75	125.5	106.5	75.51	20.2	12	9.7	3/8''	3/8''	3/8" x 2"
VMF -100	152.5	133.5	99.01	20.2	16	9.7	3/8"	3/8"	3/8" x 2"
VMF -125	185.0	165.0	123.02	25.2	20	9.7	3/8''	3/8''	3/8" [·] x 2 1/2"
VMF -150	227.5	208.0	150.62	25.2	24	9.7	3/8"	3/8''	3/8" x 2 1/2"

BLANKING FLANGES

Dimensions as "Flanges" but without hole C.

FLANGES WITH GLASS TUBULATION

Type Number		Internal	Dimension			
Kodial Glass	Pyrex Glass	Diameter nom.(mm)	а	b	с	
VMF -18K	• VMF -18P	18	28	100	20 to 22.5	
VMF-25K	VMF -25P	25	51	100	28 to 30	
VMF - 38K	VMF -38P	38	.55	110	40 to 42	
V51K	VMF -51P	48	50	130	50 to 55	
VMF -75K	VMF -75P	70	60	135	75 to 80	
VMF -100K	VMF -100P	96	75	135	100 to 108	

For dimensions of the flange see under "FLANGES"

FLANGES WITH STAINLESS STEEL TUBULATION

Туре	Internal		Dimension	
Number	nom.	b	с	d
VMF-18S	16	250	19.1	1.6
VMF-25S	25	250	28.6	1.6
VMF-38S	38	250	41.3	1.6
VMF - 51S	48	250	50.8	1.6
VMF -75S	70	300	76.2	3.2
VMF -100S	96	350	101.6	3.2

For dimensions of the flange see under "FLANGES"

GOLD WIRE SEALS

Gold wire seals for ultra-high vacuum systems.

The range comprises the following types:

VMS-... series

0.5 mm gold wire seals with stainless steel spider

0.5 mm gold wire seals without spider

VMS-...R series

The stainless steel spider gives both correct location in the flange and the correct compression needed for a positive seal eliminating compression gauging or torque measurement.

Type number	Flange p (approx.)	oort size	For flange type number
VMS-18	19 mm	0.75 in	VMF -18
VMS-25	25 mm	l in	VMF-25
VMS-51	3 8 mm	1.5 in	VMF-38
	a	nd	
	51 mm	2 in	VMF-51
VMS-75	76 mm	3 in	VMF-75
VMS-100	100 mm	4 in	VMF-100
VMS-150	150 mm	6 in	VMF-150

Apparatus

PIRANI/IONIZATION GAUGE CONTROL UNIT

In combination with the gauge head type IOG-15 the unit constitutes a combined Pirani/Ionization manometer with an overall measuring range of 1 torr to 10^{-10} torr. Used with a plain ionization gauge head the unit constitutes an ionization manometer enabling pressure measurements down to 5×10^{-11} torr. Suitable heads are, for example, the types IOG-12, IOG-13, IOG-13 NF, IOG-17 and the gauge section of the evaporation ion pump type EIP-12; with these heads the measuring range is 10^{-3} to 10^{-10} torr.

The filament supply voltage for the Pirani gauge is kept constant over the measuring range the temperature thus the resistance varying with pressure.

The pressure is read directly in torr from the meter.

The ionization section provides three stabilized emission currents, viz. 100 μA , 1 mA, and 10 mA.

The pressure measuring range is automatically switched to suit the selected emission current.

The measuring range is shown by numerical indicator tubes.

The filament of the ionization gauge can be operated only below a pressure of 10^{-3} torr; moreover the filament supply will be interrupted if the pressure rises by 50% above the range set.

A spare contact of the protecting relay is brought out.

A facility for outgassing the gauge head is provided.

In addition a zero suppress control is incorporated in order that the unit may be used as a leak detector.

The unit is suitable for rack mounting.

n

CHARACTERISTICS

with gauge head type IOG-15				
Pirani section	1 to) 10 ⁻	-4	torr
Ionization section	10 ⁻³ to) 10	-10	torr
with gauge head type IOG-12, IOG-13, IOG-13NF or IOG-17				
Ionization section only	10 ⁻³ to) 10 ⁻	-10	torr
Stabilization time when switching from one range to another		2	250	ms
Measuring conditions				
Pirani section				
Filament supply voltage		1.	. 66	Vdc
Ionization section				
Collector voltage			-9	V
Cathode voltage			54	V
Grid voltage		1	166	V
Emission current, stabilized		1	100	μA
			1	mA
			10	mА
Amplifier is adjustable to a gauge sensitivity of 8 to 20 torr^{-1}				
Outgassing conditions				
Filament voltage	0	to	9	V
Power	ma	ax.	45	W
Grid, collector and Pirani voltage			550	V
Auxiliary output terminal	0	to	10	mV
Dimensions (h x w x d)	132 x 48	32 x 2	203	mm
ASSOCIATED COMPONENTS				
Pirani/Ionization gauge head	IOG-1	5		
Ionization gauge head	'IOG-12	2, IC)G - 2	13,
	IOG-1	3NF	,	
	10G-1	7		

OBSOLESCENT TYPE

January 1969

IONIZATION GAUGE CONTROL UNIT

In combination with a gauge head this unit constitutes an ionization manometer. Its switching facilities are such that it can operate both plain gauge heads and those provided with a modulator electrode.

Gauge heads with a modulator electrode, such as the IOG-20N and IOG-20NF, provide a measuring range from 10^{-3} torr to 10^{-12} torr. Used with plain gauge heads, for example the IOG-18 and IOG-19 series, the unit's measuring range is limited at the lower end by the X-ray limit of the gauge head (4x10⁻¹¹ torr for the IOG-18 and IOG-19).

Three stabilized emission currents, $100 \ \mu\text{A}$, 1 mA and 10 mA are supplied by the gauge control unit, depending on the position of a selector switch on the front panel. A toggle switch permits direct reading of the selected current on the pressure indicating meter.

The pressure measuring range is automatically switched to suit the selected emission current.

The measuring range is shown by numerical indicator tubes.

The filament supply will be interrupted if the pressure rises by 50% above the range set. A spare contact of the protecting relay is brought out.

A facility for outgassing the gauge head is provided. The outgassing current, which is continuously variable, is indicated on the meter. In addition a zero suppress control is incorporated in order that the unit may be used as a leak detector.

The unit is suitable for rack mounting.

CHARACTERISTICS

with gauge head IOG-20N or IOG-20NF with a gauge head out of the IOG-18 or IOG-19 series	10 ⁻³ to 10 ⁻¹² 10 ⁻³ to 4x10 ⁻¹¹	torr torr
Stabilization time when switching from one range to another	250	ms
Measuring conditions Collector voltage Cathode voltage Grid voltage Modulator electrode voltage Emission current	-9 +54 +166 0 or +166 100 1 10	V V V MA mA
Amplifier adjustable to a gauge sensitivity of	8 to 21	torr-1
Outgassing conditions Filament voltage Power Grid, collector and modulator electrode Auxiliary output terminal Dimensions (h x w x d)	0 to 9 max. 55 550 0 to 10 132 x 482 x 203	V W V mV mm

ASSOCIATED COMPONENTS

Ionization gauge headIOG-18 seriesIOG-19 seriesIOG-20 series

WIDE RANGE PENNING GAUGE CONTROL UNIT

In combination with the appropriate gauge heads the unit constitutes a Penning manometer with an overall measuring range of 10^{-1} torr to 10^{-7} torr, subdivided into three subranges.

To cover the measuring range mentioned, two gauge heads have to be applied, viz. a standard Penning gauge head (for example type CIG-22, CIG-75 or CIG-77) and an extra sensitive Penning gauge head (for example type CIG-82 or CIG-84).

Besides a μ A-meter a glow-discharge column indicator is provided for a rough indication of the pressure.

The meter circuit can be short-circuited to prevent overloading at pressures above the measuring range.

The unit is mounted in a bench cabinet.

CHARACTERISTICS

Pressure range (appropriate gauge heads being used)	10 ⁻¹ to	10-7	torr
Selector switch at position "1000"	10^{-1} to 5	.10-3	torr
Selector switch at position "2000"	2.10 ⁻³ to	10-5	torr
Selector switch at position "2000G"	10 ⁻⁴ to	10-7	torr

Measuring conditions

Anode voltage,

selector switch at position "1000"			1000	V
selector switch at positions "2000" and "2000G"			2000	V
Mains voltage (40 to 60 Hz)	110	or	220	V
Dimensions (h x w x d)	240 x	360 x	c 180	mm
Weight	appro	х.	8	kg

ASSOCIATED COMPONENTS

Penning gauge head

Extra sensitive Penning gauge head

CIG-22, CIG-75 or CIG-77 CIG-82 or CIG-84

8122 053 70130

GCU-12

PENNING GAUGE CONTROL UNIT

In combination with an appropriate gauge head the unit constitutes a Penning manometer with a measuring range of 10^{-1} torr to 10^{-5} torr.

The unit is designed for the application of a standard Penning gauge head (for example type CIG-22, CIG-75 or CIG-77).

Besides a μ A-meter, giving a direct reading of the pressure in torr, a glow-discharge column indicator is provided for a rough indication of the pressure. The meter circuit can be short-circuited to prevent overloading at pressures above the measuring range.

The unit is mounted in a bench cabinet.

CHARACTERISTICS

Pressure range (appropriate gauge head being used)	10 ⁻¹ to 10 ⁻⁵ torr	
Selector switch at position " x 10 "	10^{-1} to 5.10 ⁻³ torr	
Selector switch in position " x 1 "	2.10 ⁻³ to 10 ⁻⁵ torr	ĺ
Measuring conditions		
Anode voltage selector switch at position " x 10 " selector switch at position " x 1 "	1000 V 2000 V	
Mains voltage (40 to 60 Hz)	110 or 220 V	
Dimensions (h x w x d)	230 x 230 x 140 mm	
Weight	approx. 5 kg	

ASSOCIATED COMPONENTS

Penning gauge head

CIG-22, CIG-75 or CIG-77

PIRANI/CONVECTION GAUGE CONTROL UNIT

In combination with the appropriate gauge head the unit constitutes a high vacuum manometer with a measuring range of 760 torr to 2×10^{-4} torr.

The resistance of the filament is kept constant over the measuring range by the unit, the filament supply power varying with pressure. To this end, the gauge filament is taken up in a Wheatstone bridge, the filament supply power being controlled to that level at which the resistance of the filament brings the bridge in equilibrium.

The pressure can be read direct from the meter in torr, the corresponding scale being calibrated for dry air. It may also be derived by means of a calibration curve, five voltage measuring ranges being available, viz. 20, 5, 2, 0.5 and 0.2 volts.

The unit can serve two Pirani gauge heads type PIG-1.

For both inputs separate calibrations are provided on the front panel; selection is by means of a switch also situated on the front panel.

A facility for outgassing the filament of the gauge head is provided.

The unit is mounted is a bench cabinet; appropriate cables are supplied with the unit.

CHARACTERISTICS

Pressure range, when used with gauge head PIG-1	7	'60 to 2 :	x 10-4	torr
Output voltages: Filament supply voltage	approx.	l to	20	V _{d.c.}
Recorder output (source resistance 50 Ω)		0 to	10	mV
Bridge equilibrium resistance during measuring	approx.		45	Ω
during outgassing	approx.		65	Ω
Mains voltage (40 Hz to 60 Hz)			220	V ± 10%
Dimensions (h x w x d)	240	x 230 x	180	mm
Weight	approx.		5.5	kg
ASSOCIATED COMPONENTS				

Pirani gauge head

PIG-1

THERMO-COUPLE GAUGE CONTROL UNIT

In combination with the appropriate gauge head type TH-1/00 the unit constitutes a thermo-couple manometer with an overall measuring range of 1 torr to 10^{-2} torr.

The unit is mounted in a bench cabinet.

CHADACTEDISTICS

Pressure range	1 to 10^{-2}	torr
Measuring conditions Filament supply voltage	approx. 0.8 to 1	V _{ac}
Mains voltage (40 to 60 Hz)	220	V
Dimensions (h x w x d)	225 x 158 x 140	mm
Weight	approx. 5	kg

POWER SUPPLY

Power supply designed for operation of the sputter ion pump type VKP-1.

The unit incorporates an overload protection circuit, which if the pressure in the pump rises above 10^{-4} torr either switches off the high tension supply to the pump (position "Protect" of the selector switch) or gives an alarm signal only, the high tension supply remaining on (position "Alarm" of the selector switch).

The circuit moreover operates a relay, the contacts of which are brought out for external functions.

The power supply has facilities for pressure measurements in the range 10^{-4} torr to 10^{-7} torr and is provided with a recorder output.

The unit is housed in a metal cabinet for rack mounting.

CHARACTERISTICS

D.C. output voltage at open circuit			4.9	kV
Pressure measuring range (logaritmic se	cale)	10 ⁻⁴ to	10-7	torr
Recorder output voltage		0 to	10	mV
Trip-relay contact ratings		2 A,	250	V
Mains voltage (50 Hz)	Mains transformer pr	ovided wi	ith tapp	oings
Line current (at 220 V)		max.	. 3	А
Dimensions (h x w x d)	2	22 x 482	x 201	mm
Net weight			14.5	kg

LIMITING VALUES

Ambient temperature h.t. lead	max.	250	°C
-------------------------------	------	-----	----

SPARE PARTS

High tension lead

V-1000

POWER SUPPLY

Power supply designed for operation of the sputter ion pump type VKP-8.

The unit incorporates an overload protection circuit, which if the pressure in the pump rises above 10^{-4} torr either switches off the high tension supply to the pump (position "Protect" of the selector switch) or gives an alarm signal only, the high tension supply remaining on (position "Alarm" of the selector switch).

The circuit moreover operates a relay, the contacts of which are brought out for external functions.

The power supply has facilities for pressure measurements in the range 10^{-4} torr to 10^{-8} torr and is provided with a recorder output.

The unit is housed in a metal cabinet for rack mounting.

CHARACTERISTICS

D.C. output voltage at open circuit			4.9	kV
Pressure measuring range (logaritmic s	cale)	10 ⁻⁴ to	10-8	torr
Recorder output voltage		0 to	10	mV
Trip-relay contact ratings		2 A,	250	V
Mains voltage (50 Hz)	Mains transformer p	provided wi	ith tapp	oings
Line current (at 220 V)		max	. 3	А
Dimensions (h x w x d)		222 x 482	x 201	mm
Net weight			21	kg

LIMITING VALUES

Ambient temperature h.t. lead	max. 25	0 °C
-------------------------------	---------	------

SPARE PARTS

High tension lead

V-1000

December 1968

POWER SUPPLY

Power supply designed for operation of the sputter ion pump type VKP-15.

The unit incorporates an overload protection circuit, which if the pressure in the pump rises above 10^{-4} torr either switches off the high tension supply to the pump (position "Protect" of the selector switch) or gives an alarm signal only, the high tension supply remaining on (position "Alarm" of the selector switch).

The circuit moreover operates a relay, the contacts of which are brought out for external functions.

The power supply has facilities for pressure measurements in the range 10^{-4} torr to 10^{-8} torr and is provided with a recorder output.

The unit is housed in a metal cabinet for rack mounting.

CHARACTERISTICS

D.C. output voltage at open circuit		4.9	kV
Pressure measuring range (logaritmic scale)	10 ⁻⁴ to	10-8	torr
Recorder output voltage	0 to	10	mV
Trip-relay contact ratings	2 A,	250	V
Mains voltage (50 Hz) Mains	transformer provided w	ith tap	pings
Line current (at 220 V)	max	. 5	А
Dimensions (h x w x d)	222 x 482	x 201	mm
Net weight		24.5	kg

LIMITING VALUES

Ambient temperature h.t. lead	max.	250	⁰ C
-------------------------------	------	-----	----------------

SPARE PARTS

High tension lead

V-1000

POWER SUPPLY

Power supply designed for operation of the sputter ion pump type VKP-50.

The unit incorporates an overload protection circuit, which if the pressure in the pump rises above 10^{-4} torr either switches off the high tension supply to the pump (position "Protect" of the selector switch) or gives an alarm signal only, the high tension supply remaining on (position "Alarm" of the selector switch).

The circuit moreover operates a relay, the contacts of which are brought out for external functions.

The power supply has facilities for pressure measurements in the range 10^{-4} torr to 5 x 10^{-9} torr and is provided with a recorder output.

The unit is housed un a metal cabinet for rack mounting.

CHARACTERISTICS

D.C. output voltage at open circuit			4.9	kV
Pressure measuring range (logaritmic se	cale)	10-4 to 5x	10-9	torr
Recorder output voltage		0 to	10	mV
Trip-relay contact ratings		2 A,	250	V
Mains voltage (50 Hz)	Mains transformer p	rovided wit	h tapp	oings
Line current (at 220 V)		max.	5	А
Dimensions (h x w x d)	:	222 x 482 x	201	mm
Net weight			24.5	kg

LIMITING VALUES

Ambient temperature h.t. lead	max.	250	oC
-------------------------------	------	-----	----

SPARE PARTS

High tension	lead			
--------------	------	--	--	--

V-1000

POWER SUPPLY

Power supply designed for operation of the sputter ion pump type VKP-100.

The unit incorporates an overload protection circuit, which if the pressure in the pump rises above 10^{-4} torr either switches off the high tension supply to the pump (position "Protect" of the selector switch) or gives an alarm signal only, the high tension supply remaining on (position "Alarm" of the selector switch).

The circuit moreover operates a relay, the contacts of which are brought out for external functions.

The power supply has facilities for pressure measurements in the range 10^{-4} torr to 2 x 10^{-9} torr and is provided with a recorder output.

The unit is housed in a metal cabinet for rack mounting.

CHARACTERISTICS

D.C. output voltage at open circuit	4.9	kV				
Pressure measuring range (logaritmic sc	tale) 10^{-4} to $2x10^{-9}$	torr				
Recorder output voltage	0 to 10	mV				
Trip-relay contact ratings	2 A, 250	V				
Mains voltage (50 Hz)	Mains transformer provided with tapping					
Line current (at 220 V)	max. 13	А				
Dimensions (h x w x d)	267 x 482 x 306	mm				
Net weight	50	kg				
LIMITING VALUES						
Ambient temperature h.t. lead	max. 250	°C				
SPARE PARTS						
High tension lead	V - 1000					

POWER SUPPLY

Power supply designed for operation of the sputter ion pump type VKP-150.

The unit incorporates an overload protection circuit, which if the pressure in the pump rises above 10^{-4} torr either switches off the high tension supply to the pump (position "Protect" of the selector switch) or gives an alarm signal only, the high tension supply remaining on (position "Alarm" of the selector switch).

The circuit moreover operates a relay, the contacts of which are brought out for external functions.

The power supply has facilities for pressure measurements in the range 10^{-4} torr to 10^{-9} torr and is provided with a recorder output.

The unit is housed in a metal cabinet for rack mounting.

CHARACTERISTICS

D.C. output voltage at open circuit				4.9	kV
Pressure measuring range (logaritmic scale)			to	10-9	torr
Recorder output voltage			0 to	10	mV
Trip-relay contact ratings			2 A,	250	V
Mains voltage (50 Hz)	Mains transformer	provi	ded wi	th tapp	pings
Line current (at 220 V)			max.	13	А
Dimensions (h x w x d)		267 3	x 482 >	x 306	mm
Net weight				50	kg
LIMITING VALUES					
Ambient temperature h.t. lead			max.	250	0C

SPARE PARTS

High tension lead

V-1000
POWER SUPPLY

Power supply designed for operation of the sputter ion pump type VKP-200.

The unit incorporates an overload protection circuit, which if the pressure in the pump rises above 10^{-4} torr either switches off the high tension supply to the pump (position "Protect" of the selector switch) or gives an alarm signal only, the high tension supply remaining on (position "Alarm" of the selector switch).

The circuit moreover operates a relay, the contacts of which are brought out for external functions.

The power supply has facilities for pressure measurements in the range 10^{-4} torr to 10^{-9} torr and is provided with a recorder output.

The unit is housed in a metal cabinet for rack mounting.

CHARACTERISTICS

D.C. output voltage at open circuit				4.9	kV
Pressure measuring range (logaritmic se	cale)	10-	4 _{to}	10-9	torr
Recorder output voltage			0 to	10	mV
Trip-relay contact ratings			2 A,	250	V
Mains voltage (50 Hz)	Mains transformer p	orovi	ded wi	th tapp	oings
Line current (at 220 V)			max.	13	А
Dimensions (h x w x d)		267	x 482 x	306	mm
Net weight				50	kg
LIMITING VALUES					
Ambient temperature			max.	250	oC
CDADE DADTS					

High tension lead

V-1000

POWER SUPPLY

Power supply designed for operation of the sputter ion pump type VKP-400.

The unit incorporates an overload protection circuit, which if the pressure in the pump rises above 10^{-4} torr either switches off the high tension supply to the pump (position "Protect" of the selector switch) or gives an alarm signal only, the high tension supply remaining on (position "Alarm" of the selector switch).

The circuit moreover operates a relay, the contacts of which are brought out for external functions.

The power supply has facilities for pressure measurements in the range 10^{-4} torr to 10^{-9} torr and is provided with a recorder output.

The unit is housed in a metal cabinet for rack mounting.

CHARACTERISTICS

D.C. output voltage at open circuit			4.9	kV
Pressure measuring range (logaritmic scale)			10-9	torr
Recorder output voltage		0 to	10	mV
Trip-relay contact ratings		2 A,	250	V
Mains voltage (50 Hz)	Mains transformer pr	ovided w	ith tap	pings
Line current (at 220 V)		max	. 28	А
Dimensions (h x w x d)	2	67 x 482	x 482	mm
Net weight			72	kg
LIMITING VALUES				
Ambient temperature h.t. lead		max	. 250	°C
SPARE PARTS				
High tension lead		V - 10	000	

POWER SUPPLY

Power supply designed for operation of the sputter ion pump type VKP-500.

The unit incorporates an overload protection circuit, which if the pressure in the pump rises above 10^{-4} torr either switches off the high tension supply to the pump (position "Protect" of the selector switch) or gives an alarm signal only, the high tension supply remaining on (position "Alarm" of the selector switch).

The circuit moreover operates a relay, the contacts of which are brought out for external functions.

The power supply has facilities for pressure measurements in the range 10^{-4} torr to 10^{-9} torr and is provided with a recorder output.

The unit is housed in a metal cabinet for rack mounting.

CHARACTERISTICS

D.C. output voltage at open circuit				4.9	kV
Pressure measuring range (logaritmic se	cale)	10-4	to	10-9	torr
Recorder output voltage			0 to	10	mV
Trip-relay contact ratings			2 A,	250	V
Mains voltage (50 Hz)	Mains transformer p	orovic	led wi	th tapp	pings
Line current (at 220 V)			max.	28	А
Dimensions (h x w x d)		267 x	482 x	482	mm
Net weight				72	kg
LIMITING VALUES					
Ambient temperature h.t. lead			max.	250	0°C
SPARE PARTS					
High tension lead			V-100	0	

POWER SUPPLY

Power supply designed for operation of the sputter ion pump type VKP-1000.

The unit incorporates an overload protection circuit, which if the pressure in the pump rises above 10^{-4} torr either switches off the high tension supply to the pump position "Protect" of the selector switch) or gives an alarm signal only, the high tension supply remaining on (position "Alarm" of the selector switch).

The circuit moreover operates a relay, the contacts of which are brought out for external functions.

The power supply has facilities for pressure measurements in the range 10^{-4} torr to 10^{-9} torr and is provided with a recorder output.

The unit is housed in a metal cabinet for rack mounting.

CHARACTERISTICS

D.C. output voltage at open circuit	4.9	kV
Pressure measuring range (logaritmic sca	ale) 10^{-4} to 10^{-9}	torr
Recorder output voltage	0 to 10	mV
Trip-relay contact ratings	2 A, 250	V
Mains voltage (50 Hz)	Mains transformer provided with tap	pings
Line current (at 220 V)	max. 28	А
Dimensions (h x w x d)	267 x 482 x 482	kg
Net weight	72	kg

LIMITING VALUES

Ambient temperature h.t.	lead	max.250	oC

SPARE PARTS

|--|

V-1000

LEAK DETECTOR, MASS SPECTROMETER TYPE

Automatic, helium mass spectrometer leak detector for use in continuous process control, batch analysis or precision laboratory measurements. Minimum detectable leak is 10^{-14} atmospheric litres of helium per second.

The leak detection is carried out by a 180° mass spectrometer.

The size of the leak is indicated on a separately housed meter, allowing the meter to be placed in the most convenient position. On special order, an acoustical signal unit can be provided.

In order to ensure that the correct mass number is detected, that is to say that a maximum output signal is obtained, the mass peak can be scanned. The mass spectrometer head is fabricated of stainless steel and is readily accessible for demounting at, for instance, periodic cleaning. The filament of the head is protected against operation above a pressure of 3×10^{-4} torr by the built-in Penning manometer.

The component under test is evacuated automatically in two stages: to approximately 2×10^{-2} torr by a two-stage rotary pump of 150 litres/min; from approximately 2×10^{-2} torr onwards by either an air-cooled, three-stage, oil diffusion pump of 60 litres/s (for type LD-3), or a water-cooled, three-stage, oil diffusion pump of 50 litres/s (for type LD-3NL), both backed by a second rotary pump of 35 litres/min. For reducing the back diffusion of oil vapour, a liquid nitrogen cooler is provided.

The apparatus comprises two test ports, one on the top of the unit and one at the side. The ports are fitted with Viton-sealed flanges and the top port is fitted with a flanged, quick-fit 25 mm connector as standard.

The operation of the apparatus within the automatic operation mode is controlled by means of a three-position switch, having the following positions:"Stand-by", "Test" and "Vent".

Alternatively complete manual operation can be selected.

The apparatus is provided with a worktable top to accommodate the components to be tested or to position auxiliary instruments.

CHARACTERISTICS

Detectable leak	min. 10^{-14} atm.l/s of helium		
Leak indication	uncalibrated meter 1		
Mass spectrometer head Accelerator voltage Ionizing current	0 to 100 Vd.c. 0 to 1.0 mA		
Amplifier range factors	1, 3, 10, 100, 300 and 1000		
Zero drift	< 1.0 % per hour		
Measuring system Pirani manometer, measuring range Penning manometer, measuring range	1 atm to 10^{-3} torr 5x10 ⁻³ to 10 ⁻⁵ torr		
Pumping systems For type LD-3	two-stage, rotary, oil-sealed, roughing pump of 150 l/min air-cooled, three-stage, oil-diffusion pump of 60 l/s double-stage, rotary, oil-sealed, backing pump of 35 l/min		
For type LD-3NL	two-stage, rotary, oil-sealed, roughing pump of 150 l/min water-cooled, three-stage, oil-diffusion pump of 50 l/s double-stage, rotary, oil-sealed, backing pump of 35 l/min		
Mains supply (50 Hz)	200 to 250 V, max. 13 A		
MECHANICAL DATA			
Dimensions of worktable Height Weight	580 x 680 mm 990 mm 210 kg		
ASSOCIATED COMPONENTS			
Calibrated leak Acoustical signal unit Helium needle probe Helium sniffer kit	V -1030 V -1043 V -1045 V -1046		
SPARE PARTS			
Set of 3 filaments for mass spectrometer	head V-1029		

 An acoustical signal unit can be provided on special order; see under "ASSOCIATED COMPONENTS".

LEAK DETECTOR, MASS SPECTROMETER TYPE

Mobile, helium mass spectrometer leak detector for batch analysis and precision laboratory testing. Minimum dectectable leak is 10^{-14} atmospheric litres of helium per second.

The leak detection is carried out by a 180° mass spectrometer. The size of the leak is indicated on a separately housed meter, allowing the meter to be placed in the most convenient position. On special order, an acoustical signal unit can be provided. The mass spectrometer head is fabricated of stainless steel and is readily accessible for demounting at, for instance, periodic cleaning. The filament of the head is protected against operation above a pressure of 3×10^{-4} torr by the built-in Penning manometer.

For evacuating the component under test and the mass spectrometer head, type LD-4 comprises an oil diffusion pump of 60 litres/s and a rotary pump of 35 litres/min. With type LD-4/150 the pre-evacuation of the test piece is carried out by an additional rotary pump of 150 litres/min.

For reducing the back diffusion of oil vapour, a liquid nitrogen cooler is provided in both types.

The apparatus is provided with a worktable top to accommodate the components to be tested or to position auxiliary instruments.

CHARACTERISTICS

Detectable leak	min. 10^{-14} atm. l/s of helium		
Leak indication	uncalibrated meter 1)		
Mass spectrometer head			
Accelerator voltage	0 to 100	Vd.c.	
Ionizing current	0 to 1.0	mA	
Amplifier range factors	1, 3, 10, 100, 300	and 1000	
Zero drift	< 1.0	% per hour	

¹) An acoustical signal unit can be provided on special order; see under "ASSOCIATED COMPONENTS".

January 1968

1

LD-4

LD - 4/150

LD-4 LD-4/150

Measuring system			
For type LD-4			
Penning manometer, measuring	range	$5 \ge 10^{-3}$ to 10^{-3}	⁵ torr
For type LD-4/150			
Pirani manometer, measuring ra	ange	1 atm to 10-	3 torr
Penning manometer, measuring	range	$5 \ge 10^{-3}$ to 10^{-3}	5 torr
Pumping system			
For type LD-4	air-cooled, thr	cee-stage, oil di of 60 1/s	ffusion pump
	double-stage, r	otary, oil-sealed of 35 1/min	, backing pump
For type LD-4/150	two-stage, rota	ary, oil-sealed, of 150 1/min	roughing pump
	air-cooled, the	cee-stage, oil di of 60 1/s	ffusion pump
	double-stage, r	otary, oil-sealed of 35 1/min	, backing pump
Mains supply (50 Hz)		200 to 25	0 V
		max. 1	3 A
MECHANICAL DATA			
Dimensions (h x w x d)		865 x 815 x 56	0 mm
Weight		13	2 kg
ASSOCIATED COMPONENTS			
Calibrated leak		V-1030	
Acoustical signal unit		V-1043	
Helium needle probe		V-1045	
Helium sniffer kit		V-1046	
SPARE PARTS			
Set of 3 filaments for mass spectro	meter head	V-1029	

LD-5

LEAK DETECTOR, ION-PUMP TYPE

Portable ion-pump type leak detector; minimum detectable leak 10^{-14} atmospheric litres per second.

The leak detector senses the small c h a n g e of ion pump current when the air passing through a leak in a vacuum system is replaced by a search gas, such as helium, argon or oxygen. In order to obtain a sufficiently large and stable reading, the applied voltage is stabilized and the pump current is "backed off".

The pump current c h a n g e s are displayed on a centre zero meter. This meter permits the use of search gases which either raise or lower the pump current, thus increasing the speed and accuracy of measuring (twin-gas probe operation).

A 16 stage increase/decrease sensitivity switch and a recorder output are provided.

The unit can accept voltages between 3 kV and 8 kV, positive as well as negative to earth.

The apparatus is mounted in a bench cabinet.

CHARACTERISTICS

Detectable leak	min.	10-14	atm l/s
Working range high-tension supply voltage		3 to 8	kV
Recorder output		0 to 10	mV
LIMITING VALUES			
High-tension supply voltage	max.	8	kV
High-tension supply current	max.	1	mA
Ambient temperature, during operation	max.	45	oC
MECHANICAL DATA			
Dimensions (h x w x d)	191 x 31	8 x 203	mm
Weight		3	kg

VC-601

LIQUID NITROGEN REPLENISHER

The liquid nitrogen replenisher is designed to control the level of liquid nitrogen in vapour traps. It consists of a heat-operated liquid-gas pumping system controlled by a level sensing thermistor circuit.

DESCRIPTION

The system consists of a sensor head, a transfer head and a control unit.

Sensor head

The sensor head comprises two thermistor sensors; either one or both can be used in the control action.

If one sensor is applied, a signal is provided to the control unit when the liquid nitrogen level falls below the sensor, the signal disappearing when the level again comes above the sensor.

With this method of operation adopted the level is kept within 1 mm.

Another method of operation, which is more economical as to the liquid nitrogen consumption, is obtained by putting both sensors into use. With this method a signal is provided to the control unit when the nitrogen level falls below the lowest sensor, the signal disappearing when the level has reached the highest sensor.

With this method of operation the level fluctuates over 50 mm.

Transfer head

The unit is comprised of a cap to fit the liquid nitrogen reservoir, a transfer tube with a heater attached and a gas relief tube connection. When the sensor head provides a signal indicating that the level is low, the heater in the liquid nitrogen reservoir is switched on and a valve in the gas relief tube is closed. This valve is incorporated in the control unit. The resultant build-up of pressure causes the transfer of liquid nitrogen.

When the level has risen sufficiently, the heater is switched off and the gas valve is opened; the transfer thus ceases.

The transfer head should be ordered separately (see page 3).

VC-601

DESCRIPTION (continued)

Control unit

This unit supplies the power necessary for the heater within the transfer head and comprises the gas valve and the circuitry allowing either one or two sensors to control the level of the liquid nitrogen. Moreover it comprises an alarm circuit, which supervises the liquid nitrogen level in the reservoir. When the reservoir is nearly empty an indicating lamp in the control unit starts flashing.

The gas relief tube to be connected to the transfer head is delivered with the unit.

Mains supply: 200 to 250 V a.c.; 1 A.

DIMENSIONS

Control unit	152 mm wide,	102 mm high,	114	mm deep
Length of heater lead		approx.	1.8	m
Length of sensor head lead		approx.	1.8	m
Length of gas tube		approx.	1.8	m
Length of transfer tube		approx.	1.8	m 1)

1) If required, greater lengths can be applied; however, the length should not exceed 3 m.

	×	VC-601
--	---	--------

TRANSFER HEADS (to be ordered separately)

The following type numbers are for the transfer tube, heater and dewar reservoir adaptor to suit particular dewar reservoirs.

Type number	Max. length l of transfer tube from top of fitting (see drawing)	Fitting for dewar reservoir	
V-1024	670 mm	1" Withworth	
V-1025	510 mm	2" stopper	
V-1026	510 mm	1 ¹¹ /16" stopper	
V-1027	485 mm	$1\frac{1}{2}$ " stopper	
V-1028	865 mm	$1\frac{1}{2}$ " Withworth	

Outside diameter of transfer pipe

Diameter of heater

7.0 mm

max. 12.7 mm

SPARE PARTS

Heater

Sensor head

V -1035 V -1036

SOME GENERAL DATA ON TYPES OF GLASS

Г

To be fused with	01 and 156 glass 156 and 01 glass	Kodial and G28 glass	W1, B37 and Pyrex glass	Pyrex, W1 and B37 glass
Annealing temperature (OC)	400 to 426 480 to 505	468 to 496	525 to 550	520 to 555
Expansion coefficient (cn /oC)	92x10 ⁻⁷ 102x10 ⁻⁷	48x10 ⁻⁷	37x10 ⁻⁷	32x10 ⁻⁷
Specific gravity	3.05 2.55	2.25	2.25	2.2
Description	lead glass lime glass	borosilicate glass	borosilicate glass	borosilicate glass
Type of glass	01 156	Kodial, G28	W1, B37	Pyrex
	tioe glass		glass	

SURVEY ON GLASS

٦

March 1968

INDEX OF TYPE NUMBERS

Type No.	Section	Type No.	Section	Type No.	Section	Type No.	Section
CIG-22	G	KPS-8	А	VKP-50	Р	56521	P
CIG-75	G	KPS-15	А	VKP-100	Р	56522	P
CIG-76	G	KPS-50	A	VKP-150	Р	56523	Р
CIG-77	G	KPS-100	A	VKP-200	Р	56530	Р
CIG-82	G	KPS-150	А	VKP-400	Р	56531	Р
CIG-83	G	KPS-200	А	VKP-500	Р	56532	Р
CIG-84	G	KPS-400	A	VKP-1000	P	56533	Р
EIP-12	Р	KPS-500	A	VMF -18 to 150	F	56540	Т
GCU-1	A	KPS-1000	A	VMS-18 to 150	F	56541	Т
GCU-2	А	LD-3	А	VT-25	Т	56542	Т
GCU-11	А	LD-3NL	А	VT-25F	Т	56543	Т
GCU-12	А	LD-4	А	VTB-6	Т	56610	T
GCU-13	А	LD-4/150	А	VTB-6K	Т	56611	Т
GCU-14	А	LD-5	А	VTB-6P	Т	56612	Т
IOG-12	G	PIG-1	G	VTB-18	Т	56613	Т
IOG-13	G	TH-1/00	G	VTB-18F	Т	56614	Т
IOG-13NF	G	VAP-12	Р	VTB-18K	Т	56615	Т
IOG-15	G	VAP-40	Р	VTB-18P	Т	56616	Т
IOG-17	G	VC-300 to 344	F	VTB-25	Т	56617	Т
IOG-18	G	VC-350 to 354	F	VTB-25F	Т		
IOG-18N	G	VC-601	А	VTB-25K	Т		
IOG-18NF	G	VC-707	F	VTB-25P	Т		
IOG-19	G	VC-712	F	56163	Р		
IOG-19N	G	VC-721 to 734	F	56164	Р		
IOG-19NF	G	VKP-1	Р	56165	Р		
IOG-20N	G	VKP-1F	Р	56500	Р		
IOG-20NF	G	VKP-1K	Р	56501	Р		
IOG-71	G	VKP-1P	Р	56502	Р		
KPS-1	А	VKP-8	Р	56503	Р		
		VKP-15	Р	56520	Р		

A = Apparatus

F = Fittings

G = Gauge heads

P = Pumps

T = Taps

Pumps
Gauge Heads
Taps
Fittings
Apparatus

Printed in the Netherlands

9399 261 08801