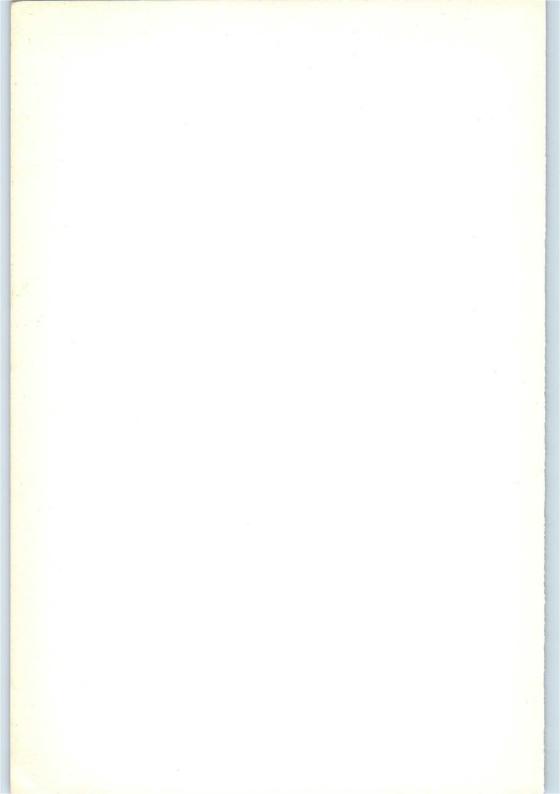


Data handbook

PHILIPS


Electronic components and materials

Electron tubes

Part 9 March 1978

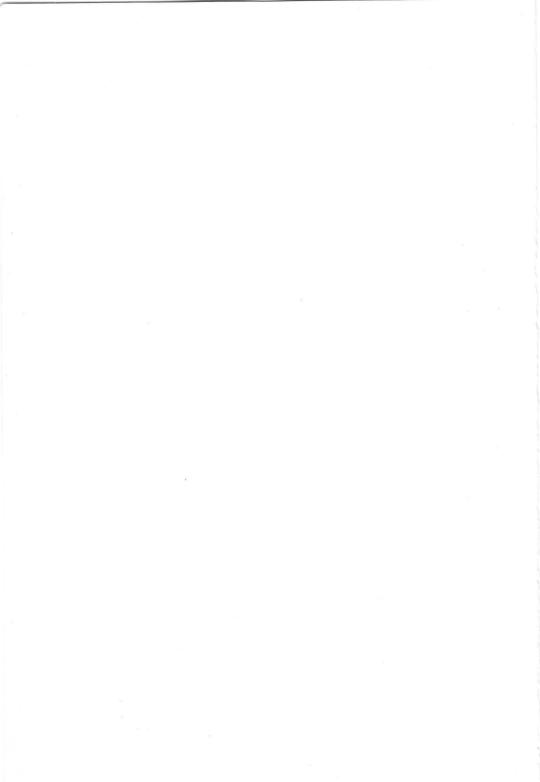

Photomultiplier tubes

Photo tubes (diodes)

ELECTRON TUBES

Part 9	March 1978
Photomultiplier tubes	
Phototubes	
Associated accessories	
Index	

DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of three series of handbooks each comprising several parts.

ELECTRON TUBES

SEMICONDUCTORS AND INTEGRATED CIRCUITS

COMPONENTS AND MATERIALS

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

Where ratings or specifications differ from those published in the preceding edition they are pointed out by arrows. Where application information is given it is advisory and does not form part of the product specification.

If you need confirmation that the published data about any of our products are the latest available, please contact our representative. He is at your service and will be glad to answer your inquiries.

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part without the written consent of the publisher.

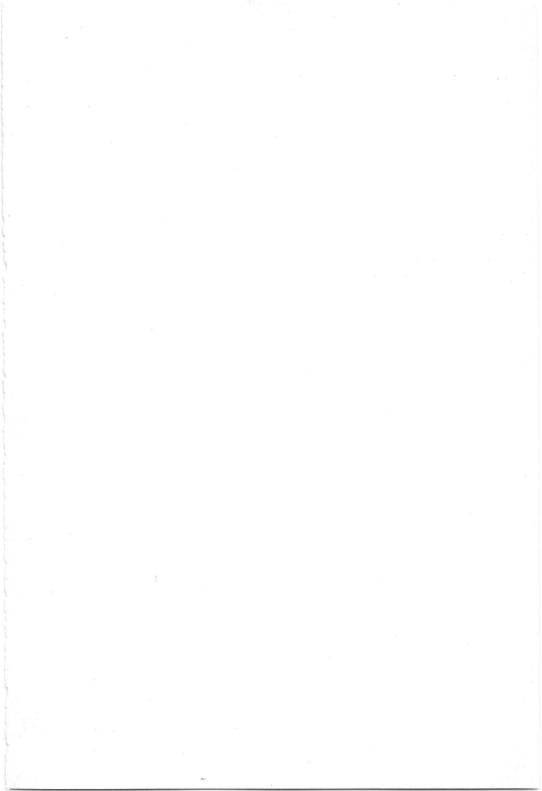
RED

GREEN

BLUE

ELECTRON TUBES (BLUE SERIES)

Part 1a December 1975	ET1a 12-75	Transmitting tubes for communication, tubes for r.f. heating Types PE05/25 to TBW15/25
Part 1b August 1977	ET1b 08-77	Transmitting tubes for communication, tubes for r.f. heating, amplifier circuit assemblies
Part 2 May 1976	ET2 05-76	Microwave products (This book is valid until Part 2b becomes available.)
Part 2a November 1977	ET2a 11-77	Microwave tubes Communication magnetrons, magnetrons for microwave heating, klystrons, travelling-wave tubes, diodes, triodes T-R switches
Part 3 January 1975	ET3 01-75	Special Quality tubes, miscellaneous devices
Part 4 March 1975	ET4 03-75	Receiving tubes
Part 5a March 1978	ET5a 03-78	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications
Part 5b May 1975	ET5b 05-75	Camera tubes, image intensifier tubes
Part 6 January 1977	ET6 01-77	Products for nuclear technology Channel electron multipliers, neutron tubes, Geiger-Müller tubes
Part 7a March 1977	ET7a 03-77	Gas-filled tubes Thyratrons, industrial rectifying tubes, ignitrons, high-voltage rectifying tubes
Part 7b March 1977	ET7b 03-77	Gas-filled tubes Segment indicator tubes, indicator tubes, switching diodes, dry reed contact units
Part 8 May 1977	ET8 05-77	TV picture tubes
Part 9 March 1978	ET9 03-78	Photomultiplier tubes; phototubes


SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

Part 1a March 1976	SC1a 03-76	Rectifier diodes, thyristors, triacs Rectifier diodes, voltage regulator diodes (> 1,5 W), transient suppressor diodes, rectifier stacks, thyristors, triacs
Part 1b May 1977	SC1b 05-77	Diodes Small signal germanium diodes, small signal silicon diodes, special diodes, voltage regulator diodes (< 1,5 W), voltage reference diodes, tuner diodes
Part 2 November 1977	SC2 11-77	Low-frequency and dual transistors
Part 3 January 1978	SC3 01-78	High-frequency, switching and field-effect transistors
Part 4a June 1976	SC4a 06-76	Special semiconductors Transmitting transistors, field-effect transistors, dual transistors, microminiature devices for thick and thin-film circuits
Part 4b July 1976	SC4b 07-76	Devices for optoelectronics Photosensitive diodes and transistors, light emitting diodes, displays, photocouplers, infrared sensitive devices, photoconductive devices
Part 5a November 1976	SC5a 11-76	Professional analogue integrated circuits
Part 5b March 1977	SC5b 03-77	Consumer integrated circuits Radio-audio, television
Part 6 October 1977	SC6 10-77	Digital integrated circuits LOCMOS HE4000B family
Signetics integrated circuit	s 1976	Logic, Memories, Interface, Analogue, Microprocessor, Milrel

COMPONENTS AND MATERIALS (GREEN SERIES)

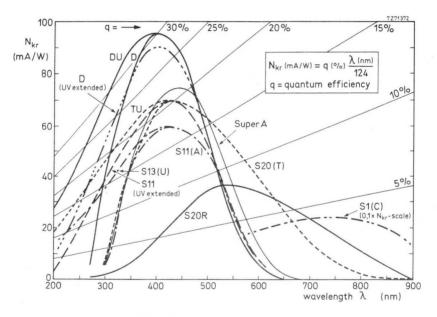
Part 1 June 1977 CM1 06-77 Assemblies for industrial use High noise immunity logic FZ/30- 50-series, NORbits 60-series, 61-se 90-series, circuit block CSA70(L), output devices, hybrid circuits, per core memory products	eries, circuit blocks PLC modules, input/
Part 2a October 1977 CM2a 10-77 Resistors Fixed resistors, variable resistors, variable resistors (VDR), light dependent resistors (ture coefficient thermistors (NTC) coefficient thermistors (PTC), test	LDR), negative tempera-), positive temperature
Part 2b February 1978 CM2b 02-78 Capacitors Electrolytic and solid capacitors, to capacitors, variable capacitors	film capacitors, ceramic
Part 3 January 1977 CM3 01-77 Radio, audio, television FM tuners, loudspeakers, television assemblies, components for black components for colour television	
Part 4a October 1976 CM4a 10-76 Soft ferrites Ferrites for radio, audio and televi Ferroxcube potcores and square co former cores	
Part 4b December 1976 CM4b 12-76 Piezoelectric ceramics, permanent	magnet materials
Part 5 July 1975 CM5 07-75 Ferrite core memory products Ferroxcube memory cores, matrix memory systems	planes and stacks, core
Part 6 April 1977 CM6 04-77 Electric motors and accessories Small synchronous motors, steppe direct current motors	er motors, miniature
Part 7 September 1971 CM7 09-71 Circuit blocks Circuit blocks 100 kHz-series, circ blocks 10-series, circuit blocks for f	
Part 8 February 1977 CM8 02-77 Variable mains transformers	
Part 9 March 1976 CM9 03-76 Piezoelectric quartz devices	
Part 10 November 1975 CM10 11-75 Connectors	

February 1978

Photomultiplier tubes

PHOTOMULTIPLIER TUBES

SURVEY OF TYPES


photo-	tube				spec	ctral res	ponse				
cathode dia. mm	dia.	super A	S1 (C)	S20R	S11 (A)	S13 (U)	S20 (T)	TU	D	DU	socket
14	PM1910 PM1918 PM1920 XP1116 XP1117		x		x x	×	x				FE1004 FE1004 FE1004 FE1004 FE1004
23	PM1980				X						FE1114
32	PM2012B PM2013B PM2018B PM2060B XP1011 XP1017 XP2008 XP2010 150CVP	x x x x	x	x		×	x		X		FE1012 FE1012 FE1012 FE1012 FE1012 FE1012 FE1012 FE1012 FE1012
44	PM2202 PM2232 PM2232B XP1002 XP2000 XP2020 XP20200 XP22300 XP2230B 56AVP 56CVP 56DVP 56TVP		x		х		x	x	× × × × × × ×	×	FE2019 FE2019 FE1020 FE1014 FE1020 FE1020 FE1020 FE1020 FE1020 FE1020 FE1020 FE1020 FE1020 FE1020
61	PM2402								Х		FE2019
68	PM2312 PM2312B								× ×		FE2019 FE1020

Replacement list at the back.

January 1978

PHOTOMULTIPLIER TUBES

photo- tube cathode type dia. mm	spectral response										
	super A	S1 (C)	S20R	S11 (A)	S13 (U)	S20 (T)	TU	D	DU	socket	
70	XP2030								x		FE1014
110	XP2040				Х						FE1020
	XP2040Q				X				X		FE1020
	XP2041				«.				X		FE1020
	XP20410								X		FE1020
	XP2050								X		FE1014
200	60DVP								X		FE1020
	60DVP/H								X		FE1020

Typical spectral sensitivity characteristics.

PHILIPS

HILIP

LIST OF SYMBOLS PHOTOMULTIPLIER TUBES

1

LIST OF SYMBOLS

Photocathode		k
Secondary emission electrode (dynode) n		Sn
Anode		а
Accelerating electrode		acc
Grid		g
Cathode luminous sensitivity		Nk
Cathode spectral sensitivity		Nkr
Luminous anode sensitivity		Na
Anode spectral sensitivity		Nar
Current amplification (gain)		G
Secondary emission factor of the dynodes		δ
Total supply voltage		Vb
Anode current		Ia
Anode dark current		I _{ao}
Cathode current		Ik
Efficiency		η
Wavelength		λ
Internal connection (do not use)		i.c.
External conductive coating		m

GENERAL OPERATIONAL RECOMMENDATIONS PHOTOMULTIPLIER TUBES

1. GENERAL *

1.1 A **photomultiplier tube** is a photosensitive vacuum device comprising a photoemissive cathode, a photoelectron optical collection system, and one or more stages of electron multiplication using secondary emission electrodes (dynodes) between cathode and anode.

1.2 A photoemissive cathode consists of a light-sensitive film (the emission layer) deposited on a substrate.

Two types of cathode may be distinguished:

- a. the opaque photocathode;
- b. the semi-transparent photocathode.

In the first type, the emission is deposited on a metal surface. In the second, the photocathode is deposited on the inside of the glass window. Although opaque photocathodes can be made more easily, semi-transparent photocathodes are mostly used, since they are mainly placed in front of the tube, which has many advantages for the construction and use of the photomultiplier tubes.

1.3 The photoelectron optical collection system (electron-optical input system) is that part of the photomultiplier tube which focuses the photoelectrons onto the first dynode. The quality of the input optics can be measured by the spread in the electron transit times, and by the collection efficiency, i.e. the percentage of electrons emitted by the photocathode that land on the first dynode. In most tubes the electron-optical input system consists of the photocathode itself and a focusing electrode, connected internally to the first dynode or externally to a suitable voltage between those of the photocathode and the first dynode. In some photomultiplier tubes, such as XP2020, XP2040, XP2041, 56- type family and 60 DVP, an improvement in time characteristics has been obtained by using additional electrodes.

1.4 Several **dynode system constructions** are possible such as linear focused or venetian blind structures.

Examples of materials used for dynodes are Ag-Mg and Cu-Be, of which the latter offers the better stability.

Assuming that all dynodes have the same secondary emission factor, δ , the amplification of the tube is given by:

 $G = \delta^n$

where n is the number of dynodes.

*) Where applicable reference is made to IEC Publication 306.

March 1976

GENERAL PHOTOMULTIPLIER TUBES

1.5 Spectral response

The materials used for the photocathode are of great importance to the spectral response. Many substances show photoemission, but often differ greatly in their spectral sensitivity and quantum yield.

- 1.5.1 The S11 (A-type) and Super A-type tubes are equipped with a semi-transparent caesium antimony photocathode on an MnO_2 layer, evaporated on the inside of a glass window. These types are sensitive to radiation in the visible region of the spectrum and have their maximum sensitivity at approximately 420 nm.
- 1.5.2 The <u>S13 (U-type</u>) tubes have the same photocathodes as the S11 tubes, but are provided with a fused silica (quartz) window, giving them a sensitivity that extends into the ultraviolet region of the spectrum.
- 1.5.3 The <u>S1 (C-type)</u> tubes have a semi-transparent caesium-on-silver-oxide photocathode on a glass window. The sensitivity lies mainly in the red and near infrared regions of the spectrum, with a maximum at approximately 800 nm.
- 1.5.4 The <u>S20 (T-type)</u> tubes have a tri-alkaline (Sb-Na-K-Cs) semi-transparent photocathode on a glass window. This photocathode has a good sensitivity from the ultraviolet to the near infrared part of the spectrum, with a maximum at approximately 420 nm.
- 1.5.5 The <u>S20R</u> tubes have a tri-alkaline (Sb-Na-K-Cs) semi-transparent photocathode on a glass window. The sensitivity extends from the visible into the near infrared part of the spectrum, with a maximum at approximately 550 nm.
- 1.5.6 The <u>TU-type</u> tubes have the same photocathode as the S20 tubes but are provided with a fused silica (quartz) window, giving them a sensitivity that extends into the ultraviolet region of the spectrum.
- 1.5.7 The <u>D-type</u> tubes have a bi-alkaline (Sb-K-Cs) semi-transparent photocathode on a glass window. This photocathode has a high quantum efficiency in the blue region of the spectrum and a low thermionic emission. The maximum sensitivity is at approximately 400 nm.
- 1.5.8 The \underline{DU} -type tubes have the same photocathode as the D-type tubes but are provided with a fused silica (quartz) window, giving them a sensitivity that extends into the ultraviolet region of the spectrum.

2. INTERPRETATION OF CHARACTERISTICS

In general the characteristics given in the data sheets are typical values. The "typical value" of a parameter is the median of the frequency distribution of the parameter measured on a large number of tubes.

In some cases maximum or minimum values are stated. These values are defined on test-limits carried out on each tube. Approximate values are given when these values are obtained from batch sample data.

Each tube is accompanied by a test card stating its test results.

The more important parameters are discussed below.

2.1 Cathode luminous sensitivity

The cathode luminous sensitivity is defined (IEC) as the quotient of the photo-current of the cathode by the incident luminous flux, expressed in amperes per lumen.

For this measurement the photomultiplier tube is connected as a diode. The cathode current, I_k , (corrected for dark current) is about 100 nA. The voltage used should be sufficient to ensure saturation.

Ine vonage abea bhoara be barretent to ensure be

The sensitivity is given by: $N_k = \frac{I_k}{\phi}$

where ϕ is the luminous flux, in lumen, of a tungsten filament lamp having a colour temperature of 2856 K.

2.2 Cathode spectral sensitivity

The cathode spectral sensitivity is the quotient of the photocurrent of the cathode by the value of the incident monochromatic radiant flux (IEC).

2.3 Absolute spectral sensitivity

The absolute spectral sensitivity is the radiant sensitivity for monochromatic radiation of a stated wavelength (IEC).

Measurements of this parameter are carried out with a tungsten filament lamp with a colour temperature of 2856 K and spectral filters. Tolerances of the spectral filters are stated in the tube data. The measuring equipment is calibrated by comparison with substandard light sources.

2.4 Quantum efficiency

The quantum efficiency (QE) is the ratio of the number of emitted photoelectrons to the number of incident photons (IEC) and is usually expressed in percent at a given wavelength.

At any given wavelength QE can be easily calculated from the following formula :

$$QE = N_{kr} \cdot \frac{1,24}{\lambda} \cdot 100 \,(\%)$$

where $N_{\rm kr}$ is the cathode radiant sensitivity in mA/W at wavelength λ , and λ is the wavelength in nm.

In general the radiant sensitivity is given at the wavelength of maximum response. For other wavelengths the quantum efficiency may be calculated referring to the absolute spectral sensitivity characteristic. This is the relation, usually shown by a graph, between wavelength and absolute spectral sensitivity. Lines of constant quantum efficiency are shown in Fig. 1, page 10.

2.5 Current amplification (gain) and anode luminous sensitivity

The current amplification, G, is the ratio of the anode signal current, I_a , to the cathode signal current, I_k , at stated electrode voltages (IEC).

$$G = \frac{I_a}{I_a}$$
.

Since the gain is usually very high $(> 10^6)$, it is difficult to make this measurement because the cathode signal current has to be made extremely low to prevent the anode current exceeding the stated maximum.

Anode luminous sensitivity

The anode luminous sensitivity, N_a , can be obtained from the cathode luminous sensitivity, N_k , and the gain, G, by:

$$N_a = G \cdot N_k (A/lm).$$

Gain and anode luminous sensitivity measurements are usually taken at several values of applied voltage.

2.6 Dark current and noise

2.6.1 **Dark current** is the current flowing in a photoelectric device in the absence of irradiation (IEC).

The major component of the dark current is generally due to thermionic emission of the cathode and depends on the type of cathode and the temperature roughly according to the following table.

type of catho	ode	dark current emission at 20 °C (electrons · s ⁻¹ · cm ⁻²)	activation energy (eV)	lowest useful temperature (°C)
Ag-O-Cs	(S1)	5.10 ⁶	1	-100
Sb-Na ₂ -K-C	s (S20R)	103	1,3	-40
Sb-Na ₂ -K-C	s (S20)	300	1,3	-40
Sb-Cs3	(S11)	100	1,3	-20
Sb-K-Cs	(D)	10	1,2	0

At the lowest useful temperature the emission approaches the practical limit of approximately 1 electron.s⁻¹, cm⁻², due - at least partly - to ambient radioactivity,

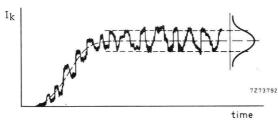
When measured at the anode this current increases proportionally with the gain and can also be recorded with an adequate pulse amplifier as random pulses, each corresponding to 1 electron leaving the photocathode; this is then known as the **background noise or dark noise count rate**.

For a given charge threshold, there is generally a certain range of voltage, $\rm V_{\rm b},$ where this count rate is more or less constant.

Occasionally, and especially at high voltages, it may be observed that the dark current increases more rapidly than the gain and becomes unstable. Simultaneously the dark noise count rate increases strongly with the applied voltage. This is due to complex field emission phenomena associated with light emission, and related photoelectric emission by the cathode. This behaviour generally tends to improve when the voltage is applied for a long period (some hours).

Another cause for anomalous dark current is retarded fluorescence of the glass if the tube has been exposed (even without voltage applied) to ambient light, especially with blue and UV radiation.

After such an exposure the time required for stabilization can reach 12 h.


At very low V_b , the major component of the dark current is the - ohmic - leakage current between the pins; this component is proportional to the voltage and increases with dust and high relative humidity.

2.6.2 Shot noise or Schottky effect

If a photocathode under constant illumination gives a photocurrent, Ik, this current will show fluctuations the r.m.s. value of which is given by:

$$\overline{I_k}^2 = 2 \cdot e \cdot I_k \cdot \Delta f$$

in which $e = 1, 6 \times 10^{-19} C$, Δf is the bandwidth of the equipment connected to the anode and $\overline{I_k}$ and I_k are expressed in amperes. These fluctuations are directly related to the statistical fluctuations in the emission of photoelectrons.

Noise in photomultipliers.

When the photocurrent and the noise current are amplified by a factor G in the multiplier part of the tube, the anode current will be:

$$I_a = G \cdot I_k$$
,

and the noise: $\overline{I_a^2} = 2 \cdot G \cdot e \cdot I_a \cdot \Delta f \left\{ 1 + \frac{\delta}{\delta_1(\delta - 1)} \right\}$.

The term $\frac{\delta}{\delta_1(\delta-1)}$ accounts for a noise contribution in the multiplier part due to statistical fluctuations in the secondary emission, δ being the average electron multiplication per stage and δ_1 being the electron multiplication of the first dynode.

The signal-to-noise ratio of the anode current is given by:

$$\frac{S}{N} = \frac{I_a}{I_a} = \sqrt{\frac{I_a}{2 \cdot G \cdot e \cdot \Delta f \left(1 + \frac{\delta}{\delta_1(\delta - I)}\right)}}.$$

With typical values of $\delta = 4$ and $\delta_1 = 6$ the noise contribution of the multiplier is about 10% on the signal-to-noise ratio.

2.7Linearity and saturation

The cathode and dynode currents should always be in the region of saturation, i.e. all electrons emitted by an electrode are collected by the next one, so as to guarantee the proportionality between the current and the cathode illumination over the whole operating range. When the tube is operated with a voltage $V_{S1/k}$, within the limiting values, saturation of the cathode is generally assured for cathode currents in the range of 10⁻⁸ A at room temperature.

December 1977

Nevertheless for type-D photocathodes, departure from linearity can be observed for cathode currents in the range of 10^{-10} A, especially when operating at low temperatures.

The saturation current of the dynodes is generally reached under normal operating conditions even at the highest permissible luminous flux.

The saturation of the anode is different. The anode current causes a voltage drop across the load resistor. If the anode voltage decreases below a certain value this results in a non-linearity. Moreover, the current may be limited by space charge effects at the highest permissible anode currents.

That limit is reached for anode currents of 10 to 300 mA depending on the type of photomultiplier and on the voltage divider. The electrode currents should never be so high as to be detrimental to the tube's life, or cause excessive fatigue or aging.

2.8 Time characteristics (IEC)

2.8.1 The signal transit time of a photomultiplier tube is defined as the time interval between the arrival of a delta function light pulse of a stated amplitude at the entrance window of the device and the time at which the output pulse reaches a stated value.

Values given in the data sheet are obtained by measuring the instant at which the illuminating pulse at the cathode becomes maximum and the instant at which the anode pulse attains its maximum.

A **delta function light pulse** is a pulse having finite integrated light flux and infinitesimal duration (width).

- 2.8.2 The anode pulse rise time of a photomultiplier tube is defined as the time required for the amplitude to rise from a stated low percentage to a stated higher percentage of maximum value when a steady state of radiation is instantaneously applied. Normally the 10% and 90% levels are considered.
- 2.8.3 The **anode pulse duration** at half height (response pulse duration, FWHM) is defined as the time duration between the half amplitude points of the output current pulse when the photocathode receives a delta function light pulse giving rise to a large number of photoelectrons.
- 2.8.4 The transit time difference expresses a systematic relationship between transit time and position of illumination on the photocathode. The reference position is usually the centre of the photocathode.
- 2.8.5 The transit time fluctuation is the standard deviation of the transit time distribution of single electrons leaving the photocathode.
- 2.8.6 Remark: Rise time, pulse duration, and transit time vary as a function of high-tension supply voltage, V_b , approximately as $V_b^{-1/2}$.

2.9 Stability

The concept of stability refers to different behaviour of the gain of photomultipliers which may change as a function of current, voltage, time, temperature, and history. For anode currents between 10 μA and absolute limiting value - which ranges from 100 to 500 μA - slow, irreversible changes of gain are observed. As an indication, for an anode current of 30 μA , a change of gain by a factor of 2 can be observed after about 5000 h for most tube types.

In the specific case of the S1 photocathode there is also a decrease in cathode sensitivity due to caesium desorption effect in the last stages, which requires a lower mean anode current. For anode currents below 1 μ A, only reversible changes of gain are generally observed, but these changes may exhibit hysteresis effects with time constants ranging from some seconds to some hours, depending on the anode current. A change of gain in applications such as scintillation counting is very cumbersome because it is associated by a shift of the total absorption peak, strongly degrading the resolution.

According to ANSI-N42-9-1972 of IEEE there are two types of pulse amplitude (height) stability tests:

1. A test of long term **drift** in pulse amplitude measured at a constant count rate. 2. A measure of short-term pulse amplitude **shift** with change in count rate.

In the time stability test, a pulse amplitude analyser, a 137 Cs source, and an NaI (Tl) crystal are employed to measure the pulse amplitude. The 137 Cs source is located along the major axis of the tube and crystal so that a count rate of about 10⁴ c/s is obtained. The entire system is allowed to warm up under operating conditions for a period of 30 minutes to one hour before readings are recorded. Following this period of stabilization, the pulse amplitude is recorded at 1 h intervals for a period of 16 h. The drift rate, D_g, is then calculated, in %, as the mean gain deviation, MGD, of the series of pulse amplitude measurements as follows:

$$D_g = \frac{\begin{array}{c} i = n \\ \Sigma \\ i = 1 \end{array}}{n} \cdot \frac{100}{p}$$

where p is the mean pulse amplitude averaged over n readings; $p_{\rm i}$ is the pulse amplitude at the $i^{\rm th}$ reading; and n is the total number of readings.

Typical maximum MGD values for photomultiplier tubes with high-stability Cu-Be dynodes are usually less than 1% when measured under the conditions specified above. Gain stability becomes particularly important when photopeaks produced by nuclear disintegrations of nearly equal energy are being differentiated.

In the count-rate stability test, the photomultiplier tube is first operated at about 10^4 c/s. The count rate is then decreased to approximately 1000 c/s by increasing the source-to-crystal distance. The photopeak position is measured and compared with the last measurement made at a count rate of approximately 10^4 c/s. The count-rate stability is expressed as the % gain shift for the count-rate change. The average anode currents corresponding to a count rate of 10^4 c/s and 10^3 c/s respectively are stated in the notes given with each type.

3. **OPERATING NOTES**

3.1 The **overall supply voltage** should be well stabilized, since the gain of a photomultiplier tube is strongly dependent on the voltage, expressed by the following relation:

$$\frac{\mathrm{dG}}{\mathrm{G}} = \mathrm{n} \cdot \frac{\mathrm{dV}_{\mathrm{b}}}{\mathrm{V}_{\mathrm{b}}} \cdot$$

The percentage change in gain is approximately ten times the percentage change in supply voltage. Thus to hold the gain stable within 1%, the power supply must be stabilized to within approximately 0, 1%.

When the radiant flux to be measured causes high anode currents, it is possible to replace the resistors of the last 3 or 4 stages in the voltage divider by voltage regulator diodes.

3.2 The voltage divider of a photomultiplier tube must be so designed that it does not cause an impermissible shift in the dynode voltage due to variation in incident radiation. The divider current (bleeder current), I_{bl}, must, therefore, be high compared to the anode current.

If this condition is not fulfilled, a high dynode current, accompanied by a high anode current, will seriously decrease the dynode voltages between the last stages. In any case, such variations of the dynode voltages introduce non-linearity of the photomultiplier tube.

3.2.1 In continuous operation a first approximation for the relative variation of the gain with a varying illumination of the cathode is :

$$\frac{\Delta G}{G} \approx \frac{I_k}{I_{b\,1}} \left(\delta^n - \frac{\delta^{n+1}}{(n+1)\cdot(\delta-1)} \right) \approx \frac{I_a}{I_{b\,1}} \left(1 - \frac{\delta}{(n+1)\cdot(\delta-1)} \right).$$

Thus the relative change in gain is approximately proportional to the ratio between the anode current and divider current. For example, to keep the gain stable within 1% when measuring a continuously luminous flux, the divider current should be at least 100 times the anode current.

3.2.2 In pulsed operation, as in scintillation counting, two calculations have to be made:
The divider current should be at least 100 times the averaged integrated anode current I_a. This is given by:

$$\overline{I_a} = I_a \cdot N \cdot T$$

where: I_a is the anode current pulse amplitude;

N is the anode pulse rate;

T is the anode pulse duration.

- The gain deviation caused by the current pulses must be restricted by decoupling at least the last four divider resistors. Calculations on capacitively stabilized voltage dividers are very complex and will not be dealt with here.

The minimum capacitance needed depends on the peak anode current and the pulse duration.

The value of C_{n+1} can be approximated when assuming that the charge Q_c which C_{n+1} should supply during the anode current pulse is much greater than the charge Q_a carried by the pulse

$$Q_a = \int I_a dT.$$

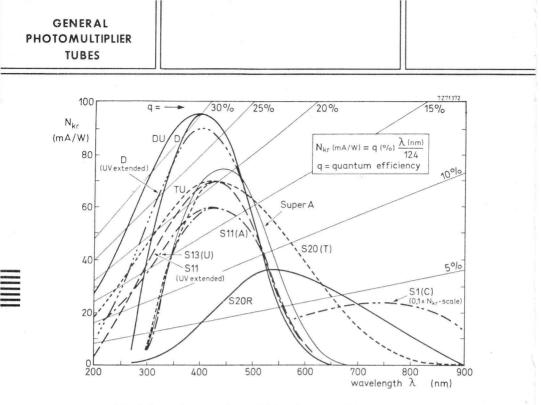
If the voltage across the last stage must be stable within 1%, that is $\Delta V/V_{S(n)}=0,61$, and if the influence of the voltage divider resistor across the capacitor is neglected, then $Q_c=100~Q_a$, whence:

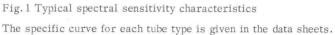
$$C_{n+1} = \frac{Q_c}{V_S(n)} = \frac{100Q_a}{V_S(n)} = \frac{100}{V_S(n)} \int I_a dT.$$

As the current through the preceding stage is a factor δ lower, its bypass capacitance can be a factor δ smaller:

$$C_n = \frac{C_{n+1}}{\delta}.$$

The use of bypass capacitors gives the high voltage divider current a high time constant. When bursts of pulses occur, that is with short intervals between succeeding pulses, the capacitors will not fully recharge and the pulse effects will add up until the amplitude of the voltage fluctuations has become quite appreciable. In that case the voltage divider current has to be increased.


3.3 General remarks


On no account should the tube be exposed to ambient light when the supply voltage is applied. A luminous flux of less than 10^{-5} lm is sufficient to cause the maximum permissible anode current to be exceeded. To obtain maximum life from the photocathode, the tube should be protected from light as far as possible even when not in use.

After the application of supply voltage, the dark current takes approximately 15 to 30 minutes to fall to a stable value. For this reason it is recommended that the equipment be switched on half an hour before making any measurements requiring a high degree of accuracy.

The dark current may be further reduced by cooling the photocathode.

It is very important to ensure that no condensation occurs on the base or socket of the tube if air cooling is adopted.

RATING SYSTEM

As defined by IEC Publication 134

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

PM1910 replaces XP1110

10-STAGE PHOTOMULTIPLIER TUBE

The PM1910 is a 14 mm useful diameter head-on photomultiplier tube with a flat window and a semitransparent S11 (type A) photocathode. The tube is intended for use in applications such as scintillation counting under limited dimensional conditions, optical measurements, etc.

QUICK REFERENCE DATA

211 /
S11 (type A)
> 14 mm
60 mA/W
1400 V
pprox 2,5 ns
≈ 30 mA
~ 30 mA ≈ 80 mA

To be read in conjunction with General Operational Recommendations Photomultiplier Tubes.

GENERAL CHARACTERISTICS

Window	
Material	lime glass
Shape	plano-concave
Refractive index at 550 nm	1,52
Photocathode	
Semi-transparent, head-on	
Material	Sb - Cs
Useful diameter	>14 mm
Spectral sensitivity characteristic (Fig. 5)	S11 (type A)
Maximum spectral sensitivity at	420 ± 30 nm
Spectral sensitivity at 437 \pm 5nm (Fig. 5)	typ. 60 mA/W > 40 mA/W

Data based on pre-production tubes.

PM1910

		10
	line	ar focused
	(Cu-Be
κ.	\approx \approx	2 pF 4 pF
		. ≈

Magnetic field

When the photocathode is illuminated uniformly the anode current is halved (at V_b = 1200 V, voltage divider A) at a magnetic flux density of: 0,3 mT perpendicular to axis a; 0,2 mT parallel to axis a; see Fig. 1.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding 15 mm beyond the photocathode.

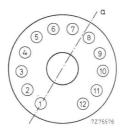
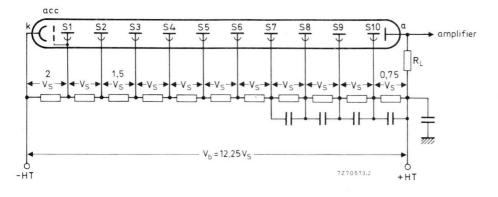


Fig. 1 Axis a with respect to base pins (bottom view).


10-stage photomultiplier tube

PM1910

RECOMMENDED CIRCUITS

3

1

ŧ

Fig. 2 Voltage divider A. Typical values of capacitors: 10 nF; k = cathode; acc = accelerating electrode; $S_n = dynode no.; a = anode; R_L = load resistor.$

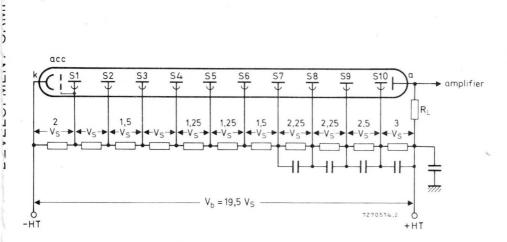


Fig. 3 Voltage divider B. Typical values of capacitors: 10 nF; k = cathode; acc = accelerating electrode; $S_n = dynode no.; a = anode; R_L = load resistor.$

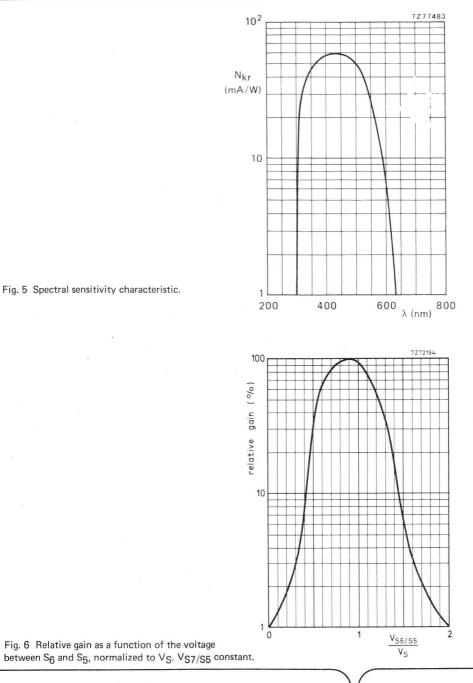

PM1910

TYPICAL CHARACTERISTICS			
With voltors divider A (Fig. 2)	note 1		
With voltage divider A (Fig. 2) Supply voltage for an anode spectral	1	<	1700 V
sensitivity $N_{ar} = 60 \text{ kA/W}$ at 437 nm (Fig. 7)		typ.	1400 V
Anode dark current at $N_{ar} = 60 \text{ kA/W}$ (Fig. 7)	2,3	<	20 nA
		typ.	2 nA
Pulse amplitude resolution for 137 Cs at N _{ar} = 12 kA/W	4	*	7,6 %
Anode current linear within 2% at V_b = 1600 V		up to \approx	30 m A
With voltage divider B (Fig. 3)	1		
Anode spectral sensitivity at $V_b = 1700 V$ (Fig. 7)		~	40 kA/W
Anode pulse rise time at $V_b = 1700 V$	5	\approx	2,5 ns
Anode pulse duration at half height at V_{b} = 1700 V	5	\approx	4 ns
Signal transit time at $V_{\rm b}$ = 1700 V	5	≈	23 ns
Anode current linear within 2% at V $_{\rm b}$ = 1700 V		up to \approx	80 m A
LIMITING VALUES (absolute maximum rating system)			
Supply voltage	6	max.	1900 V
Continuous anode current		max.	0,2 mA
Voltage between first dynode and photocathode	7	max. min.	350 V 100 V
Voltage between consecutive dynodes		max.	250 V
Voltage between anode and final dynode	8	max. min.	300 V 30 V
Ambient temperature range operational (for short periods of time)		max. min.	+80 °C -30 °C
continuous operation and storage		max. min.	+50 °C -30 °C

Notes see page 5.

Notes

- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to
 increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a
 "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can
 be conceived to achieve other compromises. It is generally recommended that the increase in
 voltage between one stage and the next be kept less than a factor of 2.
- 2. Wherever possible, the power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of $> 10^{15}$ ohm.
- 3. Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx \frac{1}{2}$ h).
- Pulse amplitude resolution for ¹³⁷ Cs and ⁵⁷Co is measured with an Nal(TI) cylindrical scintillator (Quartz et Silice serial no. 1118 or equivalent) with a diameter of 12 mm and a height of 12 mm. The count rate used is ≈ 10⁴ c/s.
- 5. Measured with a pulsed light source, with a pulse duration (FWHM) of < 1 ns: the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b , approximately as $V_b^{-\frac{1}{2}}$.
- 6. Total HT supply voltage, or the voltage at which the tube has an anode spectral sensitivity of ≈ 600 kA/W, whichever is lower.
- 7. Minimum value to obtain good collection in the input optics.
- 8. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.


Base 12-pin all glass Net mass 21 g Fig. 4.

ACCESSORIES

Socket	type FE1004
Mu-metal shield	type 56134

10-stage photomultiplier tube

PM1910

4

December 1977

PM1910

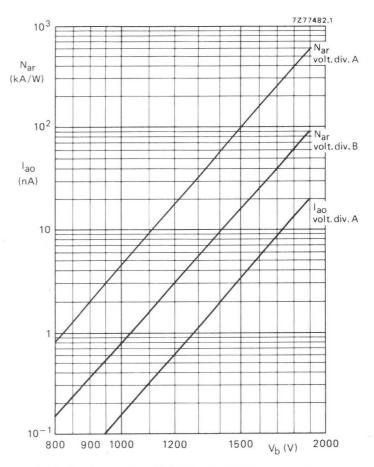


Fig. 7 Anode spectral sensitivity $N_{ar},$ and anode dark current I_{ao} as a function of the supply voltage $V_{b}.$

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

10-STAGE PHOTOMULTIPLIER TUBE

The PM1918 is a 14 mm useful diameter head-on photomultiplier tube with a flat window and a semitransparent S13 (type U) photocathode. The tube is intended for use in applications such as scintillation counting under limited dimensional conditions, optical measurements, etc.

QUICK REFERENCE DATA

Spectral sensitivity characteristic	S1	3 (type U)
Useful diameter of the photocathode	>	14 mm
Cathode spectral sensitivity at 437 nm		60 mA/W
Supply voltage for an anode spectral sensitivity = 60 kA/W at 437 nm		1400 V
Anode pulse rise time	\approx	2,7 ns
Linearity with voltage divider A with voltage divider B	≈ ≈	30 mA 80 mA

To be read in conjunction with General Operational Recommendations Photomultiplier Tubes.

GENERAL CHARACTERISTICS

Window	
Material	fused silica
Shape	plano-plano
Refractive index at 250 nm at 400 nm	1,50 1,47
Photocathode	
Semi-transparent head-on	
Material	Sb-Cs
Useful diameter	> 14 mm
Spectral sensitivity characteristic (Fig. 5)	S13 (type U)
Maximum spectral sensitivity at	420 ± 30 nm
Luminous sensitivity	\approx 60 μ A/Im
Spectral sensitivity at $437 \pm 5 \text{ nm}$ (Fig. 5)	typ. 60 mA/W > 40 mA/W

December 1977

Multiplier system

Number of stages	10
Dynode structure	linear focused
Dynode material	Cu-Be
Capacitances anode to final dynode anode to all	pprox 2 pF pprox 4 pF

Magnetic field

When the photocathode is illuminated uniformly, the anode current is halved (at $V_b = 1200 V$, voltage divider A) at a magnetic flux density of : 0,3 mT perpendicular to axis a; 0,2 mT parallel to axis a, see Fig. 1.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding 15 mm beyond the photocathode.

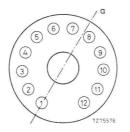


Fig. 1 Axis a with respect to base pins (bottom view).

RECOMMENDED CIRCUITS

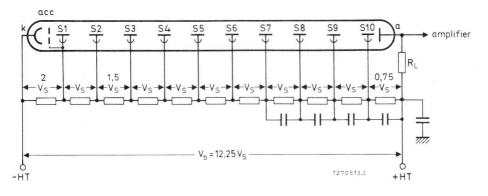
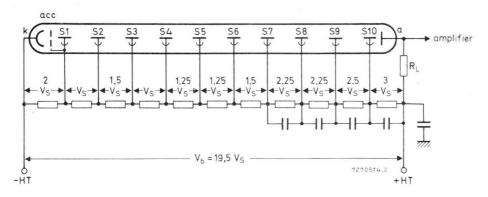



Fig. 2 Voltage divider A. Typical values of capacitors: 10 nF; k = cathode; acc = accelerating electrode; $S_n = dynode no.; a = anode; R_L = load resistor.$

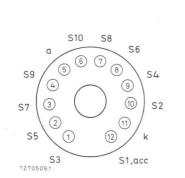
	TYPICAL	CHARACT	ERISTICS
--	---------	---------	----------

With voltage divider A (Eig. 2)	note 1		
With voltage divider A (Fig. 2)	1	4 4700.14	
Supply voltage for an anode spectral		< 1700 V typ. 1400 V	
sensitivity $N_{ar} = 60 \text{ kA/W}$ at 437 nm (Fig. 7)	~ ~	11	
Anode dark current at $N_{ar} = 60 \text{ kA/W}$ (Fig. 7)	2,3	< 20 nA typ. 2 nA	
Anode current linear within 2% at V_b = 1600 V		up to \approx 30 mA	
With voltage divider B (Fig. 3)	1		
Anode spectral sensitivity at $V_b = 1700 \text{ V} \text{ (Fig. 7)}$		\approx 40 kA/W	
Anode pulse rise time at $V_b = 1700 V$	4	\approx 2,7 ns	
Anode pulse duration at half height at V $_{b}$ = 1700 V	4	\approx 4,5 ns	
Signal transit time at V_b = 1700 V	4	\approx 25 ns	
Anode current linear within 2% at V $_{b}$ = 1700 V		up to \approx 80 mA	
LIMITING VALUES (absolute maximum rating system)			
Supply voltage	5	max. 1900 V	
Continuous anode current		max. 0,2 mA	
Voltage between first dynode and photocathode	6	max. 350 V	
		min. 100 V	
Voltage between consecutive dynodes		max. 250 V	
Voltage between anode and final dynode	7	max. 300 V min. 30 V	
Ambient temperature range			
operational (for short periods of time)		max. +80 °C	
operational (for shore periods of time)		min30 °C	
continuous operation and storage		max. +50 ^o C min30 ^o C	
		mm. <u>-30 °C</u>	

111

Notes see page 5.

10-stage photomultiplier tube


Notes

- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a faetor of 2.
- 2. Wherever possible, the power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of >10¹⁵ ohm.
- 3. Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness (\approx % h).
- 4. Measured with a pulsed light source, with a pulse duration (FWHM) of < 1 ns: the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b -^{3/2}.
- 5. Total HT supply voltage, or the voltage at which the tube has an anode spectral sensitivity of ≈ 600 kA/W, whichever is lower.
- 6. Minimum value to obtain good collection in the input optics.
- 7. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.

UNIVE LE DUID

MECHANICAL DATA

Dimensions in mm

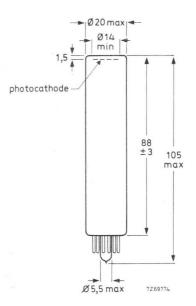


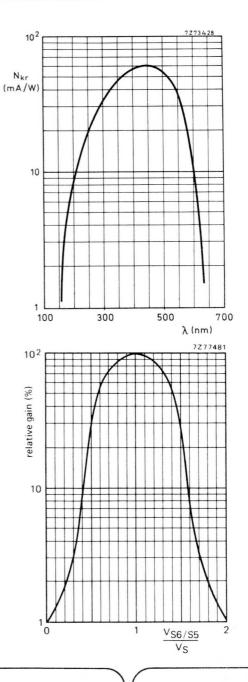
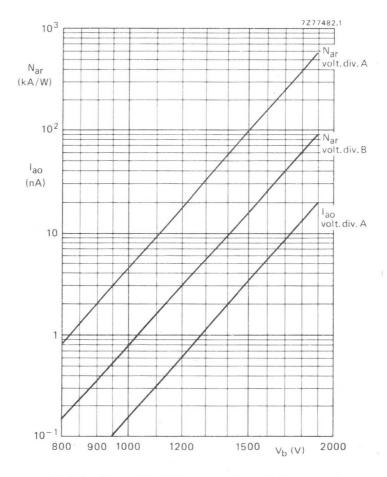
Fig. 4.

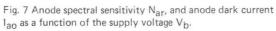
Base	12-pin all-glass
Net mass	20 g
ACCESSORIES	
Socket	type FE1004

Mu-metal shield type	e 56134
----------------------	---------

10-stage photomultiplier tube

PM1918


Fig. 5 Spectral sensitivity characteristic.

1111 IL 1110

1

Fig. 6 Relative gain as a function of the voltage between S6 and S5, normalized to $V_{\mbox{S}}.$ $V_{\mbox{S7/S6}}$ constant.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

6-STAGE PHOTOMULTIPLIER TUBE

The PM1920 is a 14 mm useful diameter head-on photomultiplier tube with a flat window and a semitransparent S11 (type A) photocathode. The tube is intended for use in optical measurements with relatively high luminous fluxes where it offers a good sensitivity combined with a wide bandwidth and a good signal to noise ratio. Its construction makes it particularly suitable for industrial applications under limited dimensional conditions.

QUICK REFERENCE DATA

Spectral sensitivity characteristic	S11	(type A)
Useful diameter of the photocathode	>	14 mm
Cathode spectral sensitivity at 437 nm		60 m A/V
Supply voltage for an anode spectral sensitivity = 0,2 kA/W		700 V
Anode pulse rise time (with voltage divider B)	\approx	2 ns
Linearity with voltage divider A with voltage divider B	up to $pprox$ up to $pprox$	30 mA 80 mA

To be read in conjunction with General Operational Recommendations Photomultiplier Tubes.

GENERAL CHARACTERISTICS

Window	
Material	lime glass
Shape	plano-concave
Refractive index at 550 nm	1,52
Photocathode	
Semi-transparent, head-on	
Material	Sb-Cs
Useful diameter	> 14 mm
Spectral sensitivity characteristic (Fig. 5)	S11 (type A)
Maximum spectral sensitivity at	420 ± 30 nm
Luminous sensitivity	\approx 60 μ A/Im
Spectral sensitivity at 437 \pm 5 nm	typ. 60 mA/W > 40 mA/W

Multiplier system

Number of stages	6
Dynode structure	linear focused
Dynode material	Cu-Be
Capacitances anode to final dynode anode to all	pprox 2 pF pprox 4 pF

Magnetic field

When the photocathode is illuminated uniformly the anode current is halved (at V_b = 1200 V, voltage divider A) at a magnetic flux of:

0,3 mT perpendicular to axis a,

0,2 mT parallel to axis a; see Fig. 1.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding 15 mm beyond the photocathode.

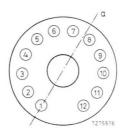


Fig. 1 Axis a with respect to base pins (bottom view).

RECOMMENDED CIRCUITS

UEVELUTINIENI DAIVITLE LAIA

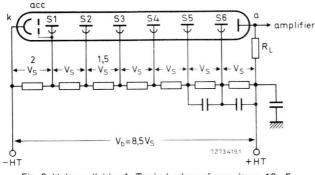
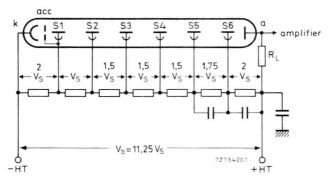
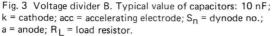




Fig. 2 Voltage divider A. Typical values of capacitors: 10 nF; k = cathode; acc = accelerating electrode; S_n = dynode no.; a = anode; R_L = load resistor.

TYPICAL CHARACTERISTICS					
With voltage divider A (Fig. 2)	note 1				
Supply voltage for anode spectral sensitivity N _{ar} = 0,2 kA/W (Fig. 6)			< typ.	1200 V 700 V	
Anode dark current at $N_{ar} = 0.2 \text{ kA/W}$ (Fig. 6)	2,3		< typ.	5 nA 0,5 nA	
Anode current linear within 2% at V $_{b}$ = 1100 V		up to	\approx	30 m A	
With voltage divider B (Fig. 3)	1				
Anode spectral sensitivity at $V_b = 1200 V$ (Fig. 6)			\approx	0,5 kA/W	
Anode pulse rise time at V_b = 1200 V	4		\approx	2 ns	
Anode pulse duration at half height at V $_{ m b}$ = 1200 V	4		\approx	3,2 ns	
Signal transit time at V_b = 1200 V	4		\approx	16 ns	
Anode current linear within 2% at V _b = 1200 V		up to	\approx	80 m A	
LIMITING VALUES (absolute maximum rating system)					
Supply voltage			max.	1300 V	
Continuous anode current			max.	0,2 mA	
Voltage between first dynode and photocathode	5		max. min.	350 V 100 V	
Voltage between anode and final dynode	6		max. min.	300 V 30 V	
Voltage between consecutive dynodes			max.	250 V	
Ambient temperature range					
operational (for short periods of time)			min.	+80 °C -30 °C	
continuous operation and storage			max. min.	+50 °C -30 °C	

ŝ

Notes see page 5.

Notes

- 1. To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- 2. Wherever possible, the power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of >10¹⁵ ohm.
- 4. Measured with a pulsed light source, with a pulse duration (FWHM) of ≤ 1 ns: the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b.¹/₂.
- 5. Minimum value to obtain good collection in the input optics.
- 6. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.

MECHANICAL DATA

i.c. i.c.

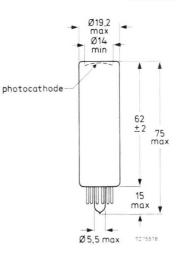
6 7

a

3

2 S5

S3


1

i.c. 4

i.c.

(5)

Dimensions in mm

Base	12-pin all glass
Net mass	16 g

ACCESSORIES

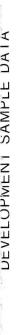
Socket FE 1004 type 56134 Mu-metal shield

S6

9 (10) S4

S2

k


S1 7275579

(8)

January 1978

6-stage photomultiplier tube

PM1920

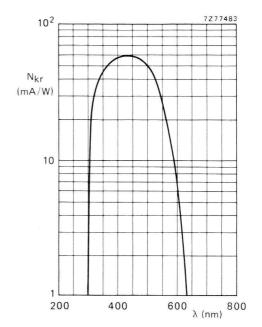
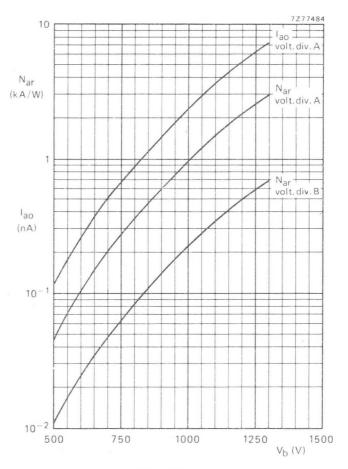
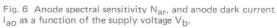




Fig. 5 Spectral sensitivity characteristic.

8

ACCURACY INTERACTOR INTERACTOR INTERACTOR INTERACTOR INTERACTOR INTERACTOR

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

PM1980

10-STAGE PHOTOMULTIPLIER TUBE

The PM1980 is a 23 mm useful diameter head-on photomultiplier tube with a plano-concave window and a semi-transparant S11 (type A) photocathode. The tube is intended for use in applications such as high energy physics, scintillation counting and laboratory and industrial photometry.

QUICK REFERENCE DATA

Spectral sensitivity characteristic	S11	(type	A)
Useful diameter of the photocathode	>	23	mm
Cathode spectral sensitivity at 437 nm		70	mA/W
Supply voltage for an anode spectral sensitivity of 60 kA/W at 437 nm		1400	V
Anode pulse rise time	\approx	2,5	ns
Pulse amplitude resolution for ¹³⁷ Cs	\approx	7,6	%
Linearity with voltage divider A with voltage divider B	* *		mA mA

To be read in conjunction with General Operational Recommendations Photomultiplier Tubes.

GENERAL CHARACTERISTICS

Window	
Material	lime glass
Shape	plano-concave
Refractive index at 550 nm	1,52
Photocathode Semi-transparent, head-on	
Material	Sb-Cs
Useful diameter	> 23 mm
Spectral sensitivity characteristic (Fig. 5)	S11 (type A)
Maximum sensitivity at	420 ± 30 nm
Luminous sensitivity	75 μA/Im
Spectral sensitivity at 437 \pm 5 nm (Fig. 5)	typ. 70 mA/W > 40 mA/W

Multiplier system

	10
linear foo	cused
Cu-Be	
≈ ≈	2 pF 4 pF
	Cu-Be ≈

Magnetic field

When the photocathode is illuminated uniformly, the anode current is halved (at V_b = 1200 V, voltage divider A) at a magnetic flux density of:

0,15 mT perpendicular to axis a;

0,1 mT parallel to axis a (see Fig. 1).

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding 15 mm beyond the photocathode.

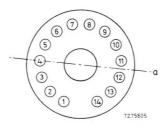


Fig. 1 Axis a with respect to base pins (bottom view).

10-stage photomultiplier tube

PM1980

RECOMMENDED CIRCUITS

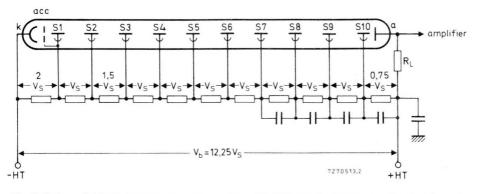


Fig. 2 Voltage divider A. Typical values of capacitors: 10 nF; k = cathode; acc = accelerating electrode; S_n = dynode no.; a = anode; R_1 = load resistor.

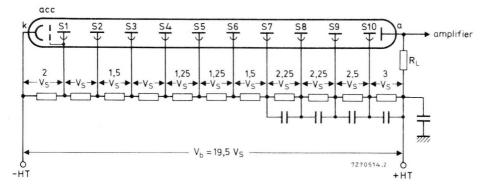
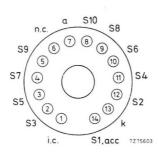
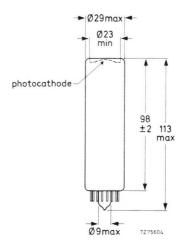


Fig. 3 Voltage divider B. Typical values of capacitors: 10 nF; k = cathode; acc = accelerating electrode; S_n = dynode no.; a = anode; R_L = load resistor.

-		COLUMN AND A DESCRIPTION OF A DESCRIPTIO			
	TYPICAL CHARACTERISTICS*	notes			78
	With voltage divider A (Fig. 2)	1			
	Supply voltage for an anode spectral sensitivity of 60 kA/W (Fig. 7)		< tvp.	1700 1400	
	Anode dark current at 60 kA/W (Fig. 7)	2,3	< typ.		nA nA
	Pulse amp!itude resolution for ¹³⁷ Cs at 12 kA/W	4	≈ .	7,6	%
	Anode current linear within 2% at V $_{b}$ = 1600 V	up to	\approx	30	mΑ
	With voltage divider B (Fig. 3)	1			
	Anode spectral sensitivity at V_b = 1700 V (Fig. 7)	5	\approx	40	kA/W
	Anode pulse rise time at V_b = 1700 V	5	\approx	2,5	ns
	Anode pulse duration at half height at V_b = 1700 V	5	\approx	3,5	ns
	Signal transit time at V_b = 1700 V	5	\approx	24	ns
	Anode current linear within 2% at V_b = 1700 V	up to	~	80	mA
	LIMITING VALUES (Absolute maximum rating system)				
	Supply voltage	6	máx.	1900	V
	Continuous anode current		max.	0,2	mA
	Voltage between first dynode and photocathode	7	max. min.	350 100	
	Voltage between consecutive dynodes		max.	250	V
	Voltage between anode and final dynode	8	max. min.	300 30	
	Ambient temperature range operational (for short periods of time)		max. min.	+ 80 30	°C
	storage and continuous operation		max. min.	+ 50 30	

* All spectral sensitivities refer to a wavelength of 437 nm.


Notes see page 5.


Notes

- To obtain a peak pulse current greater than that obtainable with divider A it is necessary to
 increase the inter dynode voltage of the stages progressively. Divider circuit B is an example of a
 "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can
 be conceived to achieve other compromises. It is generally recommended that the increase in
 voltage between one stage and the next be kept less than a factor of 2.
- 2. Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of $> 10^{15} \Omega$.
- 3. Dark current is measured at ambient temperature, after a stabilization of the tube in darkness ($\approx \frac{1}{2}$ h).
- Pulse amplitude resolution for ¹³⁷Cs is measured with a Nal(TI) cylindrical scintillator (Quartz et Silice ser.no.1162 or equivalent) with a diameter of 22 mm and a height of 6 mm. The count rate used is ≈ 10⁴ c/s.
- 5. Measured with a pulsed light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_{h} , approximately as V_{h} .
- 6. Total HT supply voltage or the voltage at which the tube has an anode spectral sensitivity of 600 kA/W, whichever is lower.
- 7. Minimum value to obtain good collection in the input optics.
- 8. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.

MECHANICAL DATA

Dimensions in mm

Base 14-pin all-glass Net mass 36 g

ACCESSORIES

Socket	type FE1114
Mu-metal shield	type 56127

10-stage photomultiplier tube

PM1980

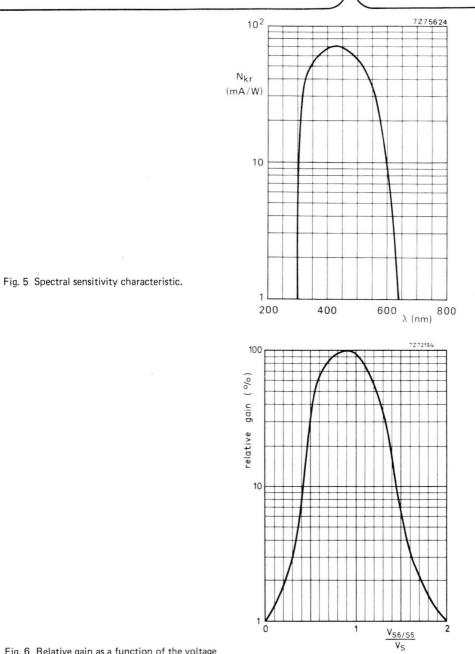


Fig. 6 Relative gain as a function of the voltage between S_6 and $S_5,$ normalized to $V_S,\,V_{S7/S5}$ constant.

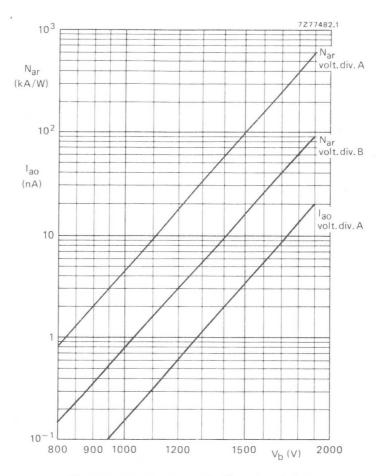


Fig. 7 Anode luminous sensitivity $N_a,$ and anode dark current I_{aO} as a function of the supply voltage $V_b.$

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

10-STAGE PHOTOMULTIPLIER TUBE

The PM2012B is a 32 mm useful diameter head-on photomultiplier tube with a flat window and a semitransparent bialkaline type D photocathode. The tube is intended for use in X-ray and γ -spectrometry and for all applications requiring a low background noise and/or dark current. Its Cu-Be dynode system offers a high stability.

QUICK REFERENCE DATA

Spectral sensitivity characteristic		type D		
Useful diameter of the photocathode		>	32	mm
Spectral sensitivity of the photocathode at 401 nm			77	mA/W
Supply voltage for an anode spectral sensitivity = 60 kA/W			1350	V
Pulse amplitude resolution for 57 Co at N _a = 10 kA/W for 55 Fe at N _a = 60 kA/W		* *	11,2 42	
Peak-to-valley ratio for ^{5 5} Fe at $N_a = 60 \text{ kA/W}$		\approx	34	
Anode pulse rise time (with voltage divider B)		\approx	2,5	ns
Mean anode sensitivity deviation		*	1	%
Linearity with voltage divider A with voltage divider B	up to up to	* *		mA mA

To be read in conjunction with "General Operational Recommendations Photomultiplier Tubes".

GENERAL CHARACTERISTICS

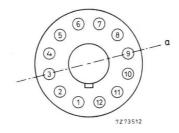
Window		
Shape	plano-pla	ino
Material	lime glass	5
Refractive index at 550 nm		1,52
Photocathode (note 1)		
Semi-transparent, head-on	Sb-K-Cs	
Useful diameter	>	32 mm
Spectral sensitivity characteristic (Fig.3)	type D	
Maximum sensitivity at	400	± 30 nm
Spectral sensitivity at 401 ± 3 nm	typ >	77 mA/W 60 mA/W

Electron optical input system

This system consists of: the photocathode, k; a metallized part of the glass envelope, internally connected to the photocathode; an accelerating electrode, acc, internally connected to S1.

Multiplier system	
Number of stages	10
Dynode structure	linear focused
Dynode material	Cu-Be
Capacitances Anode to all	≈ . 5 pF
Anode to final dynode	≈ 3 pF

Magnetic field

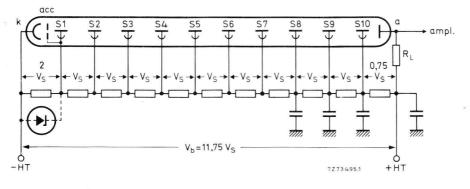

When the photocathode is illuminated uniformly the anode current is halved (at V_b = 1200 V, voltage divider A):

- at a magnetic flux density of 0,6 mT in the direction of the longitudinal axis;

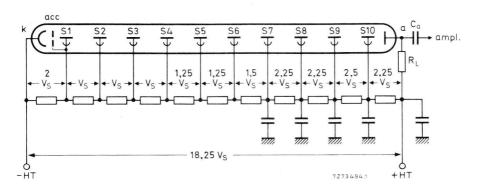
- at a magnetic flux density of 0,35 mT perpendicular to axis a (see Fig. below);

- at a magnetic flux density of 0,15 mT parallel to axis a.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.




Axis a with respect to base pins (bottom view).


10-stage photomultiplier tube

PM2012B

RECOMMENDED CIRCUITS

Typical values of capacitors: 10 nF

k = cathode

1111

J

JUNIN

1

)

1

1 1 1

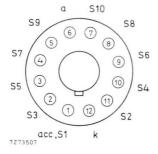
- acc = accelerating electrode
- $S_n = dynode no.n$
- a = anode
- R_L = load resistor

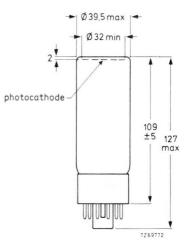
TYPICAL CHARACTERISTICS

	note				
With voltage divider A (Fig.1)	2				
Supply voltage for an anode spectral sensitivity of 60 kA/W at 401 \pm 3 nm (Fig.5)			< typ	1600 1350	
for an anode spectral sensitivity of 300 kA/W at 401 \pm 3 nm (Fig.5)			*	1650	V
Anode dark current at an anode spectral sensitivity of 60 kA/W	3,4		< typ		nA nA
Pulse amplitude resolution for 137 Cs at N _a = 10 kA/W	5,6	2	\approx	7,2	%
Pulse amplitude resolution for ⁵⁷ Co at $N_a = 10 \text{ kA/W}$	5,6	*	\approx	11,2	%
Pulse amplitude resolution for ⁵⁵ Fe at N _a = 60 kA/W	6,7		~	42	%
Peak-to-valley ratio for 55 Fe at N _a = 60 kA/W	6,7		\approx	34	
Anode current linear within 2% at V_b = 1700 V		up to	\approx	100	mA
Mean anode sensitivity deviation long term (16 h) after change of count rate	6,13		<i>* *</i>	1 1	% %
With voltage divider B (Fig.2)	2				
Anode spectral sensitivity at V_b = 1700 V (Fig.5)			\approx	50	kA/W
Anode pulse rise time at V _b = 1700 V	8		\approx	2,5	ns
Anode pulse duration at half-height at V_b = 1700 V	8		\approx	6	ns
Signal transit time at V_b = 1700 V	8		\approx	26	ns
Anode current linear within 2% at V $_{b}$ = 1700 V		up to	\approx	200	mΑ
LIMITING VALUES (Absolute maximum rating syste	m)				
Supply voltage	9		max	1800	V.
Continuous anode current			max	0,2	mA
Voltage between first dynode and photocathode	10		max min	500 150	
Voltage between consecutive dynodes			max	300	V
Voltage between anode and final dynode	11		max min	300 30	
Ambient temperature range Operational (for short periods of time)	12		max min	+80 -30 +50	oC
Continuous operation and storage			max min	-30	

Notes see page 5.

Notes


- The bialkaline photocathode has a significant resistance which increases rapidly with reducing temperature. It is thus recommended that it should not be subjected to light of too great an intensity; the cathode current should be limited, for example, to 1 nA at room temperature or 0,1 nA at -30 °C. If too high a photocurrent is passed, the cathode can no longer be considered to be an equipotential surface, and the focusing of electrons onto the first dynode will be affected, resulting in departures of linearity.
- 2. To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- 3. Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of $> 10^{1.5} \Omega$.
- 4. Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness (\approx 1/4 h).
- 5. Pulse amplitude resolution for ¹³⁷Cs and ⁵⁷Co is measured with an Nal (TI) cylindrical scintillator with a diameter of 32 mm and a height of 32 mm. The count rate used is $\approx 10^3$ c/s.
- 6. For optimum peak amplitude resolution it is recommended that the voltage between the first dynode and the photocathode be maintained at \approx 200 V, e.g. by means of a voltage regulator diode.
- 7. Pulse amplitude resolution for ^{5 5} Fe is measured with an NaI (TI) cylindrical scintillator with a diameter of 25 mm and a height of 1 mm provided with a beryllium window. The count rate used is $\approx 2 \times 10^3$ c/s, see also note 6.
- 8. Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b^{-1/2}.
- Total HT supply voltage or the voltage at which the tube has an anode spectral sensitivity of 600 kA/W, whichever is lower.
- 10. Minimum value to obtain good collection in the input optics.
- 11. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 12. This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb.
- 13. The mean pulse amplitude deviation is measured by coupling an NaI (TI) scintillator to the window of the tube. Long term (16 h) deviation is measured by placing a ¹³⁷Cs source at a distance from the scintillator such that the count rate is $\approx 10^4$ c/s corresponding to an anode current of ≈ 300 nA.


Mean pulse amplitude deviation after change of count rate is measured with a ¹³⁷Cs source at a distance of the scintillator such that the count rate can be changed from 10⁴ c/s to 10³ c/s corresponding to an anode current of \approx 300 nA and \approx 30 nA respectively. See also note 6. Both tests are carried out according to ANSI-N42-9-1972 of IEEE recommendations.

MECHANICAL DATA

X

Dimensions in mm

Net mass: 80 g Base: 12-pin (JEDEC B12--43)

ACCESSORIES

Socket:	type FE1012
Mu-metal shield	d: type 56127

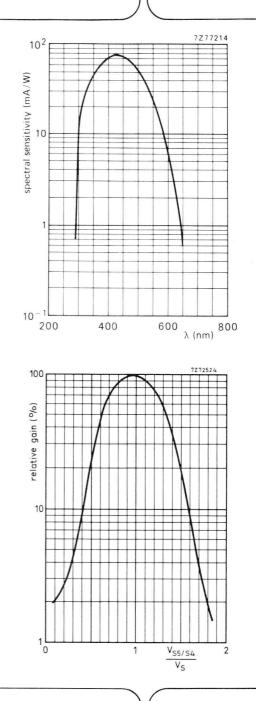
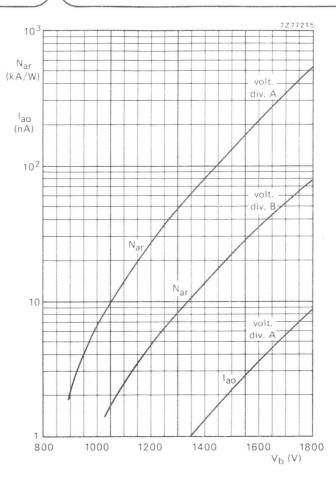


Fig.3 Spectral sensitivity characteristic.

11.110

1

11111


.....

)

1

 $\bar{\text{Relative}}$ gain as a function of the voltage between S_5 and $S_4,$ normalized to VS, VS6/S4 constant.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

10-STAGE PHOTOMULTIPLIER TUBE

The PM2013B is a 32 mm useful diameter head-on photomultiplier tube with a flat window and a semi-transparent trialkaline S20 (type T) photocathode. The tube is intended for use in low light level measurements in the entire part of the visible spectrum. Its Cu-Be dynode multiplier system offers a high stability which makes it especially suitable for industrial applications, such as laser reading.

QUICK REFERENCE DATA

Spectral sensitivity characteristic		S2	0 (type	е Т)
Useful diameter of the photocathode		>	32	mm
Cathode spectral sensitivity at 698 nm			20	mA/W
Supply voltage for an anode luminous sensitivity of 60 A/lm Anode pulse rise time (with voltage divider B)		~	1250 2,5	
Linearity with voltage divider A with voltage divider B	up to up to		C11 10 101	mA mA

To be read in conjunction with General Operational Recommendations Photomultiplier Tubes.

GENERAL CHARACTERISTICS

Window (frosted)	
Material	borosilicate
Shape	plano-plano
Refractive index at 550 nm	1,48
Photocathode	
Semi-transparent, head-on	
Material	Sb-Na-K-Cs
Useful diameter	> 32 mm
Spectral sensitivity characteristic (Fig. 5)	S20 (type T)
Maximum spectral sensitivity at	420 ± 30 nm

Data based on pre-production tubes.

PM2013B

Photocathode (continued)

Luminous sensitivity	\approx 200 μ A/Im		
Spectral sensitivity at 698 \pm 7 nm at 629 \pm 3 nm	typ. > ≈	20 mA/W 10 mA/W 40 mA/W	
Multiplier system Number of stages Dynode structure Dynode material Capacitances		linear focused Cu-Be	
anode to final dynode anode to all	~ ~	3 pF 5 pF	

Magnetic field

When the photocathode is illuminated uniformly the anode current is halved (at V_b = 1200 V, voltage divider A) at a magnetic flux density of:

0,6 mT in the direction of the longitudinal axis;

0,35 mT perpendicular to axis a (see Fig. 1);

0,15 mT parallel to axis a.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

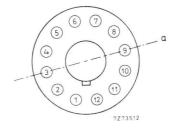
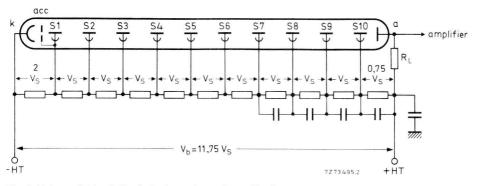



Fig. 1 Axis a with respect to base pins (bottom view).

PM2013B

RECOMMENDED CIRCUITS

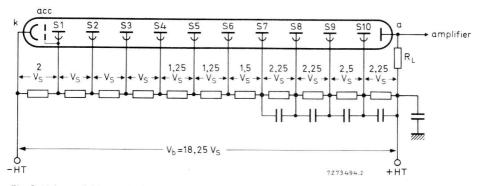
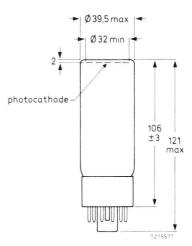


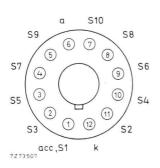
Fig. 3 Voltage divider B. Typical values of capacitors: 10 nF; k = cathode; acc = accelerating electrode; - S_n = dynode no.; a = anode; R_L = load resistor.

PM2013B

TYPICAL CHARACTERISTICS	note			
With voltage divider A (Fig. 2)	1			
Supply voltage for an anode luminous sensitivity $N_a = 60 \text{ A/Im}$ (Fig. 7)		typ. <	1250 1600	
Anode dark current at N _a = 60 A/Im (Fig. 7)	2,3	typ. <		nA nA
Anode current linear within 2% at V_b = 1700 V up to		\approx	100	mA
Mean anode sensitivity deviation at $V_b = 1000 V$ long term (16 h)	4	*	1	%
With voltage divider B (Fig. 3)	1			
Anode luminous sensitivity at V_b = 1700 V (Fig. 7)		\approx	90	A/Im
Anode pulse rise time at V_b = 1700 V	5	\approx	2,5	ns
Anode pulse duration at half height at V_b = 1700 V	5	\approx	6	ns
Signal transit time at V_b = 1700 V	5	\approx	26	ns
Anode current linear within 2% at V $_{b}$ = 1700 V up to		\approx	200	mΑ
LIMITING VALUES (absolute maximum rating system)				
Supply voltage	6	max.	1800	V
Continuous anode current		max.	0,2	mA
Voltage between first dynode and photocathode	7	max. min.	500 150	
Voltage between consecutive dynodes		max.	300	V
Voltage between anode and final dynode	8	max. min.	300 30	
Ambient temperature range operational (for short periods of time) continuous operation and storage	9	max. min. max.	+80 -30 +50	oC
continuous operation and storage		min.	-30	oC

Notes see page 5.


Notes


- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- 2. Wherever possible, the power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > 10¹⁵ ohm.
- 3. Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx \frac{1}{2}$ h).
- 4. The mean anode sensitivity deviation measurement is carried out with light pulses at a count rate of $\approx 10^4$ c/s, resulting in an average anode current of 0,3 μ A. See also *General Operational Recommendations Photomultiplier Tubes*.
- 5. Measured with a pulsed light source, with a pulse duration (FWHM) of < 1 ns: the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b^{-V₂}.
- 6. Total HT supply voltage, or the voltage at which the tube has an anode luminous sensitivity of \approx 600 A/Im, whichever is lower.
- 7. Minimum value to obtain good collection in the input optics.
- 8. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 9. This range of temperatures is limited by stresses in the sealing layer of the base to the glass bulb.

PM2013B

MECHANICAL DATA

Dimensions in mm

Remark

In order to improve the anode sensitivity over the entire cathode area the external surface of the window has been frosted.

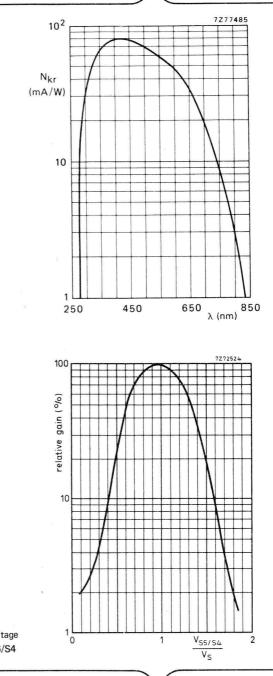
Base	12-pin (JEDEC B12-43)
Net mass	81 g

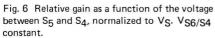
ACCESSORIES

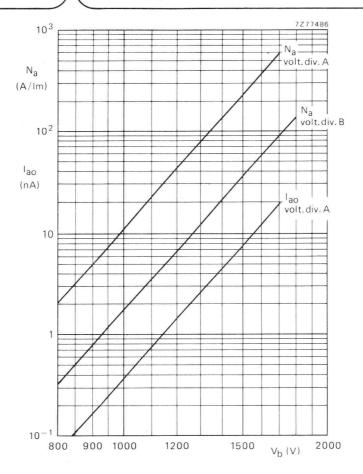
Socket	type FE1012
Mu-metal shield	type 56127

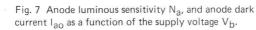
6

PM2013B




Fig. 5 Spectral sensitivity characteristic.


5


1

J

PM2013B

•

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

10-STAGE PHOTOMULTIPLIER TUBE

The PM2018 B is a 32 mm useful diameter head-on photomultiplier tube with a flat window and a semitransparent S13 (type U) photocathode. The tube is intended for use in applications where a high sensitivity in the ultraviolet region of the spectrum is required, such as spectrophotometry.

QUICK REFERENCE DATA

Spectral sensitivity characteristic	S13	(type U)	
Useful diameter of the photocathode	>	32 mm	
Cathode spectral sensitivity at 437 nm		75 mA/W	
Supply voltage for an anode spectral sensitivity of 60 kA/W at 437 nm Anode pulse rise time (with voltage divider B)	≈	1350 V 2,5 ns	
Linearity with voltage divider A with voltage divider B	up to $pprox$ up to $pprox$ up to $pprox$	100 mA 200 mA	

To be read in conjunction with General Operational Recommendations Photomultiplier Tubes.

GENERAL CHARACTERISTICS

Window			
Material	fused silica		
Shape	plano-plano		
Refractive index at 250 nm at 400 nm	1,50 1,47		
Photocathode			
Semi-transparent, head-on			
Material	Sb-Cs		
Useful diameter	>	32 mm	
Spectral sensitivity characteristic (Fig. 5)	S13 (ty	ype U)	
Maximum spectral sensitivity at	400 =	± 30 nm	
Spectral sensitivity at 437 \pm 5 nm	typ.	75 mA/W 40 mA/W	
Luminous sensitivity	~	85 µA/lm	

PM2018B

Multiplier system

Number of stages		10
Dynode structure	linea	r focused
Dynode material	C	u-Be
Capacitances anode to final dynode anode to all	≈ ≈	3 pF 5 pF

Magnetic field

When the photocathode is illuminated uniformly the anode current is halved (at V_b = 1200 V, voltage divider A) at a magnetic flux density of:

0,6 mT in the direction of the longitudinal axis;

0,35 mT perpendicular to axis a (see Fig. 1);

0,15 mT parallel to axis a.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

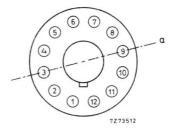


Fig. 1 Axis a with respect to base pins (bottom view).

FM2018B

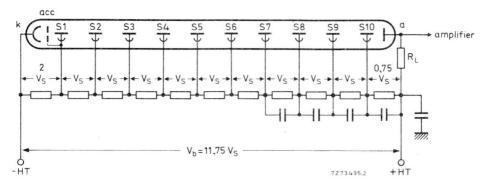


Fig. 2 Voltage divider A. Typical value of capacitors: 10 nF, k = cathode, acc = accelerating electrode, $S_n = dynode no., a = anode, R_L = load resistor.$

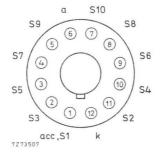
Fig. 3 Voltage divider B. Typical values of capacitors: 10 nF, k = cathode, acc = accelerating electrode, $S_n = dynode no.$, a = anode, $R_L = load$ resistor.

PM2018B

TYPICAL CHARACTERISTIC	S
------------------------	---

	note			
With voltage divider A (Fig. 2)	1			
Supply voltage for an anode spectral sensitivity $N_{ar} = 60 \text{ kA/W}$ at 437 nm (Fig. 7)				1600 V 1350 V
Anode dark current at an anode spectral			<	50 nA
sensitivity $N_{ar} = 60 \text{ kA/W}$	2,3		typ.	5 nA
Anode current linear within 2% at V _b = 1700 V		up to	\approx	100 mA
With voltage divider B (Fig. 3)	1			
Anode spectral sensitivity at V_b = 1700 V (Fig. 7)			~	50 kA/W
Anode pulse rise time at V_b = 1700 V	4		~	2,5 ns
Anode pulse duration at half-height at V_b = 1700 V	4		\approx	6 ns
Signal transit time at V_b = 1700 V	4		\approx	26 ns
Anode current linear within 2% at V $_{b}$ = 1700 V		up to	~	200 mA
LIMITING VALUES (absolute maximum rating system)				
Supply voltage	5		max.	1800 V
Continuous anode current			max.	0,2 mA
Voltage between first dynode and photocathode	6		max.	500 V
			min.	150 V
Voltage between consecutive dynodes			max.	300 V
Voltage between anode and final dynode	7		max. min.	300 V 30 V
Ambient temperature range				
operational (for short periods of time)	8		max.	+80 °C
a Branchennen in der seine Branchen den sternenen.			min.	-30 °C +50 °C
continuous operation and storage			max. min	-30 °C
				50 0

Notes see page 5.


Notes

- 1. To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- 2. Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of $> 10^{15} \Omega$.
- 3. Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness (\approx 1/4 h).
- 4. Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b $^{-1/2}$.
- Total HT supply voltage or the voltage at which the tube has an anode spectral sensitivity of 600 kA/W, whichever is lower.
- 6. Minimum value to obtain good collection in the input optics.
- 7. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 8. This range of temperature is limited principally by stresses in the sealing layer of the base to the glass bulb. Where low temperature operation is contemplated, the supplier should be consulted.

PM2018B

MECHANICAL DATA

Dimensions in mm

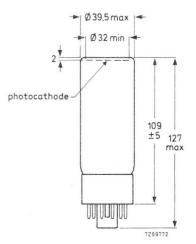


Fig. 4.

Base Net mass 12-pin (JEDEC B12-43) 78 g

ACCESSORIES

Socket	type FE1012
Mu-metal shield	type 56127

6

PM2018B

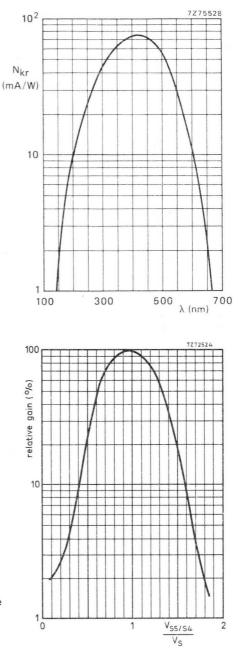


Fig. 5 Spectral sensitivity characteristic.

Fig. 6 Relative gain as a function of the voltage between S_5 and $S_4,$ normalized to $V_S,\,V_{S6/S4}$ constant.

PM2018B

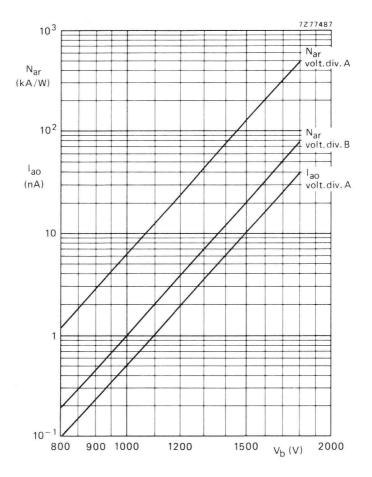


Fig. 7 Anode spectral sensitivity $\rm N_{ar},$ and anode dark current $\rm I_{aO}$ as a function of the supply voltage $\rm V_b.$

. 1

8

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

PM2060B

10-STAGE PHOTOMULTIPLIER TUBE

The PM2060B is a 32 mm useful diameter head-on photomultiplier tube with a flat window and a semitransparent Super A photocathode. The tube is intended for use in applications such as scintillation counting, laboratory and industrial photometry. Its Cu-Be dynode system offers a high stability.

QUICK REFERENCE DATA

Spectral sensitivity characteristic		Su	per A	
Useful diameter of the photocathode		>	32	mm
Spectral sensitivity of the photocathode at 437 nm		\approx	70	mA/W
Supply voltage for luminous sensitivity $N_a = 60 \text{ A/Im}$			1180	V
Pulse amplitude resolution for ¹³⁷ Cs		*	8	%
Mean anode sensitivity deviation		\approx	1	%
Anode pulse rise time (with voltage divider B)		\approx	2,5	ns
Linearity				
with voltage divider A	up to	\approx	100	mΑ
with voltage divider B	up to	\approx	200	mΑ

To be read in conjunction with "General Operational Recommendations Photomultiplier Tubes".

GENERAL CHARACTERISTICS

Window		
Shape	planc	o-plano
Material	lime	glass
Refractive index at 550 nm	1	1,52
Photocathode		
Semi-transparent, head-on		
Material	Sb-C	S
Useful diameter	>	32 mm
Spectral sensitivity characteristic (Fig. 3)	type	Super A
Maximum sensitivity at	420 :	± 30 nm
Luminous sensitivity	typ >	80 μA/Im 40 μA/Im
Spectral sensitivity at 437 \pm 5 nm	~	70 mA/W

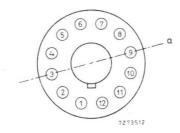
PM2060B

Electron optical input system

This system consists of: the photocathode, k; a metallized part of the glass envelope, internally connected to the photocathode; an accelerating electrode, acc, internally connected to S1.

Multiplier system		
Number of stages		10
Dynode structure	lin	ear focused
Dynode material	Cu	-Be
Capacitances Anode to all	~	5 pF
Anode to final dynode	~	3 pF

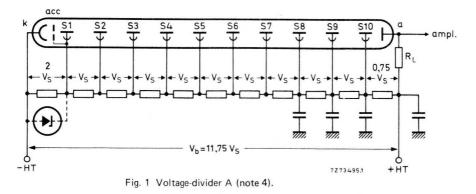
Magnetic field

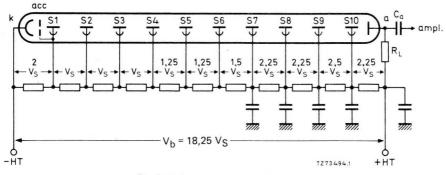

When the photocathode is illuminated uniformly the anode current is halved (at $V_b = 1200 V$, voltage divider A):

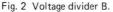
- at a magnetic flux density of 0,6 mT in the direction of the longitudinal axis;

- at a magnetic flux density of 0,35 mT perpendicular to axis a (see Fig. below);

- at a magnetic flux density of 0,15 mT parallel to axis a.


It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.




Axis a with respect to base pins (bottom view).

PM2060B

RECOMMENDED CIRCUITS

Typical values of capacitors: 10 nF

- k = cathode
- acc = accelerating electrode
- $S_n = dynode no. n$
- a = anode
- R_L = load resistor

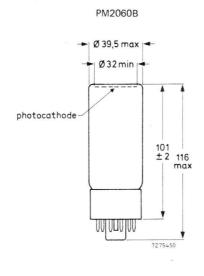
PM2060B

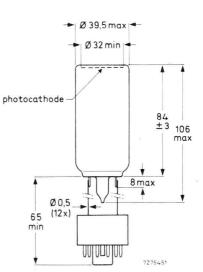
TYPICAL CHARACTERISTICS	notes				
*	(see page 5)				
With voltage divider A (Fig. 1)	1				
Supply voltage for an anode luminous			<	1500	
sensitivity $N_a = 60 \text{ A/Im}$ (Fig. 5)			typ	1180	V
Anode dark current at an anode luminous	0.0		<	50	nA
sensitivity $N_a = 60 \text{ A/Im}$ (Fig. 5)	2,3		typ	5	nA
Pulse amplitude resolution for 137 Cs at N _a = 10 A/Im	4		\approx	8	%
Mean anode sensitivity deviation at V_b = 1200 V	5				
long term			~	1	%
after change of count rate			*		%
Anode current linear within 2% at $V_b = 1700 V$		up to	~	100	mΑ
With voltage divider B (Fig. 2)					
Anode luminous sensitivity at $V_b = 1700 V$ (Fig. 5)			\approx	150	A/Im
Anode pulse rise time at V_b = 1700 V	6		\approx	2,5	ns
Anode pulse duration at half height at V_b = 1700 V	6		\approx	6	ns
Signal transit time at $V_b = 1700 V$	6		\approx	26	ns
Anode current linear within 2% at V $_b$ = 1700 V		up to	\approx	200	mA
LIMITING VALUES (Absolute maximum rating system)					
Supply voltage	7		max	1800	V
Continuous anode current			max	0,2	mA
Volters between first durade and abote estimate	8		max	500	V
Voltage between first dynode and photocathode	0		min	150	V
Voltage between consecutive dynodes			max	300	
Voltage between anode and final dynode	9		max min	300 30	
Ambient temperature range					
Operational (for short periods of time)	10		max min	+80 - 30	
			max	+50	
Continuous operating and storage			min	-30	

Notes

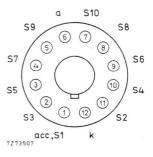
- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to
 increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a
 "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can
 be conceived to achieve other compromises. It is generally recommended that the increase in
 voltage between one stage and the next be kept less than a factor of 2.
- 2. Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of $> 10^{1.5} \Omega$.
- 3. Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx 1/4$ h).
- 4. Pulse amplitude resolution for ^{1.3 °} Cs is measured with an NaI (TI) cylindrical scintillator with a diameter of 32 mm and a height of 32 mm. The count rate used is $\approx 10^4$ c/s. For optimum peak amplitude resolution it is recommended that the voltage between first dynode and photocathode be maintained at ≈ 200 V, e.g. by means of a voltage regulator diode.
- 5. The mean anode sensitivity deviation is measured by coupling an Nal (TI) scintillator to the window of the tube. Long term (16 h) deviation is measured by placing a ¹³⁷Cs source at a distance from the scintillator such that the scintillator count rate is $\approx 10^4$ c/s corresponding to an average anode current of ≈ 100 nA.

Mean pulse amplitude deviation after change of count rate is measured with a ^{1.3.7} Cs source at a distance of the scintillator such that the count rate can be changed from 10⁴ c/s to 10³ c/s corresponding to an average anode current of \approx 300 nA and \approx 30 nA respectively. Both tests are carried out according to ANSI-N42-9-1972 of IEEE recommendations.


- 6. Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b^{-½}.
- Total HT supply voltage or the voltage at which the tube has an anode luminous sensitivity of 600 A/Im, whichever is lower.
- 8. Minimum value to obtain good collection in the input optics.
- 9. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 10. This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb. Where low temperature operation is contemplated, the supplier should be consulted.


PM2060B

MECHANICAL DATA


Dimensions in mm

The standard type PM2060B is dimensioned as per drawing below. A special version, PM2060FLB, features flying leads of Ni wire 0,5 mm ϕ soldered to a 12-pin base (JEDEC B12-43); base connections are identical to PM2060B.

PM2060FLB

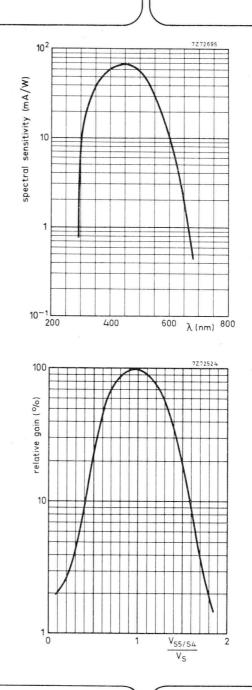
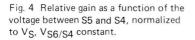
 Net mass:
 75 g

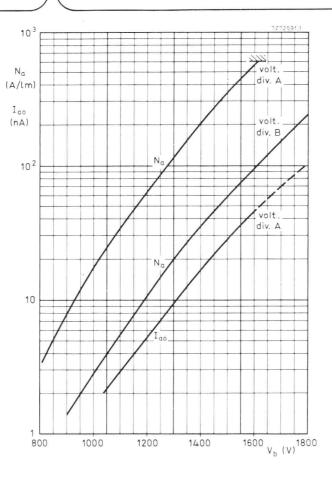
 Base:
 12-pin (JEDEC B12-43)

ACCESSORIES

Socket: type FE1012 Mu-metal shield: type 56127

PM2060B


Fig. 3 Spectral sensitivity characteristic.

DEVELOPMENT SAMPLE DATA

August 1977

PM2060B

-

Fig. 5 Anode luminous sensitivity, $N_{a},$ and anode dark current, $I_{ao},$ as a function of supply voltage $V_{b}.$

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

PM2202

10-STAGE PHOTOMULTIPLIER TUBE

The PM2202 is a 44 mm useful diameter head-on photomultiplier tube with a flat window and a semitransparent bialkaline type D photocathode. The tube is intended for use in applications such as scintillation counting, laboratory and industrial photometry. Its Cu-Be dynode system offers a high stability.

QUICK REFERENCE DATA

Spectral sensitivity characteristic		type D		
Useful diameter of the photocathode		>	44	mm
Cathode spectral sensitivity at 401 nm			75	mA/W
Supply voltage for an anode spectral sensitivity of 60 kA/W at 401 nm			1400	V
Anode pulse rise time		\approx	3,5	ns
Pulse amplitude resolution (¹³⁷ Cs)		\approx	7,4	%
Linearity with voltage divider A with voltage divider B	up to up to	* *		mA mA

To be read in conjunction with General Operational Recommendations Photomultiplier Tubes.

GENERAL CHARACTERISTICS

Window			
Material	lime-glass		
Shape	plano-plar	10	
Refractive index at 550 nm		1,52	
Photocathode *			
Semi-transparent, head-on			
Material	Sb-K-Cs		
Useful diameter	>	44 m	۱m
Spectral sensitivity characteristic (Fig. 8)	type D		
Maximum spectral sensitivity at	400	± 30 n	m
Spectral sensitivity at 401 \pm 3 nm	typ. >	75 m 60 m	

* The bialkaline photocathode has a significant resistance which increases rapidly with reducing temperature. It is thus recommended that it should not be subjected to light of too great an intensity; the cathode current should be limited, for example, to 1 nA at room temperature or 0,1 nA at -30 °C. If too high a photocurrent is passed, the cathode can no longer be considered to be an equipotential surface, and the focusing of electrons onto the first dynode will be affected, resulting in departures of linearity.

PM2202

Multiplier system

Number of stages	10	
Dynode structure	linear focused	
Dynode material	Cu-Be	
Capacitances anode to final dynode anode to all	≈ 3 p ≈ 5 p	

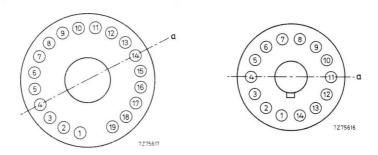
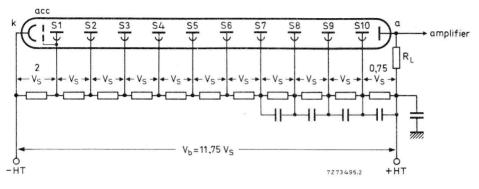
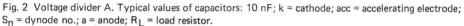
Magnetic field

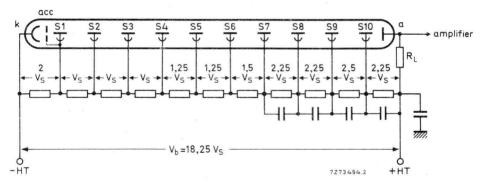
When the photocathode is illuminated uniformly, the anode current is halved (at V_b = 1200 V, voltage divider A) at a magnetic flux density of:

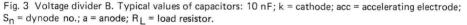
0,2 mT perpendicular to axis a (see Fig. 1);

0,1 mT parallel with axis a.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding more than 15 mm beyond the photocathode.


Fig. 1 Axis a with respect to base pins (bottom view).


PM2202

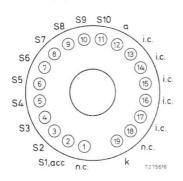
RECOMMENDED CIRCUITS

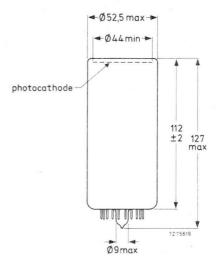
PM2202

TYPICAL CHARACTERISTICS *	notes				
With voltage divider A (Fig. 2)	1				
Supply voltage for an anode spectral sensitivity of 60 kA/W (Fig. 10)			< typ.	1700 1400	
Anode dark current at an anode spectral sensitivity of 60 kA/W	2,3		< typ.		nA nA
Pulse amplitude resolution for ¹³⁷ Cs at an anode spectral sensitivity of 12 kA/W	4		~	7,4	%
Anode current linear within 2% at V $_{b}$ = 1700 V		up to	\approx	100	mA
Mean anode sensitivity deviation long term (16 h) after change of count rate versus temp. between 0 and + 40 °C at 450 nm	10		~ ~ ~		% % %/ °C
With voltage divider B (Fig. 3)	1				
Anode spectral sensitivity at $V_b = 1700 V$ (Fig. 10)			~	40	kA/W
Anode pulse rise time at V_b = 1700 V	5		\approx	3,5	ns
Anode pulse duration at half-height at V _b = 1700 V	5		\approx	7	ns
Signal transit time at V _b = 1700 V	5		\approx	35	ns
Anode current linear within 2% at V $_{b}$ = 1700 V		up to	\approx	200	mA
LIMITING VALUES (absolute maximum rating system)					
Supply voltage	6		max.	1800	V
Continuous anode current			max.	0,2	mA
Voltage between first dynode and photocathode	7		max. min.	600 150	
Voltage between consecutive dynodes			max.	300	V
Voltage between anode and final dynode	8		max. min.	300 30	
Ambient temperature range operational (for short periods of time)	9		max. min. max.	+ 80 30 + 50	oC
continuous operation and storage			min.	-30	oC

* All spectral sensitivities refer to a wavelength of 401 nm. Notes see page 5.

Notes


- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to
 increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a
 "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can
 be conceived to achieve other compromises. It is generally recommended that the increase in
 voltage between one stage and the next be kept less than a factor of 2.
- 2. Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at + HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > 10¹⁵ Ω .
- 3. Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx \%$ h).
- 4. Pulse amplitude resolution for ¹³⁷Cs is measured with an NaI (TI) cylindrical scintillator (Quartz et Silice ser. no. 7256 or equivalent) with a diameter of 44 mm and a height of 50 mm. The count rate used is $\approx 10^4$ c/s.
- 5. Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_{b} , approximately as V_{b} .
- 6. Total HT supply voltage or the voltage at which the tube has an anode spectral sensitivity of 600 kA/W, whichever is lower.
- 7. Minimum value to obtain good collection in the input optics.
- 8. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 9. This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb.
- 10. The mean anode sensitivity deviation is measured by coupling an NaI (TI) scintillator to the window of the tube. Long term (16 h) deviation is measured by placing a ¹³⁷Cs source at a distance from the scintillator such that the count rate is ≈ 10⁴ c/s corresponding to an average anode current of ≈ 300 nA. Anode sensitivity deviation after change of count rate is measured with a ¹³⁷Cs source at a distance of the scintillator such that the count rate the count rate can be changed from 10⁴ c/s to 10³ c/s corresponding to an average anode current of ≈ 300 nA respectively. Both tests are carried out according to ANSI–N42–9–1972 of IEEE recommendations.


PM2202

MECHANICAL DATA

Dimensions in mm

-

Base	19-pin all-glass
Net mass	110 g

ACCESSORIES

Socket	type FE2019
Mu-metal shield	type 56130

PM2202

MECHANICAL DATA (continued)

Dimensions in mm

Type PM2202B is dimensioned as per Fig. 5. A special version, PM2202FLB (Fig. 6) features flying leads of Ni wire 0,5 mm ϕ soldered to a 14-pin base (JEDEC B14-38); base connections are for both types according to Fig. 7.

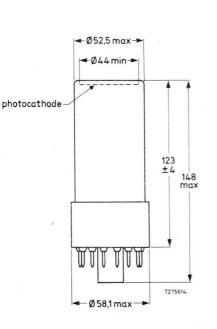


Fig. 5 PM2202B.

Base Net mass

14-pin (JEDEC B14-38) 153 g

ACCESSORIES

Socket	type FE1014
Mu-metal shield	type 56130

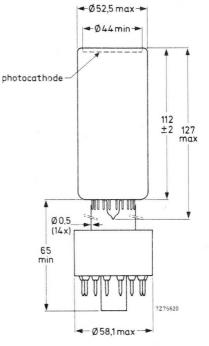
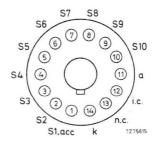
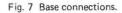




Fig. 6 PM2202FLB.

PM2202

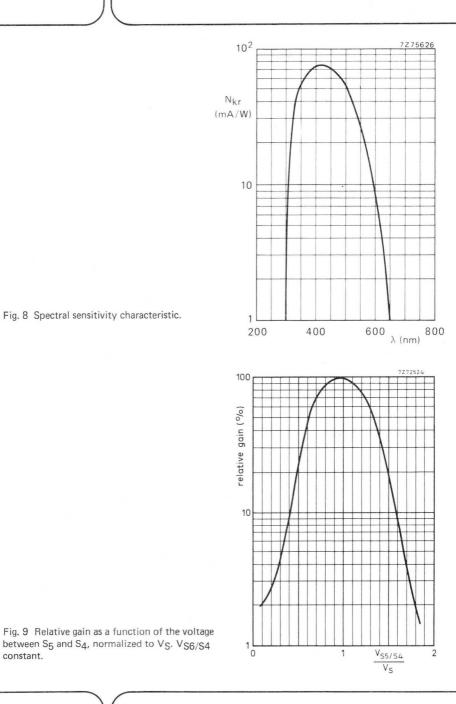


Fig. 8 Spectral sensitivity characteristic.

constant.

1

.

PM2202

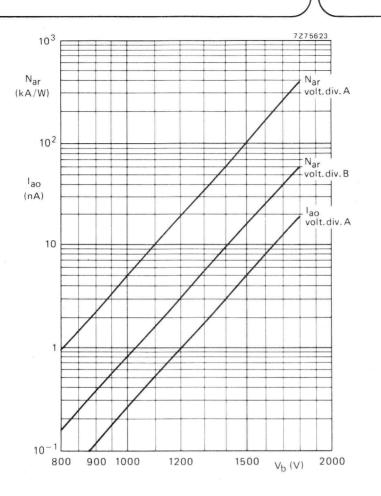


Fig. 10 Anode luminous sensitivity $N_{a^{\prime}}$ and anode dark current I_{ao} as a function of the supply voltage $V_{b}.$

9

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

12-STAGE PHOTOMULTIPLIER TUBE

The PM2232 is a 44 mm useful diameter head-on photomultiplier tube with a plano-concave window and a semi-transparent bialkaline type D photocathode. The tube features a high cathode sensitivity and a good linearity combined with good time characteristics. It is intended for use in high energy physics experiments where a large number of tubes is needed. The PM2232B is provided with a 20-pin plastic base and is plug-in interchangeable with type XP2230B, and unilaterally interchangeable with the 56AVP-family tubes.

QUICK REFERENCE DATA

Spectral sensitivity characteristic		type	D	
Useful diameter of the photocathode		>	44	mm
Quantum efficiency at 401 nm			25	%
Cathode spectral sensitivity at 401 nm			80	mA/W
Supply voltage for a gain of 3×10^7			1900	V
Pulse amplitude resolution for ¹³⁷ Cs		\approx	7,3	%
Anode pulse rise time (with voltage divider B)		\approx	2,2	ns
Linearity				
with voltage divider A	up to	~	100	mA
with voltage divider B	up to	\approx	250	mA

To be read in conjunction with General Operational Recommendations Photomultiplier Tubes.

GENERAL CHARACTERISTICS

.....

Window			
Material	lime-glass		
Shape	plano-concave		÷
Refractive index at 550 nm		1,52	
Photocathode (note 1)			
Semi-transparent, head-on			
Material	Sb-K-C	5	
Useful diameter	>	44 m	nm
Spectral sensitivity characteristic (Fig. 6)	type D		
Maximum spectral sensitivity at	400	±30 n	im
Quantum efficiency at 401 nm		25 %	6
Spectral sensitivity at 401 \pm 3 nm	typ.		nA/W nA/W

Multiplier system

Number of stages	12	
Dynode structure	linear foo	cused
Dynode material	Cu-Be	
Capacitances		
anode to final dynode	\approx	3 pF
anode to all	*	5 pF

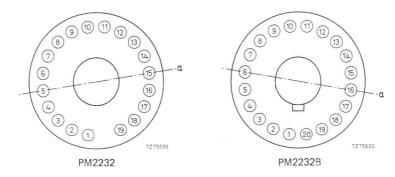
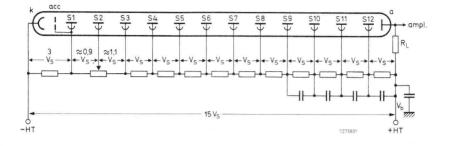
Magnetic field

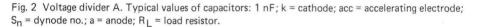
When the photocathode is illuminated uniformly, the anode current is halved (at V_b = 1400 V, voltage divider A) at a magnetic flux density of:

0,2 mT perpendicular to axis a (see Fig. 1);

0,1 mT parallel with axis a.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.


Fig. 1 Axis a with respect to base pins (bottom view).

PM2232 PM2232B

RECOMMENDED CIRCUITS

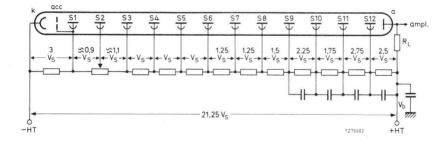


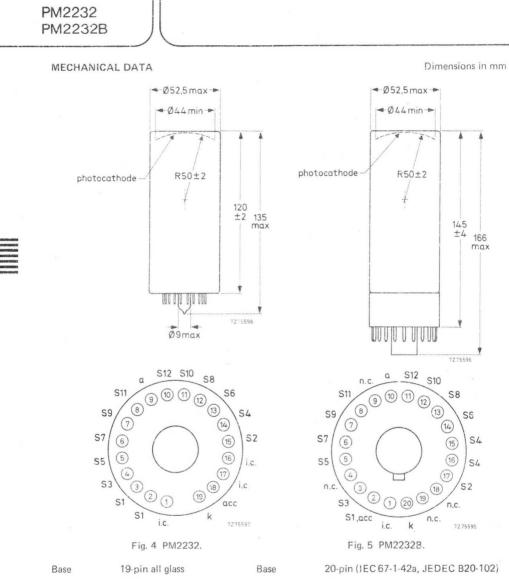
Fig. 3 Voltage divider B. Typical values of capacitors: 1 nF; k = cathode; acc = accelerating electrode; $S_n = dynode no.; a = anode; R_L = load resistor.$

PM2232 PM2232B

TYPICAL CHARACTERISTICS	notes				
With voltage divider A (Fig. 2)	2				
Supply voltage for a gain of 3×10^7 (Fig. 7)			<	2400	
			typ.	1900	
Anode dark current at a gain of 3×10^7 (Fig. 7)	3,4		<	0.07	nA nA
Background noise at a gain of 3×10^7	5		typ. ≈	1200	
Pulse amplitude resolution for ¹³⁷ Cs at an	5		~	1200	0/3
anode spectral sensitivity of 12 kA/W at 401 nm	6		~	7,3	%
Anode current linear within 2% at V_b = 1900 V		up to	~	100	mA
	0				
With voltage divider B (Fig. 3)	2			- 106	
Gain at $V_b = 2000 V$ (Fig. 7)	_			7 x 10 ⁶	
Anode pulse rise time at V_b = 2000 V	7		≈	2,2	
Anode pulse duration at half height at $V_b = 2000 V$	7		~	3,5	
Signal transit time at V_b = 2000 V	7		≈	35	ns
Signal transit time difference between the centre of the photocathode and 18 mm					
from the centre at $V_{\rm b}$ = 2000 V			*	0,7	ns
Anode current linear within 2% at $V_b = 2000 V$		up to	~	250	mA
LIMITING VALUES (absolute maximum rating system)	0			0500	
Supply voltage	8		max.	2500	
Continuous anode current			max.		mA
Voltage between first dynode and photocathode	9		max. min.	800 300	
Voltage between consecutive dynodes			max.	400	
	10		max.	600	
Voltage between anode and final dynode	10		min.	80	
Ambient temperature range			max.	+ 80	°C
operational (for short periods of time)	11		min.	-30	
continuous operation and storage			max.	+ 50	
a and a second			min.	-30	OC

Notes see page 5.

1


Notes

としい

- The bialkaline photocathode has a significant resistance which increases rapidly with reducing temperature. It is thus recommended that it should not be subjected to light of too great an intensity; the cathode current should be limited to, for example, 1 nA at room temperature or 0,1 nA at -30 °C. If too high a photocurrent is passed, the cathode can no longer be considered to be an equipotential surface, and the focusing of electrons onto the first dynode will be affected, resulting in departures of linearity.
- 2. To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltages of the stages progressively. Dividers B and B' are examples of "progressive" dividers, each giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- 3. Wherever possible, the power supply should be arranged so that the cathode is earthed and the anode is at + HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > 10¹⁵ Ω .
- Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness (≈ ¼ h).
- 5. After having been stored with its protective hood, the tube is placed in darkness with V_b set to a value to give a gain of 3 x 10⁷. After a 30 min. stabilization period noise pulses with a threshold of 4,8 x 10⁻¹³ C (corresponding to 0,1 photoelectron) are recorded.
- 6. Pulse amplitude resolution for ¹³⁷Cs is measured with a NaI (TI) cylindrical scintillator (Quartz et Silice ser. no.: 7256 or equivalent) with a diameter of 44 mm and a height of 50 mm. The countrate used is $\approx 10^4$ c/s.
- 7. Measured with a pulsed-light source, with a pulse duration (FWHM) of <1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b^{-½}.

Non-inductive resistors of 50 Ω are connected in the base of type PM2232B to S₁₁ and S₁₂. See also General Operational Recommendations Photomultiplier Tubes.

- 8. Total HT supply voltage, or the voltage at which the tube has a gain of 2×10^8 , whichever is lower.
- 9. Minimum value to obtain good collection in the input optics.
- 10. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 11. This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb. Where low temperature operation is contemplated, the supplier should be consulted.

Net mass 125 g Net mass

162 g

ACCESSORIES

Socket	
for PM2232	type FE2019
for PM2232B	type FE1020
Mu-metal shield	type 56130

12-stage photomultiplier tube

PM2232 PM2232B

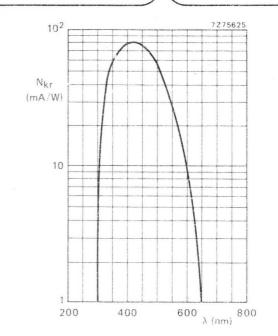
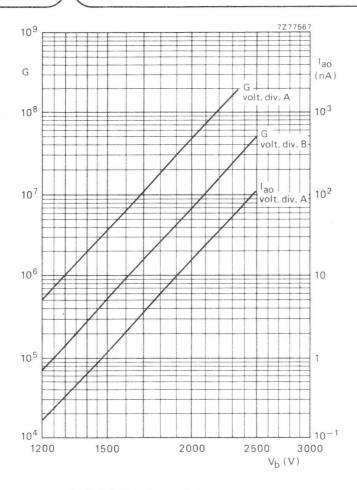
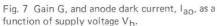




Fig. 6 Spectral sensitivity characteristic.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

PM2312 PM2312B

12-STAGE PHOTOMULTIPLIER TUBE

The PM2312 is a 68 mm useful diameter head-on photomultiplier tube with a plano-concave window and a semi-transparant bialkaline type D photocathode. The tube is intended for use in nuclear physics where the number of photons to be detected is very low and where good time characteristics and a good linearity are required (coincidence measurements, Cerenkov counters). The PM2312B is provided with a 20-pin plastic base.

QUICK REFERENCE DATA

Spectral sensitivity characteristic		typ	be D	
Useful diameter of the photocathode		>	68	mm
Quantum efficiency at 401 nm			26	%
Cathode spectral sensitivity at 401 nm			85	mA/W
Supply voltage for a gain of 3×10^7			2000	V
Pulse amplitude resolution for ¹³⁷ Cs		\approx	8,5	%
Anode pulse rise time (with voltage divider B)		\approx	2,5	ns
Linearity				
with voltage divider A	up to	\approx	100	mA
with voltage divider B	up to	\approx	250	mΑ

To be read in conjunction with General Operational Recommendations Photomultiplier Tubes.

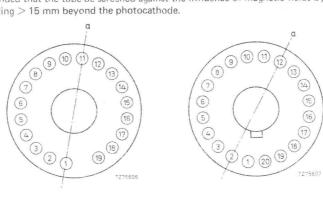
GENERAL CHARACTERISTICS

Window			
Material	boros	ilica	te
Shape	plano	-cor	icave
Refractive index at 550 nm		1,48	
Photocathode (note 1) Semi-transparent, head on			
Material	Sb-K-	Cs	
Useful diameter	>	68	mm
Spectral sensitivity characteristic (Fig. 6)	type	D	
Maximum spectral sensitivity at	400 ±	30	nm
Quantum efficiency at 401 nm		26	%
Spectral sensitivity at 401 \pm 3 nm	typ.		mA/W mA/W

Note See page 5.

PM2312 PM2312B

Multiplier system		
Number of stages		12
Dynode structure	*	linear focused
Dynode material		 Cu-Be
Capacitances anode to final dynode anode to all		≈ 3 pF ≈ 5 pF


Magnetic field

When the photocathode is illuminated uniformly, the anode current is halved (at $V_b = 1500$ V, voltage divider A) at a magnetic flux density of:

0,2 mT perpendicular to axis a (see Fig. 1);

0,1 mT parallel with axis a

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

PM2312

PM2312B

Fig. 1 Axis a with respect to base pins (bottom view).

PM2312 PM2312B

RECOMMENDED CIRCUITS

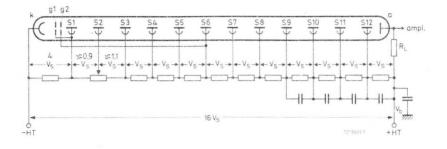


Fig. 2 Voltage divider A. Typical value of capacitors: 1 nF; k = cathode; g_1, g_2 = accelerating electrodes; S_n = dynode no.; a = anode; R_1 = load resistor.

Fig. 3 Voltage divider B. Typical value of capacitors: 1 nF; k = cathode; g_1,g_2 = accelerating electrodes; S_n = dynode no.; a = anode; R_L = load resistor.

PM2312 PM2312B

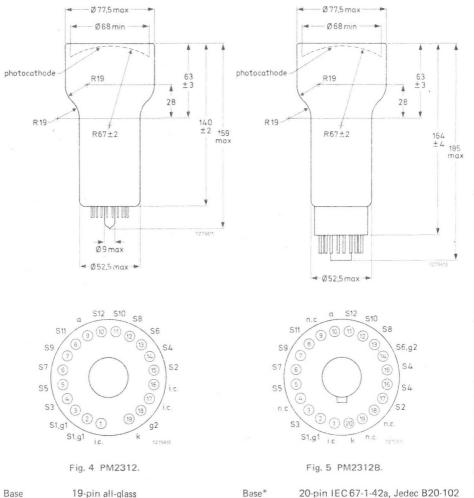
TYPICAL CHARACTERISTICS	notes			
With voltage divider A (Fig. 2)	2			
Supply voltage for a gain of 3×10^7 (Fig. 7)		typ.	2000 2500	
Anode dark current at a gain of 3×10^7 (Fig. 7)	3,4	typ. <	25 250	nA nA
Background noise at a gain of 3×10^7 (Fig. 7)	5	\approx	2000	c/s
Pulse amplitude resolution for ¹³⁷ Cs at an anode spectral sensitivity of 12 kA/W	6	\approx	8,5	%
Anode current linear within 2% at V $_{b}$ = 2000 V	up to	\approx	100	mA
With voltage divider B (Fig. 3)	2			
Gain at $V_b = 2000 V$ (Fig. 7)		\approx	6×10^{6}	
Anode pulse rise time at V_b = 2000 V	7	\approx	2,5	ns
Anode pulse duration at half height at V_b = 2000 V	7	\approx	3,5	ns
Signal transit time at V_b = 2000 V	7	\approx	35	ns
Signal transit time difference between the centre of the photocathode and 30 mm				
from the centre at V_b = 1800 V		\approx	0,7	ns
Anode current linear within 2% at V $_{b}$ = 2000 V	up to	\approx	250	mA
LIMITING VALUES (absolute maximum rating system)				
Supply voltage	8	max.	2500	V
Continuous anode current		max.	0,2	mA
Voltage between first dynode and photocathode	9	max. min.	700 300	
Voltage between consecutive dynodes		max.	400	V
Voltage between g ₂ and photocathode (g ₂ normally connected to S6)		max.	1500	V
	10	max.	600	V
Voltage between anode and final dynode	10	min.	80	V
Ambient temperature range operational (for short periods of time)	11	max.	+ 80	
		min.	-30 + 50	
continuous operation and storage		max. min.	+ 50	-

Notes see page 5.

Notes

- The bialkaline photocathode has a significant resistance which increases rapidly with reducing temperature. It is thus recommended that it should not be subjected to light of too great an intensity; the cathode current should be limited to, for example, 1 nA at room temperature or 0,1 nA at -30 °C. If too high a photocurrent is passed, the cathode can no longer be considered to be an equipotential surface, and the focusing of electrons onto the first dynode will be affected, resulting in departures of linearity.
- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltages of the stages progressively. Dividers B and B' are examples of "progressive" dividers, each giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- 3. Wherever possible, the power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > 10¹⁵ Ω.
- 4. Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness (\approx 1/4 h).
- 5. After having been stored with its protective hood, the tube is placed in darkness with V_b set to a value to give a gain of 3×10^7 . After a 30 min stabilization period noise pulses with a threshold of 4.8×10^{-13} C (corresponding to 0,1 photoelectron) are recorded (Fig. 7).
- 6. Pulse amplitude resolution for ¹³⁷ Cs is measured with a NaI(TI) cylindrical scintillator (Quartz et Silice ser. no. 4170 or equivalent) with a diameter of 75 mm and a height of 75 mm. The count rate used is $\approx 10^4$ c/s.
- Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated.

The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b^{-1/2}.


Non-inductive resistors of 50 Ω are connected in the base of type PM2312B to S₁₁ and S₁₂. See also *General Operational Recommendations Photomultiplier Tubes*.

- 8. Total HT supply voltage, or the voltage at which the tube has a gain of 2×10^8 , whichever is lower.
- 9. Minimum value to obtain good collection in the input optics.
- 10. When calculating the anode voltage, the voltage drop across the load resistor should be taken into account.
- 11. This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb. Where low temperature operation is contemplated, the supplier should be consulted.

ULVELOFINENT DAMPLE DAT

MECHANICAL DATA

Dimensions in mm

Net mass

252 g

Base 19-pin all-glass Net mass 215 g

ACCESSORIES

Socket

for PM	2312	type	FE2019
for PM	2312B	type	FE1020
Mu-metal	shield	type	56135

* This tube can be inserted in sockets, wired for type XP2020 or 56AVP-family tubes.

January 1978

12-stage photomultiplier tube

PM2312 PM2312B

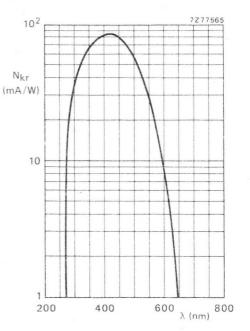


Fig. 6 Spectral sensitivity characteristic.

UEVELOPMENI SAMPLE UAIA

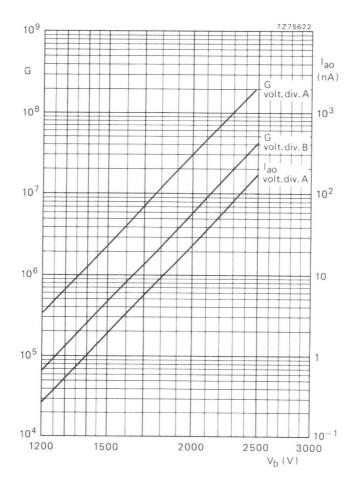


Fig. 7 Gain G, and anode dark current $\rm I_{ao}$ as a function of the supply voltage $\rm V_b.$

8

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

10-STAGE VENETIAN BLIND PHOTOMULTIPLIER TUBE

The PM2402 is a 61 mm useful diameter head-on photomultiplier tube with a flat window and a semitransparent bialkaline type D photocathode. The tube is intended for use in nuclear physics where a very good pulse amplitude resolution is required. The tube offers a high cathode sensitivity and, combined with a very low dark current and high stability, its excellent collection from each point of the photocathode makes it very suitable for scintillation detection in nuclear medicine, e.g. gamma cameras.

QUICK REFERENCE DATA

Spectral sensitivity characteristic	type D
Useful diameter of the photocathode	>61 mm
Cathode spectral sensitivity at 401 nm	90 mA/W
Supply voltage for an anode spectral sensitivity of 12 kA/W	1250 V
Anode dark current at an anode spectral sensitivity of 12 kA/W	0,5 nA
Pulse amplitude resolution (¹³⁷ Cs)	≈7 %
Mean anode sensitivity deviation	≈1 %

To be read in conjunction with General Operational Recommendations Photomultiplier Tubes.

GENERAL CHARACTERISTICS

Window	
Material	lime glass
Shape	plano-plano
Refractive index at 550 nm	1,52
Photocathode *	
Semi-transparent, head-on	
Material	Sb-K-Cs
Useful diameter	>61 mm
Spectral sensitivity characteristic (Fig. 3)	type D

^t The bialkaline photocathode has a significant resistance which increases rapidly with reducing temperature. It is thus recommended that it should not be subjected to light of too great an intensity; the cathode current should be limited, for example, to 1 nA at room temperature or 0,1 nA at -30 °C. If too high a photocurrent is passed, the cathode can no longer be considered to be an equipotential surface, and the focusing of electrons onto the first dynode will be affected, resulting in departure of linearity.

PM2402

Photocathode (continued)		
Maximum spectral sensitivity at	400 ± 30 nm	
Quantum efficiency at 401 nm	28 %	
Spectral sensitivity at $401 \pm 3 \text{ nm}$	typ. 90 mA/W > 65 mA/W	
Multiplier system		
Number of stages	10	
Dynode structure	venetian blind	
Dynode material	Cu-Be	
Capacitances anode to final dynode anode to all	≈ 7 pF ≈ 8,5 pF	

Magnetic field

When the photocathode is illuminated uniformly the anode current is halved (at V_b = 1500 V) at a magnetic flux density of 0,35 mT perpendicular to the tube axis.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding >15 mm beyond the photocathode.

RECOMMENDED CIRCUIT

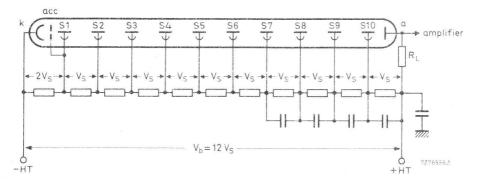


Fig. 1 Voltage divider type A. For obtaining the best energy resolution the accelerating electrode should be connected to S1. Typical values of capacitors; 10 nF, k = cathode; acc = accelerating electrode; Sn = dynode no.; a = anode; R_L = load resistor.

10-stage venetian blind photomultiplier tube

PM2402

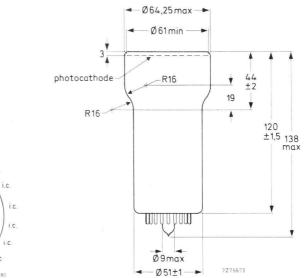
TYPICAL CHARACTERISTICS (with voltage divider A, Fig. 1), see	also note	e 1		
	note			
Supply voltage for an anode spectral sensitivity $N_{ar} = 12 \text{ kA/W}$ at 401 nm (Fig. 4)		< typ.	1450 1250	
Anode spectral sensitivity at V_b = 1500 V and 401 nm (Fig. 4)		*	40	kA/W
Anode dark current at an anode spectral sensitivity $N_{ar} = 12 \text{ kA/W}$ at 401 nm (Fig. 4)	2	< typ.	5 0,5	nA nA
Pulse amplitude resolution for 137 Cs at N _{ar} = 12 kA/W	3	\approx	7	% *
Pulse amplitude resolution for 57 Co at N _{ar} = 12 kA/W	3	\approx	9,7	% *
Pulse amplitude resolution for 55 Fe at N _{ar} = 60 kA/W	4	\approx	42	%
Peak to valley ratio for ⁵⁵ Fe at $N_{ar} = 60 \text{ kA/W}$	4	\approx	35	
Mean anode sensitivity deviation	5			
long term (16 h)		\approx		%
after change of count rate versus temperature between 20 ^o C and 60 ^o C at 450 nm		≈ ≈ 0.1	% per	%
Anode current linear within 2% at $V_b = 1500 V$		up to ≈		mA
Anode pulse rise time at $V_{\rm b}$ = 1500 V	6	≈	10	
Anode pulse duration at half height at V _b = 1500 V	6	\approx	20	ns
Signal transit at V_b = 1500 V	6	\approx	46	ns
LIMITING VALUES (absolute maximum rating system)				
Supply voltage	7	max.	2000	V
Continuous anode current		max.	0,2	mA
Voltage between first dynade and photocathode	8	max. min.	500 150	
Voltage between accelerating electrode and photocathode		max.	500	V
Voltage between consecutive dynodes		max.	300	V
Voltage between anode and final dynode	9	max.	300	V
Ambient temperature range operational (for short periods of time)		max. min.	+80 30	
continuous operation and storage		max. min.	+50 -30	

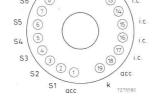
* Measured with a ϕ 44 x 50 mm NaI (TI) scintillator.

January 1978

PM2402

Notes


- 1. Whenever possible, the power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of >10¹⁵ ohm.
- Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness (≈¼ h).
- 3. Pulse amplitude resolution for ¹³⁷ Cs and ⁵⁷ Co is measured with an Nal(TI) cylindrical scintillator (Quartz et Silice serial no. 7256 or equivalent) with a diameter of 44 mm and a height of 50 mm. The count rate used is $\approx 10^4$ c/s.
- 4. Pulse amplitude resolution for ⁵⁵Fe is measured with an Nal(TI) cylindrical scintillator with a diameter of 25 mm and a height of 1 mm provided with a beryllium window. The count rate used is $\approx 2 \times 10^3$ c/s.
- 5. The mean anode sensitivity deviation is measured by coupling an Nal(TI) scintillator to the window of the tube. Long-term (16 h) deviation is measured by placing a ¹³⁷ Cs source at a distance from the scintillator such that the count rate is $\approx 10^4$ c/s, corresponding to an anode current of ≈ 300 nA. Anode sensitivity deviation after change of count rate is measured with a ¹³⁷ Cs source at a distance from the scintillator such that the count rate count rate can be changed from $\approx 10^4$ c/s to $\approx 10^3$ c/s, corresponding to anode currents of ≈ 300 nA and ≈ 30 nA respectively. Both tests are carried out according to ANSI-N42-9-1972 of IEEE recommendations.
- 6. Measured with a pulsed light source, with a pulse duration (FWHM) of < 1 ns; the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage $V_{\rm b}$, approximately as $V_{\rm b}^{-1/2}$.
- 7. Total HT supply voltage, or the voltage at which the tube has an anode spectral sensitivity of \approx 300 kA/W, whichever is lower.
- 8. Minimum value to obtain good collection in the input optics.
- When calculating the anode voltage the voltage drop across the load resistor should be taken into account.


10-stage venetian blind photomultiplier tube

PM2402

MECHANICAL DATA

Dimensions in mm

S9 S10

α

i.c.

S8

9

\$7

S6 (8)

Fig. 2.

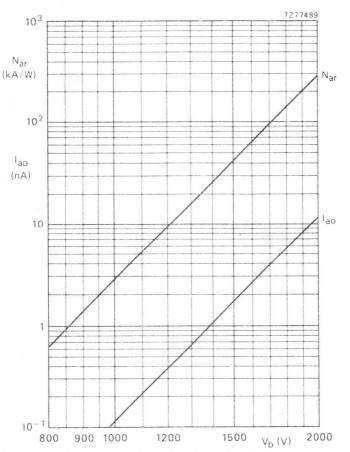
Base 19-pin all-glass Net mass 150 g

ACCESSORIES

Socket	type FE2019
Mu-metal shield	type 56131

The PM2402B is supplied with a plastic base on request. This version fits the socket FE1014. Base connections of the PM2402B are identical to those of the XP2030.

January 1978


PM2402

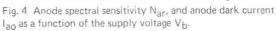


Fig. 3 Spectral sensitivity characteristic.

10-stage venetian blind photomultiplier tube

PM2402

January 1978

PM2402

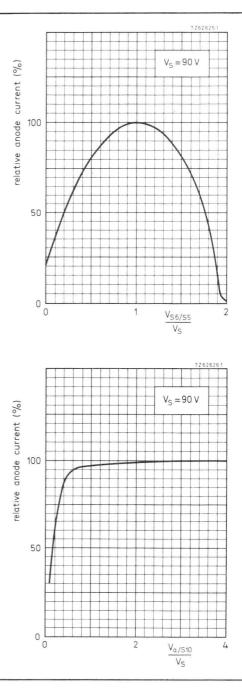


Fig. 5 Relative anode current as a function of the voltage between S6 and S5, normalized to $V_{\mbox{S}}, V_{\mbox{S7/S5}}$ constant.

Fig. 6 Relative anode current as a function of the voltage between anode and last dynode, normalized to $V_{\mbox{S}}.$

10-STAGE PHOTOMULTIPLIER TUBE

The XP1002 is a 44 mm useful diameter head-on photomultiplier tube with a flat window and a semi-transparent trialkaline S20 (type T) photocathode. The tube is intended for use in low light level measurements in the entire visible part of the spectrum. Its Cu-Be dynode multiplier system offers a high stability which makes it especially suitable for industrial applications, such as laser reading.

QUICK REFERENCE DATA					
Spectral sensitivity characteristic	S20 (1	type T)			
Useful diameter of the photocathode	>	44	mm		
Spectral sensitivity of the photocathode at 698 nm at 632,8 nm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	16 30	mA/W mA/W		
Supply voltage for an anode luminous sensitivity = 60 A/lm		1460	V		
Mean anode sensitivity deviation	22	1	%		
Anode pulse rise time (with voltage divider B)	a	4	ns		
Linearity, with voltage divider A up to with voltage divider B up to		30 100	mA mA		

To be read in conjunction with "General Operational Recommendations Photomultiplier Tubes".

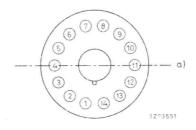
GENERAL CHARACTERISTICS

Window			
Shape	plano-pl	ano	
Photocathode			
Semi-transparent head-on			
Material	Sb-Na-K	-Cs	
Useful diameter	>	44	mm
Spectral sensitivity characteristic (Fig. 3)	S20 (type	e T)	
Maximum spectral sensitivity at	420	0 ± 30	nm
Luminous sensitivity	typ. >	165 110	μΑ/lm μΑ/lm
Spectral sensitivity at 698 \pm 7 nm at 629 \pm 3 nm	*	16 30	mA/W mA/W

Electron optical input system

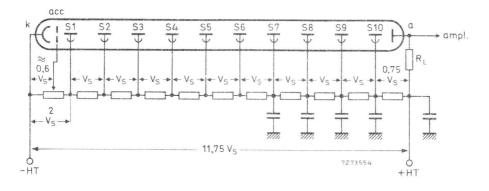
This system consists of: the photocathode, k; a metallized part of the glass envelope internally connected to the photocathode; an accelerating electrode, acc.

Multiplier system				
Number of stages	10			
Dynode structure	linear focu	linear focused		
Dynode material	Cu-Be	Cu-Be		
Capacitances				
Anode to all	~	5	pF	
Anode to final dynode	\approx	3	pF	

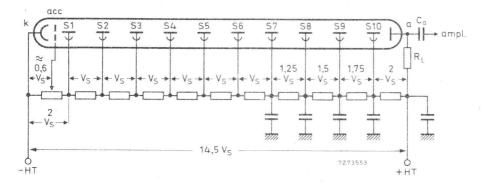

Magnetic field

When the photocathode is illuminated uniformly the anode current is halved (at $V_b = 1200 \text{ V}$, voltage divider A):

- at a magnetic flux density of 0,2 mT perpendicular to axis a);


- at a magnetic flux density of 0, 1 mT parallel to axis a). (see Fig. below.)

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.



Axis a) with respect to base pins (bottom view).

RECOMMENDED CIRCUITS

k = cathode

- acc = accelerating electrode
- $S_n = dynode no. n$
- a = anode
- R_{I} = load resistor

January 1976

3

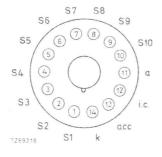
Typical value of capacitors: 10 nF

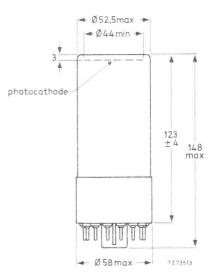
TYPICAL CHARACTERISTICS

With voltage divider A (Fig. 1)	1)			
Supply voltage for an anode luminous sensitivity N _a = 60 A/lm (Fig. 5)		typ. <	1460 1650	V V
Anode dark current at $N_a = 60$ A/lm (Fig. 5)	²) ³)	typ. <	3 50	nA nA
Anode current linear within 2% at $\rm V_b$ = 1700 V up to		~	30	mA
Mean anode sensitivity deviation at $V_{\rm b}$ = 1200 V, long term (16 h)	4)	~	1	%
With voltage divider B (Fig. 2)	1)			
Anode luminous sensitivity at V_b = 1700 V (Fig. 5)		~	75	A/lm
Anode pulse rise time at V _b = 1700 V	⁵)	~	4	ns
Anode pulse duration at half height at V_b = 1700 V	5)	~	12	ns
Signal transit time at V_b = 1700 V	5)	~	38	ns
Anode current linear within 2% at V_b = 1700 V up to		2	100	mA
LIMITING VALUES (Absolute max. rating system)				
Supply voltage	6)	max.	1800	V
Continuous anode current		max.	0,2	mA
Voltage between first dynode and photocathode	7)	max. min.	500 120	V V
Voltage between consecutive dynodes		max.	300	V
Voltage between anode and final dynode	⁸)	max. min.	300 30	V V
Ambient temperature range Operational (for short periods of time) Continuous operation and storage	9)	max. min. max. min.	+80 -30 +50 -30	°C °C °C
		ana 0 0 0 0 0 0		

Notes see page 5.

Notes to page 4

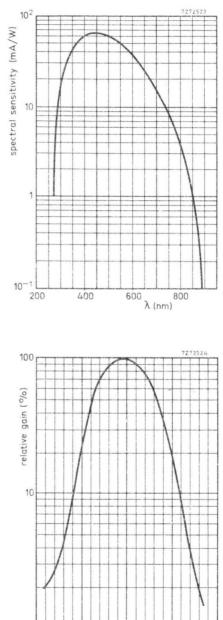

- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltages of the stages progressively. Divider circuit B is an example of a "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- 2) Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance > 10¹⁵ Ω.
- ³) Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx 1/4$ h).
- ⁴) The mean anode sensitivity deviation measurement is carried out with light pulses at a count rate of 10⁴ c/s resulting in an average anode current of 0, 1 μA. See also "General Operational Recommendations Photomultiplier Tubes".
- 5) Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse


The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b , approximately as $V_b^{-1/2}$.

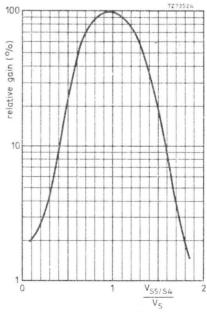
- 6) Total HT supply voltage, or the voltage at which the tube has an anode luminous sensitivity of 600 A/lm, whichever is lower.
- ⁷) Minimum value to obtain good collection in the input optics.
- ⁸) When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 9) This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb. Where low temperature operation is contemplated, the supplier should be consulted.

MECHANICAL DATA

Dimensions in mm


Net mass: 150 g

Base : 14-pin (IEC 67-I-16a; JEDEC B14-38)


ACCESSORIES

-- Socket : type FE1014

Mu-metal shield: type 56128

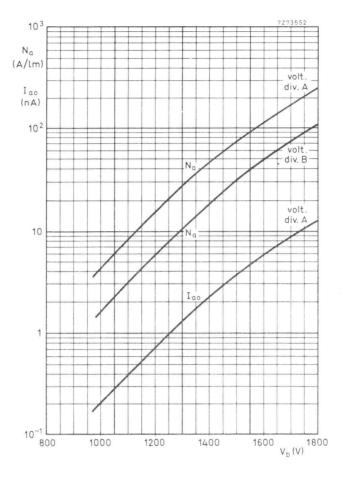


Fig.4

Relative gain as a function of the voltage between S_5 and S_4 , normalized to V_S VS6/S4 constant

 $$\rm Fig.\,5$$ Anode luminous sensitivity, Na, and anode dark current, $I_{\rm a0},$ as a function of supply voltage $V_{\rm b}$

10-STAGE PHOTOMULTIPLIER TUBE

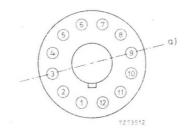
The XP1011 is a 32 mm useful diameter head-on photomultiplier tube with a flat window and a semi-transparent Super A photocathode. The rugged construction of the tube makes it particularly suitable for applications such as scintillation counting and optical measurements under severe operating conditions.

QUICK REFERENCE DATA							
Spectral sensitivity characteristic Super			A				
Useful diameter of the photocathode		>	32	mm			
Spectral sensitivity of the photocathode at 437 nm			80	mA/W			
Supply voltage for a luminous sensitivity = 60 A/lm			1500	V			
Pulse amplitude resolution for ¹³⁷ Cs		a	8	%			
Anode pulse rise time (with voltage divider B)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3,5	ns			
Linearity with voltage divider A with voltage divider B	up to up to	<i>u u</i>	30 100	mA mA			

To be read in conjunction with "General Operational Recommendations $\ensuremath{\mathsf{Photomultiplier}}$ Tubes"

GENERAL CHARACTERISTICS

Window				
Shape		plano-plano		
Material		borosilicate		
Refractive index at 550 nm		1,48		
Photocathode				
Semi-transparent, head-on				
Material			Sb-Cs	
Useful diameter		>	32	mm
$Spectral \ {\tt sensitivity} \ {\tt characteristic} \ ({\tt Fig.3})$		type	e Super A	
Maximum spectral sensitivity at		420	±30	nm
Luminous sensitivity	1)	typ. >	90 40	µA/lm µA/lm

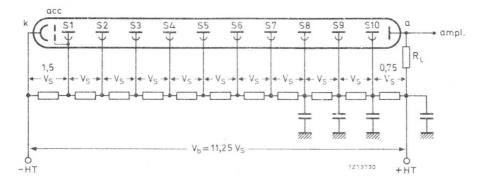

Note see page 2.

December 1977

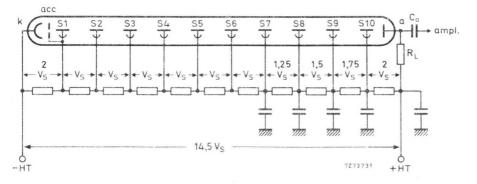
Spectral sensitivity at 437 ± 5	nm	2)			80	mA/W	
Electron optical input system							
This system consists of: the pho internally connected to the pho connected to S1.				0			
Multiplier system							
Number of stages					10		
Dynode structure				linear focused			
Dynode material				Ag-Mg			
Capacitances							
Anode to all			C_a		5	pF	
Anode to final dynode			$C_a/S10$	\mathcal{D}	3	pF	

Magnetic field see Fig. 4

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding ≥ 15 mm beyond the photocathode.



Dynode axis with respect to base pins (bottom view).


 $^{2}\)$ Measuring equipment is calibrated by comparison with a Schwartz thermocouple.

 $^{^1)}$ Cathode luminous sensitivity is measured with a tungsten filament lamp of colour temperature 2856 \pm 5 K.

RECOMMENDED CIRCUITS

k = cathode

Typical value of capacitors: 10 nF

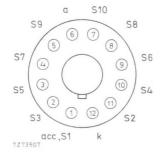
- acc = accelerating electrode
- $S_n = dynode no. n$
- a = anode
- $R_L = load resistor$

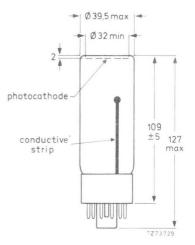
February 1976

TYPICAL CHARACTERISTICS

With voltage divider A (Fig. 1)	1)			
Supply voltage for an anode luminous		<	1700	V
sensitivity $N_a = 60 \text{ A/lm}$ (Fig. 5)		typ.	1500	v
Anode dark current at an anode luminous				
sensitivity $N_a = 60 \text{ A/lm}$ (Fig. 5)	2) 3)	< typ.	50 15	nA nA
Pulse amplitude resolution for $^{137}\mathrm{Cs}$ at $\mathrm{V}_{b^{=}}$ 1200	V 4)	≈ yp.	8	%
Anode current linear within 2% at V_b = 1700 V up		22	30	mА
With voltage divider B (Fig. 2)	1)			
Anode luminous sensitivity at $V_b = 1700 V$ (Fig. 4))	22	45	A/lm
Anode pulse rise time at V_{b} = 1700 V	5)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3,5	ns
Anode pulse duration at half height at $\rm V_{b}{=}1700\rm V$	5)	~~	6	ns
Signal transit time at $V_b = 1700 V$	5)	\approx	34	ns
Anode current linear within 2% at V_b = 1700 V up	to	\approx	100	mA
LIMITING VALUES (Absolute max. rating system	n)			
Supply voltage	6)	max.	1800	V
Continuous anode current		max.	0,2	mA
Voltage between first dynode and photocathode	7)	max.	500	V
voltage between first dynode and photocathode	/	min.	120	V
Voltage between consecutive dynodes		max.	300	V
Voltage between anode and final dynode	8)	max.	300	V
5		min.	30	V
Ambient temperature range Operational (for short periods of time)	10)	max.	+80	0C
operational (for short periods of time)		min.	- 30	°C °C
Continuous operation and storage		max. min.	+50 - 30	°C

Notes see page 5.


Notes to page 4


- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- ²) Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The tube is provided with a conductive strip connected to the cathode. It is recommended that, if a metal shield is used, this be kept at cathode potential. This implies safety precautions to protect the user. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > $10^{15} \Omega$.
- 3) Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness (≈1/4 h).
- 4) Pulse amplitude resolution for ¹³⁷Cs is measured with an NaI(Tl) cylindrical scintillator with a diameter of 32 mm and a height of 32 mm. The count rate used is ≈ 10⁴ c/s.
- 5) Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b^{-1/2}.
- 6) Total HT supply voltage or the voltage at which the tube has an anode luminous sensitivity of 600 A/lm, whichever is lower.
- ⁷) Minimum value to obtain good collection in the input optics.
- 8) When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- $^{9}\)$ This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb.

Where low temperature operation is contemplated, the supplier should be consulted.

MECHANICAL DATA

Dimensions in mm

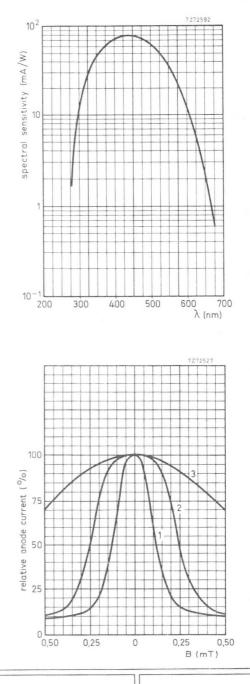
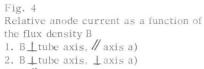
Net mass : approx. 80 g Base : 12-pin (JEDEC B12-43)

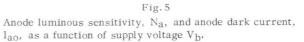
ACCESSORIES

-> Socket : type FE1012

Mu-metal shield : type 56127

7


Fig.3 Spectral sensitivity characteristic

3. B∥tube axis

February 1976

February 1976

9

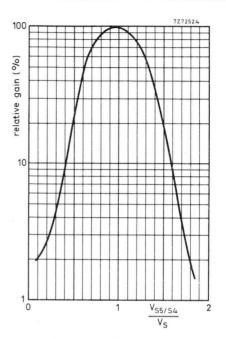


Fig. 6 Relative gain as a function of the voltage between S5 and S4, normalized to $\rm V_S$ V_{S6/S4} constant.

10-STAGE PHOTOMULTIPLIER TUBE

The XP1017 is a 32 mm useful diameter head-on photomultiplier tube with a flat window and a semi-transparent trialkaline S20R (extended red) photocathode.

The tube is intended for use in applications where a high sensitivity in the red and nearinfrared part of the spectrum is needed.

QUICK REFEREN	CE DATA	Δ.			
Spectral sensitivity characteristics				S20R	
Useful diameter of the photocathode			>	32	mm
Spectral sensitivity of the photocathode at 550) nm		\approx	35	mA/W
at 698	8 nm		\approx	23	mA/W
at 858	8 nm			6,5	mA/W
Supply voltage for anode luminous sensitivity	= 60 A/l	m		1470	V
Anode pulse rise time (with voltage divider B)			~	3,5	ns
Linearity					
with voltage divider A		up to	\approx	30	mA
with voltage divider B		up to	\approx	100	mА

To be read in conjunction with "General Operational Recommendations Photomultiplier Tubes".

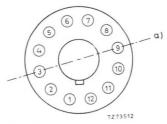
GENERAL CHARACTERISTICS

Window(frosted)MaterialborosilicateShapeplano-planoRefractive index at 550 nm1,48

Photocathode

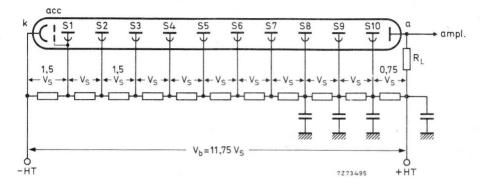
Semi-transparent, head-on			
Material	Sb	-Na-K-Cs	
Useful diameter	>	32	mm
Spectral sensitivity characteristic (Fig. 3)		S20R	
Maximum sensitivity at		550 ± 50.	nm
Luminous sensitivity	typ. >	210 150	µA /lm µA /lm
Spectral sensitivity at 858 ± 8 nm	typ. >	6,5 1,5	mA/W mA/W
at 550 nm	~	35	mA/W
at 698 nm	\approx	23	mA/W
at 903 nm	22	1,2	mA/W

Electron optical input system

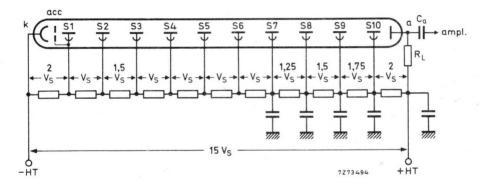

This system consists of: the photocathode, k; a metallized part of the glass envelope, internally connected to the photocathode; an accelerating electrode, acc, internally connected to S1.

Multiplier system

Number of stages			10	
Dynode structure		linear f	ocused	
Dynode material			Cu-Be	
Capacitances				
Anode to all	Ca	*	5	pF
Anode to final dynode	C _{a/S10}	~	3	pF


Magnetic field See fig. 4.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.



Axis a) with respect to base pins (bottom view).

RECOMMENDED CIRCUITS

k = cathode

Typical values of capacitors; 10 nF

- acc = accelerating electrode
- $S_n = dynode no. n$

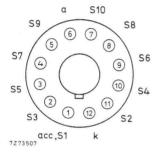
a = anode

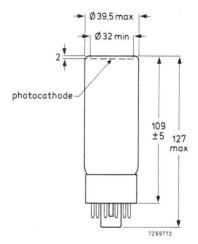
 R_L = load resistor

TYPICAL CHARACTERISTICS

With voltage divider A (Fig. 1)	1)			
Supply voltage for an anode luminous sensitivity N _a = 60 A/lm (Fig.5)		< typ.	1650 1470	V V
Supply voltage for a gain G = 10^6		*	1800	V
Anode dark current at N_a = 60 A/lm (Fig.5)	²) ³)	< typ.	50 2	nA nA
Anode current linear within 2% at V_b = 1700 V u	p to	*	30	mA
With voltage divider B (Fig. 2)	1)			
Supply voltage for an anode luminous sensitivity N _a = 60 A/lm (Fig.5)		*	1730	V
Anode pulse rise time at V_b = 1700 V	⁴)	*	3,5	ns
Anode pulse duration at half height at V_b = 1700 $^\circ$	V ⁴)	*	6	ns
Signal transit time at V_b = 1700 V	4)	~	34	ns
Anode current linear within 2% at $V_{\rm b}$ = 1700 V u	p to	*	100	mA
LIMITING VALUES (Absolute max. rating system	m)			
Supply voltage	5)	max.	1900	V
Continuous anode current		max.	0,2	mA
Voltage between first dynode and photocathode	6)	max. min.	500 120	V V
Voltage between consecutive dynodes		max.	300	V
Voltage between anode and final dynode	7)	max. min.	300 30	V V
Ambient temperature range				0
Operational (for short periods of time)	8)	max. min. max.	+80 -30 +50	°C °C °C
Continuous operation and storage		min.	-30	°C

Notes see page 5.


Notes to page 4


- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltage of the stages progressively.
 Divider circuit B is an example of a "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- ²) Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > $10^{15} \Omega$.
- ³) Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx 1/4$ h).
- 4) Measured with a pulsed-light source, with a pulse duration (FWHM) of <1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b-1/2.
- 5) Total HT supply voltage or the voltage at which the tube has an anode luminous sensitivity of 600 A/lm, whichever is lower.
- ⁶) Minimum value to obtain good collection in the input optics.
- 7) When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 8) This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb.
 Where law temperature operation is contemplated, the cumplion chould be conculted.

Where low temperature operation is contemplated, the supplier should be consulted.

MECHANICAL DATA

Dimensions in mm

Net mass: 80 g Base : 12-pin (JEDEC B12-43)

ACCESSORIES

Socket : type FE1012

Mu-metal shield: type 56127

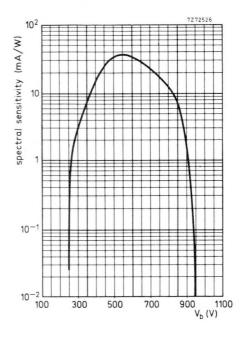
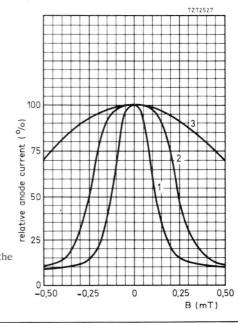
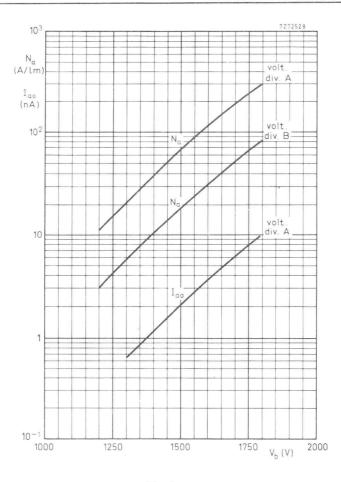



Fig.3 Spectral sensitivity characteristic



7

Fig.4

Relative anode current as a function of the magnetic flux density B 1. B⊥tube axis, ∥axis a 2. B⊥tube axis, ⊥axis a

3. B#tube axis

Anode luminous sensitivity, Na, and anode dark current, $\rm I_{ao},$ as a function of supply voltage $\rm V_{b}$

MAINTENANCE TYPE

XP1116

10-STAGE PHOTOMULTIPLIER TUBE

The XP1116 is a 14 mm useful diameter head-on photomultiplier tube with a flat window and a semi-transparent S1 (type C) photocathode.

The tube is intended for use in optical measurements where a good sensitivity in the visible and near-infrared part of the spectrum is needed. Its rugged construction makes it particularly suitable for industrial applications under limited dimensional conditions.

QUICK REFERENCE DATA	4			
Spectral sensitivity characteristic		S1 (t	ype C)	
Useful diameter of the photocathode		>	14	mm
Spectral sensitivity of the photocathode at 903 nm			1,6	mA/W
Supply voltage for an anode luminous sensitivity N _a = 10 A/lm			1650	V
Anode pulse rise time (with voltage divider B)		*	3,5	ns
Linearity with voltage divider A with voltage divider B	up to up to	<i>u u</i>	10 30	mA mA

To be read in conjunction with "General Operational Recommendations Photomultiplier Tubes".

GENERAL CHARACTERISTICS

Window		
Material	borosilicate	
Shape	plano-plano	
Refractive index at 550 nm	1,48	
Photocathode		
Semi-transparent, head-on		
Material	Ag-O-Cs	
Useful diameter	> 14	mm
Spectral sensitivity characteristic (Fig. 3)	S1 (type C)	
Maximum spectral sensitivity at	800 ± 100	nm

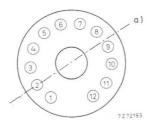
Luminous sensitivity	1)	typ. >	20 μA/lm 15 μA/lm	
Spectral sensitivity at 903 \pm 8 nm at 1060 \pm 10 nm	2)	*	1,6 mA/W 0,12 mA/W	

Electron optical input system

This consists of : the photocathode, k; a metallized part of the glass envelope internally connected to the photocathode; an accelerating electrode, acc, internally connected to S1.

Multiplier system

Number of stages		10		
Dynode structure		linear foo	cused	1
Dynode material		Ag-Mg		
Capacitances Anode to all Anode to final dynode	C _a C _a /S10	* *	3 1,9	pF pF

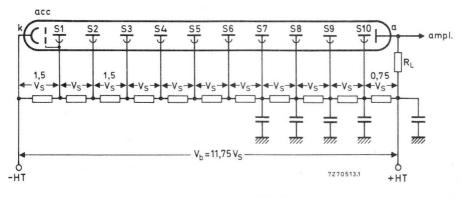

Magnetic field

When the photocathode is illuminated uniformly the anode current is halved (at $V_b = 1200 V$, voltage divider A):

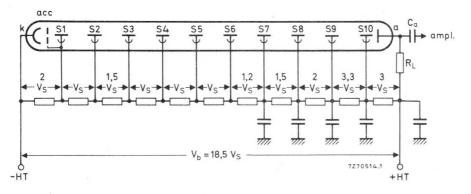
- at a magnetic flux density of 0, 3 mT perpendicular to axis a);

- at a magnetic flux density of 0,2 mT parallel to axis a). (See Fig. below,)

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.



Dynode plane with respect to base pins (bottom view).


Cathode luminous sensitivity is measured by means of a tungsten filament lamp of colour temperature 2856 ± 5 K.

²) Measuring equipment is calibrated by comparison with a Schwartz thermocouple.

RECOMMENDED CIRCUITS

k = cathode

Typical values of capacitors: 10 nF

- acc = accelerating electrode
- $S_n = dynode no.n$

a = anode

 $R_L = load resistance$

TYPICAL	CHARA	CTERISTICS	
---------	-------	------------	--

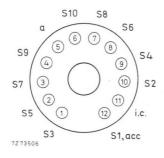
With voltage divider A (Fig. 1)	1)			
Supply voltage for an anode luminous sensitivity Na = 10 A/lm (Fig. 5)		typ. <	1650 1800	V V
Anode dark current at $N_a = 10 \text{ A/lm}$ (Fig. 5)	2)3)	typ. <	5 10	дА дА
Anode current linear within 2% at $V_{\rm D}$ = 1800 V up	p to	*	10	mA
With voltage divider B (Fig. 2)	1)			
Anode luminous sensitivity at V_b = 1800 V		~	2,5	A/lm
Anode pulse rise time at V_b = 1800 V	4)	~	3,5	ns
Anode pulse duration at half height at V_b = 1800 V	4)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6	ns
Signal transit time at V_b = 1800 V	4)	~	30	ns
Anode current linear within 2% at V_{b} = 1800 V up	o to	*	30	mA
LIMITING VALUES (Absolute max, rating system	m)			
Supply voltage	5)	max.	1900	V
Continuous anode current	6)	max.	10	Ац
Voltage between first dynode and photocathode	7)	max. min.	350 100	V V
Voltage between consecutive dynodes		max.	200	V
Voltage between anode and final dynode		max. min.	300 30	V V
Ambient temperature range Operational (for short periods of time)		max. min.	+50 -30	°C °C
Continuous operation and storage		max. min.	+50 -30	0C 0C

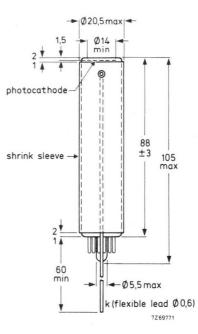
Notes see page 5.

5

Notes to page 4

- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a "progressive" divider giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- 2) Wherever possible, the power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The shrink sleeve or the mu-metal shield around the tube should be supported only by isolators having an insulation resistance of > $10^{15} \Omega$.
- ³) Dark current for S1 (type C) photocathodes is measured at a temperature of 20 °C. The dark current varies sharply with temperature. See also note 6.
- Measured with a pulsed-light source, with a pulse duration of < 1 ns; the cathode being completely illuminated.


The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum and the instant at which the anode pulse attains its maximum. Rise time, pulse duration, and transit time vary as a function of the HT supply voltage V_b , approximately at $V_b^{-1/2}$.


- Total HT supply voltage, or the voltage at which the tube has an anode luminous sensitivity of 30 A/lm, whichever is lower.
- 6) As the dark current increases by a factor of 2 for every 7 °C increase in temperature, the anode sensitivity should be limited so that the continuous anode current limit is not exceeded.
- 7) Minimum value to obtain good collection in the input optics.
- When calculating the anode voltage the voltage drop across the load resistor should be taken into account.

anuary .	1976
----------	------

MECHANICAL DATA

Dimensions in mm

Net mass: 25 g

Base : 12-pin all-glass

ACCESSORIES

Socket : type FE1004 Mu-metal shield: type 56134

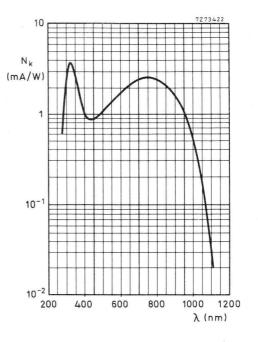
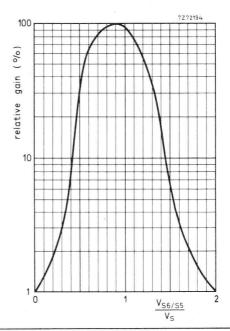
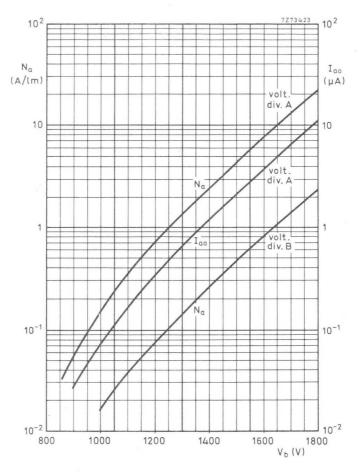



Fig.3


Spectral sensitivity characteristic

7

Fig.4

Relative gain as a function of the voltage between S6 and S5, normalized to $\rm V_S$ $\rm V_{S7/S5}$ constant

Anode luminous sensitivity, ${\rm N}_a,$ and dark current, ${\rm I}_{a0},$ as a function of supply voltage.

9-STAGE PHOTOMULTIPLIER TUBE

The XP1117 is a 14 mm useful diameter head-on photomultiplier tube with a flat window and a semi-transparent S20 (type T) photocathode.

The tube is intended for use in optical measurements where a good sensitivity in the entire visible spectrum is needed.

Its rugged construction makes it particularly suitable for industrial applications under limited dimensional conditions.

QUICK REFE	RENCE DATA			
Spectral sensitivity characteristic		S2	0 (type T)
Useful diameter of the photocathode		>	14	mm
Spectral sensitivity of the photocathode at	698 nm		13	mA/W
Supply voltage for an anode luminous sensitivity $N_a = 30$ A/lm			1520	V
Anode pulse rise time (with voltage divide	rB)	~	3,5	ns
Linearity				
with voltage divider A	up to	~	10	mA
with voltage divider B	up to	\approx	30	mA

To be read in conjunction with "General Operational Recommendations $\ensuremath{\mathsf{Photomultiplier}}$ Tubes".

GENERAL CHARACTERISTICS

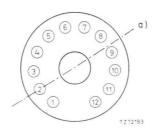
Window			
Material	boros	silicate	2
Shape	planc	o-plano	
Refractive index at 550 nm		1,48	
Photocathode			
Semi-transparent, head-on			
Material	Sb-Na-K-Cs		
Useful diameter	>	14	mm
Spectral sensitivity characteristic (Fig. 3)	S20 (type T)
Maximum spectral sensitivity at	420	± 30	nm
Luminous sensitivity	typ. >	140 100	µA/lm µA/lm
Spectral sensitivity at 698 \pm 7 nm		13	mA/W

January 1976

Electron optical input system

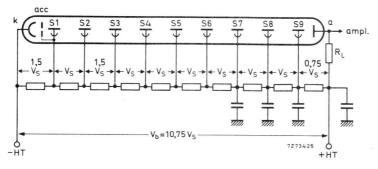
This consists of: the photocathode, k; a metallized part of the envelope internally connected to the photocathode; an accelerating electrode, acc, internally connected to S1.

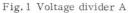
Multiplier system			
Number of stages		9	
Dynode structure		linear focused	1
Dynode material		Ag-Mg	
Capacitances			
Anode to all	*	3	pF
Anode to final dynode	~	1,9	pF


Magnetic field

When the photocathode is illuminated uniformly the anode current is halved (at $V_b = 1200 \text{ V}$, voltage divider A):

- at a magnetic flux density of 0, 3 mT perpendicular to axis a);


- at a magnetic flux density of 0, 2 mT parallel to axis a). (see Fig. below.)


It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

Axis a) with respect to base pins (bottom view).

RECOMMENDED CIRCUITS

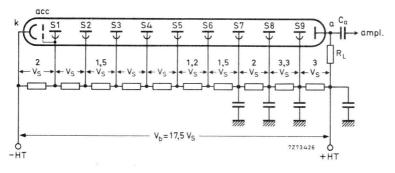


Fig. 2 Voltage divider B

k = cathode

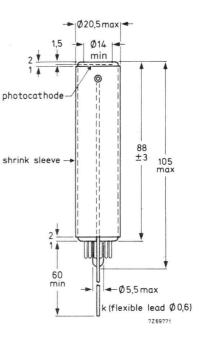
- acc = accelerating electrode
- S_n = dynode no. n
- a = anode
- R_L = load resistor

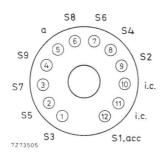
Typical value of capacitors: 10 nF

January 1976

TYPICAL CHARACTERISTICS

With voltage divider A (Fig. 1)	1)			
Supply voltage for an anode luminous sensitivity N_a = 30 A/lm (Fig.5)		typ. <	1520 1800	V V
Anode dark current at $N_a = 30 \text{ A/lm}$ (Fig. 5)	2)3)	typ. <	10 100	nA nA
Anode current linear within 2% at $\rm V_b$ = 1800 V up	to	~	10	mA
With voltage divider B (Fig.2)	1)			
Anode luminous sensitivity at $V_b = 1800 V$ (Fig. 5)		~	15	A/lm
Anode pulse rise time at V_b = 1800 V	4)	~	3,5	ns
Anode pulse duration at half height at V_b = 1800 V	4)	~	6	ns
Signal transit time at V_b = 1800 V	4)	~	28	ns
Anode current linear within 2% at $\rm V_b$ = 1800 V up	to	~	30	mA
LIMITING VALUES (Absolute max. rating system))			
Supply voltage	5)	max.	1900	V
Continuous anode current		max.	0,2	mA
Voltage between first dynode and photocathode	6)	max. min.	350 100	V V
Voltage between consecutive dynodes		max.	200	V
Voltage between anode and final dynode	7)	max. min.	300 30	V V
Ambient temperature range			. 70	⁰ C
Operational (for short periods of time)		max. min.	+70 -50	°C
Continuous operation and storage		max. min.	+50 -50	°C °C


Notes see page 5.

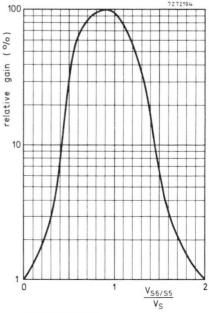

Notes to page 4

- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- ²) Wherever possible, the power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The shrink sleeve or the mu-metal shield around the tube should be supported only by isolators having an insulation resistance of > $10^{15} \Omega$.
- ³) Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx 1/4$ h).
- ⁴) Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b , approximately as $V_b^{-1/2}$.
- 5) Total HT supply voltage, or the voltage at which the tube has an anode sensitivity of 500 A/lm, whichever is lower.
- 6) Minimum value to obtain good collection in the input optics.
- 7) When calculating the anode voltage the voltage drop across the load resistor should be taken into account.

MECHANICAL DATA

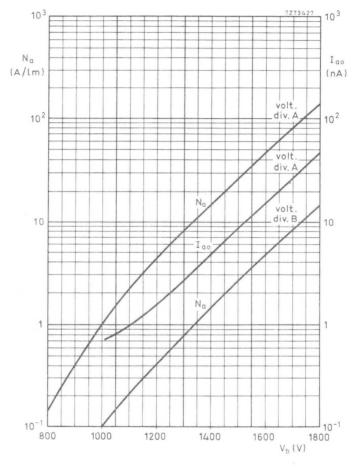
Dimensions in mm

Net mass	:	25 g
Base		12-pin all glass


ACCESSORIES

Socket		:	type	FE1004
Mu-metal	shield	:	type	56134

Fig.3


Spectral sensitivity characteristic

7

Fig.4

Relative gain as a function of the voltage between $\rm S_6$ and $\rm S_5,$ normalized to $\rm V_S$ $\rm V_{S7/S5}$ constant

Anode luminous sensitivity, $\rm N_a,$ and anode dark current, $\rm I_{ao},$ as a function of supply voltage $\rm V_b$

10-STAGE VENETIAN BLIND PHOTOMULTIPLIER TUBE

The XP2000 is a 44 mm useful diameter head-on photomultiplier tube with a flat window and a semitransparent bialkaline type D photocathode. The tube is intended for use in nuclear physics where a very good pulse amplitude resolution is required. The tube offers a high cathode sensitivity and, combined with a very low dark current and high stability, its excellent collection from each point of the photocathode makes it very suitable for scintillation detection in nuclear medicine, e.g. gamma cameras.

QUICK REFERENCE DATA

Spectral sensitivity characteristic	type D
Useful diameter of the photocathode	> 44 mm
Cathode spectral sensitivity at 401 nm	85 mA/W
Supply voltage for an anode spectral sensitivity of 12 kA/W	1250 V
Anode dark current at an anode spectral sensitivity of 12 kA/W	0,5 nA
Pulse amplitude resolution (¹³⁷ Cs)	pprox 7 %
Mean anode sensitivity deviation	≈ 1 %

To be read in conjunction with General Operational Recommendations Photomultiplier Tubes.

GENERAL CHARACTERISTICS

Window	
Material	lime glass
Shape	plano-plano
Refractive index at 550 nm	1,52
Photocathode * Semi-transparent, head-on	
Material	Sb-K-Cs
Useful diameter	> 44 mm
Spectral sensitivity characteristic (Fig. 4)	type D

* The bialkaline photocathode has a significant resistance which increases rapidly with reducing temperature. It is thus recommended that it should not be subjected to light of too great an intensity; the cathode current should be limited, for example, to 1 nA at room temperature or 0,1 nA at -30 °C. If too high a photocurrent is passed, the cathode can no longer be considered to be an equipotential surface, and the focusing of electrons onto the first dynode will be affected, resulting in departure of linearity.

Photocathode (continued)			
Maximum spectral sensitivity at	400 ±	30	nm
Quantum efficiency at 401 nm		26,5	%
Spectral sensitivity at 401 \pm 3 nm	typ.		mA/W mA/W
Multiplier system			
Number of stages		10	
Dynode structure	venet	ian b	olind
Dynode material		Cu-E	Be
Capacitances anode to final dynode anode to all	* *	7 8,5	pF pF

Magnetic field

When the photocathode is illuminated uniformly the anode current is halved (at V_b = 1500 V) at a magnetic flux density of 0,4 mT perpendicular to the tube axis.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

RECOMMENDED CIRCUIT

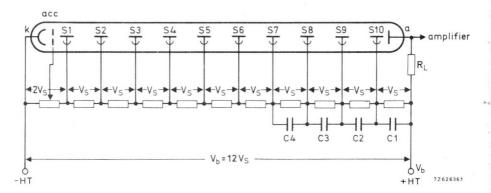


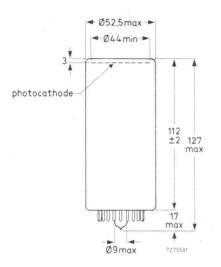
Fig. 1 Voltage divider type A. For obtaining the best energy resolution the accelerating electrode should be connected to S1. Typical values of capacitors: 10 nF, k = cathode; acc = accelerating electrode; Sn = dynode no.; a = anode; R_{L} = load resistor.

	note			
Supply voltage for an anode spectral		<	1450	V
sensitivity N _{ar} = 12 kA/W at 401 nm (Fig. 5)		typ.	1250	V
Anode spectral sensitivity at V_b = 1500 V, at 401 nm (Fig. 5)		\approx	40	kA/W
Anode dark current at an anode spectral sensitivity	2	<	5	nA
$N_{ar} = 12 \text{ kA/W} \text{ at } 401 \text{ nm}$ (Fig. 5)	2	typ.	0,5	nA
Pulse amplitude resolution for 137 Cs at N _{ar} = 12 kA/W	3	\approx	7	%
Pulse amplitude resolution for 57 Co at N _{ar} = 12 kA/W	3	\approx	9,9	%
Pulse amplitude resolution for 55 Fe at N _{ar} = 60 kA/W	4	\approx	42	%
Peak to valley ratio for 55 Fe at N _{ar} = 60 kA/W	4	\approx	35	
Mean anode sensitivity deviation	5			
long term (16 h)		\approx	-	%
after change of count rate		~		%
versus temperature between 20 $^{ m o}$ C and 60 $^{ m o}$ C at 450 nm		≈ 0,1	% per	oC
Anode current linear within 2% at V_b = 1500 V		up to \approx	10	mΑ
Anode pulse rise time at V_b = 1500 V	6	\approx	10	ns
Anode pulse duration at half height at V $_{b}$ = 1500 V	6	\approx	20	ns
Signal transit time at V_b = 1500 V	6	*	46	ns
LIMITING VALUES (absolute maximum rating system)				
Supply voltage	7	max.	2000	V
Continuous anode current		max.	0,2	mA
Voltage between first dynode and photocathode	8	max.		
voltage between met dynode and photocathout	0	min.	150	V
Voltage between accelerating electrode and photocathode		max.	500	V
Voltage between consecutive dynodes		max.	300	V
Voltage between anode and final dynode	9	max.	300	V
Ambient temperature range	10	max.	+80	oC
operational (for short periods of time)	10	min.	-30	oC
continuous operation and storage		max.		-
		min.	-30	oC

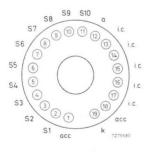
Notes see page 4.

Notes

- 1. Wherever possible, the power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of >10¹⁵ ohm.
- Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness (≈¼ h).
- 3. Pulse amplitude resolution for ¹³⁷ Cs and ⁵⁷ Co is measured with an Nal(Tl) cylindrical scintillator (Quartz et Silice serial no. 7256 or equivalent) with a diameter of 44 mm and a height of 50 mm. The count rate used is $\approx 10^4$ c/s.
- Pulse amplitude resolution for ⁵⁵Fe is measured with an Nal(TI) cylindrical scintillator with a diameter of 25 mm and a height of 1 mm provided with a beryllium window. The count rate used is ≈ 2 x 10³ c/s.
- 5. The mean anode sensitivity deviation is measured by coupling an Nal(TI) scintillator to the window of the tube. Long-term (16 h) deviation is measured by placing a ¹³⁷Cs source at a distance from the scintillator such that the count rate is $\approx 10^4$ c/s, corresponding to an anode current of ≈ 300 nA. Anode sensitivity deviation after change of count rate is measured with a ¹³⁷Cs source at a distance from the scintillator such that the count rate can be changed from $\approx 10^4$ c/s to $\approx 10^3$ c/s, corresponding to anode currents of ≈ 300 nA and ≈ 30 nA respectively. Both tests are carried out according to ANSI-N42-9-1972 of IEEE recommendations.
- 6. Measured with a pulsed light source, with a pulse duration (FWHM) of < 1 ns: the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b , approximately as $V_b^{-\frac{1}{2}}$.
- 7. Total HT supply voltage, or the voltage at which the tube has an anode spectral sensitivity of \approx 300 kA/W, whichever is lower.
- 8. Minimum value to obtain good collection in the input optics.
- When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 10. This range of temperatures is limited by stresses in the sealing layer of the base to the glass bulb. Where low temperature operation is contemplated, the supplier should be consulted.



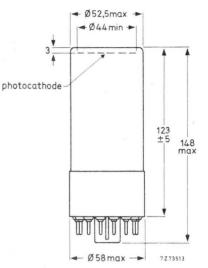
10-stage venetian blind photomultiplier tube

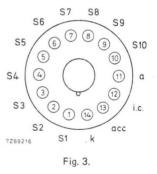

XP2000

MECHANICAL DATA

Dimensions in mm

from series no. 10001 on




Base 19-pin all-glass Net mass 130 g To be ordered under type no. XP2000 UB

ACCESSORIES

Socket	
for version of Fig. 2	type FE2019
for version of Fig. 3	type FE1014
Mu-metal shield	type 56130

Base 14-pin IEC 67-1-16a (Jedec B14-38) Net mass 173 g To be ordered under type no. XP2000

January 1978

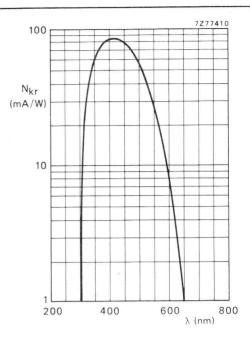
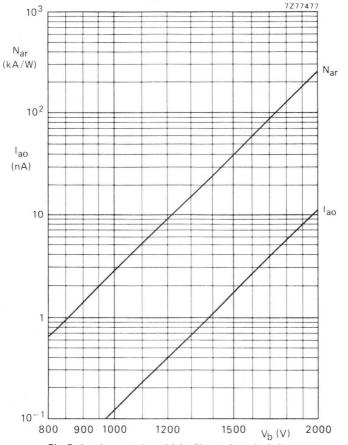
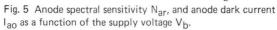




Fig. 4 Spectral sensitivity characteristic.

10-stage venetian blind photomultiplier tube

XP2000

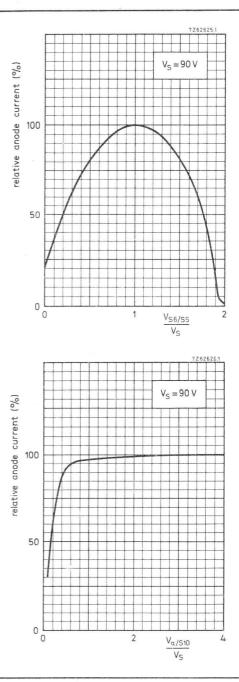


Fig. 6 Relative anode current as a function of the voltage between S6 and S5, normalized to $V_{\mbox{\scriptsize S}}, V_{\mbox{\scriptsize S7/S5}}$ constant.

Fig. 7 Relative anode current as a function of the voltage between anode and last dynode, normalized to VS.

10-STAGE PHOTOMULTIPLIER TUBE

The XP2008 is a 32 mm useful diameter head-on photomultiplier tube with a flat window and a semitransparent Super A photocathode. The tube is intended for use in applications such as scintillation counting, laboratory and industrial photometry. Its Cu-Be dynode system offers a high stability.

QUICK REFERENCE DATA

Spectral sensitivity characteristic	Su	per A	
Useful diameter of the photocathode	>	32	mm
Spectral sensitivity of the photocathode at 437 nm	\approx	70	mA/W
Supply voltage for luminous sensitivity $N_a = 60 \text{ A/Im}$		1180	V
Pulse amplitude resolution for ¹³⁷ Cs	\approx	8	0%
Mean anode sensitivity deviation	\approx	1	%
Anode pulse rise time (with voltage divider B)	\approx	2,5	ns
Linearity	up to ~	100	mA
with voltage divider A with voltage divider B	up to \approx up to \approx		

To be read in conjunction with "General Operational Recommendations Photomultiplier Tubes".

GENERAL CHARACTERISTICS

Window				
Shape	plano-plano			
Material	lime glass			
Refractive index at 550 nm	1,52			
Photocathode				
Semi-transparent, head-on				
Material	Sb-0	Sb-Cs		
Useful diameter	>	32 mm		
Spectral sensitivity characteristic (Fig. 3)	type	type Super A		
Maximum sensitivity at	420	420 ± 30 nm		
Luminous sensitivity	typ >	80 μA/lm 40 μA/lm		
Spectral sensitivity at 437 \pm 5 nm	~	70 mA/W		

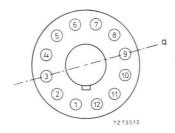
Electron optical input system

This system consists of: the photocathode, k; a metallized part of the glass envelope, internally connected to the photocathode; an accelerating electrode, acc, internally connected to S 1.

Multiplier system

Number of stages		10		
Dynode structure	linea	linear focused		
Dynode material	Cu-B	Cu-Be		
Capacitances Anode to all	*	Jg F		
Anode to final dynode	~	3 pF		

Magnetic field

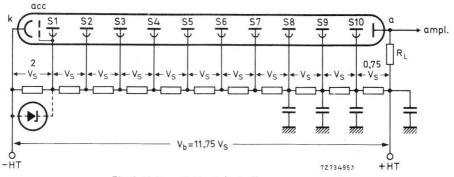

When the photocathode is illuminated uniformly the anode current is halved (at $V_b = 1200 V$, voltage divider A):

- at a magnetic flux density of 0,6 mT in the direction of the longitudinal axis;

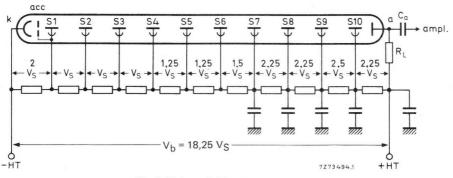
- at a magnetic flux density of 0,35 mT perpendicular to axis a (see Fig. below);

- at a magnetic flux density of 0,15 mT parallel to axis a.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.



Axis a with respect to base pins (bottom view).


10-stage photomultiplier tube

XP2008

RECOMMENDED CIRCUITS

k = cathode

- acc = accelerating electrode
- Sn = dynode no. n
- a = anode
- $R_L = load resistor$

Typical values of capacitors: 10 nF

TYPICAL CHARACTERISTICS

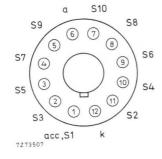
		note				
With voltage divider A (Fig. 1)		1				
Supply voltage for an anode luminous sensitivity N _a = 60 A/Im (Fig. 5)				< typ	1500 1180	
Anode dark current at an anode luminous sensitivity N _a = 60 A/Im (Fig. 5)	с. Т	2,3		< typ		nĄ nA
Pulse amplitude resolution for 137 Cs at N _a = 10 A/Im		4		\approx	8	%
Mean anode sensitivity deviation at $V_b = 1200 V$		5				
long term				\approx	1	%
after change of count rate				\approx	1	%
Anode current linear within 2% at V_b = 1700 V			up to	\approx	100	mΑ
With voltage divider B (Fig. 2)						
Anode luminous sensitivity at $V_{\rm b}$ = 1700 V (Fig. 5)				\approx	150	A/Im
Anode pulse rise time at $V_{\rm b}$ = 1700 V		6		\approx	2,5	ns
Anode pulse duration at half height at $V_b = 1700 V$		6		\approx	6	ns
Signal transit time at $V_{\rm b}$ = 1700 V		6		\approx	26	ns
Anode current linear within 2% at V _b = 1700 V			up to	\approx	200	mA
LIMITING VALUES (Absolute maximum rating system)						
Supply voltage		7		max	1800	V
Continuous anode current				max	0,2	mΑ
Voltage between first dynode and photocathode		8		max	500	
				min	150	
Voltage between consecutive dynodes				max	300	
Voltage between anode and final dynode		9		max min	300 30	
Ambient temperature range Operational (for short periods of time)		10		max min	+80	oC
Continuous operating and storage				max min	+50 30	

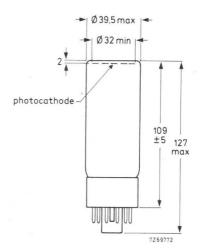
Notes see page 5.

1957 (1998) (24 (1999) (25 (1998) (25 (1998)) (25 (1998)) (25 (1998)) (25 (1998)) (25 (1998))

Notes

- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to
 increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a
 "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can
 be conceived to achieve other compromises. It is generally recommended that the increase in
 voltage between one stage and the next be kept less than a factor of 2.
- 2. Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of $> 10^{1.5} \Omega$.
- 3. Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness (\approx 1/4 h).
- 4. Pulse amplitude resolution for ¹³⁷ Cs is measured with an NaI (TI) cylindrical scintillator with a diameter of 32 mm and a height of 32 mm. The count rate used is $\approx 10^4$ c/s. For optimum peak amplitude resolution it is recommended that the voltage between first dynode and photocathode be maintained at ≈ 200 V, e.g. by means of a voltage regulator diode.
- 5. The mean anode sensitivity deviation is measured by coupling an NaI (TI) scintillator to the window of the tube. Long term (16 h) deviation is measured by placing a ¹³⁷Cs source at a distance from the scintillator such that the scintillator count rate is $\approx 10^4$ c/s corresponding to an average anode current of ≈ 100 nA.


Mean pulse amplitude deviation after change of count rate is measured with a ¹³⁷Cs source at a distance of the scintillator such that the count rate can be changed from 10⁴ c/s to 10³ c/s corresponding to an average anode current of \approx 100 nA and \approx 10 nA respectively. Both tests are carried out according to ANSI-N42-9-1972 of IEEE recommendations.


- 6. Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b^{-½}.
- Total HT supply voltage or the voltage at which the tube has an anode luminous sensitivity of 600 A/Im, whichever is lower.
- 8. Minimum value to obtain good collection in the input optics.
- 9. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 10. This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb. Where low temperature operation is contemplated, the supplier should be consulted.

XP2008

MECHANICAL DATA

Dimensions in mm

Net mass: 80 g Base: 12-pin (JEDEC B12-43)

ACCESSORIES

--> Socket: type FE1012 Mu-metal shield: type 56127

10-stage photomultiplier tube

XP2008

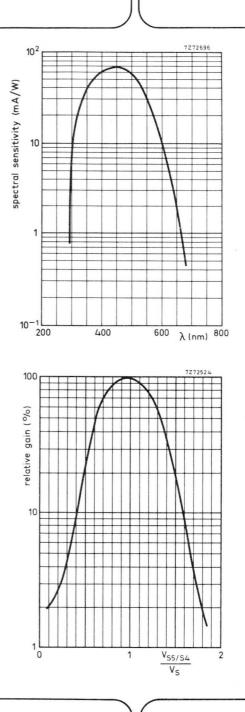
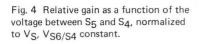



Fig. 3 Spectral sensitivity characteristic.

April 1977

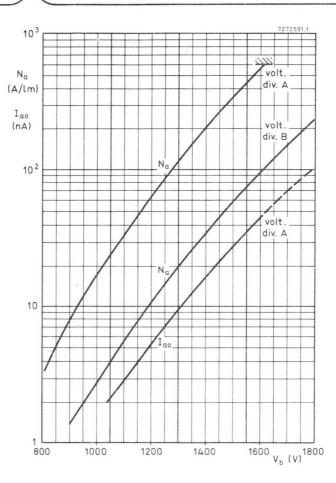


Fig. 5 Anode luminous sensitivity, $N_a,$ and anode dark current, $I_{a0},$ as a function of supply voltage $V_b.$

8

10-STAGE PHOTOMULTIPLIER TUBE

The XP2010 is a 32 mm useful diameter head-on photomultiplier tube with a flat window and a semitransparent Super A photocathode. The tube is intended for use in X-ray and γ -spectrometry. Its Cu-Be dynode system offers a high stability.

QUICK REFERENCE DATA

Spectral sensitivity characteristic		Super A		
		and a second second second		
Useful diameter of the photocathode		>	32	mm
Spectral sensitivity of the photocathode at 437 nm		~	80	mA/W
Supply voltage for anode luminous sensitivity $N_a = 60 A/Im$			1180	V
Pulse amplitude resolution for 55 Fe at N _a = 60 A/Im		*	45	%
Mean anode sensitivity deviation		*	1	%
Anode pulse rise time (with voltage divider B)		~	2,5	ns
Linearity				
with voltage divider A	up to	\approx	100	mA
with voltage divider B	up to	\approx	200	mA

To be read in conjunction with "General Operational Recommendations Photomultiplier Tubes".

GENERAL CHARACTERISTICS

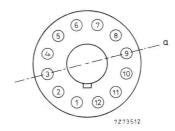
Window			
Shape	plano-plar	0	
Material	lime glass		
Refractive index at 550 nm		1,52	
Photocathode			
Semi-transparent, head-on			
Material	Sb-Cs		
Useful diameter	>	32	mm
Spectral sensitivity characteristic (Fig.3)	type Supe	r A	
Maximum sensitivity at	420 :	± 30	nm
Luminous sensitivity	typ >		μΑ/Im μΑ/Im
Spectral sensitivity at 437 \pm 5 nm	*	80	mA/W

Electron optical input system

This system consists of: the photocathode, k; a metallized part of the glass envelope, internally connected to the photocathode; an accelerating electrode, acc, internally connected to S1.

Multiplier system		
Number of stages	10	
Dynode structure	linear focused	
Dynode material	Cu-Be	
Capacitances Anode to all	≈ 5	pF
Anode to final dynode	≈ 3	рF

Magnetic field

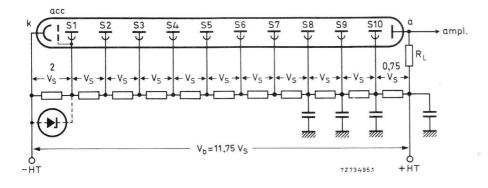

When the photocathode is illuminated uniformly the anode current is halved (at V_b = 1200 V, voltage divider A):

- at a magnetic flux density of 0,6 mT in the direction of the longitudinal axis;

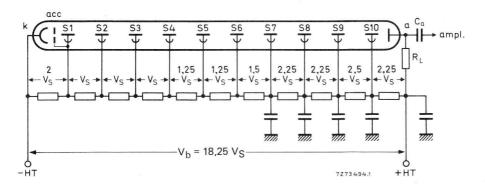
- at a magnetic flux density of 0,35 mT perpendicular to axis a (see Fig. below);

- at a magnetic flux density of 0,15 mT parallel to axis a.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.



Axis a with respect to base pins (bottom view).


10-stage photomultiplier tube

XP2010

RECOMMENDED CIRCUITS

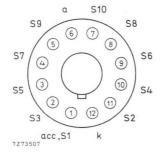
Typical values of capacitors: 10 nF

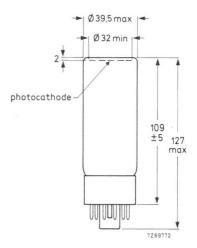
- k = cathode
- acc = accelerating electrode
- $S_n = dynode no.n$
- a = anode
- $R_{L} = load resistor$

TYPICAL	CHARACT	ERISTICS
---------	---------	----------

		note				
	With voltage divider A (Fig.1)	1				
	Supply voltage for an anode luminous sensitivity $N_a = 60 \text{ A/Im}$ (Fig.5)			< typ	1500 1180	
	Anode dark current at an anode luminous sensitivity $N_a = 60 \text{ A/lm} (Fig.5)$	2,3		< typ		nA nA
	Pulse amplitude resolution for 55 Fe at an anode luminous sensitivity N _a = 60 A/lm	4		\approx	45	%
	Peak to valley ratio for 55 Fe at N _a = 60 A/Im	4		\approx	30	
1	Pulse amplitude resolution for 137 Cs at N _a = 10 A/Im	5		\approx	7,5	%
	Mean anode sensitivity deviation at $V_b = 1200 V$ long term after change of count rate	6		% %	1 1	% %
	Anode current linear within 2% at V_b = 1700 V		up to	\approx	100	mA
1	With voltage divider B (Fig.2)	1				
	Anode luminous sensitivity at $V_b = 1700 V$ (Fig.5)			\approx	150	A/Im
,	Anode pulse rise time at V_b = 1700 V	7		\approx	2,5	ns
	Anode pulse duration at half height at V_b = 1700 V	7		\approx	6	ns
	Signal transit time at V _b = 1700 V	7		\approx	26	ns
	Anode current linear within 2% at V _b = 1700 V		up to	\approx	200	mA
	LIMITING VALUES (Absolute maximum rating system)					
	Supply voltage	8		max	1800	V
1	Continuous anode current			max	0,2	mA
1	Voltage between first dynode and photocathode	9		max min	500 150	
1	Voltage between consecutive dynodes			max	300	V
1	Voltage between anode and final dynode	10		max min	300 30	
	Ambient temperature range Operational (for short periods of time)	11		max min max	+80 -30 +50	oC oC
	Continuous operation and storage			min	-30	oC

Notes see page 5.


Notes


- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to
 increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a
 "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can
 be conceived to achieve other compromises. It is generally recommended that the increase in
 voltage between one stage and the next be kept less than a factor of 2.
- 2. Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of $> 10^{15} \Omega$.
- 3. Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness (\approx 1/4 h).
- 4. Pulse amplitude resolution for ⁵⁵ Fe is measured with an NaI (TI) cylindrical scintillator with a diameter of 25 mm and a height of 1 mm provided with a beryllium window. The count rate used is $\approx 2 \times 10^3$ c/s.
- Pulse amplitude resolution for ¹³⁷Cs is measured with an Nal (Tl) cylindrical scintillator with a diameter of 32 mm and a height of 32 mm. The count rate used is ≈ 10⁴ c/s.
 For optimum peak amplitude resolution it is recommended that the voltage between first dynode and photocathode be maintained at ≈ 200 V, e.g. by means of a voltage regulator diode.
- 6. The mean anode sensitivity deviation is measured by coupling an NaI (TI) scintillator to the window of the tube. Long term (16 h) deviation is measured by placing a ¹³⁷Cs source at a distance from the scintillator such that the scintillator count rate is ≈ 10⁴ c/s corresponding to an average anode current of ≈ 100 nA. Mean pulse amplitude deviation after change of count rate is measured with a ¹³⁷Cs source at a distance of the scintillator such that the count rate a distance of the scintillator such that the count rate is measured with a ¹³⁷Cs source at a distance of the scintillator such that the count rate can be changed from 10⁴ c/s to 10³ c/s corresponding to an average anode current of ≈ 100 nA and ≈ 10 nA respectively. Both tests are carried out according to ANSI–N42–9–1972 of IEEE recommendations.
- 7. Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b^{-1/2}.
- Total HT supply voltage or the voltage at which the tube has an anode luminous sensitivity of 600 A/Im, whichever is lower.
- 9. Minimum value to obtain good collection in the input optics.
- 10. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 11. This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb. Where low temperature operation is contemplated, the supplier should be consulted.

XP2010

MECHANICAL DATA

Dimensions in mm

Net mass: 80 g Base: 12-pin (JEDEC B12-43)

ACCESSORIES

- Socket:	type FE1012
Mu-metal shield:	type 56127

10-stage photomultiplier tube

XP2010

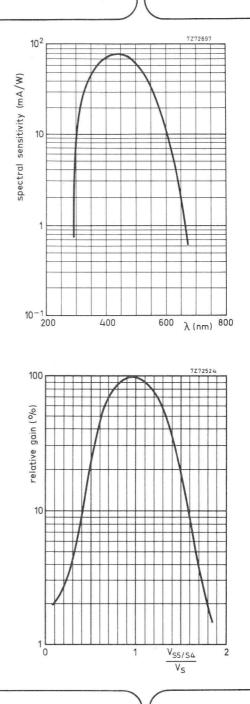
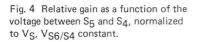



Fig.3 Spectral sensitivity characteristic.

April 1977

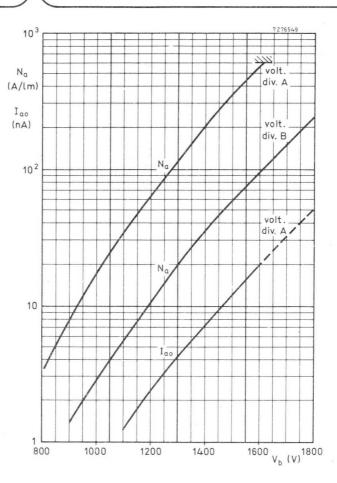


Fig.5 Anode luminous sensitivity, $\rm N_a$ and anode dark current, $\rm I_{a0},$ as a function of supply voltage $\rm V_b.$

12-STAGE PHOTOMULTIPLIER TUBE

The XP2020 is a 44 mm useful diameter head-on photomultiplier tube with a plano-concave window and a semi-transparent type D photocathode. The tube is intended for use in nuclear physics where the number of photons to be detected is very low. The tube features a high cathode sensitivity and a good linearity combined with very low background noise and extremely good time characteristics. It is especially useful in high-energy physics experiments where ultimate time characteristics are needed, such as coincidence measurements, Cerenkov detection, etc.

QUICK REFERENCE DATA

Spectral sensitivity characteristic		type [)	
Useful diameter of the photocathode		>		mm
Quantum efficiency at 401 nm XP2020 XP2020Q			26 25	
Spectral sensitivity of the photocathode at 401 nm XP2020 XP2020Q				mA/W mA/W
Supply voltage for a gain of 3×10^7			2200	V
Pulse amplitude resolution for ¹³⁷ Cs		\approx	7,5	%
Anode pulse rise time (with voltage divider B')		\approx	1,5	ns
Linearity, with voltage divider B u	o to	\approx	280	mA
Signal transit time fluctuation		\approx	0,25	ns

To be read in conjunction with General Operational Recommendations Photomultiplier Tubes.

GENERAL CHARACTERISTICS

Window	
Material XP2020 XP2020Q	borosilicate fused silica
Shape	plano-concave
Refractive index XP2020, at 550 nm XP2020Q, at 400 nm XP2020Q, at 250 nm	1,48 1,47 1,50
Photocathode (note 1)	
Semi-transparent, head-on	
Material	Sb-K-Cs
Useful diameter	> 44 mm
Note, see page 6.	

January 1978

XP2020	XP2	0200	
type D (Fig. 6)	type	DU (Fig. 7)
400 ± 30	400	± 30	nm
26		25	%
typ. 85 > 60	typ. >	80 60	mA/W mA/W
		12	
	linea	ar focu	used
	Ag-N	Лg	
	\approx	20	рF
	\approx	4	рF
	\approx	7	рF
	type D (Fig. 6) 400 ± 30 26 typ. 85	type D (Fig. 6) type 400 ± 30 400 26 typ. 85 typ. > 60 > linea Ag.N ≈	type D (Fig. 6) type DU (400 ± 30 400 ± 30 26 25 typ. 85 typ. 80 > 60 > 60 12 linear focu Ag-Mg ≈ 20 ≈ 4 400

Magnetic field

See Fig. 13.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

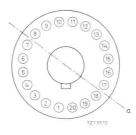



Fig. 1 Axis a with respect to base pins (bottom view).

RECOMMENDED CIRCUITS

- k= cathodeg1, g2= focusing electrodesacc= accelerating electrodeSn= dynode no. na= anode
- RL = load resistor

R = This resistor connects the anode when the output cable is not terminated. Recommended value: 10 k $\Omega.$

The cathode resistor of 1 M Ω limits the current in case of unintentional contact between the conductive coating and earth when the anode is earthed. Typical value of capacitors: 1 nF.

TYPICAL CHARACTERISTICS	note					
With voltage divider A (Fig. 2)	2					
Supply voltage for a gain of 3×10^7 (Fig. 8)			typ. <	2200 2600		
Anode dark current at a gain of 3×10^7 (Fig. 8)	3,4		typ. <		nA nA	
Background noise at a gain of 3×10^7 (Fig. 11)	5		typ.	900 2500		
Pulse amplitude resolution for 55 Fe at V _b = 1500 V	6		\approx	43	%	
Peak to valley ratio for ⁵⁵ Fe at $G = 3 \times 10^7$			\approx	34		
Pulse amplitude resolution for 137 Cs at V _b = 1500 V	6		\approx	7,5	%	
Anode pulse rise time at V_b = 2000 V	7,13		\approx	1,6	ns	
Anode pulse duration at half height at V_b = 2000 V	7,13		\approx	3,7	ns	
Signal transit time at V_b = 2000 V	7,13		\approx	28	ns	
Anode current linear within 2% at V $_{ m b}$ = 2000 V		up to	\approx	25	mA	3
Obtainable peak anode current			\approx	100	mA	
With voltage divider B (Fig. 3)	2					
Gain at V_b = 2800 V			\approx	2 x 10 ⁶		
Anode pulse rise time at V_b = 2800 V	7,13		\approx	1,7	ns	
Anode pulse duration at half height at V_b = 2800 V	7,13		\approx	2,7	ns	
Signal transit time at V_b = 2800 V	7,13		\approx	31	ns	
Signal transit time difference between the centre of the photocathode and 18 mm from the centre at $V_{\rm b}$ = 2800 V			*	0,25	ns	
Anode current linear within 2% at $V_b = 2800 \text{ V}$		up to	~		mA	
Obtainable peak anode current		up to	~	0,5 to 1		
With voltage divider B' (Fig. 4)	2					
Gain at V _b = 2500 V			\approx	2 x 10 ⁷		
Anode pulse rise time at $V_b = 2500 V$	7,13		\approx	1,5	ns	
Anode pulse duration at half height at $V_b = 2500 V$	7,13		\approx	2,4	ns	
Signal transit time at $V_b = 2500 \text{ V}$	7,13		\approx	30	ns	
Signal transit time fluctuation at $V_b = 2500 V$	12,13		\approx	0,25	ns	
Signal transit time difference between the centre of the photocathode and 18 mm from the				0.05		
centre at V_b = 2500 V Apode current linear within 2% at V_b = 2500 V		up to	* *	0,25	ns mA	
Anode current linear within 2% at V_b = 2500 V Obtainable peak anode current		up to	~ ~	250		
ostamasis pour anode sufferi				200		

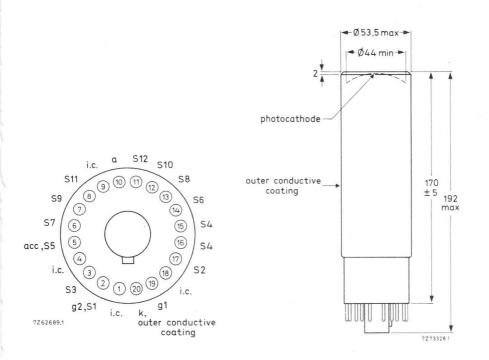
Notes see page 6.

NAMES OF TAXABLE PARTY OF TAXABLE PARTY

12-stage photomultiplier tube

XP2020 XP2020Q

LIMITING VALUES (Absolute maximum rating system)	note				
Supply voltage	8	max.	3000	V	
Continuous anode current		max.	0,2	mA	
Voltage between focusing electrode, g ₁ and photocathode	9	max.	300	V	
Voltage between first dynode and photocathode		max. min.	800 300		
Voltage between consecutive dynodes (except S ₁₁ and S ₁₂)		max.	400	V	
Voltage between dynodes S_{11} and S_{12}	13	max.	600	V	
Voltage between anode and final dynode	10	max. min.	700 80		
Ambient temperature range operational (for short periods of time)	11	max. min.	+ 80 -30		
continuous operation and storage		max. min.	+ 50 30		


Notes see page 6.

Notes to pages 1, 4 and 5

- The bialkaline photocathode has a significant resistance which increases rapidly with reducing temperature. It is thus recommended that it should not be subjected to light of too great an intensity; the cathode current should be limited to, for example, 1 nA at room temperature or 0,1 nA at -30 °C. If too high a photocurrent is passed, the cathode can no longer be considered to be an equipotential surface, and the focusing of electrons onto the first dynode will be affected, resulting in departure of linearity.
- 2. To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltages of the stages progressively. Dividers B and B' are examples of "progressive" dividers, each giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- 3. Wherever possible, the power supply should be arranged so that the cathode is earthed and the anode is at + HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The tube is provided with a conductive coating connected to the cathode. It is recommended that, if a metal shield is used, this should be kept at cathode potential. This implies safety precautions to protect the user. The envelope of the tube should be supported only by isolators having an insulation resistance of $> 10^{15} \ \Omega.$
- Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness (≈ ¼ h).
- 5. After having been stored with its protective hood, the tube is placed in darkness with V_b set to a value to give a gain of 3×10^7 . After a 30 min. stabilization period noise pulses with a threshold of $4,25 \times 10^{-13}$ C (corresponding to 0,1 photoelectron) are recorded (Fig. 9).
- 6. Pulse amplitude resolution for ⁵⁵Fe is measured with a Nal (TI) cylindrical scintillator with a diameter of 19 mm and a height of 3 mm. The count rate is $\approx 10^3$ c/s. Pulse amplitude resolution for ¹³⁷Cs is measured with a Nal (TI) cylindrical scintillator with a diameter of 44 mm and a height of 50 mm. The count rate is $\approx 10^4$ c/s.
- 7. Measured with a pulsed light source, with a pulse duration (FWHM) of <1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b , approximately as $V_b^{-\frac{1}{2}}$.
- 8. Total HT supply voltage, or the voltage at which the tube has a gain of 2×10^8 , whichever is lower.
- 9. Minimum value to obtain good collection in the input optics.
- 10. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 11. This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb. Where low temperature operation is contemplated, the supplier should be consulted.
- 12. Transit time fluctuation is defined as the standard deviation of the transit time distribution of single electrons leaving the photocathode.
- 13. Non-inductive resistors of 50 Ω are incorporated in the base connected to S₁₁ and S₁₂. See also *General Operational Recommendations Photomultiplier Tubes*.

MECHANICAL DATA

Dimensions in mm

The base connections of the XP2020 are such that the tube is unilaterally interchangeable with the 56AVP-family tubes.

Base	20-pin (JEDEC B20-102)
Net mass	240 g

ACCESSORIES

Socket	type FE1020
Mu-metal shield	type 56130

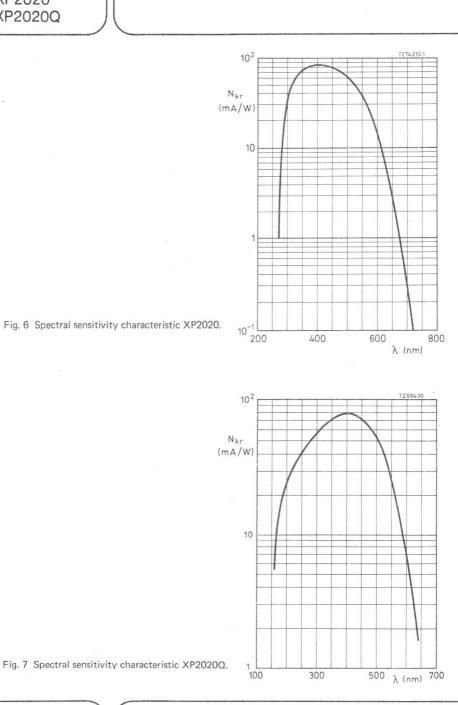
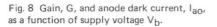
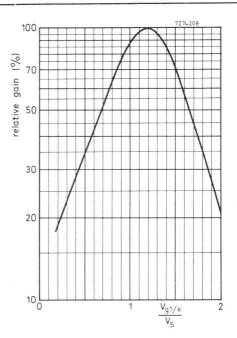



Fig. 6 Spectral sensitivity characteristic XP2020.

XP2020 XP2020Q


12-stage photomultiplier tube

7Z77568 10⁹ lao G G volt. div. A (nA)10⁸ 10³ G = volt. div. B' 10⁷ 10^{2} l_{ao} volt. div. A G volt. div. B 10⁶ 10 10⁵ 1 10⁴ 10^{-1} 1200 1500 2000 2500 3000 $V_{b}(V)$

XP2020

XP2020Q

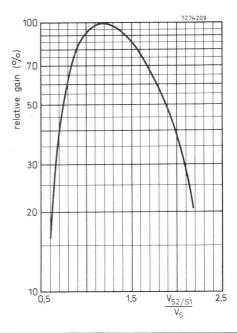
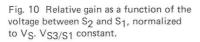



Fig. 9 Relative gain as a function of the voltage between grid 1 and cathode, normalized to $V_S. \ V_{S1/k}$ constant.

12-stage photomultiplier tube

XP2020 XP2020Q

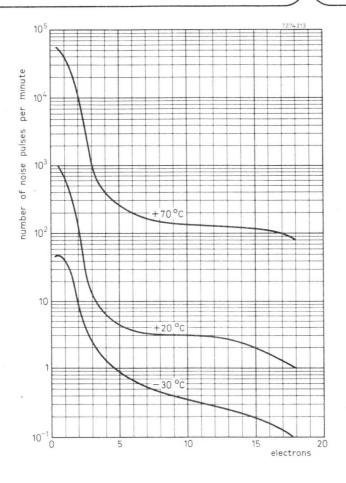


Fig. 11 Typical background spectrum from 0,1 to 18 equivalent photoelectrons, at a gain of 3×10^7 with voltage divider A.

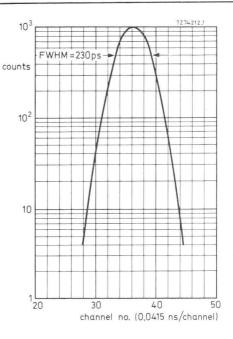


Fig. 12 Time resolution for 2 tubes XP2020 in coincidence. Measuring conditions: Number of photoelectrons \approx 1500 Supply voltage 2500 V Constant fraction operation Dynamic energy region 20%.

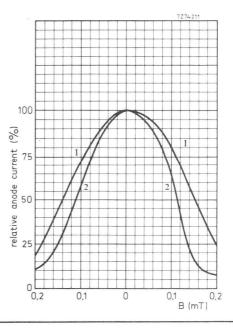


Fig. 13 Relative anode current as a function of the magnetic flux density B. 1. \perp axis a 2. $/\!\!/$ axis a

10-STAGE VENETIAN BLIND PHOTOMULTIPLIER TUBE

The XP2030 is a 70 mm useful diameter head-on photomultiplier tube with a flat window and a semitransparent bialkaline type D photocathode. The tube is intended for use in nuclear physics where a very good pulse amplitude resolution is required. The tube offers a high cathode sensitivity and, combined with a very low dark current and high stability, its excellent collection from each point of the photocathode makes it very suitable for scintillation detection in nuclear medicine, e.g. gamma cameras.

QUICK REFERENCE DATA

Spectral sensitivity characteristic	type D	
Useful diameter of the photocathode	> 70	mm
Cathode spectral sensitivity at 401 nm	105	mA/W
Supply voltage for an anode spectral sensitivity = 12 kA/W	1250	V
Anode dark current at an anode spectral sensitivity = 12 kA/W	0,5	nA
Pulse amplitude resolution (¹³⁷ Cs)	≈ 7,2	%
Mean anode sensitivity deviation	≈ 1	%

To be read in conjunction with General Operational Recommendations Photomultiplier Tubes.

GENERAL CHARACTERISTICS

Window	
Material	lime glass
Shape	plano-plano
Refractive index at 550 nm	1,52
Photocathode *	
Semi-transparent, head-on	
Material	Sb-K-Cs
Useful diameter	> 70 mm
Spectral sensitivity characteristic (Fig. 4)	type D

* The bialkaline photocathode has a significant resistance which increases rapidly with reducing temperature. It is thus recommended that it should not be subjected to light of too great an intensity; the cathode current should be limited, for example, to 1 nA at room temperature or 0,1 nA at -30 °C. If too high a photocurrent is passed, the cathode can no longer be considered to be an equipotential surface, and the focusing of electrons onto the first dynode will be affected, resulting in departure of linearity.

Photocathode (continued)	
Maximum spectral sensitivity at	400 ± 30 nm
Quantum efficiency at 401 nm	32 %
Spectral sensitivity at 401 \pm 3 nm	typ. 105 mA/W > 65 mA/W

Multiplier system	
Number of stages	10
Dynode structure	venetian blind
Dynode material	Cu-Be
Capacitances anode to final dynode anode to all	≈ 7 pF ≈ 8,5 pF

Magnetic field

When the photocathode is illuminated uniformly the anode current is halved (at V_b = 1500 V) at a magnetic flux density of 0,3 mT perpendicular to the tube axis.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

RECOMMENDED CIRCUIT

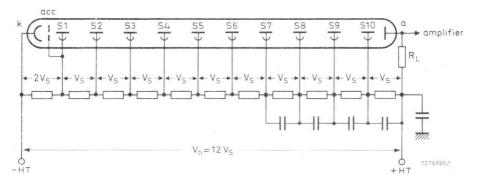


Fig. 1 Voltage divider type A. For obtaining the best energy resolution the accelerating electrode should be connected to S1. Typical values of capacitors: 10 nF, k = cathode; acc = accelerating electrode; S_n = dynode no.; a = anode; R_L = load resistor.

10-stage venetian blind photomultiplier tube

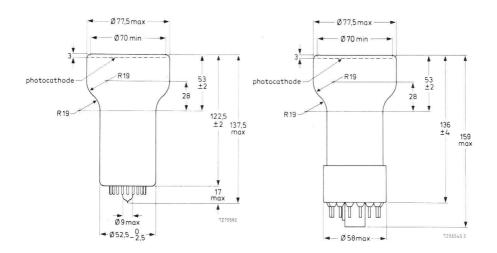
XP2030

TYPICAL CHARACTERISTICS (with voltage divider A, Fig. 1), see also note 1					
	note				
Supply voltage for an anode spectral sensitivity $N_{ar} = 12 \text{ kA/W}$ at 401 nm (Fig. 5)			< typ.	1450 1250	
Anode spectral sensitivity at V_b = 1500 V and 401 nm (Fig. 5)			\approx	40	kA/W
Anode dark current at an anode spectral sensitivity $N_{ar} = 12 \text{ kA/W}$ at 401 nm (Fig. 5)	2		< typ.	5 0,5	nA nA
Pulse amplitude resolution for 137 Cs at N _{ar} = 12 kA/W	3		\approx	7,2	%
Pulse amplitude resolution for 57 Co at N _{ar} = 12 kA/W	3		\approx	10,7	%
Mean anode sensitivity deviation long term (16 h) after change of count rate versus temperature between 20 °C and 60 °C at 450 nm	4		* * *	1 1 0,1% per	
Anode current linear within 2% at V_b = 1500 V		up to	\approx	10	mA
Anode pulse rise time at V_b = 1500 V	5		\approx	11	ns
Anode pulse duration at half height at V $_{b}$ = 1500 V	5		\approx	22	ns
Signal transit time at V_b = 1500 V	5		\approx	54	ns
LIMITING VALUES (absolute maximum rating system)					
Supply voltage	6		max	. 2000	V
Continuous anode current			max	. 0,2	mA
Voltage between first dynode and photocathode	7		max min		-
Voltage between accelerating electrode and photocathode			max	. 500	V
Voltage between consecutive dynodes			max	. 300	V
Voltage between anode and final dynode	8		max	. 300	V
Ambient temperature range operational (for short periods of time)	9		max min		-
continuous operation and storage			max min		-

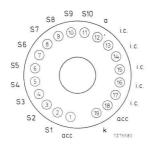
Notes see page 4.

dala Tanto Milaketta Dalariti Aga Milaketta Dalariti Aga Dalariti Aga

Notes


- 1. Wherever possible, the power supply should be arranged so that the cathode is earthed and the anode is at + HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > 10¹⁵ ohm.
- 2. Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx \frac{1}{2}$ h).
- 3. Pulse amplitude resolution for ¹³⁷ Cs and ⁵⁷ Co is measured with an NaI(TI) cylindrical scintillator (Quartz et Silice serial no. 4170 or equivalent) with a diameter of 75 mm and a height of 75 mm. The count rate used is $\approx 10^4$ c/s.
- 4. The mean anode sensitivity deviation is measured by coupling an Nal(TI) scintillator to the window of the tube. Long-term (16 h) deviation is measured by placing a ¹³⁷ Cs source at a distance from the scintillator such that the count rate is $\approx 10^4$ c/s, corresponding to an anode current of ≈ 300 nA. Anode sensitivity deviation after change of count rate is measured with a ¹³⁷ Cs source at a distance from the scintillator such that the count rate can be changed from $\approx 10^4$ c/s to $\approx 10^3$ c/s, corresponding to anode currents of ≈ 300 nA and ≈ 30 nA respectively. Both tests are carried out according to ANSI-N42-9-1972 of IEEE recommendations.
- 5. Measured with a pulsed light source, with a pulse duration (FWHM) of < 1 ns; the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage $V_{\rm b}$, approximately as $V_{\rm b}$.^{3/2}.
- 6. Total HT supply voltage, or the voltage at which the tube has an anode spectral sensitivity of \approx 300 kA/W, whichever is lower.
- 7. Minimum value to obtain good collection in the input optics.
- When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 9. This range of temperatures is limited by stresses in the sealing layer of the base to the glass bulb. Where low temperature operation is contemplated, the supplier should be consulted.

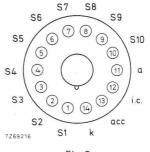
10-stage venetian blind photomultiplier tube


XP2030

MECHANICAL DATA

Dimensions in mm

from series no. 10 001 on



Base 19-pin all-glass Net mass 165 g To be ordered under type no. XP2030 UB

ACCESSORIES

Socket	
for versions of Fig. 2	type FE2019
for versions of Fig. 3	type FE1014
Mu-metal shield	type 56135

Base 14-pin IEC 67-1-16a (Jedec B14-38) Net mass 208 g To be ordered under type no. XP2030

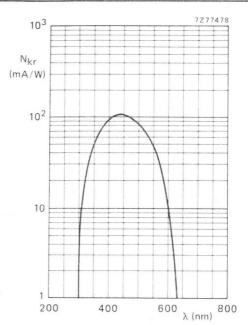
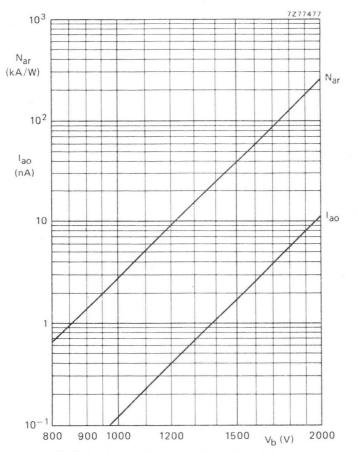
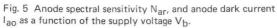
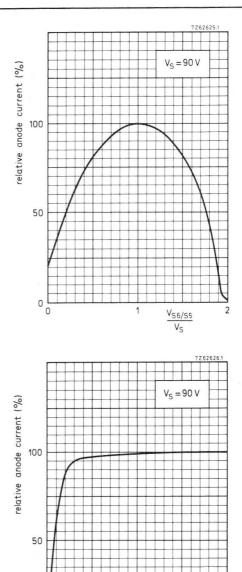




Fig. 4 Spectral sensitivity characteristic.


10-stage venetian blind photomultiplier tube

XP2030

2

 $\frac{V_{\alpha/S10}}{V_S}$

4

0 L 0

Fig. 6 Relative anode current as a function of the voltage between S6 and S5, normalized to $V_S,\,V_{S7/S5}$ constant.

14-STAGE PHOTOMULTIPLIER TUBE

The XP2040 (XP2040Q) is a 110 mm (useful diameter) head-on photomultiplier tube with a concave-convex window and a semi-transparent S11 (type A) photocathode. The tube is intended for use in nuclear physics where the number of photons to be detected is very low or where good time characteristics are required (coincidence measurements, Cerenkov counters).

A plano-concave plastic adapter supplied with tube type XP2040 enables transmission from 300 nm. The XP2040Q is supplied with a plano-concave quartz adapter enabling transmission at a wavelength of 200 nm and higher.

QUICK REI	FERENCE DATA				
Spectral sensitivity characteristic			S11 (type A) extended ultraviolet		
Useful diameter of the photocathode			>	110	mm
Supply voltage for a gain of 3 x 107			2000	V	
Cathode spectral sensitivity at 437 nm			70	mA/W	
Anode pulse rise time (with voltage divider B')		~	2	ns	
Linearity, with voltage divider A with voltage divider B with voltage divider B'	up to up to up to		<i>a a a</i>	30 280 80	mA mA mA

To be read in conjunction with "General Operational Recommendations Photomultiplier Tubes".

GENERAL CHARACTERISTICS

Window			
Glass: Ultraviolet transmitting (type Schott 8337 or equivalent)	1)		
Shape	concave-con	vex	
Radius of curvature	183 ± 5	mm	
Refractive index at 550 nm	1,48		

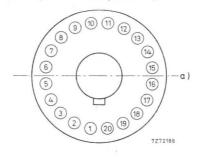
¹) This glass window must be protected from humidity.

February 1976

XP2040 XP2040Q

Photocathode				
Semi-transparent, head on				
Useful diameter		>	110	mm
Spectral sensitivity characteristic (Fig.4)		S11 (ty extended		iolet
Material			Sb-Cs	
Maximum spectral sensitivity at		420	± 30	nm
Luminous sensitivity		typ. >	70 45	µA/lm µA/lm
Spectral sensitivity at 437 $\pm \; 5 \; \text{nm}$		~	70	mA/W
Multiplier system				
Number of stages			14	
Dynode structure		line	ar focu	sed
Dynode material			Cu-Be	
Capacitances				
Grid no.1 to k+g2+acc+S1	Cg1/k, g2, acc,	S1 ≈	70	pF
Anode to final dynode	C _{a/S14}	~	5	pF
Anode to all	Ca	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	pF

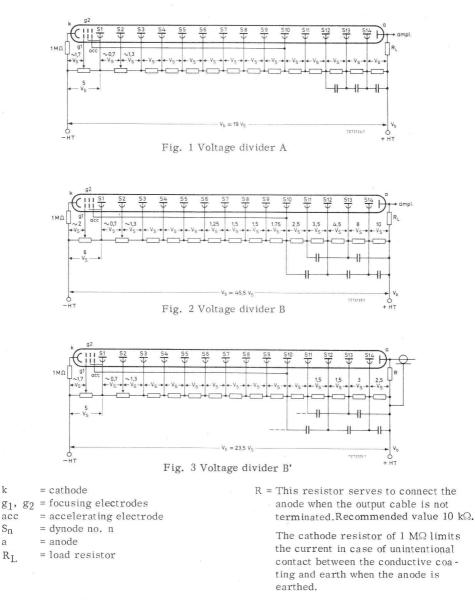
Magnetic field


When the photocathode is illuminated uniformly the anode current is halved (at $\rm V_b$ = 1900 V, voltage divider A):

- at a magnetic flux density of 0, 15 mT in the direction of the longitudinal axis;

- at a magnetic flux density of 0, 13 mT perpendicular to axis a) (see Fig. below).

- at a magnetic flux density of 0, 05 mT parallel to axis a)


It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

Axis a) with respect to base pins (bottom view).

XP2040 XP2040Q

RECOMMENDED CIRCUITS

The voltage between k and gl should be adjusted at about 1,7 V_{S} for voltage dividers A and B' or at about 2 Vs for voltage divider B. The voltage between S1 and S2 should be adjusted at about 0,7 Vs. Typical value of capacitors: 1 nF.

k

Sn

R_L

а

SUMALON MARINALON SUMEDIALON MARINALON MICHAELON MICHAEL

TYPICAL CHARACTERISTICS

With voltage divider A (Fig. 1)				
Supply voltage for a gain G of 3×10^7 , Fig.6	1)	< typ.	2700 · 2000	V V
Anode dark current at G = 3×10^7 , Fig. 6	1) 2)	< typ.	. 0,2	Ац Ац
Anode pulse rise time at V_b = 2200 V	3) 4)	2	2,5	ns
Anode pulse width at half height at V_{b} = 2200 V	3)	*	5	ns
Signal transit time at V_b = 2200 V	3)	и	46	ns
Anode current linear within 2%, at $\rm V_b$ = 2200 V up to		2	30	mA
Obtainable peak anode current		*	200	mA
With voltage divider B (Fig. 2)	5)			
Gain at V_b = 2800 V, Fig. 6		n	$1 \ge 10^7$	
Anode pulse rise time at V_b = 2800 V	3) 4)	*	2,1	ns
Anode pulse width at half height at V_{b} = 2800 V	3)	2	3	ns
Signal transit time at V_b = 2800 V	3)	22	49	ns
Signal transit time difference between the centre of photocathode and 50 mm from the centre, at $\rm V_{\rm D}$		n	1	ns
Anode current linear within 2%, at $\rm V_b$ = 2800 V up to		n	280	mA
Obtainable peak anode current		~	0,5 to 1,0	А
With voltage divider B' (Fig. 3)	5 ₎			
Gain at V_b = 2500 V, Fig. 6		2	$5 \ge 10^7$	
Anode pulse rise time at V _b = 2500 V	3) 4)	22	2	ns
Anode pulse width at half height at $\rm V_{b}$ = 2500 $\rm V$	3)	и	3	ns
Signal transit time at V_b = 2500 V	3)	22	46	ns
Signal transit time difference between the centre of photocathode and 50 mm from the centre, at V_b		n	1	ns
Anode current linear within 2%, at $\rm V_b$ = 2500 V up to		n	80	mA
Obtainable peak anode current		8	500	mA

Notes see page 5.

Notes to page 4

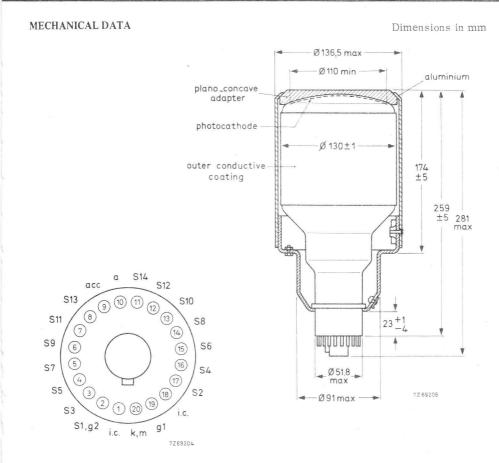
- ¹) Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The tube is provided with a conductive coating connected to the cathode. It is recommended to keep the metal envelope at cathode potential. This implies safety precautions to protect the user.
- 2) Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness (≈1/4 h).
- ³) Measured with a pulsed light source with a pulse duration of < 1 ns; the cathode being completely illuminated.

The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse width, and transit time vary as a function of the HT supply voltage V_b , approximately as $V_b^{-1/2}$.

- ⁴) A non-inductive resistor of 50 Ω is incorporated in the base, connected to S14. See also "General Operational Recommendations Photomultiplier tubes".
- 5) Divider circuits B and B' are examples of "progressive dividers", each giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally advisable to keep the increase in voltage between one stage and the next to less than a factor 2.

LIMITING VALUES (Absolute max. rating system)

Supply voltage	1)	max.	3000	V
Continuous anode current	5)	max.	0,2	mA
Voltage between first dynode and photocathode	2)	max. min.	800 400	V V
Voltage between focusing electrode \mathbf{g}_1 and photocathode		max.	300	V
Voltage between accelerating electrode and photocathode		max min.	$\begin{array}{c}18\\14\end{array}$	${}^{\mathrm{V}}_{\mathrm{S}}{}^{\mathrm{S}}_{\mathrm{S}}$
Voltage between consecutive dynodes		max.	500	V
Voltage between anode and final dynode	³).	max. min.	500 80	V V
Ambient temperature range	⁴)			
Operational (for short periods of time)		max. min.	+80 -30	°C °C
Continuous operation and storage		max. min.	+50 -30	°C °C


¹) Total HT supply voltage, or the voltage at which the tube circuited in voltage divider "A" has a gain of 3 x 10⁸, whichever is lower.

 $^{2}\xspace$) Minimum value to obtain good collection in the input optics.

³) When calculating the anode voltage the voltage drop across the load resistor should be taken into account.

⁴) This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb. Where low temperature operation is contemplated, the supplier should be consulted.

 $^5)$ For applications requiring a high stability a value of $<10\;\mu\text{A}$ is recommended.

Base : 20-pin (JEDEC B20-102)

Net mass : 1340 g

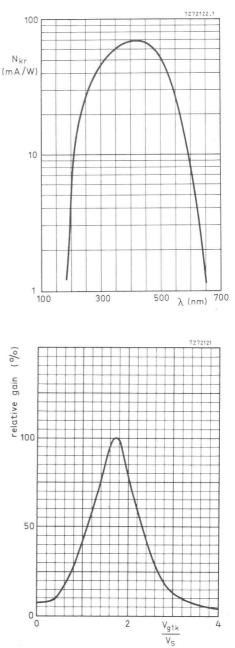
ACCESSORIES

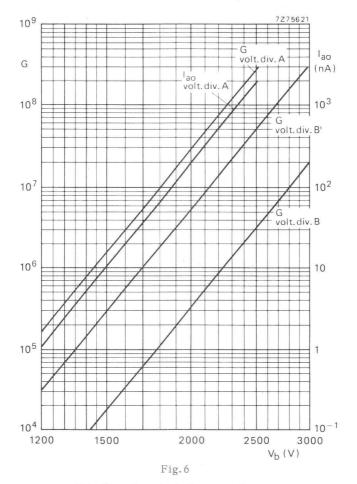
Socket	type	FE1020
Mu-metal shield	type	56133

The XP2040 may be used with the base assembly S5630/03, consisting of two magnetic shields, a voltage divider, a mechanical system with provisions for mounting the photomultiplier tube and a scintillator. Details available on request.

Optical coupling silicone grease is supplied with each tube. This grease should be applied to the adapter - photomultiplier interface before operation.

December 1977




Fig. 4

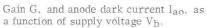
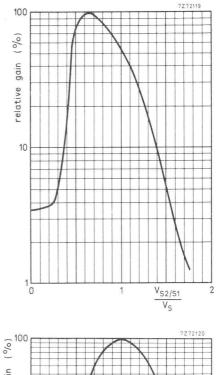

Spectral sensitivity characteristic (without adapter, or with quartz adapter).

Fig.5


Relative gain as a function of the voltage between focusing electrode g_1 and photocathode k, normalized to $V_{\rm S}.$

XP2040 XP2040Q

January 1978

Fig.7

Relative gain as a function of the voltage between S_2 and $S_1,$ normalized to $V_S, V_{S3/S1}$ constant.

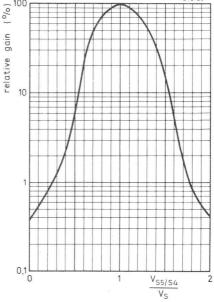


Fig.8

Relative gain as a function of the voltage between $\rm S_5$ and $\rm S_4$ normalized to $\rm V_S,$ $\rm V_{S6/S4}$ constant.

14-STAGE PHOTOMULTIPLIER TUBE

The XP2041 (XP2041Q) is a 110 mm (useful diameter) head-on photomultiplier tube with a concave-convex window and a semi-transparent bialkaline type D photocathode. The tube is intended for use in nuclear physics where the number of photons to be detected is very low or where good time characteristics are required (coincidence measurements, Cerenkov counters).

A plano-concave plastic adapter supplied with tube type XP2041 enables transmission from 300 nm. The XP2041Q is supplied with a plano-concave quartz adapter enabling transmission at a wavelength of 200 nm and higher.

QUICK REFERENCE	DATA			
Spectral sensitivity characteristic		type D extended ultraviol		
Useful diameter of the photocathode		>	110	mm
Supply voltage for a gain of 3 x 10^7			2200	V
Quantum efficiency at 401 nm			26	%
Cathode spectral sensitivity at 401 nm			85	mA/W
Anode pulse rise time (with voltage divider B')		2	2	ns
Linearity with voltage divider A with voltage divider B	up to up to	n n	30 220	mA mA
with voltage divider B'	up to	*	80	mA

To be read in conjunction with "General Operational Recommendations Photomultiplier tubes".

GENERAL CHARACTERISTICS

Window				
Glass : Ultraviolet transmitting (type Schott 8337 or equivalent)	1)			
Shape		concave-	convex	
Radius of curvature		183 ± 5	mm	
Refractive index at 550 nm		1,48		

1) This glass window must be protected from humidity.

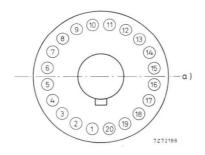
February 1976

**** 1

XP2041 XP2041Q

Photocathode				
Semi-transparent, head-on				
Useful diameter		>	110	mm
Spectral sensitivity characteristic (Fig. 4)) type D extended ultraviolet			olet
Material	bi-alkaline Sb-K-Cs			C-Cs
Maximum spectral sensitivity at		400	± 30	nm
Spectral sensitivity at 401 \pm 3 nm		typ. >	85 65	mA/W mA/W
Multiplier system				
Number of stages			14	
Dynode structure		linea	r focuse	ed
Dynode material			Cu-Be	
Capacitances				
Grid no.1 to k+g2+acc+S1	C _{g1/k} , g2, acc, S	1 ≈	70	pF
Anode to final dynode	C _{a/S14}	*	5	pF
Anode to all	Ca	~	7	pF

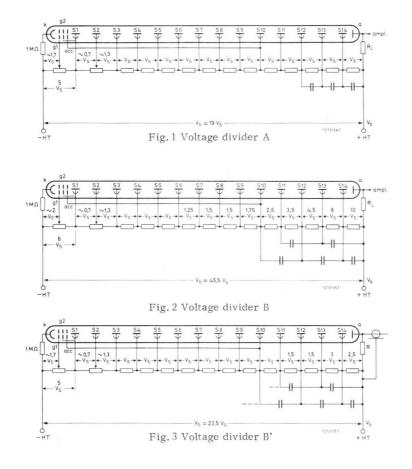
Magnetic field


When the photocathode is illuminated uniformly the anode current is halved (at $V_b = 1900$ V, voltage divider A):

- at a magnetic flux density of 0, 15 mT in the direction of the longitudinal axis;

- at a magnetic flux density of 0, 13 mT perpendicular to axis a);

- at a magnetic flux density of 0.05 mT parallel to axis a) (see Fig. below)


It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding >15 mm beyond the photocathode.

Axis a) with respect to base pins (bottom view).

XP2041 XP2041Q

RECOMMENDED CIRCUITS

k	= cathode
g1,g2	= focusing electrodes
acc	= accelerating electrode
Sn	= dynode no. n
а	= anode
RL	= load resistor

The voltage between k and g_1 should be adjusted at about 1, 7 VS for voltage dividers A and B' or at about 2VS for voltage divider B.

R=This resistor serves to connect the anode when the output cable is not terminated. Recommended value : 10 kΩ.

The cathode resistor of $1 \text{ M}\Omega$ limits the current in case of unintentional contact between the conductive coating and earth when the anode is earthed.

The voltage between S1 and S2 should be adjusted at about 0,7 VS. Typical value of capacitors: 1 nF.

No. Journal, De De José Marie De De José Marie De De José Marie Marie

TYPICAL CHARACTERISTICS

With voltage divider A (Fig. 1)

Supply voltage for a gain G of 3x 10 ⁷ , Fig.6	1)	< typ.	2700 2200	V V
Anode dark current at G = 3×10^7 , Fig. 6	1) 2)	< typ.	600 30	nA nA
Anode pulse rise time at V_b = 2200 V	³) ⁴)	22	2,5	ns
Anode pulse width at half height at V_b = 2200 V	3)	n	5	ns
Signal transit time at V_b = 2200 V	3)	*	46	ns
Anode current linear within 2%, at $\mathrm{V}_{b}\text{=}2200$ up to	V	n	30	mA
Obtainable peak anode current		~	200	mA
With voltage divider B (Fig. 2)	5)			
Gain at $V_b = 2800$ V. Fig.6		≈ 4	$x 10^{6}$	
Anode pulse rise time at V_b = 2800 V	3) 4)	n	2,1	ns
Anode pulse width at half height at $V_{\rm b}$ = 2800 V	3)	*	3	ns
Signal transit time at V_b = 2800 V	3)	n	49	ns
Signal transit time difference between the ce photocathode and 50 mm from the centre a		ĸ	1	ns
Anode current linear within 2%, at $V_{\rm b}$ = 2800 up to	0 V	*	280	mA
Obtainable peak anode current		≈0,5	to 1,0	А
With voltage divider B' (Fig. 3)	5)			
Gain at V_b = 2500 V, Fig. 6		≈ 2	x 10 ⁷	
Anode pulse rise time at V_b = 2500 V	³) ⁴)	~	2	ns
Anode pulse width at half height at Vb = 2500 V	3 ₎	<i>w</i>	3	ns
Signal transit time at V_b = 2500 V	3)	2	46	ns
Signal transit time difference between the ce photocathode and 50 mm from the centre a		~	1	ns
Anode current linear within 2%, at V_b = 2500 up to	0 V	ĸ	80	mA
Obtainable peak anode current		*	500	mA
Notes see page 5.				

Notes to page 4

- ¹) Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The tube is provided with a conductive coating connected to the cathode. It is recommended to keep the metal envelope at cathode potential. This implies safety precautions to protect the user.
- ²) Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx 1/4$ h).
- 3) Measured with a pulsed light source with a pulse duration of < 1 ns; the cathode being completely illuminated.

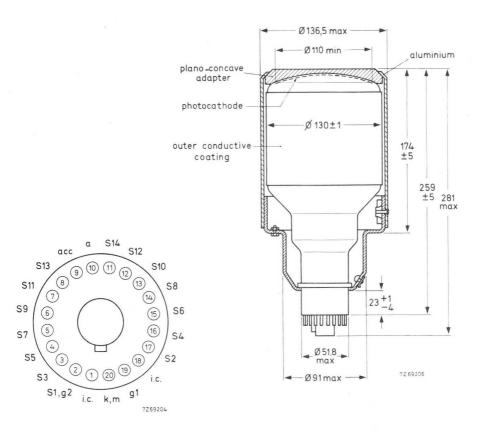
The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse width, and transit time vary as a function of the HT supply voltage V_b, approximately as V_b^{-1/2}.

- 4) A non-inductive resistor of 50 Ω is incorporated in the base, connected to S14. See also "General Operational Recommendations Photomultiplier tubes"
- 5) Divider circuits B and B' are examples of "progressive dividers", each giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally advisable to keep the increase in voltage between one stage and the next to less than a factor 2.

XP2041 XP2041Q

LIMITING VALUES (Absolute max. rating syste	em)			
Supply voltage	1)	max.	3000	V
Continuous anode current	5)	max.	0,2	mA
Voltage between first dynode and photocathod $\!$	2)	max. min.	800 400	V V
Voltage between focusing electrode \mathbf{g}_1 and photocathode		max.	300	V
Voltage between accelerating electrode and photocathode		max. min.	18 14	$^{\mathrm{V}}_{\mathrm{V}}{}_{\mathrm{S}}$
Voltage between consecutive dynodes		max.	500	V
Voltage between anode and final dynode	3)	max. min.	500 80	V V
Ambient temperature range	4)			
Operational (for short periods of time)		max.	+80	0C
- I		min. max.	-30 +50	°C °C
continuous operation and storage		min.	-30	°C

 Total HT supply voltage, or the voltage at which the tube circuited in voltage divider "A" has a gain of 3x 10⁸, whichever is lower.


- ²) Minimum value to obtain good collection in the input optics.
- 3) When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 4) This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb.

Where low temperature operation is contemplated, the supplier should be consulted.

⁵) For applications requiring a high stability a value of $< 10 \,\mu$ A is recommended.

MECHANICAL DATA

Dimensions in mm

Base : 20-pin (JEDEC B20-102)

Net mass : 1340 g

ACCESSORIES

Socket	type	FE1020		
Mu-metal shield	type	56133		

The XP2041 may be used with the base assembly \$5630/03, consisting of two magnetic shields. a voltage divider, a mechanical system with provisions for mounting the photomultiplier tube and a scintillator. Details are available on request.

Optical coupling silicone grease is supplied with each tube. The grease should be applied to the adapter - photomultiplier interface before operation.

December 1977

XP2041 XP2041Q

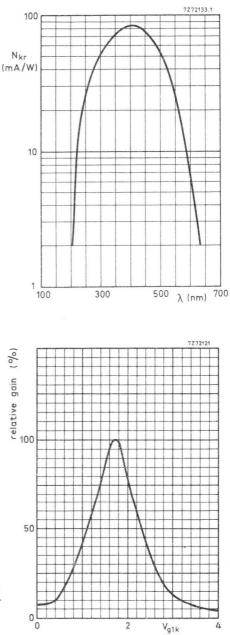


Fig. 4

Spectral sensitivity characteristic (without adapter or with quartz adapter).

Fig.5

Relative gain as a function of the voltage between focusing electrode g_1 and photocathode, normalized to V_{S^\ast}

4

V_{g1k} V_S

XP2041 XP2041Q

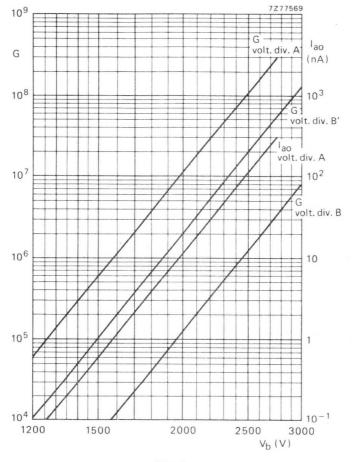
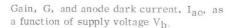



Fig.6

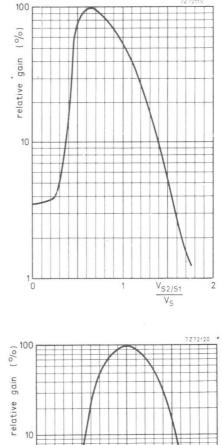


Fig.7

Relative gain as a function of the voltage between ${\rm S}_2$ and ${\rm S}_1$, normalized to ${\rm V}_S.$

VS3/S1 constant.

Fig.8

Relative gain as a function of the voltage between $\rm S_5$ and $\rm S_4,\ normalized\ to\ V_S.$

V_{S6/S4} constant.

10-STAGE VENETIAN BLIND PHOTOMULTIPLIER TUBE

The XP2050 is a 110 mm useful diameter head-on photomultiplier tube with a flat window and a semitransparent bialkaline type D photocathode. The tube is intended especially for scintillation counting in different fields, such as gamma spectrometry or high energy physics (large dimensional Cerenkov counters).

QUICK REFERENCE DATA

Spectral sensitivity characteristic	type D		
Useful diameter of the photocathode	>	110	mm
Quantum efficiency at 401 nm		95	mA/W
Supply voltage for an anode spectral sensitivity of 12 kA/W at 401 nm		1270	V
Pulse amplitude resolution (¹³⁷ Cs)	\approx	7,5	0/
Mean anode sensitivity deviation	\approx	1	0%

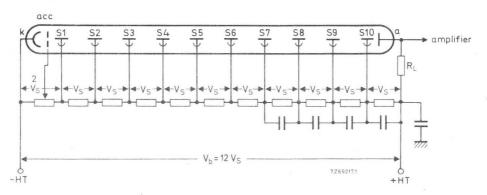
To be read in conjunction with General Operational Recommendations Photomultiplier tubes.

GENERAL CHARACTERISTICS

. . . .

Window	
Material	borosilicate
Shape	plano-plano
Refractive index at 550 nm	1,48
Photocathode *	
Semi-transparent, head-on	
Material	Sb-K-Cs
Useful diameter	> 110 mm
Spectral sensitivity characteristic (Fig. 4)	type D

* The bialkaline photocathode has a significant resistance which increases rapidly with reducing temperature. It is thus recommended that it should not be subjected to light of too great an intensity; the cathode current should be limited, for example, to 1 nA at room temperature or 0,1 nA at -30 °C. If too high a photocurrent is passed, the cathode can no longer be considered to be an equipotential surface, and the focusing of electrons onto the first dynode will be affected, resulting in departure of linearity.


Photocathode (continued)			
Maximum spectral sensitivity at		400	± 30 nm
Quantum efficiency at 401 \pm 3 nm			29 %
Spectral sensitivity at 401 \pm 3 nm	N _{kr}	typ. >	95 mA/W 65 mA/W
Multiplier system			
Number of stages			10
Dynode structure		vene	tian blind
Dynode material		Çu-B	е
Capacitances anode to final dynode anode to all		* *	7 pF 8,5 pF

Magnetic field

When the cathode is illuminated uniformly the anode current is halved (at V_b = 1500 V) at a magnetic flux density of 0,2 mT perpendicular to the tube axis.

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

RECOMMENDED CIRCUITS

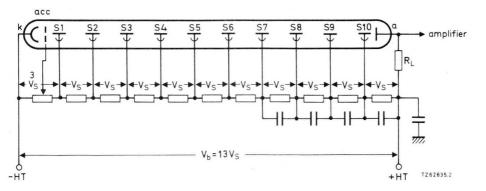


Fig. 2 Voltage divider A-1. Typical values of capacitors: 10 nF; k = cathode; acc = accelerating electrode; S_n = dynode no.; a = anode; R_L = load resistor.

The accelerating electrode potential should be adjusted for optimum pulse amplitude resolution.

TYPICAL CHARACTERISTICS	note				
With voltage divider A (Fig. 1)	1				
Supply voltage for an anode spectral sensitivity N_{ar} = 12 kA/W at 401 nm (Fig. 5)			< typ.	1500 1270	
Anode spectral sensitivity at V_b = 1500 V			~	35	kA/W
Anode dark current at N_{ar} = 12 kA/W at 401 nm	2		< typ.	5 0,5	nA nA
Anode current linear within 2% at V_b = 1500 V		up to	\approx	10	mA
With voltage divider A-1 (Fig. 2)					
Anode spectral sensitivity at V $_{b}$ = 1500 V and 401 nm (Fig. 5)			\approx	25	kA/W
Pulse amplitude resolution for 137 Cs at N _{ar} = 12 kA/W	3		\approx	7,5	%
Anode current linear within 2% at V_b = 1500 V		up to	\approx	10	mA
Mean anode sensitivity deviation	4				
long term (16 h)			≈ .		%
after change of count rate			\approx		%
Anode pulse rise time at V_b = 1500 V	5		\approx	16	ns
Anode pulse width at half height at V_b = 1500 V	5		\approx	40	ns
Signal transit time at V_b = 1500 V	5		\approx	90	ns

Notes see page 4.

LIMITING VALUES (absolute maximum rating system)	note			
Supply voltage	6	max.	2000 V	
Continuous anode current		max.	0,2 mA	
Voltage between first dynode and photocathode	7	max. min.	500 V 150 V	
Voltage between accelerating electrode and photocathode		max.	500 V	
Voltage between consecutive dynodes		max.	300 V	
Voltage between anode and final dynode	8	max.	300 V	
Ambient temperature range operational (for short periods of time)	9	max. min.	+80 °C -30 °C	
continuous operation and storage		max. min.	+50 °C -30 °C	

Notes

- 1. Wherever possible, the power supply should be arranged so that the cathode is earthed and the anode is at + HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > 10¹⁵ ohm.
- 2. Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx \frac{1}{2}$ h).
- 3. Pulse amplitude resolution for ¹³⁷ Cs and ⁵⁷ Co is measured with an Nal (TI) cylindrical scintillator (Quartz et Silice serial no. 4170 or equivalent) with a diameter of 75 mm and a height of 75 mm. The count rate used is $\approx 10^4$ c/s.
- 4. The mean anode sensitivity deviation is measured by coupling an Nal (TI) scintillator to the window of the tube. Long-term (16 h) deviation is measured by placing a ¹³⁷ Cs source at a distance from the scintillator such that the count rate is $\approx 10^4$ c/s, corresponding to an anode current of ≈ 300 nA. Mean anode sensitivity deviation after change of count rate is measured with a ¹³⁷ Cs source at a distance from the scintillator such that the count rate can be changed from $\approx 10^4$ c/s to $\approx 10^3$ c/s, corresponding to anode currents of ≈ 300 nA and ≈ 30 nA respectively. Both tests are carried out according to ANSI-N42-9-1972 of IEEE recommendations.
- 5. Measured with a pulsed light source, with a pulse duration (FWHM) of < 1 ns: the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b , approximately as $V_b^{-\frac{1}{2}}$.
- 6. Total HT supply voltage, or the voltage at which the tube has an anode spectral sensitivity of \approx 300 kA/W, whichever is lower.
- 7. Minimum value to obtain good collection in the input optics.
- 8. When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 9. This range of temperatures is limited by stresses in the sealing layer of the base to the glass bulb. Where low temperature operation is contemplated, the supplier should be consulted.

10-stage venetian blind photomultiplier tube

XP2050

MECHANICAL DATA

Dimensions in mm

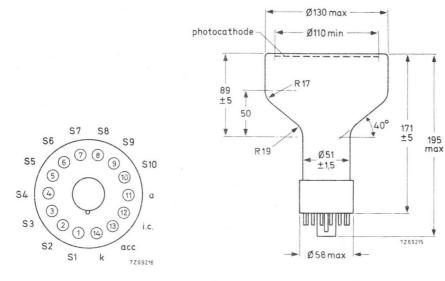


Fig. 3.

Base: IEC 67-1-16a (Jedec B14-38)

Net mass: 460 g

ACCESSORIES

Socket Mu-metal shield

type FE1014 type 56133

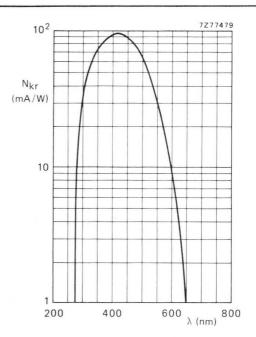


Fig. 4 Spectral sensitivity characteristic.

10-stage venetian blind photomultiplier tube

XP2050

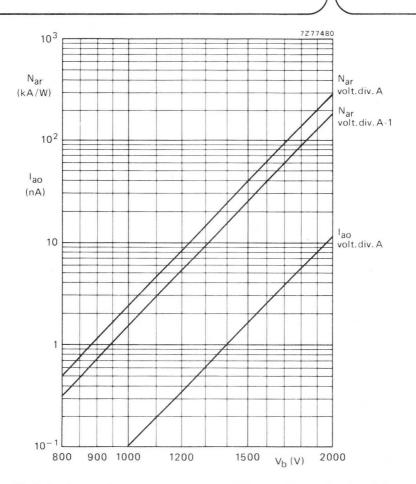
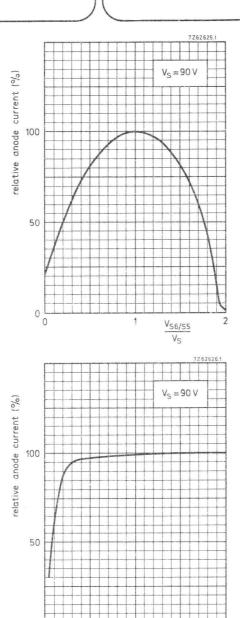
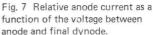



Fig. 5 Anode spectral sensitivity $N_{ar},$ and anode dark current I_{ao} as a function of the supply voltage $V_b.$


2

Va/S10

Vs

4

Fig. 6 Relative anode current as a function of the voltage between dynodes S6 and S5, normalized to VS. VS7/S5 constant.

anode and final dynode.

December 1977

0 -

12-STAGE PHOTOMULTIPLIER TUBE

The XP2230 is a 44mm useful diameter head-on photomultiplier tube with a plano-concave window and a semi-transparent bialkaline type D photocathode.

The tube is intended for use in nuclear physics where the number of photons to be detected is very low. The tube features a high cathode sensitivity and a good linearity combined with very low background noise and very good time characteristics. It is especially useful in high-energy physics experiments such as coincidence measurements, Cerenkov detection etc.

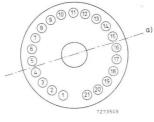
The XP2230B is provided with a 20-pin plastic base. This version may be used as a plug-in replacement for the 56DVP.

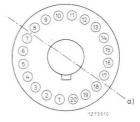
QUICK REFERENCE DATA					
Spectral sensitivity characteristic	typ	e D			
Useful diameter of the photocathode	>	44	mm		
Quantum efficiency at 401 nm		28	%		
Spectral sensitivity of the photocathode at 401 nm		90	mA/W		
Supply voltage for a gain G = 3×10^7		2300	V		
Background noise	*	600	c/s		
Pulse amplitude resolution for ¹³⁷ Cs	2	7,5	%		
Anode pulse rise time (with voltage divider B')	~	1,6	ns		
Linearity (with voltage divider B) up to	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	280	mA		
Signal transit time fluctuation at V $_{\rm b}$ = 2500 V	æ	0,35	ns		

To be read in conjunction with "General Operational Recommendations Photomultiplier tubes".

GENERAL CHARACTERISTICS

WindowMaterialborosilicateShapeplano-concaveRefractive index at 550 nm1,48

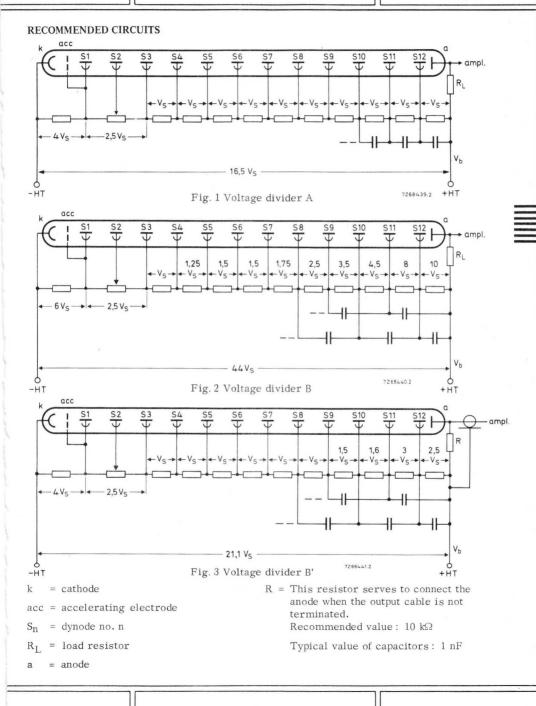

January 1976


Photocathode 1)			
Semi-transparent, head-on			
Material	Sb-K-C	S	
Useful diameter	>	44	mm
Spectral sensitivity characteristic (Fig. 4)	type D		
Maximum spectral sensitivity at	400 ±	: 30	nm
Quantum efficiency at 401 nm		28	%
Spectral sensitivity at 401 \pm 3 nm ²)	typ. >	90 65	mA/W mA/W
Electron optical input system This consists of : the photocathode, k, and the accelerating electrod XP2230B internally connected to S1.	e, acc, f	or ty	ре
Multiplier system			
Number of stages		12	
Dynode structure	linear f	ocus	ed
Dynode material	Ag-Mg		
Capacitances			
Anode to all C _a	~	6	pF
Anode to final dynode C _{a/S12}	*	4	pF

Magnetic field

See Fig.9

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.



XP2230

XP2230B

Axis a) with respect to base pins (bottom view)

Notes see page 5.

January 1976

National Colombia Description Enderstations National Colombia Description Description Description Description

TYPICAL C	CHARACT	ERISTICS
-----------	---------	----------

With voltage divider A (Fig. 1)	3)				
Supply voltage for a gain G = 3×10^7 (Fig. 6)		typ. <	2600	V V	
Anode dark current at $G = 3 \times 10^7$ (Fig. 6)	4) 5)	typ. <	. 7 25	nA nA	
Background noise at $G = 3 \times 10^7$ (Fig. 5)	6)	*	600	c/s	
Pulse amplitude resolution for $^{137}\mathrm{Cs}$ at V_{b} = 1200 V	7)	**	7,5	%	
Anode pulse rise time at $V_{\rm b}$ = 2000 V	8)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,8	ns	
Anode pulse duration at half height at V_b = 2000 V	8)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3,8	ns	
Signal transit time at $V_b = 2000 V$	8)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	28	ns	
Signal transit time difference between the centre of the photocathode and 18 mm from the centre at V_b = 2000 V	⁸)	~	0,6	ns	
Anode current linear within 2% at V_b = 2000 V up to		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25	mA	
Obtainable peak anode current		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100	mA	
With voltage divider B (Fig. 2)	³)				
Gain G at V_b = 3000 V (Fig. 6)		22	5×10^{6}		
Anode pulse rise time at $V_{\rm b}$ = 3000 V	8)	22	1,6	ns	
Anode pulse duration at half height at V_b = 3000 V	8)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	ns	
Signal transit time at V _b = 3000 V	8)	8	31	ns	
Signal transit time difference between the centre of the photocathode and 18 mm from the centre at $\rm V_b=3000~\rm V$	8)	~	0,65	ns	
Anode current linear within 2% at $\rm V_{b}$ = 3000 V up to		22	280	mA	
Obtainable peak anode current		~	0,5 to 1	А	
With voltage divider B' (Fig. 3)	3)				
Gain G at $V_b = 2500 V$ (Fig.6)		~	$2 \ge 10^7$		
Anode pulse rise time at V_b = 2500 V	8)	22	1,6	ns	
Anode pulse duration at half height at V_b = 2500 V	8)	R	2,7	ns	
Signal transit time at V_b = 2500 V	8)	22	28	ns	
Signal transit time fluctuation at V_b = 2500 V	9)	~	0,35	ns	
Signal transit time difference between the centre of the photocathode and 18 mm from the centre at $\rm V_{b}$ = 2500 V	8)	~	0,6	ns	

Anode current linear within 2% at $V_b = 2500$ V up to \approx 70 mA Obtainable peak anode current \approx 250 mA

¹) The bialkaline photocathode has a significant resistance which increases rapidly with reducing temperature. It is thus recommended that it should not be subjected to light of too great an intensity; the cathode current should be limited to, for example, 1 nA at room temperature or 0,01 nA at -80 °C.

If too high a photocurrent is passed, the cathode can no longer be considered to be an equipotential surface, and the focusing of electrons onto the first dynode will be affected, resulting in departures of linearity.

- ²) Measuring equipment is calibrated by comparison with a Schwartz thermocouple.
- 3) To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltages of the stages progressively. Divider circuits B and B' are examples of progressive dividers, each giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- ⁴) Wherever possible, the photomultiplier power supply should be arranged so that the photocathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. It is recommended that, if a metal shield is used, this be kept at cathode potential. This implies safety precautious to protect the user. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > 10¹⁵ Ω .
- 5) Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx 1/4$ h).
- 6) After having been stored with its protective hood, the tube is placed in darkness with V_b set to a value to give a gain of 3 x 10⁷. After a 30 min stabilization period noise pulses with a threshold of 4, 25 x 10⁻¹³ C (corresponding to 0, 1 photoelectron) are recorded. (See Fig. 5).
- 7) Pulse amplitude resolution for ¹³⁷Cs is measured with a NaI(Tl) cylindrical scintillator with a diameter of 44 mm and a height of 50 mm. The count rate is ≈ 10³ c/s.
- $^{8})$ Measured with a pulsed-light source with a pulse duration of < 1 ns; the cathode being completely illuminated.

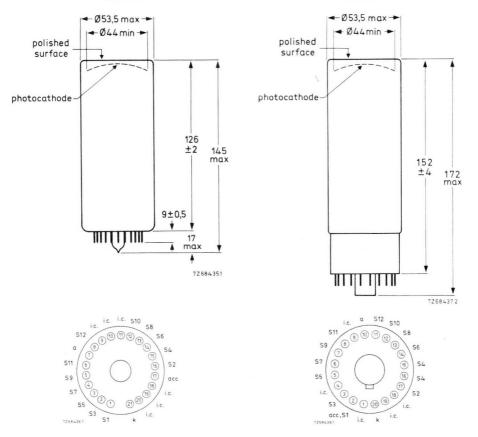
The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum.

Rise time, pulse duration, and transit time vary as a function of the HT supply voltage, V_b, approximately as V_b - $\frac{1}{2}$.

 9) Transit time fluctuation is defined as the standard deviation of the transit time distribution of single electrons leaving the photocathode.

January 1976

LIMITING VALUES (Absolute max. rating system) .			
Supply voltage	10)	max.	3000	V
Continuous anode current		max.	0,2	mA
Voltage between first dynode and photocathode	11)	max. min.	800 300	V V
Voltage between consecutive dynodes (except S12 and S11)		max.	400	V
Voltage between dynode S12 and dynode S11		max.	600	V
Voltage between anode and final dynode	12)	max. min.	700 80	V V
Ambient temperature range XP2230 Operational (for short periods of time) Continuous operation and storage		max. min. max. min.	+80 -80 +50 -80	°C °C °C °C
XP2230B Operational (for short periods of time) Continuous operation and storage	13)	max. min. max. min.	+80 -30 +50 -30	°C °C °C
Voltage between dynode S12 and dynode S11 Voltage between anode and final dynode Ambient temperature range XP2230 Operational (for short periods of time) Continuous operation and storage XP2230B Operational (for short periods of time)	,	max. max. min. max. min. max. min. max. min.	600 700 80 +80 -80 +50 -80 +80 -30	


- 10) Total supply voltage, or the voltage at which the tube has a gain of 2 x $10^8,\,{\rm whichever}$ is lower.
- 11) Minimum value to obtain good collection in the input optics.
- 12) When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 13) This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb.Where low temperature operation is contemplated, the supplier should be consulted.

MECHANICAL DATA

XP2230

Dimensions in mm

XP2230B

Base: 20-pin (IEC 67-I-42a, JEDEC B20-102)

Net mass: 160 g

190 g

ACCESSORIES

Socket: for XP2230 type FE2021

Mu-metal shield: type 56128 or type 56130

for XP2230B type FE1020

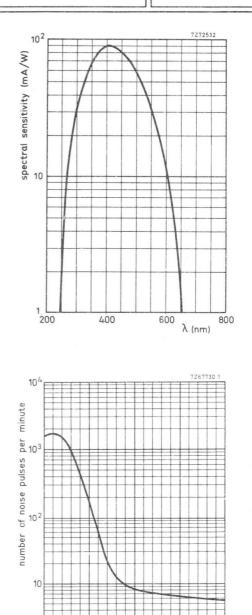
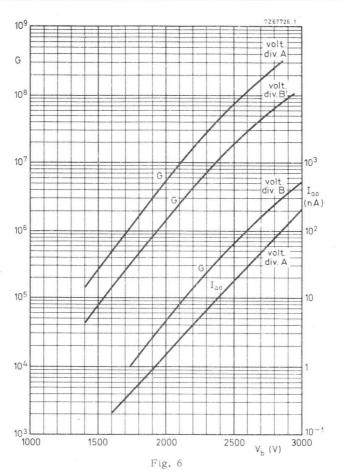
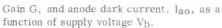


Fig. 4 Spectral sensitivity characteristic.

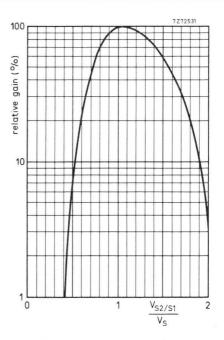
Typical background spectrum from 0,1 to 10 equivalent photoelectrons, at a gain of 3 x 10^7 , voltage divider A.


1 L 0


2,5

5

7,5


5 10 electrons

9

XP2230 XP2230B

Fig. 7

Relative gain as a function of the voltage between dynodes S₂ and S₁, normalized to Vg. $V_{S3/S1}$ constant.

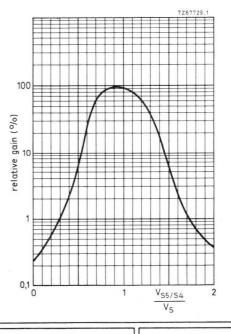


Fig. 8

Relative gain as a function of the voltage between dynodes S5 and S4, normalized to VS. $V_{S6}/S4$ constant.

*

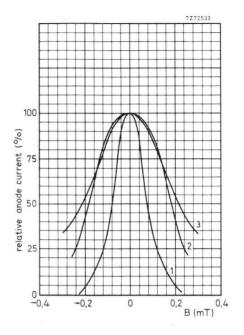


Fig.9

Relative anode current as a function of the magnetic flux density B. Voltage divider A, $V_b = 2300 \text{ V}$. 1 B // axis a) 2 B \perp axis a)

3 B // tube axis

14-STAGE PHOTOMULTIPLIER TUBE

The 56AVP is a 44 mm (useful diameter) head-on photomultiplier tube with a plano-concave window and a semi-transparent S11 (type A) photocathode. The tube is intended for use in nuclear physics where good time characteristics are required (coincidence measurements, Cerenkov counters, etc).

The 56AVP can be used in a special mounting assembly S5630/01 consisting of two magnetic shields, scintillator holder, voltage divider and mechanical housing.

QUICK REFERENCE DATA				
Spectral sensitivity characteristic		S11	(type A)	12
Useful diameter of photocathode		>	44	mm
Spectral sensitivity of the photocathode at 437 nm			60	mA/W
Supply voltage for a gain of 3 x 10 ⁷			1800	V
Anode pulse rise time (with voltage divider B')		*	2,1	ns
Linearity with voltage divider A with voltage divider B with voltage divider B'	up to up to up to	<i>u u u</i>	30 280 80	mA mA mA

To be read in conjunction with "General Operational Recommendations Photomultiplier Tubes".

GENERAL CHARACTERISTICS

Window

Material

Shape

Refractive index at 550 nm

borosilicate plano-concave 1,48

December 1977

Photocathode			
Semi-transparent, head-on			
Material		SbCs	
Useful diameter	>	44	mm
Spectral sensitivity characteristic (Fig. 4)	S11 (type A)	
Maximum sensitivity at	420	± 30	nm
Luminous sensitivity	typ. >	60 45	µA/lm µA/lm
Spectral sensitivity at 437±5 nm		60	mA/W

Electron optical input system

This system consists of : the photocathode; the focusing electrode $g_1;$ the accelerating electrode acc, internally connected to $S_1. \label{eq:system}$

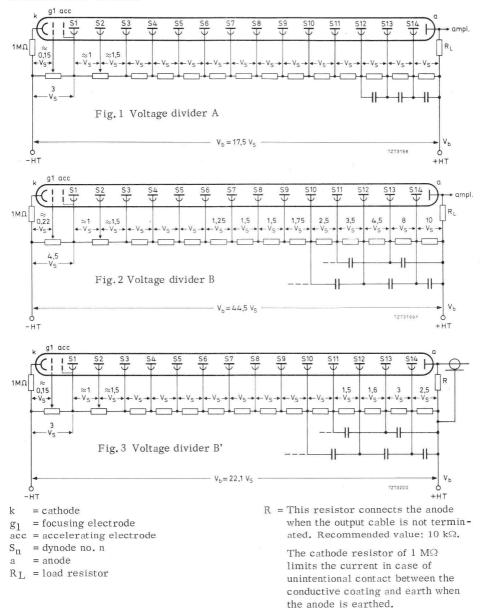
Multiplier system				
Number of stages			14	
Dynode structure	line	ear	focused	
Dynode material			Ag-Mg	
Capacitances				
Grid no.1 to $k + S_1 + acc$	Cg1/k, S1, acc	22	25	pF
Anode to all	Ca	ĸ	9,5	pF
Anode to final dynode	C _{a/S14}	×	7	pF

Magnetic field

When the photocathode is illuminated uniformly the anode current is halved (at V_b =1800V, voltage divider A):

- at a magnetic flux density of 0,2 mT in the direction of the longitudinal axis;

- at a magnetic flux density of 0, 1 mT perpendicular to axis ^a) (see Fig. below);


- at a magnetic flux density of 0,05 mT parallel to axis a).

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

Axis a) with respect to base pins (bottom view).

RECOMMENDED CIRCUITS

Typical value of capacitors: 1 nF.

TYPICAL CHARACTERISTICS

With voltage divider A (Fig. 1)	1)			
Supply voltage for a gain of 3×10^7 (Fig. 6)		<	2300	V
		typ.	1800	V
Anode dark current at $G = 3 \times 10^7$ (Fig. 6)	2) 3)	< typ.	1500 20	nA nA
Anode pulse rise time at V_b = 1800 V	4)5)	*	2,3	ns
Anode pulse duration at half height at V_b = 1800 V	4) ⁵)	w	4,5	ns
Signal transit time at V_b = 1800 V	4) ⁵)	22	46	ns
Anode current linear within 2%, at $\rm V_b$ = 1800 V up to		и	30	mA
Obtainable peak anode current		u	100	mA
With voltage divider B (Fig. 2)	¹)			
Gain at $V_b = 2500 V$ (Fig.6)		*	$1,2 \ge 10^7$	
Anode pulse rise time at V_b = 2500 V	4)5)	~	2,6	ns
Anode pulse duration at half height at V_b = 2500 V	⁴) ⁵)	~	3,9	ns
Signal transit time at V_b = 2500 V	⁴) ⁵)	*	48	ns
Signal transit time difference between the centre of the photocathode and 18 mm from the centre, at $V_{\rm b}$ = 2500 V		*	0,8	ns
Anode current linear within 2%, at V_b = 2500 V up to		~	280	mA
Obtainable peak anode current		~	0,5 to 1,0	
	1		o,o to 1,o	
With voltage divider B' (Fig. 3)	1)		_	
Gain at $V_b = 2200 V$ (Fig.6)		~	$8 \ge 10^7$	
Anode pulse rise time at V_b = 2200 V	4)5)	~	2,1	ns
Anode pulse duration at half height at V_b = 2200 V	⁴) ⁵)	*	3,5	ns
Signal transit time at V_b = 2200 V	4) 5)	~	44	ns
Signal transit time fluctuation at $V_{\rm b}$ = 2200 V	⁶)	≈ ,	0,5	ns
Signal transit time difference between the centre of the photocathode and 18 mm from the centre, at $V_{\rm b}$ = 2200 V		*	0,5	ns
Anode current linear within 2%, at V_b = 2200 V up to		~	80	mA
Obtainable peak anode current		и	300	mA

Notes see page 5.

Notes to page 4

- ¹) To obtain a peak pulse current greater than that obtainable with divider A , it is necessary to increase the inter-dynode voltages of the stages progressively. Divider circuits B and B' are examples of "progressive" dividers, each giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended to keep the increase in voltage between one stage and the next less than a factor of 2.
- 2) Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at + HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The tube is provided with a conductive coating connected to the cathode. It is recommended that, if a metal shield is used, this be kept at cathode potential. This implies safety precautions to protect the user. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > 10¹⁵ Ω .
- ³) Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx 1/4$ h).
- 4) Measured with a pulsed-light source, with a pulse duration (FWHM) of <1 ns, the cathode being completely illuminated.

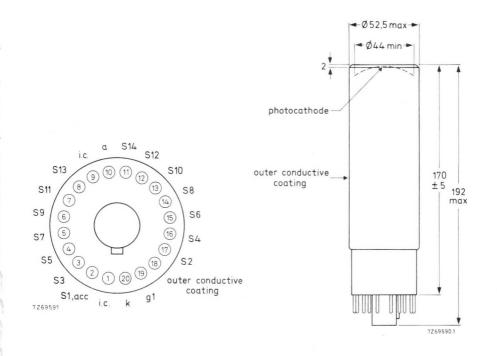
The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b , approximately as $V_b^{-1/2}$.

- ⁵) A non-inductive resistor of 50 Ω is incorporated in the base, connected to S14. See also "General Operational Recommendations Photomultiplier Tubes".
- ⁶) Transit time fluctuation is defined as the standard deviation of the transit time distribution of single electrons leaving the photocathode.

LIMITING VALUES	(Absolute max.	rating system)	
-----------------	----------------	----------------	--

Supply voltage	1)	max.	2500	V
Continuous anode current	5)	max.	0,2	mA
Voltage between first dynode and photocathode	²)	max. min.	800 250	
Voltage between focusing electrode $\ensuremath{\mathbf{g}}_1$ and photon	athode	max.	100	V
Voltage between consecutive dynodes		max.	500	V
Voltage between anode and final dynode	3)	max. min.	500 80	
Ambient temperature range	4)			
Operational (for short periods of time)		max. min.	+80 -30	-
Continuous operation and storage		max. min.	+50 -30	

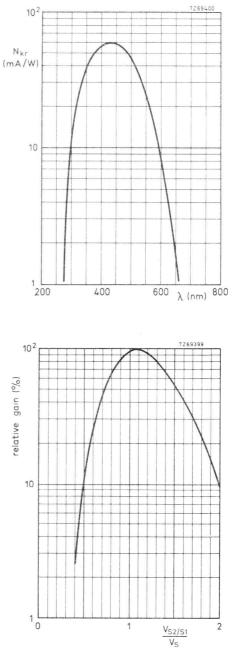
 Total HT supply voltage or the voltage at which the tube has a gain of 2x10⁸, whichever is lower.


- $^{2}\ensuremath{)}$ Minimum value to obtain good collection in the input optics
- ³) When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- ⁴) This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb.

Where low temperature operation is contemplated, the supplier should be consulted.

 $^5)$ For applications requiring a high stability a value of < 10 μA is recommended.

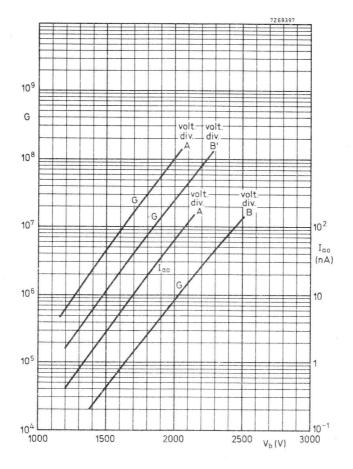
MECHANICAL DATA


Dimensions in mm

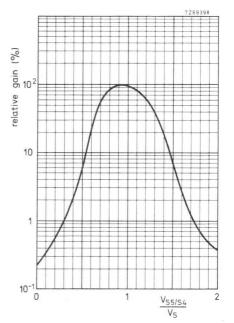
Net mass: 235 g Base: 20-pin (JEDEC B20-102)

ACCESSORIES

Socket	type	FE1020	
Mu-metal shield	type	56130	



Spectral sensitivity characteristic


Fig. 5

Relative gain as a function of the voltage between S2 and S1, normalized to $\rm V_{\ensuremath{S}}$ VS3/S1 constant

Gain G, and anode dark current ${\rm I}_{\rm ao},$ as a function of supply voltage ${\rm V}_{\rm b}$

Fig. 7

Relative gain as a function of the voltage between S5 and S4 normalized to $\rm V_S$ $\rm V_{S6/S4}$ constant

MAINTENANCE TYPE

56CVP

10-STAGE PHOTOMULTIPLIER TUBE

The 56CVP is a 44 mm (useful diameter) head-on photomultiplier tube with a planoconcave window and a semi-transparent S1 (type C) photocathode. The tube is intended for use in optical experiments such as laser detection and pollution monitoring, where a high sensitivity in the red and infrared region is required combined with good time characteristics.

QUICK REFERENCE DATA				
	S1 (1	ype C)		
	>	44	mm	
		1,4	mA/W	
		20	µA/lm	
		1800	V	
	*	2,1	ns	
up to up to	n n	30 280	mA mA mA	
		≈ up to ≈ up to ≈	$1, 4$ 20 1800 $\approx 2, 1$ up to ≈ 30 up to ≈ 280	

To be read in conjunction with "General Operational Recommendations Photomultiplier Tubes".

GENERAL CHARACTERISTICS

Window

Material

Shape

Refractive index at 550 nm

borosilicate plano-concave 1,48

January 1978

Photocathode

Semi-transparent, head-on			
Material	Ag-O-Cs		
Useful diameter	>	44	mm
Spectral sensitivity characteristic (Fig. 4)	S1 (type C)	
Maximum spectral sensitivity at	8	00 ± 100	nm
Luminous sensitivity Spectral sensitivity at 903 ± 8 nm at 1060 ± 10 nm	typ. >	20 15 1,4 0,1	µA/lm µA/lm mA/W mA/W

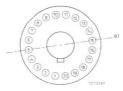
Electron optical input system

This system consists of: the photocathode; the focusing electrode $g_1;$ the accelerating electrode acc, internally connected to $S_1. \label{eq:system}$

Multiplier system

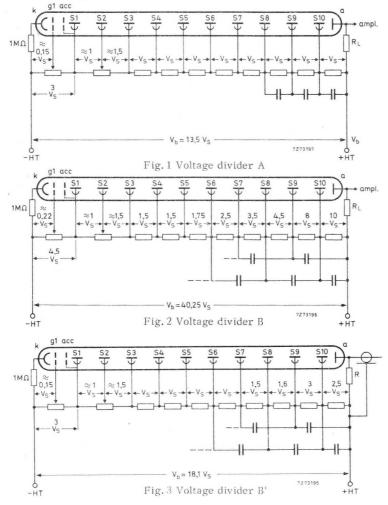
Number of stages Dynode structure Dynode material			10 linear foo Ag - Mg	
Capacitances Grid no.1 to k + S ₁ + acc Anode to all Anode to final dynode	C _{g1/k} ,S1,acc C _a C _{a/S10}	u u u	25 9,5 7	pF pF pF

Magnetic field


When the photocathode is illuminated uniformly the anode current is halved (at V_b = 1800 V, voltage divider A):

- at a magnetic field density 0, 2 mT in the direction of the longitudinal axis;

- at a magnetic field density 0,1 mT perpendicular to axis a) (see Fig. below);


- at a magnetic field density 0,05 mT parallel to axis a).

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

Axis a) with respect to base pins (bottom view).

- R = This resistor connects the anode when the output cable is not terminated. Recommended value: 10 k Ω
 - The cathode resistor of 1 M Ω limits the current in case of unintentional contact between the conductive coating and earth when the anode is earthed.
 - Typical value of capacitors: 1 nF.

k = cathode

- $g_1 = focusing electrode$
- acc = accelerating electrode
- $S_n = dynode no. n$
- a = anode
- RL = load resistor

TYPICAL CHARACTERISTICS

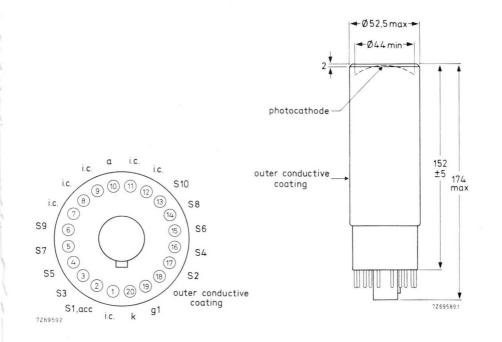
With voltage divider A (Fig. 1)	1)		1000	
Supply voltage for an anode sensitivity $\rm N_{a}$ = 10 A	/lm	typ. <	1800 2500	V V
Anode dark current at $N_a = 10 \text{ A/lm}$ (Fig.6)	2)3)	typ. <	4 20	μΑ μΑ
Anode pulse rise time at V _b = 1800 V	4)5)	\approx	2,3	ns
Anode pulse duration at half height at V_b = 1800 V	4)5)	\approx	4,2	ns
Signal transit time at V_b = 1800 V	4)5)	~	32	ns
Anode current linear within 2% at $\rm V_b$ = 1800 V up to		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30	mA
Obtainable peak anode current		~	100	mA
With voltage divider B (Fig. 2)	1)			
Anode sensitivity at V _b = 2500 V		~	1,5	A/lm
Anode pulse rise time at $V_b = 2500 V$	4)5)	~	2,4	ns
Anode pulse duration at half height at V_b = 2500 V	V 4)5)	~	3,3	ns
Signal transit time at V_b = 2500 V	4)5)	α	34	ns
Signal transit time difference between the centre of the photocathode and 18 mm from the centre at $V_{\rm b}$ = 2500 V		n	0,8	ns
Anode current linear within 2%, at Vb = 2500 V			200	
up to		~	280	mA
Obtainable peak anode current		0	,5 to 1	А
With voltage divider B' (Fig. 3)	1)			
Anode sensitivity at V_b = 2200 V		~	12	A/lm
Anode pulse rise time at V_b = 2200 V	4)5)	~	2,1	ns
Anode pulse duration at half height at V_b = 2200 V	V 4)5)	2	3	ns
Signal transit time at V_b = 2200 V	4)5)	\approx	32	ns
Signal transit time fluctuation at V_b = 2200 V		\approx	0,5	ns
Signal transit time difference between the centre of the photocathode and 18 mm from the centre at $V_{\rm b}$ = 2200 V		~	0,5	ns
Anode current linear within 2%, at V_b = 2200 V	N			
up to		\mathcal{U}	80	mA
Obtainable peak anode current		~	.300	mА

Notes see page 5.

Notes to page 4

- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltage of the stages progressively. Divider circuits B and B' are examples of "progressive" dividers, each giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended to keep the increase in voltage between one stage and the next less than a factor 2.
- 2) Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at + HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The tube is provided with a conductive coating connected to the cathode. It is recommended that, if a metal shield is used, this be kept at cathode potential. This implies safety precautions to protect the user.

The glass envelope of the tube should be supported only by isolators having an insulation resistance of > $10^{15}~\Omega_{\star}$


- 3) Dark current of S1 (type C) cathodes is measured at a temperature of 20 °C. The dark current varies sharply with temperature. See also note 5 on page 6.
- 4) Measured with a pulsed light source with a pulse duration (FWHM) of < 1 ns; the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of the HT supply voltage V_b, approximately as V_b^{-1/2}.
- 5) A non-inductive resistor of 50 Ω is incorporated in the base, connected to S10. See also "General Operational Recommendations Photomultiplier tubes".
- ⁶) Transit time fluctuation is defined as the standard deviation of the transit time distribution of single electrons leaving the photocathode.

LIMITING VALUES (Absolute max. rating sys	tem)			
Supply voltage	1)	max.	3000	V
Continuous anode current	5)	max.	20	μA
Voltage between first dynode and photocathode	2)	max. min.	800 250	V V
Voltage between focusing electrode \mathbf{g}_1 and photocathode		max.	100	V
Voltage between consecutive dynodes		max.	600	V
Voltage between anode and final dynode	3)	max. min.	750 80	V V
Ambient temperature range	4)5)			
Operational (for short periods of time)		max. min.	+50 - 30	°C °C
Continuous operation and storage		max. min.	+50 -30	°С °С

- Total HT supply voltage, or the voltage at which the tube has an anode sensitivity of 60 A/lm, whichever is lower.
- 2) Minimum value to obtain good collection in the input optics.
- 3) When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 4) The lower temperature limit is set by stresses in the sealing layer of the base to the glass bulb. When low temperature operation is contemplated the manufacturer should be consulted.
- 5) As the dark current increases by a factor 2 for every 7 °C increase in temperature, the anode sensitivity should be limited so that the continuous anode current limit is not exceeded.

MECHANICAL DATA

Dimensions in mm

Net mass : 210 g

Base : 20-pin (JEDEC B20-102)

ACCESSORIES

Socket	type FE1020
Mu-metal shield	type 56130

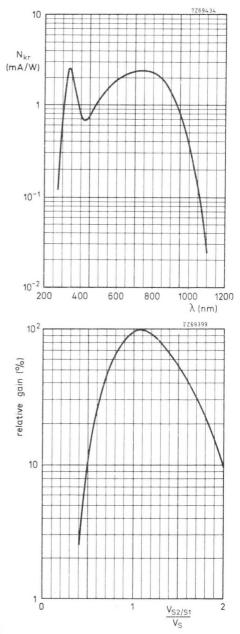
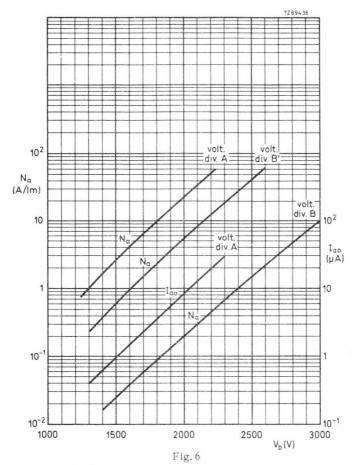
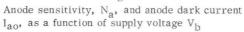




Fig.4 Spectral sensitivity characteristic

Fig.5 Relative gain as a function of the voltage between S2 and S1, normalized to $\rm V_S$ $\rm V_{S3/S1}$ constant.

December 1975

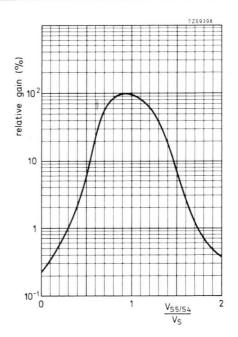


Fig. 7 Relative gain as a function of the voltage between S5 and S4 normalized to $\rm V_{\ensuremath{S}}$ VS6/S4 constant.

MAINTENANCE TYPE

14-STAGE PHOTOMULTIPLIER TUBE

The 56DVP is a 44 mm (useful diameter) head-on photomultiplier tube with a planoconcave window and a semi-transparent bialkaline type D photocathode. The tube is intended for use in nuclear physics where the number of photons to be detected is very low. The tube features a high cathode sensitivity and a very good collection efficiency combined with low background noise and good time characteristics, and is especially useful in experiments such as coincidence measurements, Cerenkov counting etc. A special version, the 56DVP/03, features a background noise level below 1000 c/s. For coincidence measurements, pairs of tubes with equal anode sensitivity at a voltage difference of less than 10% can be ordered under type number 56DVP/A or 56DVP/03/A respectively.

The 56DVP (and its versions) can be used in a special mounting assembly S5630/01 consisting of two magnetic shields, scintillator holder, voltage divider and mechanical housing.

QUICK REFERENCE DATA				
Spectral sensitivity characteristic			type.[)
Useful diameter of the photocathode		>	44	mm
Quantum efficiency at 401 nm			26	%
Spectral sensitivity of the photocathode at 401 nm			80	mA/W
Supply voltage for a gain of 3 x 10^7			1900	V
Anode pulse rise time (with voltage divider B')		*	2,1	ns
Linearity with voltage divider A	up to	*	30	mA
with voltage divider B	up to	*	280	mA
with voltage divider B'	up to	*	80	mA

To be read in conjunction with "General Operational Recommendations Photomultiplier Tubes".

GENERAL CHARACTERISTICS

Window

Material

Shape

Refractive index at 550 nm

borosilicate plano-concave 1,48

December 1977

Photocathode	1

Semi-transparent, head-on			
Material		Sb-K-	Cs
Useful diameter	>	44	mm
Spectral sensitivity characteristic (Fig. 4)		type	D
Maximum spectral sensitivity at	400	± 30	nm
Quantum efficiency at 401 nm		26	%
Spectral sensitivity at 401 ± 3 nm 2)	typ.	80	mA/W
spectral sensitivity at 101 2.0 min 2)	>	60	mA/W

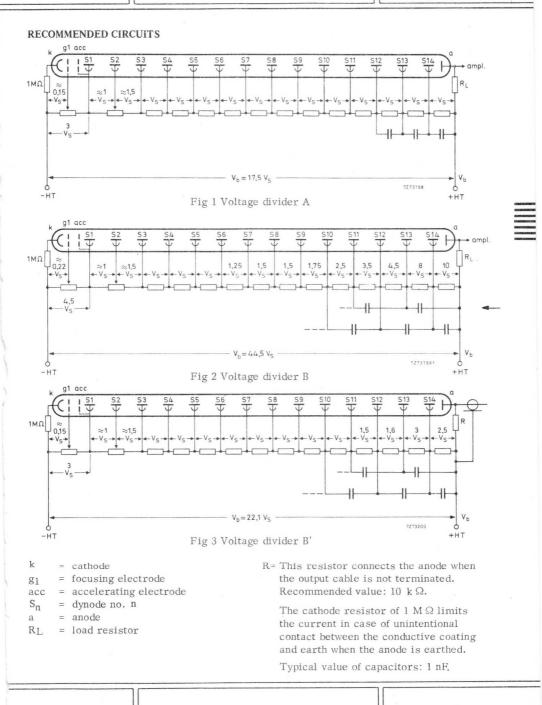
Electron optical input system

This system consists of: the photocathode $\$; the focusing electrode $g_1;$ the accelerating electrode acc, internally connected to $S_1.$

Multiplier system

Number of stages	14			
Dynode structure	linear focused			
Dynode material	Ag-Mg			
Capacitances Grid no. 1 to k + S1 + acc	Cg1/k,S1,acc	~	25	pF
Anode to all	C _a	<i>n n</i>	9,5	pF
Anode to final dynode	Ca/S14		7	pF

Magnetic field


When the photocathode is illuminated uniformly the anode current is halved (at $V_{\rm h}$ = 1800 V, voltage divider A):

_at a magnetic flux density of 0, 2 mT in the direction of the longitudinal axis; _at a magnetic flux density of 0, 1 mT perpendicular to axis a) (see Fig. below); _at a magnetic flux density of 0, 05 mT parallel to axis a).

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

- The bialkaline photocathode has a significant resistance which increases rapidly with reducing temperature. It is thus recommended that it should not be subjected to light of too great an intensity: the cathode current should be limited to, for example, 1 nA at room temperature or 0, 1 nA at - 30 °C.
- If too high a photocurrent is passed, the cathode can no longer be considered to be an equipotential surface, and the focusing of electrons onto the first dynode will be affected, resulting in departures of linearity.
- 2) Measuring equipment is calibrated by comparison with a Schwartz thermocouple.

December 1975

TYPICAL CHARACTERISTICS

With voltage divider A (Fig. 1)	¹)				
Supply voltage for a gain of 3×10^7 (Fig. 6)			<	2300 1900	V V
Anode dark current at a gain of 3×10^7 (Fig. 6)	2)	3)	typ.		
56DVP			< typ.	60 6	nA nA
56DVP/03			<	50	nA
Background noise at a gain of 3 x 10 ⁷ (Fig. 8) 56DVP	4)		typ.	4 3000	nA c/s
			<	1000	c/s
56DVP/03			typ.	500	c/s
Anode pulse rise time at V_b = 1800 V	5)	6)	~	2,3	ns
Anode pulse duration at half height at $\rm V_{b}\!=\!1800V$	5)	6)	~	4,5	ns
Signal transit time at $V_b = 1800 V$	5)	6)	~	46	ns
Anode current linear within 2% at V_b = 1800 V					
up to			*	30	mA
Obtainable peak anode current			~	100	mA
With voltage divider B (Fig. 2) 1)					
Gain at $V_b = 2500 \text{ V}$ (Fig. 6)			~	8 x 10 ⁶	
Anode pulse rise time at V_b = 2500 V	5)	6)	~	2,6	ns
Anode pulse duration at half height at $V_{\rm D}\!=\!2500V$	5)	6)	~	3,9	ns
Signal transit time at $V_b = 2500 V$	5)	6)	~	48	ns
Signal transit time difference between the centre of the photo cathode and 18 mm from the centre at $V_b = 2500 \text{ V}$			~	0,8	ns
Anode current linear within 2% at V_{b} = 2500 V up to			~	280	mA
Obtainable peak anode current			~	0,5 to 1	А

Notes see page 6.

=

With voltage divider B' (Fig. 3)	¹)			
Gain at V_b = 2200 V (Fig. 6)		≈ 4	$\mathbf{x} \ 10^7$	
Anode pulse rise time at V_b = 2200 V	5) 6)	~	2,1	ns
Anode pulse duration at half height at $V_{\rm b}\!=\!2200V$	5) 6)	~	3,5	ns
Signal transit time at V_b = 2200 V	5) 6)	*	44	ns
Signal transit time fluctuation at V_{b} = 2200 V	7)	~	0,5	ns
Signal transit time difference between the centre of the photocathode and 18 mm from the centre at V_b = 2200 V		*	0,5	ns
Anode current linear within 2% at V_{b} = 2200 V up to		~	80	mA
Obtainable peak anode current		~	300	mA
LIMITING VALUES (Absolute max. rating system	m)			
Supply voltage	8)	max.	2500	V
Continuous anode current		max.	0,2	mA
Voltage between first dynode and photocathode	⁹)	max.	800	V
Voltage between focusing electrode, g ₁ , and photocathode		min. max.	250 100	V V
Voltage between consecutive dynodes		max.	500	V
Voltage between anode and final dynode	10)	max.	500 80	v v
Ambient temperature range Operational (for short periods of time)	11)	min. max. min.		°C °C
Continuous operation and storage		max. min.	+50 -30	°C

Notes see pages 6 and 7.

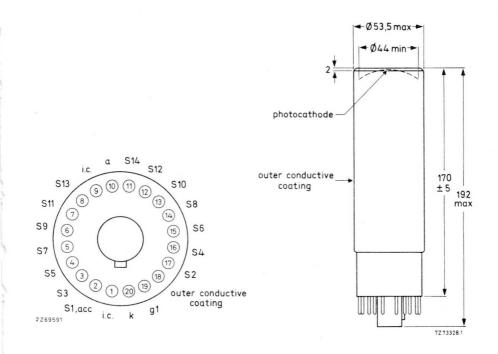
Notes to pages 4 and 5

- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltages of the stages progressively. Dividers B and B' are examples of "progressive" dividers, each giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- ²) Wherever possible, the power supply should be arraged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at --HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The tube is provided with a conductive coating connected to the cathode. It is recommended that, if a metal shield is used, this be kept at cathode potential. This implies safety precautions to protect the user. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > $10^{15} \Omega$.
- ³) Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx 1/4$ h).
- ⁴) After having been stored with its protective hood, the tube is placed in darkness with V_b set to a value to give a gain of 3 x 10⁷.

After a 30 min stabilization period noise pulses with a threshold of $4,25 \times 10^{-13}$ C (corresponding to 0, 1 photoelectron) are recorded.

 $^{5})$ Measured with a pulsed-light source, with a pulse duration (FWHM) of $< 1\,\text{ns},$ the cathode being completely illuminated.

The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage $V_{\rm b}$, approximately as $V_{\rm b}$


- 6) A non-inductive resistor of 50 Ω is incorporated in the base, connected to S14. See also "General Operational Recommendations Photomultiplier Tubes".
- 7) Transit time fluctuation is defined as the standard deviation of the transit time distribution of single electrons leaving the photocathode.
- $^{8)}$ Total HT supply voltage, or the voltage at which the tube has a gain of $2 \times 10^{8},$ whichever is lower.
- 9) Minimum value to obtain good collection in the input optics.
- 10)When calculating the anode voltage the voltage drop across the load resistor should be taken into account.

11) This range of temperatures in limited principally by stresses in the sealing layer of the base to the glass bulb.

Where low temperature operation is contemplated, the supplier should be consulted.

MECHANICAL DATA

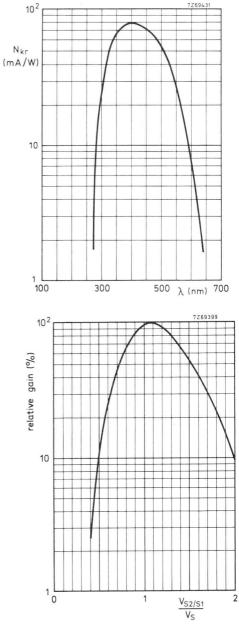
Dimensions in mm

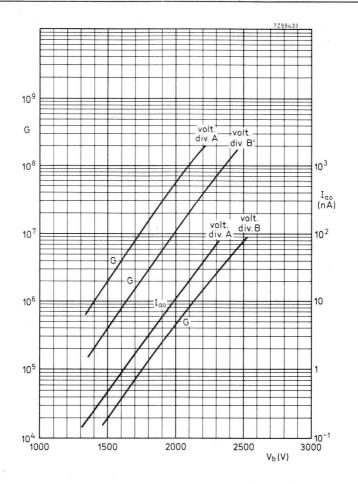
Net mass: 250 g Base : 20_ pin (JEDEC B20-102)

ACCESSORIES

Socket		type	FE1020
Mu-metal	shield	type	56130

December 1977




Fig. 4 Spectral sensitivity characteristic

between S_2 and $S_1,\ normalized to <math display="inline">V_S$ $V_{S3/S1}\ constant$

Relative gain as a function of the voltage

8

Fig. 5

Gain G, and anode dark current ${\rm I}_{\rm ao},$ as a function of supply voltage ${\rm V}_{\rm b}$

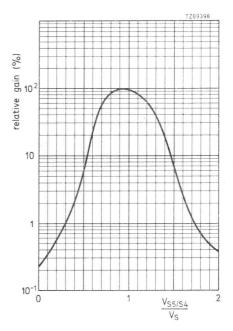


Fig. 7

Relative gain as a function of the voltage between $\rm S_5$ and $\rm S_4,$ normalized to $\rm V_S$ $\rm V_{S6/S4}$ constant.

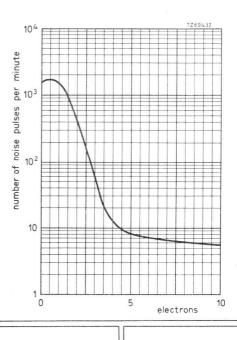


Fig. 8

Typical background spectrum from 0,1 to 10 equivalent photoelectrons, at a gain of 3 x 10^7 with voltage divider A.

14-STAGE PHOTOMULTIPLIER TUBE

The 56TUVP is a 44 mm (useful diameter) head-on photomultiplier tube with a planoconcave quartz window and a semi-transparent trialkaline type TU photocathode. The tube is intended for use in optical applications where a high sensitivity in the region from ultraviolet to the near infrared is required combined with good time characteristics. The 56TUVP can be used in a special mounting assembly S5630/01 consisting of two magnetic shields, scintillator holder, voltage divider, and mechanical housing.

QUICK REFERENCE DAT	Γ A			
Spectral sensitivity characteristic		type	TU	
Useful diameter of the photocathode		>	44	mm
Spectral sensitivity of the photocathode at 698 nm			15	mA/W
Supply voltage for a gain of 3 x 10^7			2050	V
Anode pulse rise time (with voltage divider B')		~	2,1	ns
Linearity				
with voltage divider A	up to	~	30	mA
with voltage divider B	up to	~	280	mA
with voltage divider B'	up to	~	80	mA

To be read in conjunction with "General Operational Recommendations Photomultiplier Tubes".

GENERAL CHARACTERISTICS

Window

Material

Shape

Refractive index at 550 nm

fused silica plano-concave 1,46

December 1977

Photocathode

Semi-transparent, head-on Material Useful diameter		Sb - Na - K - Cs >	44	mm
Spectral sensitivity characteristic (Fig Maximum spectral sensitivity at	, 4)	type TU	420 ± 30	nm
Luminous sensitivity	1)	typ. >	150 90	µA/lm µA/lm
Spectral sensitivity at 698 \pm 7 nm	2)		15	mA/W

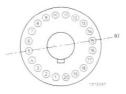
Electron optical input system

This system consists of: the photocathode; the focusing electrode ${\rm g}_1;$ the accelerating electrode acc, internally connected to ${\rm S}_1.$

Multiplier system

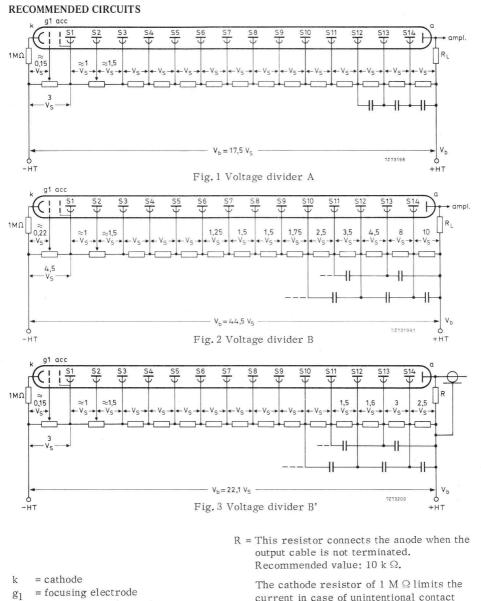
Number of stages			14	
Dynode structure			linear focu	ised
Dynode material			Ag-Mg	
Capacitances				
Grid no. 1 to k + S1 + acc	Cg1/k, S1, acc	~	25	pF
Anode to all	Ca	\approx	9,5	pF
Anode to final dynode	Ca/S14	*	7	pF

Magnetic field


When the photocathode is illuminated uniformly the anode current is halved (at V_b = 1800 V, voltage divider A):

- at a magnetic flux density of 0,2 mT in the direction of the longitudinal axis;

- at a magnetic flux density of 0, 1 mT perpendicular to axis a) (see Fig. below);


- at a magnetic flux density of 0,05 mT parallel to axis a).

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

1) Cathode luminous sensitivity is measured by means of a tungsten filament lamp of colour temperature 2856 ± 5 K.

2) Measuring equipment is calibrated by comparison with a Schwartz thermocouple.

- acc = accelerating electrode
- $S_n = dynode no. n$
- a = anode
- RL = load resistor

Typical value of capacitors: 1 nF.

when the anode is earthed.

between the conductive coating and earth

TYPICAL CHARACTERISTICS

With voltage divider A (Fig. 1)	1)			
Supply voltage for a gain of $3 \ge 10^7$		< typ.	2500 2050	VV
Anode dark current at a gain of 3×10^7 (Fig. 6)	2)3)	< typ.	1500 60	nA nA
Anode pulse rise time at V_b = 1800 V	4)5)	*	2,3	ns
Anode pulse duration at half height at V_b = 1800 V	4)5)	*	4,5	ns
Signal transit time at V _b = 1800 V	4)5)	~	46	ns
Anode current linear within 2% at V _b 1800 V up to		~	30	mA
Obtainable peak anode current		~	100	mA
With voltage divider B (Fig. 2)	1)			
Gain at V_b = 2500 V (Fig. 6)		*	$3 \ge 10^{6}$	
Anode pulse rise time at V_b = 2500 V	4)5)	~	2,6	ns
Anode pulse duration at half height at V_b = 2500 V		*	3,9	ns
Signal transit time at V _b = 2500 V	4)5)	~	48	ns
Signal transit time difference between the centre of the photocathode and 18 mm from the centre at $\rm V_b$ = 2500 V		~	0,8	ns
Anode current linear within 2%, at $\rm V_b$ = 2500 V up to		~	280	mA
Obtainable peak anode current		~	0,5 to 1	А
With voltage divider B' (Fig. 3)	1)			
Gain at V _b = 2200 (Fig. 6)		~	$2 \ge 10^7$	
Anode pulse rise time at $V_{\rm b}$ = 2200 V	4)5)	~	2,1	ns
Anode pulse duration at half height, at V_b = 2200 V	4)5)	≈	3,5	ns
Signal transit time at V_b = 2200 V	4)5)	~	44	ns
Signal transit time fluctuation at V_b = 2200 V	6)	~	0,5	ns
Signal transit time difference between the centre of the photocathode and 18 mm from the centre, at $\rm V_b$ = 2200 V		~	0,5	ns
Anode current linear within 2% at V_b = 2200 V, up to		~	80	mA
Obtainable peak anode current		~	300	mA
Notes see page 5.				

Notes to page 4

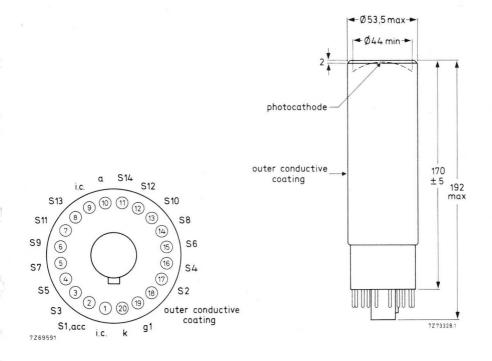
- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltages of the stages progressively. Divider circuits B and B' are examples of "progressive" dividers, each giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- 2) Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at + HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circum-stances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The tube is provided with a conductive coating connected to the cathode. It is recommended that, if a metal shield is used, this be kept at cathode potential. This implies safety precautions to protect the user. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > $10^{15} \Omega$.
- 3) Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx 1/4$ h).
- 4) Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the-illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b - 1/2.
- 5) A non-inductive resistor of 50 Ω is incorporated in the base, connected to S14. See also "General Operational Recommendations Photomultiplier Tubes".
- 6) Transit time fluctuation is defined as the standard deviation of the transit time distribution of single electrons leaving the photocathode.

LIMITING VALUES	(Absolute max.	rating system)
-----------------	----------------	----------------

Supply voltage	1)	max.	2750	V
Continuous anode current	5)	max.	0,2	mA
Voltage between first dynode and photocathode	2)	max. min.	800 250	V V
Voltage between focussing electrode $g_1 \\ \mbox{and photocathode}$		max.	100	V
Voltage between consecutive dynodes		max.	500	V
Voltage between anode and final dynode	3)	max. min.	500 80	V V
Ambient temperature range Operational (for short periods of time)	4)	max. min.	+80 -30	oC 0C
Continuous operation and storage		max. min.	+50 -30	°C °C

¹) Total HT supply voltage, or the voltage at which the tube in voltage divider "A" has a gain of 2×10^8 , whichever is lower.

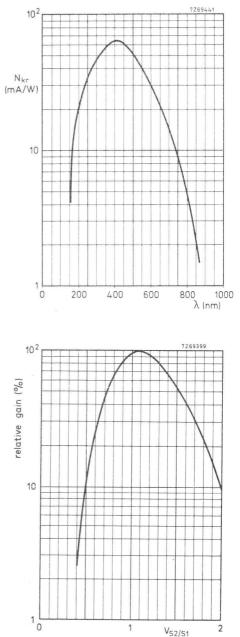
²) Minimum value to obtain good collection in the input optics.


³⁾ When calculating the anode voltage the voltage drop across the load resistor should be taken into account.

⁴) This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb. Where low temperature operation is contemplated, the supplier should be consulted.

⁵) For applications requiring high stability a value of <10 μ A is recommended.

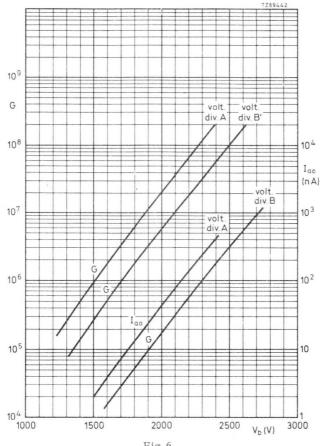
MECHANICAL DATA

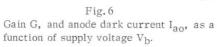

Dimensions in mm

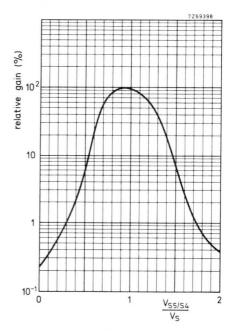
Net mass	:	225	g	
Base	•	20 - pin	(IEDEC	B20-102)

ACCESSORIES

Socket	type FE1020
Mu-metal shield	type 56130


1


Fig.4 Spectral sensitivity characteristic.


Fig.5 Relative gain as a function of the voltage between S2 and S1, normalized to VS VS3/S1 constant.

2

 $\frac{V_{S2/S1}}{V_S}$

Fig. 7 Relative gain as a function of the voltage between S5 and S4 normalized to $\rm V_S$ $\rm V_{S6/S4}$ constant.

14-STAGE PHOTOMULTIPLIER TUBE

The 56TVP is a 44 mm (useful diameter) head-on photomultiplier tube with a planoconcave window and a semi-transparent S20 (type T) photocathode. The tube is intended for use in low light level physical experiments in the red and near infrared part of the spectrum such as laser detection, pollution monitoring, life time measurements. The tube also features good time characteristics.

The 56TVP can be used in a special mounting assembly S5630/01 consisting of two magnetic shields, scintillator holder, voltage divider, and mechanical housing.

QUICK REFERENCE DATA					
Spectral sensitivity characteristic		S20	(type T)		
Useful diameter of the photocathode		>	44	mm	
Spectral sensitivity of the photocathode at 698 nm			15	mA/W	
Supply volt age for a gain of 3 x 10 ⁷			2050	V	
Anode pulse rise time (with voltage divider B')		æ	2,1	ns	
Linearity					
with voltage divider A	up to	*	30	mA	
with voltage divider B	up to	*	280	mA	
with voltage divider B'	up to	*	80	mA	

To be read in conjunction with "General Operational Recommendations $\ensuremath{\mathsf{Photomultiplier}}$ Tubes".

GENERAL CHARACTERISTICS

WindowMaterialborosilicateShapeplano-concaveRefractive index at 550 nm1,48

Photocathode

Semi-transparent, head-on Material		5	Sb-Na-K-Cs		
Useful diameter			>	44	mm
Spectral sensitivity characteristic (Fig	. 4)	5	520 (type T)		
Maximum spectral sensitivity at			420	± 30	nm
Luminous sensitivity	1)		>	150 90	µA/lm µA/lm
Spectral sensitivity at 698 \pm 7 nm	2)			15	mA/W

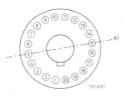
Electron optical input system

This system consists of: the photocathode; the focusing electrode ${\rm g}_1;$ the accelerating electrode acc, internally connected to ${\rm S}_1.$

Multiplier system

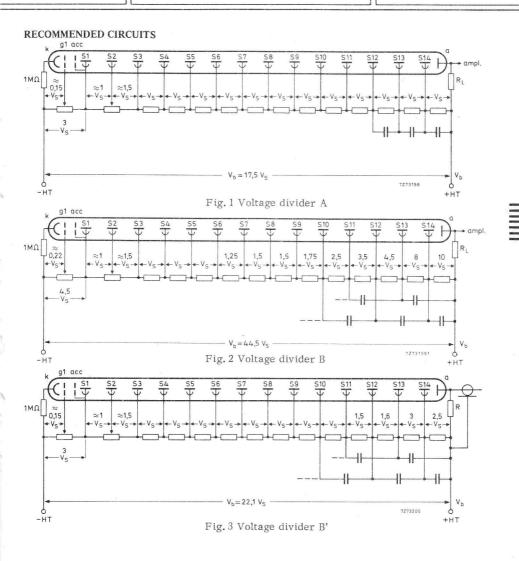
Number of stages Dynode structure Dynode material		li	14 near focu Ag - Mg	sed
Capacitances Grid no.1 to k + S1 + acc Anode to all Anode to final dynode	C _{g1/k} ,S1,acc C _a C _{a/S14}	u u u	25 9,5 7	pF pF pF

Magnetic field


When the photocathode is illuminated uniformly the anode current is halved (at $V_b = 1800$ V, voltage divider A):

- at a magnetic flux density of 0,2 mT in the direction of the longitudinal axis:

- at a magnetic flux density of 0,1 mT perpendicular to axis a) (see Fig. below);


- at a magnetic flux density of 0,05 mT parallel to axis a).

It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.

 Cathode luminous sensitivity is measured by means of a tungsten filament lamp of colour temperature 2856 ± 5 K.

2) Measuring equipment is calibrated by comparison with a Schwartz thermocouple.

- R = This resistor connects the anode when the output cable is not terminated. Recommended value: 10 k Ω.
 - The cathode resistor of 1 M Ω limits the current in case of unintentional contact between the conductive coating and earth when the anode is earthed.

Typical value of capacitors: 1 nF.

k = cathode

- g1 = focusing electrode
- acc = accelerating electrode
- $S_n = dynode no. n$
- a = anode
- $R_L = load resistor$

TYPICAL CHARACTERISTICS

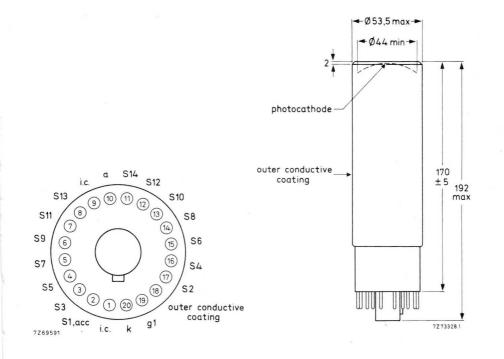
With voltage divider A (Fig. 1)	1)			
Supply voltage for a gain of 3×10^7		< typ.	2500 2050	V V
Anode dark current at a gain of 3×10^7 (Fig. 6)	2)3)	< typ.	1500 60	nA nA
Anode pulse rise time at V_b = 1800 V	4)5)	*	2,3	ns
Anode pulse duration at half height at $\rm V_b$ = 1800 V	4)5)	~	4,5	ns
Signal transit time at V_b = 1800 V	4)5)	*	46	ns
Anode current linear within 2% at V_{b} = 1800 V up to		~	30	mA
Obtainable peak anode current		×	100	mA
With voltage divider B (Fig. 2)	1)			
Gain at V_b = 2500 V (Fig. 6)		*	$3 \ge 10^{6}$	
Anode pulse rise time at V_b = 2500 V	4)5)	*	2,6	ns
Anode pulse duration at half height at $\rm V_{b}$ = 2500 V		~	3,9	ns
Signal transit time at V_b = 2500 V	4)5)	*	48	ns
Signal transit time difference between the centre of the photocathode and 18mm from the centre, at $\rm V_b=2500~V$		~	0,8	ns
Anode current linear within 2%, at $\rm V_{b}$ = 2500 V up to		22	280	mA
Obtainable peak anode current		*	0,5 to 1	А
With voltage divider B' (Fig. 3)	1)			
Gain at $V_b = 2200$ (Fig. 6)		*	$2 \ge 10^7$	
Anode pulse rise time at V_b = 2200 V	4)5)	~	2,1	ns
Anode pulse duration at half height, at V_b = 2200 V	4)5)	~	3,5	ns
Signal transit time at V_b = 2200 V	4)5)	~	44	ns
Signal transit time fluctuation at V_b = 2200 V	6)	~	0,5	ns
Signal transit time difference between the centre of the photocathode and 18 mm from the centre, at $\rm V_b=2200~V$		~	0,5	ns
Anode current linear within 2% at $\rm V_b$ = 2200 V, up to		~	80	mA
Obtainable peak anode current		*	300	mA

Notes see page 5.

Notes to page 4

- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltages of the stages progressively. Divider circuits B and B' are examples of "progressive" dividers, each giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- 2) Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at + HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circum-stances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The tube is provided with a conductive coating connected to the cathode. It is recommended that, if a metal shield is used, this be kept at cathode potential. This implies safety precautions to protect the user. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > $10^{15} \Omega$.
- 3) Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx 1/4$ h).
- 4) Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b -1/2.
- 5) A non-inductive resistor of 50 Ω is incorporated in the base, connected to S14. See also "General Operational Recommendations Photomultiplier Tubes".
- 6) Transit time fluctuation is defined as the standard deviation of the transit time distribution of single electrons leaving the photocathode.

LIMITING VALUES (Absolute max. rating syste	em)			
Supply voltage	1)	max.	2750	V
Continuous anode current	5)	max.	0,2	mA
Voltage between first dynode and photocathode	2)	max. min.	800 250	V V
Voltage between focussing electrode \mathbf{g}_1 and photocathode		max.	100	V
Voltage between consecutive dynodes		max.	500	V
Voltage between anode and final dynode	3)	max. min.	500 80	V V
Ambient temperature range Operational (for short periods of time)	4)	max. min. max.	+80 -30 +50	°C °C
Continuous operation and storage		min.	-30	°C


- ¹) Total HT supply voltage, or the voltage at which the tube in voltage divider "A" has a gain of 2 x 10^8 , whichever is lower.
- 2) Minimum value to obtain good collection in the input optics.
- ³) When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- ⁴) This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb.

Where low temperature operation is contemplated, the supplier should be consulted.

 $^5)$ For applications requiring high stability a value of <10 μA is recommended.

MECHANICAL DATA

Dimensions in mm

Net mass	:	225	g	
Base	:	20 - pin	(JEDEC B20-102)	02)

ACCESSORIES

Socket	type FE1020
Mu-metal shield	type 56130

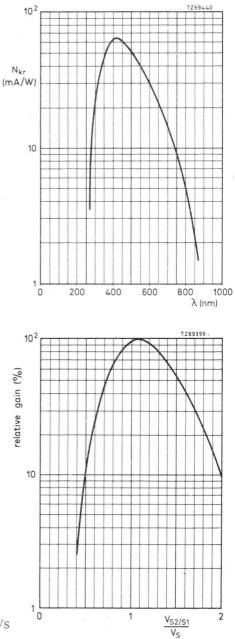
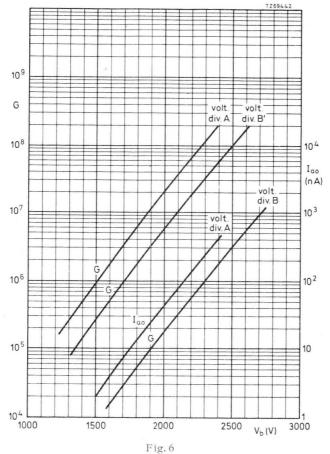
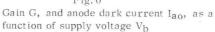




Fig. 4 Spectral sensitivity characteristic

July 1975

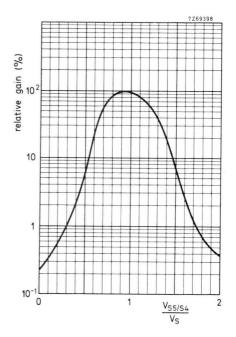


Fig. 7 Relative gain as a function of the voltage between S5 and S4 normalized to $V_{\mbox{\scriptsize S}}$ $V_{\mbox{\scriptsize S}6/S4}$ constant.

12-STAGE PHOTOMULTIPLIER TUBE

The 60DVP is a 200 mm useful diameter head-on photomultiplier tube with a concaveconvex window and a semi-transparent bialkaline type D photocathode.

The tube is intended for use in physical applications where a high time resolution is required and where the number of photons to be detected is low.

The tube can also be supplied with a plano-concave plastic adapter in a metal housing under type number 60DVP/H.

QUICK REFERENCE	DATA			
Spectral sensitivity characteristic		type	D	
Useful diameter of the photocathode		>	200	mm
Spectral sensitivity of the photocathode at 401 nm			70	mA/W
Supply voltage for a gain of 3 x 10^7			3000	V
Anode pulse rise time (with voltage divider B')		*	2,5	ns
Linearity, with voltage divider A	up to	~	30	mA
with voltage divider B	up to	*	280	mA
with voltage divider B'	up to	~	80	mA

To be read in conjunction with "General Operational Recommendations Photomultiplier Tubes".

GENERAL CHARACTERISTICS

Window			
Material	borosilicate		
Radius of curvature (external)	×	186	mm
Thickness	*	2	mm
Shape	conca	ave-con	vex
Refractive index at 550 nm		1,48	
Photocathode ¹)			
Semi-transparent head-on			
Material	Sb-K	-Cs	
Useful diameter	>	200	mm

Note see page 2.

February 1976

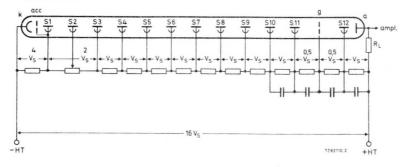
Spectral sensitivity characteristic (Fig. 4)	type D	
Maximum spectral sensitivity at	400 ± 30	nm
Luminous sensitivity	65	µA /1m
Spectral sensitivity at 401 \pm 3 nm	typ. 70 > 60	mA/W mA/W

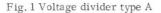
Electron optical input system

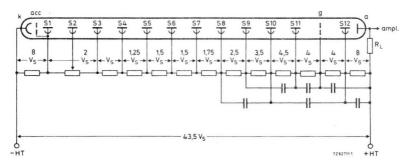
This consists of: the photocathode, k; a metallized part of the glass envelope internally connected to the photocathode; an accelerating electrode, acc, internally connected to S1.

Multiplier system				
Number of stages			12	
Dynode structure		linear f	ocus	ed
Dynode material		Ag-Mg		
Capacitances Anode to all Anode to final dynode	C _a C _{a/S12}	u u	8 7	pF pF

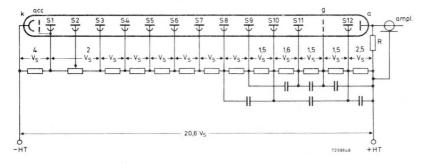
Magnetic field

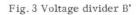

A magnetic field will result in a decrease of anode sensitivity due to a decrease of the collection of the photoelectrons leaving the photocathode.


It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding well beyond the photocathode.


¹) The bialkaline photocathode has a significant resistance, which increases rapidly with reducing temperature. It is thus recommended that it should not be subjected to light of too great an intensity; the cathode current should be limited, for example, to 1 nA at room temperature or 0, 1 nA at -30 °C.

If too high a photocurrent is passed, the cathode can no longer be considered to be an equipotential surface, and the focusing of electrons onto the first dynode will be affected, resulting in departures of linearity.


RECOMMENDED CIRCUITS



- k = cathode
- acc = accelerating electrode
- $S_n = dynode no.n$
- $R_L = load resistor$

R This resistor serves to connect the anode when the output cable is not terminated

Typical value of capacitors: 1 nF

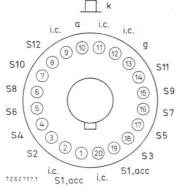
TYPICAL CHARACTERISTICS

With voltage divider A (Fig. 1)	1)				
Supply voltage for a gain G = 3×10^7 (Fig. 5)		typ. <	3000 3400	V V	
Anode dark current at G = 3 x 10^7 (Fig. 5)	²) ³)	typ. <	6 40	nA nA	
Background noise at G = 3×10^7	4)	~	1000	c/s	
Anode current linear within 2% at V_{b} = 3000 V up t	0	~	30	mA	
With voltage divider B (Fig. 2)	1)				
Gain G at V_b = 3000 V		~	$3 \ge 10^5$		
Anode current linear within 2% at V_b = 3000 V up t	0	~	280	mA	
With voltage divider B' (Fig. 3)	1)				
Gain G at $V_b = 3000 V$		~	107		
Anode pulse rise time at V_b = 3000 V	5)6)	~	2,1	ns	
Anode pulse duration at half height at V_b = 3000 V	5)6)	~	3,5	ns	
Signal transit time at V_b = 3000 V	5)6)	~	48	ns	
Signal transit time difference between the centre of the photocathode and 90 mm from the centre of the photocathode and 90 mm from		~	2		
the centre, at $V_b = 3000 \text{ V}$		~	2	ns	
Anode current linear within 2% at V_{b} = 3000 V up t	0	~	250	mA	
LIMITING VALUES (Absolute max. rating system)					
Supply voltage	7)	max.	3700	V	
Continuous anode current		max.	0,2	mA	
Voltage between first dynode and photocathode	8)	max. min.	1000 300	V V	
Voltage between consecutive dynodes (except S11 and S12)		max.	400	V	
Voltage between dynodes S11 and S12		max.	700	V	
Voltage between anode and final dynode	9)	max. min.	700 80	V V	
Ambient temperature range	10)	max. min.	+50 -30	оС 0С	

Notes see page 5.

Notes to page 4

- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltage of the stages progressively. Divider circuits B and B' are examples of progressive dividers, each giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- ²) Wherever possible, the photomultiplier power supply should be arranged so that the photocathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. It is recommended that, if a metal shield is used, this be kept at cathode potential. This implies safety precautions to protect the user. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > $10^{15} \Omega$.
- ³) Dark current is measured at ambient temperature, after a stabilization period of the tube in darkness ($\approx 1/4$ h).
- ⁴) After having been stored with its protective hood, the tube is placed in darkness with V_b set to a value to give a gain of 3×10^7 . After a 30 min stabilization period noise pulses with a threshold of 4,25 x 10^{-13} C (corresponding to 0, 1 photoelectron) are recorded.
- 5) Measured with a pulsed-light source with a pulse duration (FWHM) of <1 ns; the cathode being completely illuminated.


The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum.

Rise time, pulse duration, and transit time vary as a function of the HT supply voltage, V_b , approximately as $V_b^{-1/2}$.

- ⁶) A non-inductive resistor of 50 Ω is incorporated in the base, connected to S12. See also "General Operational Recommendations Photomultiplier Tubes".
- 7) Total HT supply voltage, or the voltage at which the tube has a gain of 2×10^8 , whichever is lower.
- ⁸) Minimum value to obtain good collection in the input optics.
- ⁹) When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 10) This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb. Where low-temperature operation is contemplated, the supplier should be consulted.

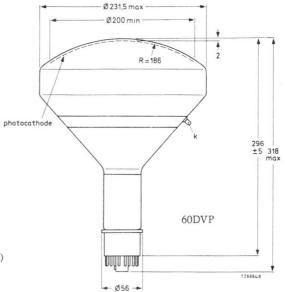
MECHANICAL DATA

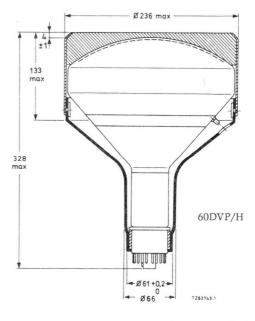
Dimensions in mm

Net mass: approx. 1 kg (60DVP) approx. 2,5 kg (60DVP/H)

Base : 20-pin (JEDEC B20-102)

ACCESSORIES


-> Socket


: type FE1020

Mu-metal shield: type 56132

Female plug for connecting the photocathode : supplied with each tube

Optical silicone grease, supplied with each tube, should be applied to the adapter-photomultiplier interface before operation.

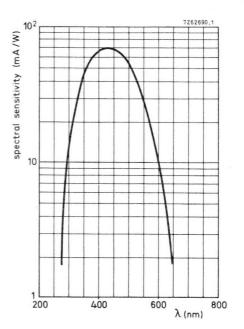


Fig. 4 Spectral sensitivity characteristic

Gain, G, and anode dark current, $\rm I_{ao},$ as a function of supply voltage $\rm V_b$

10-STAGE PHOTOMULTIPLIER TUBE

The 150CVP is a 32 mm useful diameter head-on photomultiplier tube with a flat window and a semi-transparent S1 (type C) photocathode.

The tube is intended for use in applications where a good sensitivity in the red and nearinfrared part of the spectrum is required, such as laser detection and pollution monitoring.

QUICK REFERENCE	DATA			
Spectral sensitivity characteristic		S1 (t	ype C)	
Useful diameter of the photocathode		>	32	mm
Spectral sensitivity of the photocathode at 903 nm		1,4	mA/W	
Supply voltage for anode luminous sensitivity = 10 A/lm			1600	V
Anode pulse rise time (with voltage divider B)		~	3,5	ns
Linearity, with voltage divider A with voltage divider B	up to up to	n n	30 100	mA mA

To be read in conjunction with "General Operational Recommendations $\ensuremath{\mathsf{Photomultiplier}}$ Tubes".

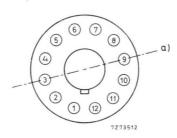
GENERAL CHARACTERISTICS

Window			
Material	borosilic	cate	
Shape	plano-pla	ano	
Refractive index at 550 nm	1	,48	
Photocathode			
Semi-transparent, head-on			
Material	Ag-O-Cs		
Useful diameter	>	32	mm
Spectral sensitivity characteristic (Fig. 3)	S1 (type	C)	
Maximum spectral sensitivity at	$800 \pm$	100	nm

Luminous sensitivity	typ. >		µA/lm µA/lm
Spectral sensitivity at 903 ± 8 nm at 1060 ± 10 nm	~	,	mA/W mA/W

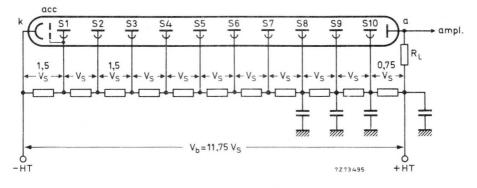
Electron optical input system

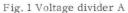
This system consists of: the photocathode, k; a metallized part of the glass envelope internally connected to the photocathode; an accelerating electrode, acc, internally connected to S1.

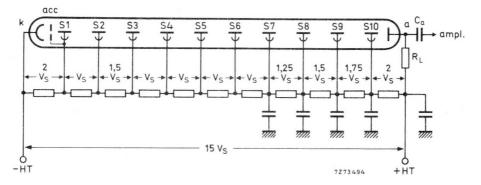

Multiplier byblein	Mu	ltip	lier	system	
--------------------	----	------	------	--------	--

Number of stages		10		
Dynode structure		linear fo	cuse	d
Dynode material		Cu-Be		
Capacitance Anode to all Anode to final dynode	C _a C _{a/S10}	<i>а</i> <i>а</i>	5 3	pF pF

Magnetic field


See Fig. 4


It is recommended that the tube be screened against the influence of magnetic fields by a mu-metal shield protruding > 15 mm beyond the photocathode.



Axis a) with respect to base pins (bottom view)

RECOMMENDED CIRCUITS

k = cathode

Typical values of capacitors: 10 nF

- acc = accelerating electrode
- $S_n = dynode no.n$
- a = anode
- R_L = load resistor

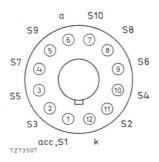
NZOVERALAN SATERENALAN NATIONALAN NATIONALAN NATIONALAN NATIONALAN SATERENALAN SATERENALAN

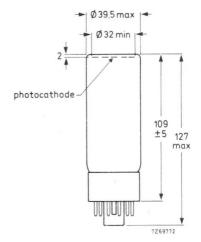
TYPICAL CHARACTERISTICS

With voltage divider A (Fig. 1)	1)				
Supply voltage for an anode luminous sensitivity N _a = 10 A/lm (Fig.5)			< typ.	1700 1600	V V
Anode dark current at $N_a = 10 \text{ A/lm}$ (Fig. 5)	²) ³)		< typ.	10 2	μΑ μΑ
Anode current linear within 2% at V_{b} = 1700 V		up to	*	30	mA
With voltage divider B (Fig. 2)					
Anode luminous sensitivity at V_b = 1700 V (Fig.	5)		~	5	A/lm
Anode pulse rise time at V_b = 1700 V	4)		*	3,5	ns
Anode pulse duration at half height at V_b = 1700	V 4)		*	6	ns
Signal transit time at V_b = 1700 V	4)		≈ .	34	ns
Anode current linear within 2% at V_{b} = 1700 V		up to	≈	100	mA
LIMITING VALUES (Absolute max. rating syste	m)				
Supply voltage	5)		max.	1800	V
Continuous anode current	6)		max,	20	μA
Voltage between first dynode and photocathode	7)		max. min.	500 120	V V
Voltage between consecutive dynodes			max.	300	V
Voltage between anode and final dynode	8)		max. min.	300 30	V V
Ambient temperature range				-	0.7
Operational (for short periods of time)	6)9)		max. min.	+50 - 30	°C °C
Continuous operation and storage			max. min.	+50 -30	оС 0С

Notes see page 5.

Notes to page 4


- To obtain a peak pulse current greater than that obtainable with divider A, it is necessary to increase the inter-dynode voltage of the stages progressively. Divider circuit B is an example of a "progressive" divider, giving a compromise between gain, speed, and linearity. Other dividers can be conceived to achieve other compromises. It is generally recommended that the increase in voltage between one stage and the next be kept less than a factor of 2.
- ²) Wherever possible, the photomultiplier power supply should be arranged so that the cathode is earthed and the anode is at +HT, however, it is sometimes necessary to supply the tube with the anode earthed and the cathode at -HT. Under these circumstances, erratic noise and dark current are generally increased and unstable, particularly immediately after application of voltage. The glass envelope of the tube should be supported only by isolators having an insulation resistance of > $10^{15} \Omega$.
- ³) Dark current for S1(type C) photocathodes is measured at a temperature of 20 °C. The dark current varies sharply with temperature. See also note 6.
- ⁴) Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. The rise time is determined between 10% and 90% of the amplitude of the anode pulse. The signal transit time is measured between the instant at which the illuminating pulse at the cathode becomes maximum, and the instant at which the anode pulse attains its maximum. Rise time, pulse duration and transit time vary as a function of high tension supply voltage V_b, approximately as V_b^{-1/2}.
- 5) Total HT supply voltage or the voltage at which the tube has an anode luminous sensitivity of 60 A/lm, whichever is lower.
- 6) As the dark current increases by a factor of 2 for every 7 °C increase in temperature, the anode sensitivity should be limited so that the continuous anode current limit is not exceeded.
- ⁷) Minimum value to obtain good collection in the input optics.
- ⁸) When calculating the anode voltage the voltage drop across the load resistor should be taken into account.
- 9) This range of temperatures is limited principally by stresses in the sealing layer of the base to the glass bulb.
 Where law temperature exercise is contemplated, the sumplier should be computed.


Where low temperature operation is contemplated, the supplier should be consulted.

January 1976

MECHANICAL DATA

Dimensions in mm

Net mass	:	80 g
Base	:	12-pin (JEDEC B12-43)

ACCESSORIES

Socket : type FE1012

Mu-metal shield : type 56127

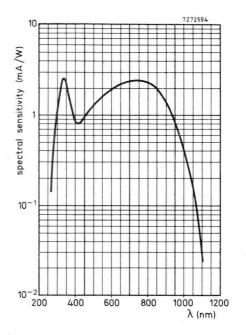
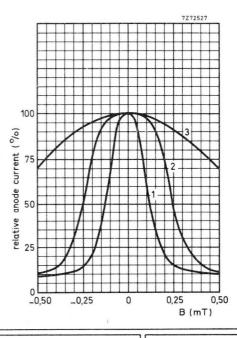
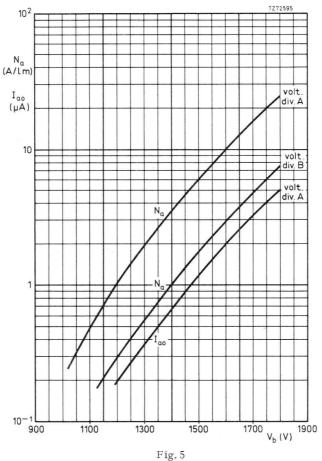



Fig. 3 Spectral sensitivity characteristic.



7

Fig.4

Relative anode current as a function of the magnetic flux density B 1. B \perp tube axis, // axis a 2. B \perp tube axis, \perp axis a 3. B // tube axis

January 1976

Anode luminous sensitivity, N_a , and anode dark current, I_{a0} , as a function of supply voltage V_b .

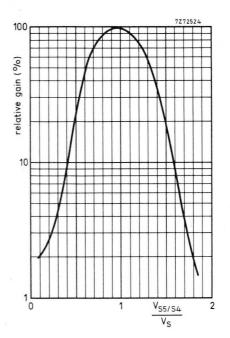


Fig.6 Relative gain as a function of the voltage between S5 and S4, normalized to VS VS6/S4 constant.

Phototubes (diodes)

Phototubes

SURVEY OF TYPES

Photocathode	Tube type		Sp	ectral resp	onse	
dimensions (mm)		A (S11)	C (S 1)	S4	T (S20)	U (S 13)
20φ	XA 1002 XA 1003		x	X		
26¢	150CV 150TV		X		x	
30 <i>¢</i>	150AV 150UV	Х				x
40φ	TVHC40				X	
108ϕ	AVHC201			X		
22 x 11	92AG 92AV 90CG 90CV	X X	X X			

LIST OF SYMBOLS

Supply voltage	Vb
Cathode current	$\mathbf{I}_{\mathbf{k}}$
Anode series resistance	Ra
Sensitivity	Ν
Capacitance, anode to cathode	Cak
Ambient temperature	t _{amb}
Envelope temperature	tenv

1

GENERAL OPERATIONAL RECOMMENDATIONS PHOTOTUBES

1. GENERAL

1.1 **Phototubes** are photoelectric devices of the emissive type, as distinct from the barrier-layer and photo-conductive cells. They may be divided into two groups :

- 1. Vacuum phototubes,
- 2. Gas-filled phototubes

For a vacuum phototube, the anode current for a fixed quantity of light, is constant at anode voltages above a certain low value known as the "saturation voltage". The gas-filled phototube contains a quantity of inert gas, the ionizing potential of which is generally somewhat higher than the saturation voltage of an equivalent vacuum phototube, so that the anode current is substantially constant between the saturation voltage and the voltage at which ionization commences. Above this voltage range, ionization increases, resulting in a progressive increase in anode current.

Since a gas-filled phototube operates at a higher voltage than the ionizing potential it will have a greater sensitivity than a similar vacuum phototube. Within the operating ranges of both groups of phototubes the anode current is

directly proportional to the quantity of light incident on the cathode surface.

1.2 Spectral response

The materials used for the photocathode are of great importance to the spectral response. Many substances show photoemission, but often differ greatly in their spectral sensitivity and quantum yield.

- 1.2.1 The <u>S11 (A-type)</u> tubes are equipped with a semi-transparent caesium antimony photocathode on an MnO₂ layer, evaporated on the inside of a glass window. These types are sensitive to radiation in the visible region of the spectrum and have their maximum sensitivity at approximately 420 nm.
- 1.2.2 The <u>S13</u> (U-type) tubes have the same photocathodes as the S11 tubes, but are provided with a fused silica (quartz) window, giving them a sensitivity that extends into the ultraviolet region of the spectrum.

1.2.3 The <u>S1 (C-type)</u> tubes have a semi-transparent caesium-on-silver-oxide photocathode on a glass window. The sensitivity lies mainly in the red and near infrared regions of the spectrum, with a maximum at approximately 800 nm.

1.2.4 The <u>S20</u> (T-type) tubes have a tri-alkaline (Sb-Na-K-Cs) semi-transparent photocathode on a glass window. This photocathode has a good sensitivity from the ultraviolet to the near infrared part of the spectrum, with a maximum at approximately 420 nm.

March 1976

1.2.5 The <u>S4</u> tubes have a Sb-Cs emission layer deposited on an opaque substrate. This photocathode is intended for use in applications with relatively high illumination in the visible region of the spectrum.

Spectral response curves are given in the data sheets of each type.

2. INTERPRETATION OF CHARACTERISTICS

In general the characteristics given in the data sheets are typical values. The "typical value" of a parameter is the median of the frequency distribution of the parameter measured on a large number of tubes.

In some cases maximum or minimum values are stated. These values are defined on test-limits carried out on each tube. Approximate values are given when these values are obtained from batch sample data.

2.1 Cathode luminous sensitivity

The cathode luminous sensitivity is defined (IEC) as the quotient of the photocurrent of the cathode by the incident luminous flux, expressed in amperes per lumen. The cathode current, I_k , (corrected for dark current) is about 100 nA.

The voltage used should be sufficient to ensure saturation.

The sensitivity is given by: $N_k = \frac{I_k}{d}$

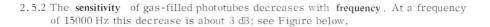
where ϕ is the luminous flux, in lumen, of a tungsten filament lamp having a colour temperature of 2856 K.

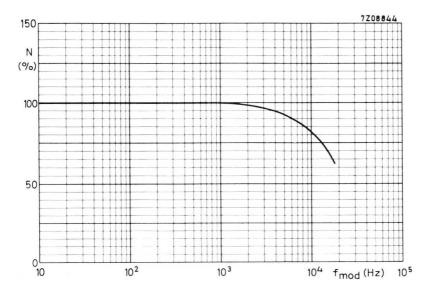
2.2 Cathode radiant sensitivity

The cathode radiant sensitivity is the quotient of the photocurrent of the cathode by the incident radiant power, expressed in amperes per watt (IEC).

2.3 Absolute spectral sensitivity

The absolute spectral sensitivity is the radiant sensitivity for monochromatic radiation of a stated wavelength (IEC).


Measurements of this parameter are carried out with a tungsten filament lamp with a colour temperature of 2856 K and spectral filters. Tolerances of the spectral filters are stated in the tube data. The measuring equipment is calibrated by comparison with a Schwartz thermocouple.


2.4 **Dark current** is the current flowing in a photoelectric device in the absence of irradiation (IEC).

Possible causes of dark current are electrical leakage, thermionic emission, field emission, residual gas ionization, and glass fluorescence.

2.5 Time characteristics

2.5.1 The anode pulse rise time of a phototube is defined as the time required for the amplitude to rise from a stated low percentage to a stated higher percentage of maximum value when a steady state of radiation is instantaniously applied. Normally the 10% and 90% levels are considered.

3. THERMAL DATA

Ambient temperature . The temperature of the photocathode may not be too high otherwise evaporation of the emissive cathode layer may result, with consequent reduction in sensitivity and life. As it is difficult to measure this temperature a limiting value for the ambient temperature is given in the published data sheets. It must be considered, however, that even when the ambient temperature in the immediate vicinity of the phototube is not beyond the limit, an excessive temperature rise of the photocathode can be caused, e.g. by infrared heat radiation. If the possibility of this radiation exists, a suitable filter should be inserted in the optical path to minimize this effect.

4. OPERATING NOTES

Stability during life. Where a gas-filled phototube is continuously operated at its maximum rated voltage its sensitivity may fall by as much as 50%, during 500 hours.

Vacuum phototubes are inherently more stable.

The stability of both types of phototube will be improved if the current density of the photocathode is reduced (e.g. by reducing the incident light or enlarging the illuminated area of the photocathode).

Particularly with gas-filled phototubes, reduction of the anode voltage will improve the stability.

Phototubes must not be exposed to strong radiation, such as direct sunlight, even during idle periods.

A loss of sensitivity of both vacuum and gas-filled phototubes during operation will be wholly or partially restored during idle periods.

Prevention of glow discharge. Gas-filled phototubes must not be operated above the published maximum voltage since a glow discharge, indicated by a faint blue glow in the bulb, may occur which adversely affects the good operation of the phototube, and can even result in rapid destruction of the photocathode. If accidental over-running can be expected, the anode resistance should have a value of at least $0, 1 \text{ M}\Omega$.

Where it is necessary to use the maximum operating voltage a stabilized supply is recommended.

5. MOUNTING

If no restrictions are made in the individual published data sheets, phototubes may be mounted in any position.

6. STORAGE

It is necessary that phototubes always be stored in darkness.

7. LIMITING VALUES

The limiting values of phototubes are given in the absolute maximum rating system.

8. OUTLINE DIMENSIONS

The outline dimensions are given in mm.

PHOTOTUBE

The AVHC201 is a 102 mm useful diameter head-on phototube with a flat window and an opaque S4 photocathode. The tube is intended for use in applications with relatively high illumination and features a short rise time and a high linearity.

QUICK REFERENCE DATA					
Spectral sensitivity characteristic	S4	•			
Useful diameter of the photocathode		102	mm		
Spectral sensitivity of the photocathode at 437 nm		40	mA/W		
Anode voltage	up to	5	kV		
Rise time		1	ns		
Linearity	up to	30	А		

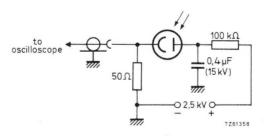
To be read in conjunction with "General Operational Recommendations Phototubes".

CHARACTERISTICS

Photocathode				
Opaque head-on, flat				
Material		Sb-Cs		
Useful diameter		> .	102	mm
Spectral sensitivity characteristic Fig. 1		S4		
Maximum spectral sensitivity at		400 ±	50	nm
Luminous sensitivity	1)	typ. >	35 20	µA/lm µA/lm
Spectral sensitivity at 437 ± 5 nm	2)	≈	40	mA/W

Notes see page 3.

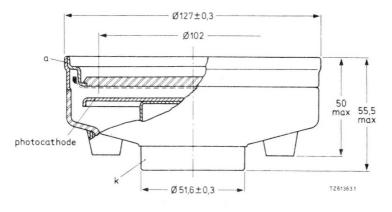
Operating characteristics


Dark current at $V_b = 2,5 \text{ kV}$	3)		typ. <	1 10	nA nA	
Saturation voltage			see note	4		
Rise time	5)		≈	1	ns	
Anode current linear within 10% at V_b = 2,5 kV up to	6)		≈ ^I	30 20	A A	
Capacitance, anode to cathode		Cak	<	25	pF	
LIMITING VALUES (Absolute max. rating system)						
Anode voltage, d.c.			max.	5	kV	
Total cathode current,	8)					
peak .			max.	100	А	
mean, averaging time 1 s			max.	10	μA	
Ambient temperature			max.	60	oС	7)
in the composition			min.	-40	^o C	

REMARKS

After an idle period of more than 8 days, the dark current needs some hours to return to its normal value.

The cathode should not be exposed to direct sunlight.


MEASURING CIRCUIT

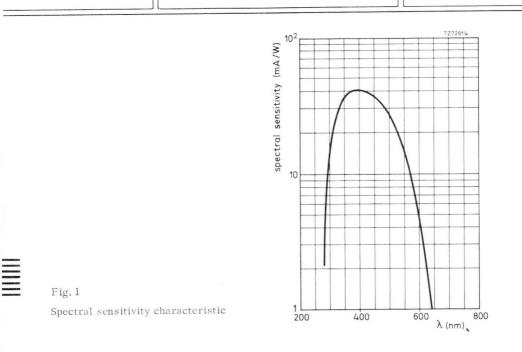
MECHANICAL DATA

Dimensions in mm

Net mass : 530 g

Distance anode - cathode 4,6 mm

Notes


- Cathode luminous sensitivity is measured by means of a tungsten filament lamp of colour temperature 2856 ± 5 K.
- ²) Measuring equipment is calibrated by comparison with a Schwartz thermocouple.
- ³) Dark current is measured at 25 °C after a stabilization period in darkness, with anode voltage applied, of 0,5 h.
- ⁴) Due to the geometry of the device and the high electric field strength the anode current increases with anode voltage and wavelength (see Fig. 2).
- 5) Measured with a pulsed-light source, with a pulse duration of < 1 ns, the cathode being completely illuminated.

⁶) The linearity is measured with a light pulse with: pulse duration = 1 μs pulse energy = 35 J (2 Mlm) pulse repetition frequency = 2 p.p.min Blue filter inserted in light path. The linearity is observed on a X - Y oscilloscope by comparison with a standard phototube.

The cathode current may not exceed a peak value of 100 A.

7) During not more than some hours.

8) Cathode completely illuminated.

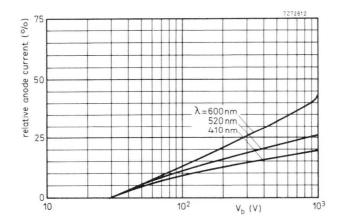


Fig.2

Relative anode current as a function of anode voltage; wavelength as parameter.

PHOTOTUBE

The TVHC40 is a 40 mm useful diameter head-on phototube with a flat window and an opaque S20 (type T) photocathode. The tube is intended for use in applications with a relatively high illumination especially in LASER detectors and features a short rise time and a high linearity.

QUICK REFERENCE DATA					
Spectral sensitivity characteristic	S20	(type T)			
Useful diameter of the photocathode		40	mm		
Spectral sensitivity of the photocathode at 420 nm		70	mA/W		
at 698 nm		10	mA/W		
Anode voltage	up to	5	kV		
Rise time		0,4	ns		
Linearity	up to	6	А		

To be read in conjunction with "General Operational Recommendations Phototubes".

CHARACTERISTICS

Photocathode				
Opaque head-on				
Material		Sb-K-I	Na-Cs	
Useful diameter		>	40	mm
Spectral sensitivity characteristic Fig. 1		S20 (type T)		
Maximum spectral sensitivity at		45	nm	
Luminous sensitivity	1)	~	150	µA/lm
Spectral sensitivity at $437 \pm 5 \text{ nm}$	2)	*	70	mA/W
at 698 ± 7 nm		*	10	mA/W
		\geq	5	mA /W

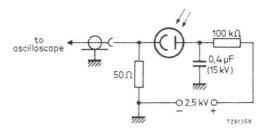
Notes see page 3.

April 1976

Operating characteristics

Dark current at V_b = 2,5 kV	3)	typ. <	0,15 5	nA nA
Saturation voltage	4)		100	V
Rise time	5)	*	0,4	ns
Anode current linear within 10% at $\rm V_{b}$ = 2,5 kV up to		≈ N	6 5	A A
Capacitance, anode to cathode			3	pF
LIMITING VALUES (Absolute max. rating system)				
Anode voltage, d.c.		max.	5	kV
Total cathode current, peak mean, averaging time 1 s		max. max.	10 10	А µА

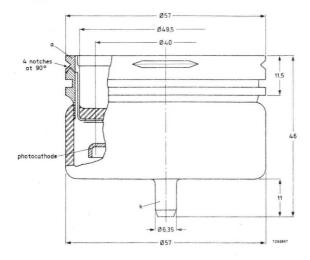
REMARKS


After an idle period of more than 8 days, the dark current needs some hours to return to its normal value.

The cathode should not be exposed to direct sunlight.

ACCESSORIES

Socket : type SC110


MEASURING CIRCUIT

MECHANICAL DATA

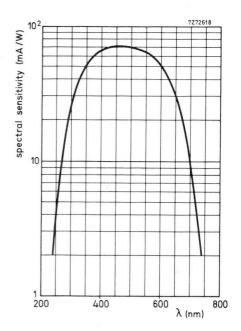
Dimensions in mm

Net mass : 85 g

Distance anode - cathode 6 mm

Notes

- Cathode luminous sensitivity is measured by means of a tungsten filament lamp of colour temperature 2856 ± 5 K.
- ²) Measuring equipment is calibrated by comparison with a Schwartz thermocouple.
- 3) Dark current is measured at 25 °C after a stabilization period in darkness, with anode voltage applied, of 0,5 h.
- ⁴) Due to the geometry of the device and the high electric field strength the anode current is more or less dependent on the anode voltage and the wavelength of the irradiation.
- 5) Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. Tube mounted in socket SC110.


⁶) The linearity is measured with a light pulse with :

pulse duration= 1 μ spulse energy= 35 J (2 MIm)pulse repetition frequency = 2 p.p.minBlue filter inserted in light path.The linearity is observed on a X - Y oscilloscope by comparison with a standardphototube.The cathode current may not exceed a peak value of 100 A.

The eachode earlent may not exceed a peak value of

7) During not more than some hours.

⁸) Cathode completely illuminated.

Fig.1

Spectral sensitivity characteristic

PHOTOTUBE

The XA1002 is a 20 mm useful diameter head-on phototube with a flat window and an opaque S4 photocathode. The tube is intended for use in applications with relatively high illumination and high peak currents.

QUICK REFERENCE DATA						
Spectral sensitivity characteristic	S4					
Useful diameter of the photocathode			20	mm		
Spectral sensitivity of the photocathode at 437 \pm 5 nm			35	mA/W		
Anode voltage	up to		4	kV		
Rise time		*	0,2	ns		
Linearity	up to		8	А		

To be read in conjunction with "General Operational Recommendations Phototubes".

CHARACTERISTICS

Photocathode				
Opaque head-on, flat surface				
Material		Sb-Cs		
Useful diameter		>	20	mm
Spectral sensitivity characteristic Fig. 1		S4		
Maximum spectral sensitivity at		400	± 50	nm
Luminous sensitivity	1)	typ. >	30 20	µA /lm µA /lm
Spectral sensitivity at 437 ± 5 nm	2)	~	35	mA/W

Notes see page 3.

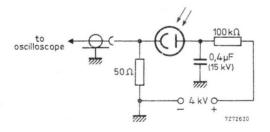
ר ר

April 1976		

ז ר

Operating characteristics					
Dark current at V_b = 2,5 kV	3)	typ. <	0,5 5	nA nA	
Saturation voltage		see note	2 4		
Rise time	5)	≈	0,2	ns	
Anode current linear within 5% at V_b = 4 kV up to	⁶) ⁷)	≈ ∧i	8 5	A A	
Capacitance, anode to cathode		Cak	2	pF	
LIMITING VALUES (Absolute max. rating system)					
Anode voltage, d.c.		max.	4	kV	
Total cathode current, peak mean, averaging time 1 s		max. max.	10 10	Α μΑ	
Ambient temperature		max. min.	+60 -40	оС 0С	8)

REMARKS

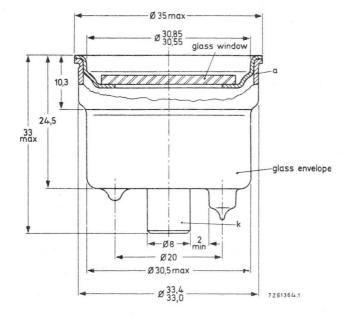

After an idle period of more than 8 days, the dark current needs some hours to return to its normal value.

The cathode should not be exposed to direct sunlight.

ACCESSORIES

Socket : type 56041

MEASURING CIRCUIT



Notes see pages 3 and 4.

MECHANICAL DATA

Dimensions in mm

Net mass : 300 g

Transmission of anode grid85%Distance anode - cathode3,5 mm

Notes

- Cathode luminous sensitivity is measured by means of a tungsten filament lamp of colour temperature 2856 ± 5 K.
- ²) Measuring equipment is calibrated by comparison with a Schwartz thermocouple.
- ³) Dark current is measured at 25 °C after a stabilization period in darkness, with anode voltage applied, of ≈ 0,5 h.
- ⁴) Due to the geometry of the device and the high electric field strength the anode current increases with anode voltage and wavelength. See Fig.2.
- ⁵) Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. Tube mounted in socket 56041.
- ⁶) When the tube is used with socket 56041 with a build-in capacitor of 500 pF this linearity is obtained only if the electrical charge transported by the pulse or pulse train does not exceed 1 µC. To prevent a considerable decrease in anode voltage when measuring light pulses of high magnitude and/or long duration, an external capacitor should be mounted between anode and earth (chassis).

April 1976

The value can be calculated with:

$$\begin{split} \mathrm{V}_{a} &= \mathrm{V}_{b} - \Delta \mathrm{V} = \mathrm{V}_{b} - \frac{\mathrm{I}}{\mathrm{C}} \ \Delta \mathrm{t} \\ & \text{in which :} \qquad \mathrm{V}_{a} > 2 \ \mathrm{kV} \\ & \mathrm{I} &= \mathrm{peak} \ \mathrm{current} \\ & \Delta \mathrm{t} &= \mathrm{pulse} \ \mathrm{duration} \end{split}$$

⁷) The linearity is measured with a light pulse with

pulse duration $= 1 \ \mu s$

- pulse energy = 35 J (2 Mlm)
- pulse repetition frequency = 2 p.p. min

Blue filter inserted in light path.

The linearity is observed on an X - Y oscilloscope by comparison with a standard phototube.

The cathode current may not exceed a peak value of 10 A.

⁸) During not more than some hours.

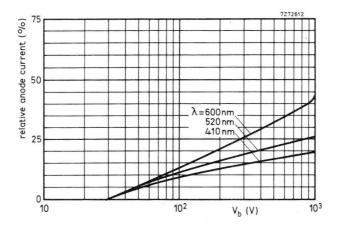


Fig. 1

Relative anode current as a function of anode voltage; wavelength as parameter.

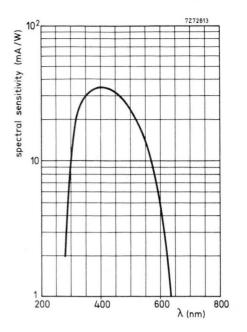


Fig.2 Spectral sensitivity curve

PHOTOTUBE

The XA1003 is a 20 mm useful diameter head-on phototube with a flat window and an opaque S1 photocathode. The tube is intended for use in applications with relatively high illumination especially for use as LASER detector.

QUICK REFERENCE DAT	ГА		
Spectral sensitivity characteristic	S1 (type C)		
Useful diameter of the photocathode		20	mm
Spectral sensitivity of the photocathode at 800 nm		2,5	mA/W
Anode voltage	up to	2,5	kV
Rise time .		0,2	ns
Linearity	up to	1	А

To be read in conjunction with "General Operational Recommendations Phototubes".

CHARACTERISTICS

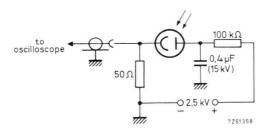
Photocathode				
Opaque head-on, flat surface				
Material		AgO-C	S	
Useful diameter		>	20	mm
Spectral sensitivity characteristic Fig. 1		S1 (typ	e C)	
Maximum spectral sensitivity at		800	$) \pm 100$	nm
Luminous sensitivity	1)	typ. >	20 15	µA/lm µA/lm
Spectral sensitivity at 903 ± 8 nm 1060 ± 10 nm	2)	n n	1,4 0,12	mA /W mA /W

Notes see page 3.

April 1976

Operating characteristics					
Dark current at $V_b = 2,5 \text{ kV}$	3)	typ. <	5 10	nA nA	
Saturation voltage		see note	4		
Rise time	5)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0,2	ns	
Anode current linear within 5% at $V_{\rm b}$ = 2,5 kV up to	⁶) ⁷)	~ ^!	1 0,8		
Capacitance, anode to cathode		Cak	2	pF	
LIMITING VALUES (Absolute max. rating system)					
Anode voltage, d.c.		max.	2,5	kV	
Total cathode current, peak mean, averaging time 1 s		max. max.	2 1	A µA	
Ambient temperature		max. min.	60 - 40	⁰ С 0С	8)

REMARKS

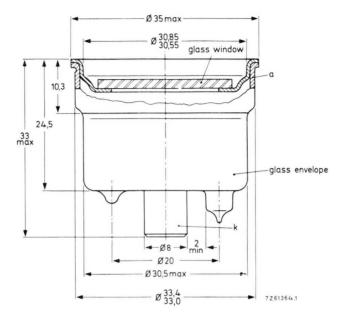

After an idle period of more than 8 days, the dark current needs some hours to return to its normal value.

The cathode should not be exposed to direct sunlight.

ACCESSORIES

Socket : type 56041

MEASURING CIRCUIT



Notes see pages 3 and 4.

MECHANICAL DATA

Dimensions in mm

Net mass : 33 g

Transmission of anode grid 85% Distance anode-cathode 3,5 mm

Notes

- Cathode luminous sensitivity is measured by means of a tungsten filament lamp of colour temperature 2856 ± 5 K.
- 2) Measuring equipment is calibrated by comparison with a Schwartz thermocouple.
- $^3)$ Dark current is measured at 20 oC after a stabilization period in darkness, with anode voltage applied, of \approx 0.5 h.
- ⁴) Due to the geometry of the device and the high electric field strength the anode current is more or less dependent on the anode voltage and the wavelength of irradiation.
- ⁵) Measured with a pulsed-light source, with a pulse duration (FWHM) of < 1 ns, the cathode being completely illuminated. Tube mounted in socket 56041.

6) When the tube is used with socket 56041, with a build-in capacitor of 500 pF, this linearity is obtained only if the electrical charge transported by the pulse - or pulse train - does not exceed 1 μ C.

To prevent a considerable decrease in anode voltage when measuring pulses of high magnitude and/or long duration an external capacitor should be mounted between anode and earth (chassis).

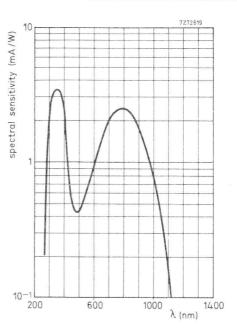
The value can be calculated with:

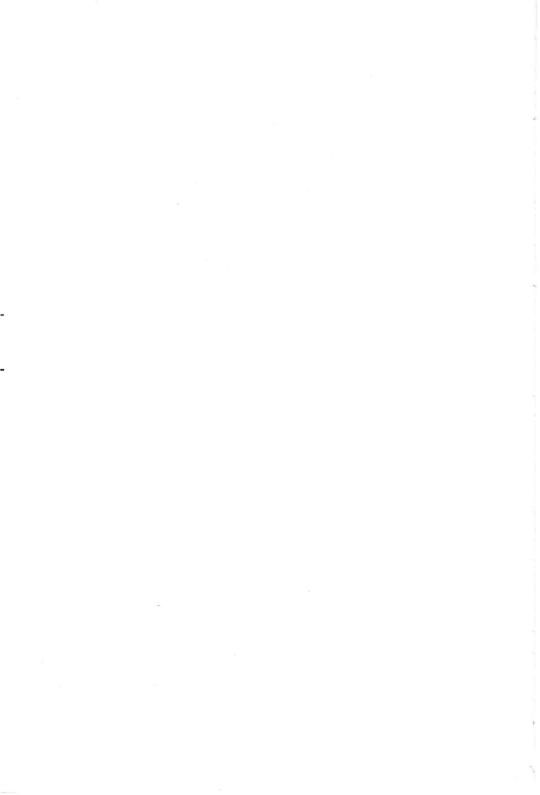
$$V_{a} = V_{b} - \Delta V = V_{b} - \frac{1}{C} \Delta t$$

in which : $V_{a} > 2 \ kV$
 $I = \text{peak current}$
 $\Delta t = \text{pulse duration}$

7) The linearity is measured with a light pulse with

pulse duration = 1 µs pulse energy = 35 J (2 Mlm) pulse repetition frequency = 2 p.p. min


The linearity is observed on an ${\rm X}$ - ${\rm Y}$ oscilloscope by comparison with a standard phototube.

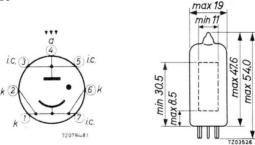

The cathode current may not exceed a peak value of 2 A.

⁸) During not more than some hours.

Fig. 1

Spectral sensitivity characteristic, With this type of cathode the sensitivity of each individual tube can deviate considerably from the curve shown : the maximum at 800 nm may be less pronounced and the curve may be flat between 550 nm and 950 nm and extend to ≈ 1200 nm.

90CG


GAS FILLED PHOTOTUBE

Gas filled phototube particularly sensitive to incandescent light sources, and to near infra-red radiation.

QUICK REFERENCE DATA					
Anode supply voltage	Vb	max.	90	V	
Luminous sensitivity	Ν		125	$\mu \mathrm{A}/\mathrm{lumen}$	
Spectral response curve		type C			
Outline dimensions		max. 19 di	a.x 54	mm	

MECHANICAL DATA

Base: Miniature

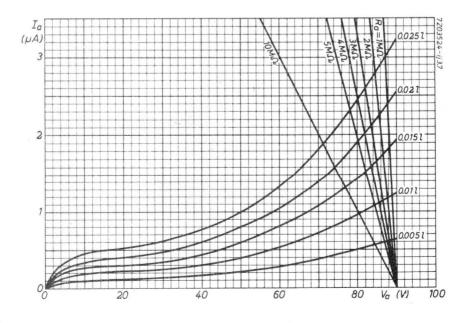
The arrows show the direction of the incident radiation

The cathode connection may be made to pins 1, 2, 6 and 7 connected together and the anode connection to pins 3, 4 and 5 connected together.

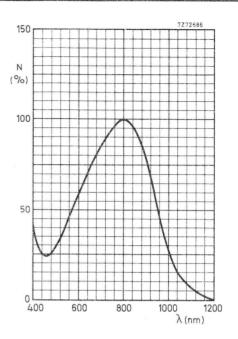
Photocathode

Surface

Projected sensitive area


Caesium on oxidized silver $3.0 \ \text{cm}^2$

Dimensions in mm


ELECTRICAL DATA

Operating characteristics				
Anode supply voltage	Vb		90	V
Anode series resistor	Ra		1	MΩ
Luminous sensitivity measured with the whole cathode area illuminated by a lamp of colour temperature 2700 °K	Ν		125	µA/lumen
	-			
Dark current	ldark	max.	0.1	μA
Capacitance				
Anode to cathode	Cak		1.1	pF
LIMITING VALUES (Absolute max. rating syste	em)			
Anode supply voltage	Vb	max.	90	V

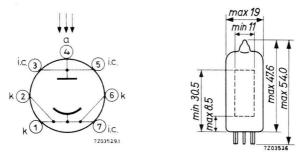
mode supply voltage	v D	max.	10	v
Cathode current	I _k	max.	2.0	μA
Ambient temperature	t _{amb}	max.	100	°С

90CG

Relative spectral response curve

90CV

VACUUM PHOTOTUBE


Vacuum phototube, particularly sensitive to incandescent light sources, and to near infra-red radiation.

QUICK REFERENCE DATA					
Anode supply voltage	V _b r	nax.	250	V	
Luminous sensitivity	Ν		20	µA/lumen	
Spectral response curve	t	ype C			
Outline dimensions	» I	nax. 19 dia	a.x 54	mm	

MECHANICAL DATA

Dimensions in mm

Base: Miniature

The arrows show the direction of the incident radiation.

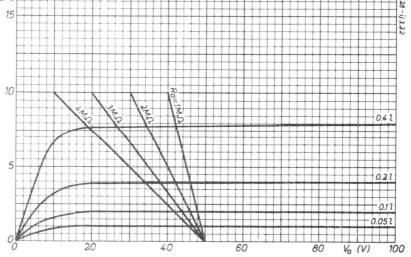
The cathode connection may be made to pins 1, 2, 6 and 7 connected together and the anode connection to pins 3, 4 and 5 connected together.

 3.0 cm^2

Photo cathode

Surface

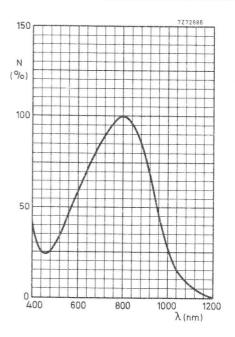
Ceasium on oxidised silver


Projected sensitive area

February 1969

90CV

ELECTRICAL DATA


Operating characteristics				
Anode supply voltage	v_b		50	V
Anode series resistor	Ra		1	MΩ
Luminous sensitivity measured with the whole cathode area illuminated by a lamp of colour temperature 2700 ^o K	N		20	µA/lumen
Dark current (at $V_a = 100 V$)	I _{dark}	max.	0.05	μA
Capacitance				
Anode to cathode	Cak		0.8	pF
LIMITING VALUES (Absolute max. rating syste	m)			
Anode supply voltage	Vb	max.	250	V
Cathode current	I_k	max.	10	μΑ
Ambient temperature	t _{amb}	max.	100	°C
<i>I</i> _α (μA) 15				7Z03520-ij3.32

February 1969

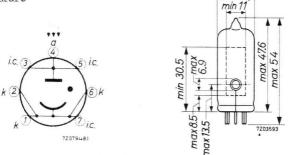
90CV

SUPPLICATION NUMBER MELANISTIS MELANISTIS SUBJECTS REPORTING

Relative spectral response curve

92 A G

Dimensions in mm


GAS FILLED PHOTOTUBE

Gas-filled phototube particularly sensitive to daylight and to radiation having a blue predominance.

QUICK REFERENCE DATA					
Anode supply voltage	Vb	max.	90	V	
Luminous sensitivity	Ν		130	μ A/lumen	
Spectral response curve		type A			
Outline dimensions		max. 19 di	a.x 54	mm	

MECHANICAL DATA

Base: Miniature

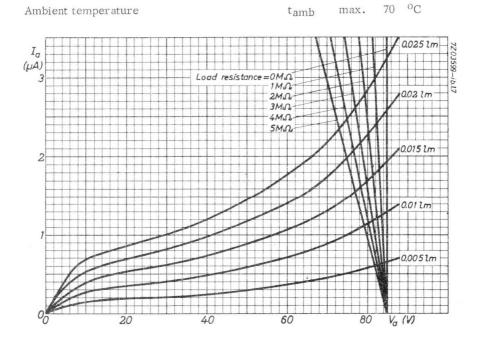
The arrows show the direction of the incident radiation

The cathode connection may be made to pins 1, 2, 6 and 7 connected together and the anode connection to pins 3, 4 and 5 connected together.

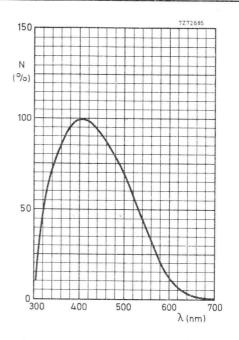
Photocathode

Surface

Projected sensitive area


Caesium antimony

max 19

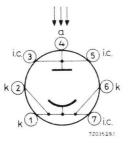

2.1 cm²

ELECTRICAL DATA

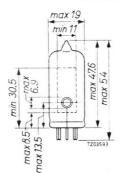
Operating characteristics				
Anode supply voltage	Vb		85	V
Anode series resistor	Ra		1	$M\Omega$
Luminous sensitivity measured with the whole cathode area illuminated by a lamp of colour temperature				
2700 ^o K	Ν		130	µA/lumen
Dark current	I _{dark}	max.	0.1	μΑ
Capacitance				
Anode to cathode	Cak		0.9	pF
LIMITING VALUES (Absolute max. rating sys	stem)			
Anode supply voltage	Vb	max.	90	V
Cathode current	Ik	max.	0.012	25 µA/mm2

92AG

Relative spectral response curve


VACUUM PHOTOTUBE

Vacuum phototube particularly sensitive to daylight and to light radiation with \boldsymbol{a} blue predominance.

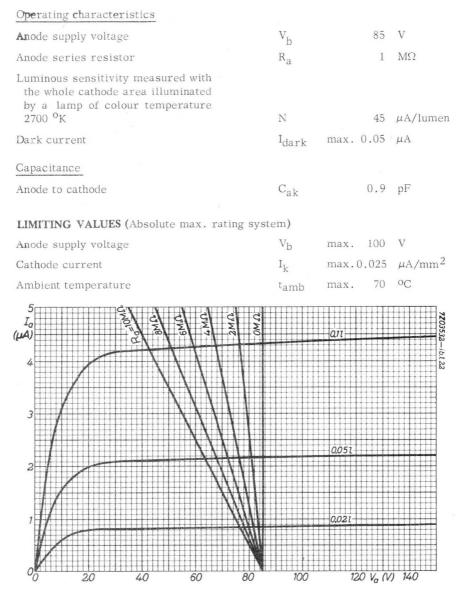

QUICK REFERENCE DATA						
Anode supply voltage	Vb	max.	100	V		
Luminous sensitivity	Ν		45	µA/lumen		
Spectral response curve		type A				
Outline dimensions		max.19 d	ia. x 54	mm		

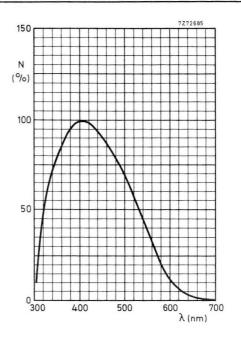
MECHANICAL DATA

Base: Miniature

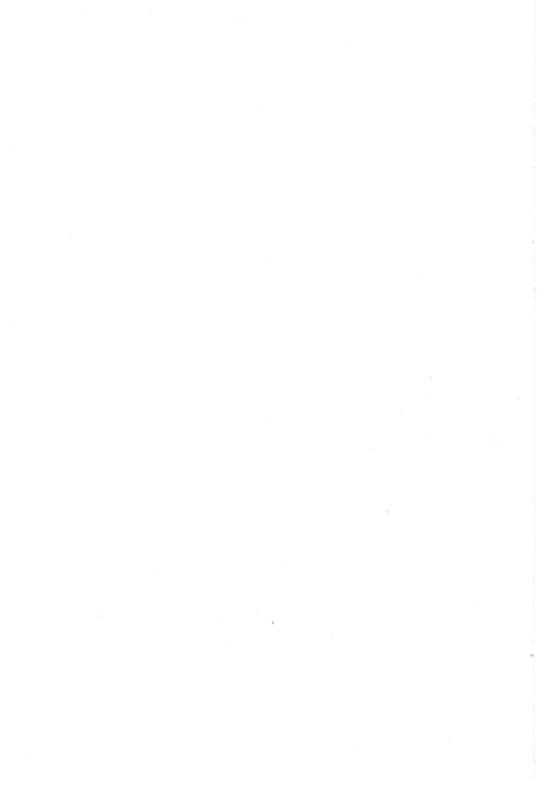
Dimensions in mm

The arrows show the direction of the incident radiation.


The cathode connection may be made to pins 1, 2, 6 and 7 connected together and the anode connection to pins 3, 4 and 5 connected together.


Photocathode

Surface


Projected sensitive area

caesium antimony 2.1 cm^2

Relative spectral response curve

PHOTOTUBE

The 150AV is a 30 mm useful diameter head-on phototube with a flat window and a semitransparent S11 (type A) photocathode. The tube is intended for use in high precision photometry and for measurement of quickly changing light phenomena and features a high stability and linearity.

QUICK REFERENCE DATA		
Spectral sensitivity characteristic	S11 (type A)	
Useful diameter of the photocathode	30	mm
Spectral sensitivity of the photocathode at 437 nm	60	mA/W
Anode voltage	1 to 90	V

To be read in conjunction with "General Operational Recommendations Phototubes".

CHARACTERISTICS

Photocathode				
Semi-transparent head-on				
Material		Cs-Sb		
Useful diameter		>	30	mm
Spectral sensitivity characteristic Fig.1		S11 (type .	A)	
Maximum spectral sensitivity at		420 ±	± 30	nm
Luminous sensitivity	1)	typ. >	70 35	µA/lm µA/lm
Spectral sensitivity at 437 \pm 5 nm	2)	~	60	mA/W

Notes see page 3.

Operating characteristics

Operating voltage, d.c.		3	l to 90	V
Saturation voltage for a luminous flux of 0,05 lm 0,01 lm		~ ~ ~	4,5 1	V V
Dark current at $V_b = 1 V$	3)	typ. <	1 2	pA pA
Rise time at $V_b = 50 V$			14	ns
Capacitance, anode to cathode		Cak	13	pF
LIMITING VALUES (Absolute max. rating syste Anode voltage, d.c.	em)	max.	100	V
Cathode current per mm ² , peak mean, averaging time 1 s		max. max.	50 70	nA/mm ² pA/mm ²
Total cathode current, peak mean, averaging time 1 s	4)5)	max. max.	35 500	μA nA
Ambient temperature		max. min.	60 -40	°C 6) °C

LIFE EXPECTANCY

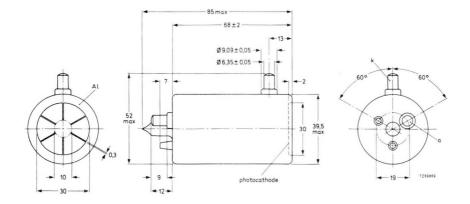
With a cathode current of 2 μ A the decrease in sensitivity may be:

at 400 nm 0,4%/h at 560 nm 0,8%/h.

With an average cathode current of 50 nA the sensitivity will not decrease more than 10% of its initial value between zero and 500 operating hours.

To attain high stability it is recommended that the cathode current be kept as low as possible.

REMARKS


After an idle period of more than 8 days, the dark current needs some hours to return to its normal value.

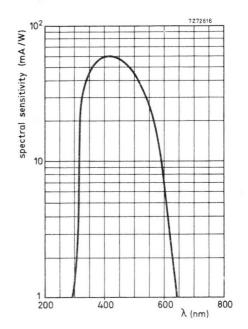
The cathode should not be exposed to direct sunlight.

MECHANICAL DATA

Dimensions in mm

Net mass: 60 g

An external guard ring significantly decreases the dark current ($\approx 10^{-14}$ A). This can be \leftarrow obtained by applying a ring of silver paste.


Notes

- Cathode luminous sensitivity is measured by means of a tungsten filament lamp of colour temperature 2856 ± K.
- ²) Measuring equipment is calibrated by comparison with a Schwartz thermocouple.
- ³) Dark current is measured at 25 ^oC after a stabilization period in darkness, with anode voltage applied, of 0, 5 h. The dark current is approximately proportional to the applied voltage.

An external guard ring, made of silver paste, may be put on the tube envelope when the tube is used with very low cathode current.

- 4) Cathode uniformly illuminated.
- 5) The relation between the incident luminous flux and the cathode current is linear within measuring errors provided the anode voltage is higher than the saturation voltage.

⁶) During not more than some hours.

Fig.3

Spectral sensitivity characteristic

150CV

PHOTOTUBE

The 150CV is a 26 mm useful diameter head-on phototube with a flat window and a semitransparent S1 (type C) photocathode. The tube is intended for use in high precision photometry and for measurement of quick changing light phenomena and features a high stability and linearity.

QUICK REFERENCE DATA		
Spectral sensitivity characteristic	S1 (type C)	
Useful diameter of the photocathode	26	mm
Spectral sensitivity of the photocathode at 800 nm	2,5	mA/W
Anode voltage	1 to 90	V

To be read in conjunction with "General Operational Recommendations Phototubes".

CHARACTERISTICS

Photocathode

Semi-transparent head-on

Material		AgO-Cs	3	
Useful diameter		>	26	mm
Spectral sensitivity characteristic Fig. 1		S1 (type C)		
Maximum spectral sensitivity at		800	± 100	nm
Luminous sensitivity	1)	typ. >	20 14	µA/lm µA/lm
Spectral sensitivity at 903 ± 8 nm 1060 ± 10 nm	²)	n n	1,4 0,12	mA/W mA/W

Notes see page 3.

Operating characteristics			
Operating voltage, d.c.	1	to 90	V
Saturation voltage for a luminous flux of 0,05 lm 0,01 lm	* *	4,5 1	V V
Dark current at $V_b = 1 V$ ³)	typ. <	10 20	pA pA
Rise time at $V_D = 50 V$	~	14	ns
Capacitance, anode to cathode	Cak	13	pF
LIMITING VALUES (Absolute max. rating system)			
Anode voltage, d.c.	max.	100	V
Cathode current per mm ² , peak mean, averaging time 1 s	max. max.	50 70	nA/mm ² pA/mm ²
Total cathode current, 4)5) peak mean, averaging time 1 s	max. max.	25 500	μA nA
Ambient temperature	max. min.	50 -40	°C ⁶) °C

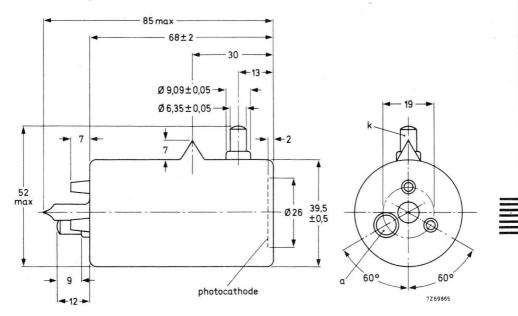
LIFE EXPECTANCY

With an average cathode current of 35 nA the sensitivity will not decrease more than 10% of its initial value between zero and 500 operating hours.

To attain high stability it is recommended that the cathode current be kept as low as possible.

REMARKS

After an idle period of more than 8 days, the dark current needs some hours to return to its normal value.


The cathode should not be exposed to direct sunlight.

150CV

MECHANICAL DATA

Dimensions in mm

Net mass : 60 g

Notes

- Cathode luminous sensitivity is measured by means of a tungsten filament lamp of colour temperature 2856 ± 5 K.
- 2) Measuring equipment is calibrated by comparison with a Schwartz thermocouple.
- ³) Dark current is measured at 20 $^{\rm O}{\rm C}$ after a stabilization period in darkness, with anode voltage applied, of $\approx 0,5$ h. The dark current is approximately proportional to the applied voltage.

An external guard ring, made of silver paste, may be put on the tube envelope when the tube is used with very low cathode current.

- 4) Cathode uniformly illuminated.
- ⁵) The relation between the incident luminous flux and the cathode current is linear within measuring errors provided the anode voltage is higher than the saturation voltage.

⁶) During not more than some hours.

150CV

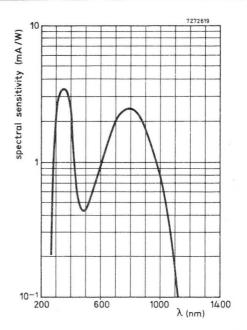


Fig.1

Spectral sensitivity characteristic

150TV

PHOTOTUBE

The 150TV is a 26 mm useful diameter head-on phototube with a flat window and a semitransparent S20 (type T) photocathode. The tube is intended for use in high precision photometry and for measurement of quick changing light phenomena and features a high stability and linearity.

QUICK REFERENCE DATA	L .	
Spectral sensitivity characteristic	S20 (type T)	
Useful diameter of the photocathode	26	mm
Spectral sensitivity of the photocathode at 698 nm	13	mA/W
Anode voltage	1 to 90	V

To be read in conjunction with "General Operational Recommendations Phototubes".

CHARACTERISTICS

Photocathode

Semi-transparent head-on						
Material			Sb-Na-K-Cs			
Useful diameter		>	26	mm		
Spectral sensitivity characteristic Fig. 1			S20 (type T)			
Maximum spectral sensitivity at			420 ± 30	nm		
Luminous sensitivity	1)	typ. >	150 100	µA /1m µA /1m		
Spectral sensitivity at 698 \pm 7 nm	2)	~	13	mA/W		

Notes see page 3.

Operating characteristics

Operating voltage, d.c.			1 to 90	V
Saturation voltage for a luminous flux of 0,05 lm 0,01 lm		n n	4,5 1	V V
Dark current at V _b = 1 V	3)	typ. <	2 5	pA pA
Rise time at V_b = 50 V		*	14	ns
Capacitance, anode to cathode		Cak	13	pF
LIMITING VALUES (Absolute max. rating system)				
Anode voltage, d.c.		max.	100	V
Cathode current per mm ² , peak mean, averaging time 1 s		max. max.	50 70	nA/mm ² pA/mm ²
Total cathode current, 4 peak mean, averaging time 1 s),5)	max. max.	25 500	μA nA
Ambient temperature		max. min.	+60 -40	ос б) ос

LIFE EXPECTANCY

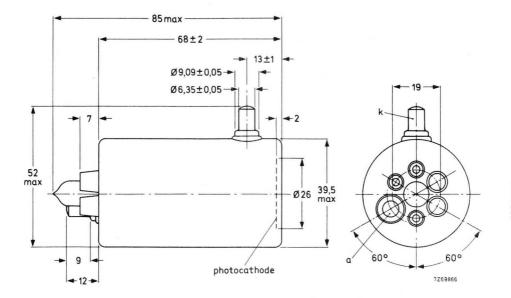
With a cathode current of $1 \mu A$ the decrease in sensitivity may be:

at 437 nm 0,2%/h at 700 nm 0,4%/h.

With an average cathode current of 1 x 10^{-7} A the sensitivity will not decrease more than 10 % of its initial value between zero and 500 operating hours.

To attain high stability it is recommended that the cathode current be kept as low as possible.

REMARKS


After an idle period of more than 8 days, the dark current needs some hours to return to its normal value.

The cathode should not be exposed to direct sunlight.

150TV

Dimensions in mm

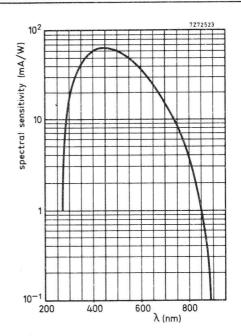
Net mass : 60 g

Notes

 Cathode luminous sensitivity is measured by means of a tungsten filament lamp of colour temperature 2856 ± 5 K.

 2) Measuring equipment is calibrated by comparison with a Schwartz thermocouple.

³) Dark current is measured at 25 °C after a stabilization period in darkness, with anode voltage applied, of ≈ 0,5 h. The dark current is approximately proportional to the applied voltage.


An external guard ring, made of silver paste, may be put on the tube envelope when the tube is used with very low cathode current.

- ⁴) Cathode uniformly illuminated.
- 5) The relation between the incident luminous flux and the cathode current is linear within measuring errors provided the anode voltage is higher than the saturation voltage.

⁶) During not more than some hours.

April 1976

150TV

Fig. 1

Spectral sensitivity characteristic

April 1976

PHOTOTUBE

The 150UV is a 30 mm useful diameter head-on vacuum phototube with a flat window and a semi-transparent S13 (type U) photocathode. The tube is intended for use in high precision photometry and features a high stability and linearity.

QUICK REFERENCE DATA			
Spectral sensitivity characteristic	S13 (ty	pe U)	
Useful diameter of the photocathode	>	30	mm
Spectral sensitivity of the photocathode at 437 nm		50	mA/W
Anode voltage		1 to 90	V

To be read in conjunction with "General Operational Recommendations Phototubes".

CHARACTERISTICS

Photocathode				
Semi-transparent head-on				
Material		Cs-Sb		
Useful diameter		>	30	mm
Spectral sensitivity characteristic Fig. 1		S13 (type)	U)	
Maximum spectral sensitivity at		400 ±	: 30	nm
Luminous sensitivity	1)	typ. >	60 30	μΑ/lm μΑ/lm
Spectral sensitivity at 437 \pm 5 nm	2)	*	50	mA/W

Notes see page 3.

Operating characteristics				
Operating voltage, d.c.		1	to 90	V
Saturation voltage for a luminous flux of 0,05 lm 0,01 lm		* *	4,5 1	V V
Dark current at $V_b = 1 V$	3)	typ. <	1 2	pA pA
Rise time at $V_b = 50 V$		*	14	ns
Capacitance, anode to cathode		Cak	13	pF
LIMITING VALUES (Absolute max. rating syste	m)			
Anode voltage, d.c.		max.	100	V
Cathode current per mm ² peak mean, averaging time 1 s		max. max.	50 70	nA/mm ² pA/mm ²
Total cathode current peak mean, averaging time 1 s	4)5)	max. max.	35 500	μA nA
Ambient temperature		max, min.	+60 -40	°C ⁶) °C

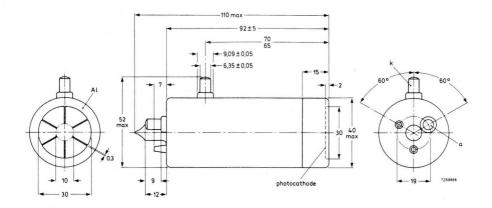
LIFE EXPECTANCY

With a cathode current of 2 μA the decrease in sensitivity may be: at 400 nm -0.4%/h at 560 nm -0.8%/h.

With an average cathode current of 50 nA the sensitivity will not decrease more than 10% of its initial value between zero and 500 operating hours.

To attain high stability it is recommended that the cathode current be kept as low as possible.

REMARKS


After an idle period of more than 8 days, the dark current needs some hours to return to its normal value.

The cathode should not be exposed to direct sunlight.

MECHANICAL DATA

Dimensions in mm

Net mass.: 60 g

Notes

- Cathode luminous sensitivity is measured by means of a tungsten filament lamp of colour temperature 2856 ± 5 K.
- 2) Measuring equipment is calibrated by comparison with a Schwartz thermocouple.
- 3) Dark current is measured at 25 °C after a stabilization period in darkness, with anode voltage applied, of 0, 5 h. An external guard ring, made of silver paste, may be put on the tube envelope when the tube is used with very low cathode current.
- ⁴) Cathode uniformly illuminated.
- ⁵) The relation between the incident luminous flux and the cathode current is linear within measuring errors provided the anode voltage is higher than the saturation voltage.

6) During not more than some hours.

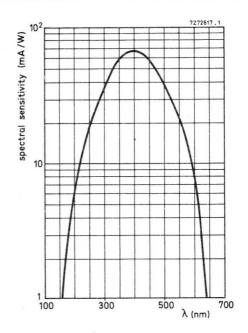
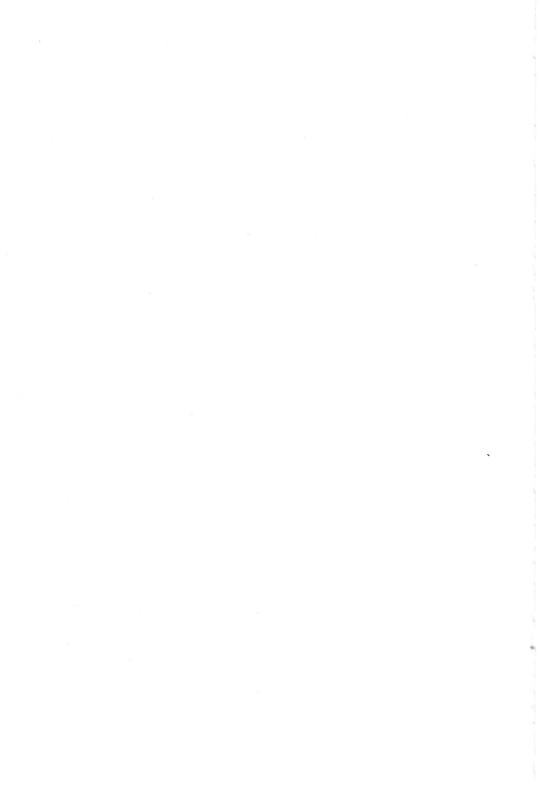



Fig. 1

Spectral sensitivity curve.

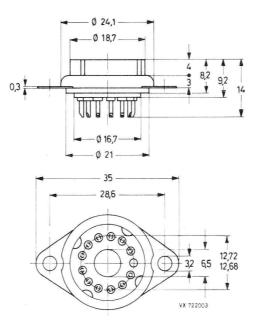
Associated accessories

1

January 1978

SOCKET

DESCRIPTION


This socket consists of a plastic moulding with 12 gold-plated contacts. The connections to the socket can be made by means of wire soldering. Mounting is done with two M3 screws.

Maximum working voltage between two adjacent contacts	2000 V
Insulation resistance between two adjacent contacts (at 500 V)	$>$ 10 ⁷ M Ω
Contact resistance	$<$ 10 m Ω
Capacitance between two adjacent contacts one contact to all	0,8 pF 1,3 pF
Temperature range	-55 to + 100 °C

MECHANICAL DATA

Outlines

Dimensions in mm

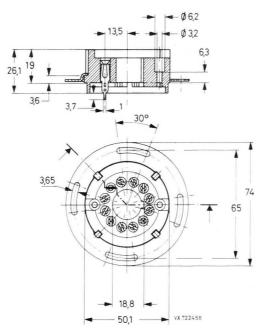
Mass 7 g Mounting hole diameter 22,5 mm

The use of flexible leads is strongly recommended.

January 1978

DUODECAL SOCKET

DESCRIPTION


This socket consists of a diallylphthalate moulding with 12 silver-plated phosphor-bronze contacts, spigot keyway in the centre hole and separate cadmium-plated saddle. The socket pins are suitable for either wire soldering, or soldering into a printed-wiring board. The socket can be mounted with or without the separate mounting ring by means of two M3 screws.

Maximum working voltage between two adjacent contacts	2000 V
Maximum working voltage between any contact and saddle	3000 V
Insulation resistance between two adjacent contacts (at 500 V)	$> 10^7 M\Omega$
Contact resistance	$<$ 50 m Ω
Temperature	max. 80 °C

MECHANICAL DATA

Outlines

Dimensions in mm

Mass socket mounting ring

45 g 15 g

DIHEPTAL SOCKET

DESCRIPTION

This socket consists of a diallylphthalate moulding with 14 silver-plated phosphor-bronze contacts, spigot keyway in the centre hole and separate cadmium-plated saddle. The socket pins are suitable for either wire soldering, or soldering into a printed-wiring board. The socket can be mounted with or without the separate mounting ring by means of two M3 screws.

Maximum working voltage between two adjacent contacts	2000 V
Maximum working voltage between any contact and saddle	3000 V
Insulation resistance between two adjacent contacts (at 500 V)	$> 10^7 M\Omega$
Contact resistance	$<$ 50 m Ω
Temperature	max. 80 ^o C

MECHANICAL DATA

Outlines

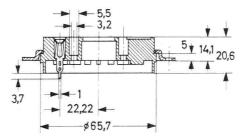
Dimensions in mm

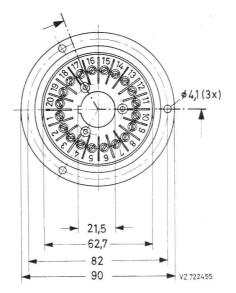
Mass

socket	40 g
mounting ring	15 g

BIDECAL SOCKET

DESCRIPTION


This socket consists of a diallylphthalate moulding with 20 silver-plated phosphor-bronze contacts, spigot keyway in the centre hole and separate cadmium-plated saddle. The socket pins are suitable for either wire soldering, or soldering into a printed-wiring board. The socket can be mounted with or without the separate mounting ring by means of three M4 or three M3 screws respectively.


Maximum working voltage between two adjacent contacts	2000 V
Maximum working voltage between any contact and saddle	4000 V
Insulation resistance between two adjacent contacts (at 500 V)	$> 10^7 M\Omega$
Contact resistance	$<$ 50 m Ω
Temperature	max. 80 °C

MECHANICAL DATA

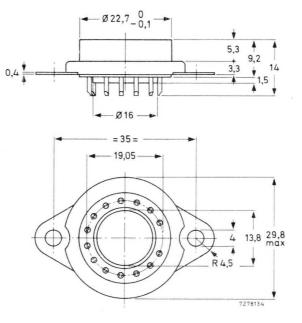
Outlines

Dimensions in mm

Mass

socket	56 g
mounting ring	44 g

SOCKET


DESCRIPTION

This socket consists of a plastic moulding with 14 gold-plated contacts. The connections to the socket can be made by means of wire soldering. Mounting is done with two M3 screws.

Maximum working voltage		
between two adjacent contacts	2000 V	
Insulation resistance between two		
adjacent contacts (at 500 V) >	10 ⁷ MΩ	
Contact resistance <	$10 \text{ m}\Omega$	
Temperature max.	80 °C	

MECHANICAL DATA Outlines

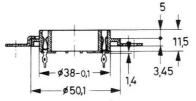
Dimensions in mm

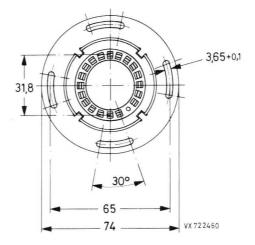
The use of flexible leads is strongly recommended.

January 1978

SOCKET

DESCRIPTION


This socket consists of a polytetrafluoraethylene moulding with 19 silver-plated phosphor-bronze contacts and a separate cadmium-plated saddle. The socket pins are suitable for either wire soldering, or soldering into a printed-wiring board. The socket can be mounted with the separate mounting ring by means of two M3 screws.


Maximum working voltage between two adjacent contacts	2000 V
Maximum working voltage between any contact and saddle	3000 V
Insulation resistance between two adjacent contacts (at 500 V)	$> 10^7 M\Omega$
Contact resistance	$<$ 50 m Ω
Temperature	max. 80 °C

MECHANICAL DATA

Outlines

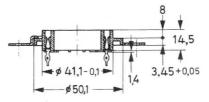
Dimensions in mm

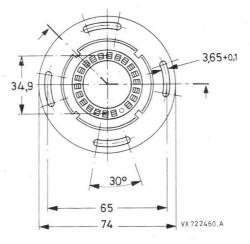
Mass

socket 18 g mounting ring 15 g

SOCKET

DESCRIPTION

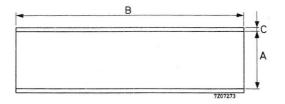

This socket consists of a polytetrafluoraethylene moulding with 21 silver-plated phosphor bronze contacts and a separate cadmium-plated saddle. The socket pins are suitable for either wire soldering, or soldering into a printed-wiring board. The socket can be mounted with the separate mounting ring by means of two M3 screws.


Maximum working voltage between two adjacent contacts		2000	V
Maximum working voltage between any contact and saddle		3000	V
Insulation resistance between two adjacent contacts (at 500 V)	>	10 ⁷	MΩ
Contact resistance	<	50	mΩ
Temperature	max.	80	oC

MECHANICAL DATA

Outlines

Dimensions in mm


Mass

socket 35 g mounting ring 15 g

January 1978

1

MU-METAL CYLINDRICAL SHIELDS

Dimensions

Type No.	A (mm)	B (mm)	C (mm)
56127	42 + 1	90 <u>+</u> 1	1
56128	57 + 1	90 <u>+</u> 1	1
56129	132 + 1	150 <u>+</u> 1	1
56130	57 + 1	110 ± 1	1 ,
56131	75 + 1	110 <u>+</u> 1	1
56132	240 + 1	300 ± 1	1
56133	145 + 1	250 ± 1	1
56134	21 + 1	80 <u>+</u> 1	1
56135	78 + 1	130 <u>+</u> 1	1
56136	28 + 1	110 <u>+</u> 1	1
56138	28 + 1	80 <u>+</u> 1	1

Index

Development Maintenance Obsolete

type list

OBSOLETE TYPES

type number	replaced by	type number	replaced by
PM2007 PM2054 PM2203 XP1000 XP1001	XP1017 XP2050 XP2230 PM2202 PM2202	XP1110 XP1113 XP1114 XP1115 XP1118	PM1910 PM1920 PM1910 PM1918
XP1003 XP1004 XP1005 XP1006 XP1010	56TUVP – – PM2202 XP2010	XP1119 XP1143 * XP1180 XP1210 XP1220	PM1910 PM1980 XP2020
XP1015 XP1016 XP1020 XP1021 XP1023	XP1011 PM2013B XP2020 XP2020 XP2020 XP2020Q	XP1230 * 54AVP 54DVP 54UVP 56DUVP	XP2050 XP2050 XP20200
XP1030 XP1031 XP1032 XP1034 XP1040 XP1041	XP2030 XP2030 XP2030 XP2040 XP2041	56SBUVP * 56UVP 58AVP 58DVP 58UVP 60AVP	XP2020Q XP2040 XP2041 XP2041Q 60DVP

* Information available on request.

1

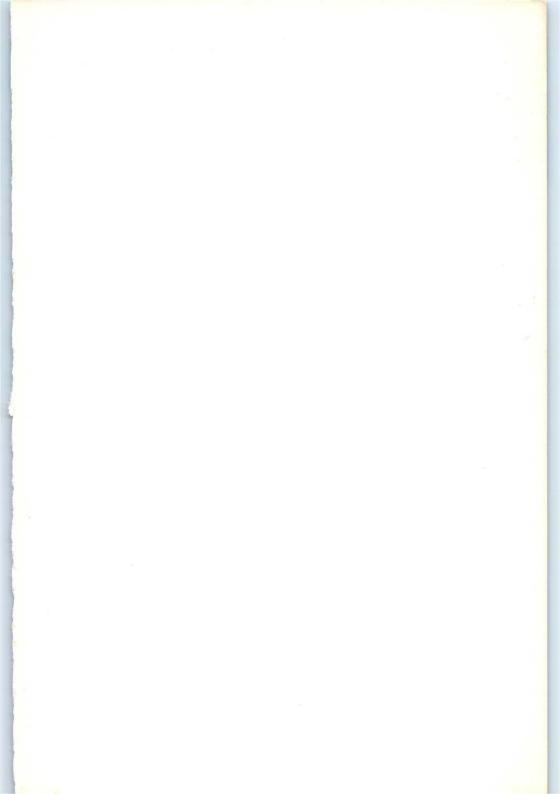
DEVELOPMENT SAMPLE DATA

type number	replaces	type number	replaces
PM1910	XP1110	PM2060B	_
PM1918	XP1118	PM2202	XP1000/XP1006
PM1920	XP1113	PM2232	-
PM1980	XP1180	PM2232B	56AVP/56DVP
PM2012B	150DVP	PM2312	-
PM2013B	XP1016	PM2312B	_
PM2018B	150UVP	PM2402	-

MAINTENANCE TYPES

type number	replaced by	
XP1011	_	
XP1116	-	
56AVP	PM2232B	
56CVP	_	
56DVP	PM2232B	
56TUVP	-	
56TVP		

Complete data on these types are included in this handbook.


INDEX

INDEX OF TYPE NUMBERS

type number	description	type number	description
AVHC201 FE1004 FE1012 FE1014 FE1020	phototube socket	XP2000 XP2008 XP2010 XP2020 XP2020Q	photomultiplier tube
FE1114 FE2019 FE2021 PM1910 PM1918	photomultiplier tube	XP2030 XP2040 XP2040Q XP2041 XP2041Q	
PM1920 PM1980 PM2012B PM2013B PM2018B		XP2050 XP2230 XP2230B 56AVP 56CVP	
PM2060B PM2202 PM2232 PM2232B PM2232B PM2312		56DVP 56TUVP 56TVP 60DVP 60DVP/H	
PM2312B PM2402 TVHC40 XA1002 XA1003	phototube	90CG 90CV 92AG 92AV 150AV	phototube
XP1002 XP1011 XP1017 XP1116 XP1117	photomultiplier tube	150CV 150CVP 150TV 150UV 56127-56138	photomultiplier tube phototube mu-metal shields

1

Photomultiplier tubes		
Phototubes		
Associated accessories		
Index	8 14	

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: FAPESA I.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478. Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 427 08 88, Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 62 91 11. Belgium: M B L F 80 rue des Deux Gares B-1070 BBUXELLES Tel 523.00.00 Brazil: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP, Tel. 284-4511, Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161. Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01, Colombia: SADAPE S.A., P.O. Box 9805. Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel, 600 600. Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KØBENHAVN NV., Tel. (01) 69 16 22. Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 1 72 71. France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99. Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1. Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915 311. Hong Kong: PHILIPS HONG KONG LTD., Comp. Dept., Philips Ind. Bldg., Kung Yip St., K.C.T.L. 289, KWAI CHUNG, N.T. Tel. 12-24 51 21. India: PHILIPS INDIA LTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5. Indonesia: P.T. PHILIPS-RALIN ELECTRONICS. Elcoma Division, 'Timah' Building, JI. Jen, Gatot Subroto, JAKARTA, Tel, 44 163, Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 69 33 55. Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6994. Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611. (IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521. Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 44-4202. Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 5-33-11-80. Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, NL-4510 EINDHOVEN, Tel. (040) 79 33 33. New Zealand: Philips Electrical Ind. Ltd., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867 119. Norway: ELECTRONICA A/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 15 05 90. Peru: CADESA, Jr. IIo, No. 216, Apartado 10132, LIMA, Tel. 277317. Philippines: ELDAC, Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL, Tel. 86-89-51 to 59. Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 68 31 21. Singapore: PHILIPS SINGAPORE PTE LTD., Elcoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 53 88 11. South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG 2001, Tel. 24/6701. Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12. Sweden: A.B. ELCOMA, Lidingövägen 50, S-10 250 STOCKHOLM 27, Tel. 08/67 97 80. Switzerland: PHILIPS A.G., Elcoma Dept., Edenstrasse 20, CH-8027 ZÜRICH, Tel. 01/44 22 11. Taiwan: PHILIPS TAIWAN LTD., 3rd Fl., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5. Turkey: TÜRK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 43 59 10. United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel, 01-580 6633, United States: (Active devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000. (Passive devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000. (IC Products) SIGNETICS CORPORATION, 811 East Argues Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700. Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 9 43 21.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, CARACAS, Tel. 36 05 11.

A6

© 1978 N.V. Philips' Gloeilampenfabrieken

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other righ, does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not reproduced in any way, in whole or in part, without the written consent of the publisher.