Data handbook

Electron tubes

Part 8 October 1975

TV picture tubes

ELECTRON TUBES

Part 8
October 1975

General section
Colour TV picture tubes
Black and white T.V picture tubes
Index; Maintenance type list

Argentina
liapesa I.y.C
Av. Crovara 2550
Tel. $652-7438 / 7478$
BUENOS AIRES

Australia

Philips Industries Ltd.
Elcoma Division
67-71 Mars Road
Tel. 421261
LANE COVE, 2066, N.S.W.

Austria

Osterreichische Philips
Bauelemente Industrie G.m.b.H.
Zieglergasse 6
Tel. 932611
A- 1072 VIENNA

Belgium

M.B.L.E.

80, rue des Deux Gares
Tel. 5230000
B-1070 BRUSSELS

Brazil

IBRAPE S.A.
Av. Paulista 2073-S/Loja
Tel. 278-1111
SAO PAULO, Sp.

Canada

Philips Electron Devices
116 Vanderhoof Ave.
Tel. 425-5161
TORONTO 17, Ontario

Chile

Philips Chilena S.A.
Av. Santa Maria 0760
Tel. 39-40 01
SANTIAGO

Colombia

SADAPE S.A.
Calle 19, No. 5-51
Tel. 422-175
BOGOTA D.E. 1
Denmark
Miniwatt A/S
Emdrupvej 115A
Tel. (01) 691622
DK-2400 KめBENHAVN NV

Finland

Oy Philips Ab
Elcoma Division
Kaivokatu 8
Tel. 17271
SF-00100 HELSINKI 10

France

R.T.C.

La Radiotechnique-Compelec
130 Avenue Ledru Rollin
Tel. 355-44-99
F-75540 PARIS 11

Germany

Valvo G.m.b.H
Valvo Haus
Burchardstrasse 19
Tel. (040) 3296-1
D-2 HAMBURG 1

Greece

Philips S.A. Hellénique
Elcoma Division
52, Av. Syngrou
Tel. 915311
ATHENS

Hong Kong
Philips Hong Kong Ltd.
Components Dept.
11 th Fl., Din Wai Ind. Bldg.
49 Hoi Yuen Rd.
Tel. K-42 7232
KWUNTONG
India
INBELEC Div. of
Philips India Ltd.
Band Box House
254-D, Dr. Annie Besant Rd
Tel. 457311 -5
Prabhadevi, BOMBAY-25-DD
Indonesia
P.T. Philips-Ralin Electronics

Elcoma Division
Djalan Gadjah Mada 18
Tel. 44163
DJAKARTA
Ireland
Philips Electrical (Ireland) Ltd.
Newstead, Clonskeagh
Tel. 693355
DUBLIN 14

taly

Philips S.p.A.
Sezione Elcoma
Piazza IV Novembre 3
Tel. 2-6994

- 20124 MILANO

Japan
NIHON PHILIPS
32nd Fl., World Trade Center Bldg.
5, 3-chome, Shiba Hamamatsu-cho
Minato-ku
Tel. 03-435-5268
TOKYO

Korea

Philips Electronics (Korea) Ltd.
Room 2501, Samilro Building
10, K wanchul-Dong, Chongro-ku
Tel. 73-7222
C.P.O. Box 3680

SEOUL

Mexico

Electrónica S.A. de C.V.
Varsovia No. 36
Tel. 5-33-11-80
MEXICO 6, D.F.

Netherlands

Philips Nederland B.V
Afd. Elonco
Boschdijk 525
Tel. (040) 793333
NL-4510 EINDHOVEN

New Zealand

EDAC Ltd.
70-72 Kingsford Smith Street
Tel. 873159
WELLINGTON

Norway

Flectronica A.S.
Vitaminveien 11
P.O. Box 29, Grefsen

OSLO 4

Peru

CADESA
Jr. Ilo, No. 216
Apartado 10132
Tel. 277317
LIMA

Philippines

ELDAC
Philips Industrial Dev. Inc.
2246 Pasong Tamo
Tel. 86-89-51 to 59
MAKATI-RIZAL
Portugal
Philips Portuguesa S.A.R.L.
Av. Eng. Duharte Pacheco 6
Tel. 683121
LISBOA 1
Singapore
Philips Singapore Private Ltd.
Elcoma Div.
P.O. Box 340, Toa Payoh Central P.O.

Lorong 1, Toa Payoh
Tel. 53881
SINGAPORE 12
South Africa
EDAC (Pty.) Ltd.
South Park Lane
New Doornfontein
Tel. 24/6701-2
JOHANNESBURG

Spain

COPRESA S.A
Balmes 22
Tel. 3296312
BARCELONA 7
Sweden
ELCOMA A.B.
Lidingovagen 50
Tel. 573231
S-10 250 STOCKHOLM 27

Switzerland

Philips A.G.
Edenstrasse 20
Tel. 01/44 2211
CH-8027 ZUERICH

Taiwan

Philips Taiwan Ltd
3rd. F1., San Min Building
57-1, Chung Shan N.Rd, Section 2
P.O. Box 22978

Tel. 553101-5
TAIPEI
Turkey
Turk Philips Ticaret A.S
EMET Department
Gumussuyu Cad. 78-80
Tel. 45.32.50
Beyogla, ISTANBUL
United Kingdom
Mullard Ltd.
Mullard House
Torrington Place
Tel. 01-580 6633
LONDON WCIE 7HD
United States
North American Philips
Electronic Component Corp.
230, Duffy Avenue
Tel. (516)931-6200
HICKSVILLE, N.Y. 11802

Uruguay

Luzilectron S.A
Rondeau 1567 , piso 5
Tel. 94321
MONTEVIDEO

Venezuela

C.A. Philips Venezolana

Elcoma Dept.
Av. Principal de los Ruices
Edif. Centro Colgate, Apdo 1167
Tel. 36.05.11
CARACAS

DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of three series of handbooks each comprising several parts.
ELECTRON TUBES BLUE
SEMICONDUCTORS AND INTEGRATED CIRCUITS RED
COMPONENTS AND MATERIALS GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

Where ratings or specifications differ from those published in the preceding edition they are pointed out by arrows. Where application information is given it is advisory and does not form part of the product specification.

If you need confirmation that the published data about any of our products are the latest available, please contact our representative. He is at your service and will be glad to answer your inquiries.

[^0]
ELECTRON TUBES (BLUE SERIES)

This series consists of the following parts, issued on the dates indicated.
Part la Transmitting tubes for communications April 1973and Tubes for r.f. heating Types PB2/500 \div TBW15/125
Part lb Transmitting tubes for communication August 1974 Tubes for r.f. heating
Amplifier circuit assemblies
Part 2 Microwave products October 1974

Communication magnetrons
Magnetrons for microwave heating Klystrons
Travelling-wave tubes
Diodes
Triodes
T-R SwitchesMicrowave Semiconductor devicesIsolators Circulators
Part 3 Special Quality tubes; January 1975
Miscellaneous devices
Part 4 Receiving tubes March 1975
Part 5a Cathode-ray tubes April 1975
Part 5b Camera tubes; Image intensifier tubes May 1975
Part 6 Products for nuclear technology
Photodiodes July 1975
Neutron tubesChannel electron multipliers
Geiger-Mueller tubes
N. B. Photomultiplier tubes and Photo diodes will be issued in Part 9
Part 7 Gas-filled tubesAugust 1975

Voltage stabilizing and reference tube
Counter, selector, and indicator tubes Trigger tubes Switching diodes

Thyratrons Ignitrons Industrial rectifying tubes High-voltage rectifying tubes

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1a Rectifier diodes and thyristors
Rectifier diodes
Voltage regulator diodes ($>1,5 \mathrm{~W}$)
Transient suppressor diodes

Part 1b
Diodes
Small signal germanium diodes
Small signal silicon diodes
Special diodes

Part 2 Low frequency transistors

Part 3 High frequency and switching transistors

Part 4a Special semiconductors
Transmitting transistors
Microwave devices
Field-effect transistors

Part 4b Devices for opto-electronics
Photosensitive diodes and transistors Light emitting diodes Photocouplers

Thyristors, diacs, triacs
Rectifier stacks
June 1974

October 1975
Voltage regulator diodes $(<1,5 \mathrm{~W})$ Voltage reference diodes
Tuner diodes

July 1974

October 1974

November 1974
Dual transistors
Microminiature devices for
thick- and thin-film circuits

December 1974
Infra-red sensitive devices
Photoconductive devices

Part 5 Linear integrated circuits
March 1975

Part 6 Digital integrated circuits
April 1974
DTL (FC family)
MOS
(FD family)
CML (GX family)

MOS

COMPONENTS AND MATERIALS (GREEN SERIES)

These series consists of the following parts, issued on the dates indicated.

Part 1 Functional units, Input/output devices,
 High noise immunity logic FZ/30-Series
 Circuit blocks 40 -Series and CSA 70
 Counter modules 50 -Series
 Norbits 60-Series, 61-Series
 Part 2aResistors
 Fixed resistors
 Variable resistors
 Voltage dependent resistors (VDR)
 Light dependent resistors (LDR)

Electro-mechanical components, Peripheral devices June 1974

Part 2 b Capacitors

Electrolytic and solid capacitors
Paper capacitors and film capacitors
Part 3 Radio, Audio, Television
FM tuners
Loudspeakers
Television tuners, aerial input assemblies

Part 4a Soft ferrites
Ferrites for radio, audio and television Beads and chokes

Circuit blocks 90 -Series
Input/output devices
Electro-mechanical components
Peripheral devices
September 1974
Negative temperature coefficient thermistors (NTC)
Positive temperature coefficient thermistors (PTC)
Test switches
November 1974
Ceramic capacitors
Variable capacitors
February 1975
Components for black and white television
Components for colour television *)

April 1975
Ferroxcube potcores and square cores
Ferroxcube transformer cores

Part 4b Piezoelectric ceramics, Permanent magnet materials May 1975
Part 5 Ferrite core memory products July 1975
Ferroxcube memory cores
Matrix planes and stacks
Core memory systems

Electric motors and accessories
September 1975
Small synchronous motors
Miniature direct current motors
Stepper motors
Part 7 Circuit blocks
September 1971
Circuit blocks 100 kHz -Series
Circuit blocks for ferrite core
Circuit blocks 1-Series
Circuit blocks 10 -Series
Part 8 Variable mains transformers

[^1]
General section

IIIIII

LIST OF SYMBOLS

Symbols denoting electrodes/elements and electrode/element connections

Heater or filament f
Cathode k
Grid g
Grids are distinguished by means of an additional numeral; theelectrode nearest to the cathode having the lowest number.
External conductive coating, rim-band m
Fluorescent screen 1
Tube pin which must not be connected externally i.c.
Tube pin which may be connected externally n.c.
Symbols denoting voltages
Symbol for voltage, followed by an index V
denoting the relevant electrode/element
Heater or filament voltage V_{f}
Peak value of a voltageV_{p}
Peak to peak value of a voltage V_{pp}
Grid no. 1 voltage for visual extinction of focused raster (grid drive service) v_{GR}
Cathode voltage for visual extinction of focused raster (cathode drive service) V_{KR}
Symbols denoting currents
Remark I The positive electrical current is directed oppositeto the direction of the electron current.
Remark II The symbols quoted represent the average values ofthe concerning current unless otherwise stated.
Symbol for current followed by an index I
denoting the revelant electrode
Heater or filament I_{f}
Symbols denoting powers
Dissipation of the fluorescent screen W_{l}
Grid dissipation W_{g}
Symbols denoting capacitances
See I.E.C. Publication 100

Symbols denoting resistances

Symbol for resistance followed by an index R
for the revelant electrode pair. When only one index is given the second electrode is the cathode. Ditto impedance Z
Symbols denoting various quantities
Brightness B
Frequency f
Magnetic field strength H

GENERAL OPERATIONAL RECOMMENDATIONS T.V. PICTURE TUBES

CONTENTS

1 Introduction
2 Spread in tube characteristics
3 Spread and variation in operating conditions
3.1 Spread
3.2 Variation

4 Limiting values
4.1 Rating systems
4.1.1 Absolute max. rating system
4.1.2 Design max. rating system
4.1.3 Design centre rating system
4.2 More than one rating system

5 Heater circuit
5.1. Parallel connection
5.2 Series connection
5.3 Stand-by (instant-on circuits)

6 Cathode to heater voltage
7 Intermediate electrodes
8 Electrode voltages
9 Luminescent screen
10 External conductive coating
11 Metal rimband
12 Flash-over
13 Handling
14 Mounting
15 Dimensions
16 Reference line
17 Corner cutting or neck shadowing
18 Raster centring

GENERAL OPERATIONAL RECOMMENDATIONS T.V. PICTURE TUBES

1. INTRODUCTION

Equipment design should be based on the characteristics as stated in the data sheets.
Where deviations from these general recommendations are permissible or necessary, statements to that effect will be made.
If applications are considered not referred to in the data sheets of the relevant tube type extra care should be taken with circuit design to avoid that the tube is overloaded due to unfavourable operating conditions.

2. SPREAD IN TUBE CHARACTERISTICS

The spread in tube characteristics is the difference between maximum and minimum values. Values not qualified as maximum or minimum are nominal ones. It is evident that average or nominal values, as well as spread figures, may differ according to the number of tubes of a certain type that are being checked. No guarantee is given for values of characteristics in settings substantially differing from those specified in the data sheets.

3. SPREAD AND VARIATION IN OPERATING CONDITIONS

The operating conditions of a tube are subject to spread and/or variation.
3.1 Spread. Spread in an operating condition is a permanent deviation from an average condition due to, e.g., component value deviations. The average condition is found from such a number individual cases taken at random that an increase of the number will have a negligible influence.
3.2 Variation. Variation in an operating condition is non-permanent (occurs as a function of time), e.g., due to supply voltage fluctuations. The average value is calculated over a period such that a prolongation of that period will have negligible influence.

4. LIMITING VALUES

4.1 Limiting values are in accordance with the applicable rating system as defined by I.E.C. publication 134.
Reference may be made to one of the following 3 rating systems.
4.1.1 Absolute maximum rating system. Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

GENERAL

T.V. PICTURE TUBES

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment components spread and variation, equipment control adjustment, load variations, signal variation, environmental conditions, and spread or variations in characteristics of the device under considerations and of all other electronic devices in the equipment.
4.1.2 Design-maximum rating system. Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that. initially and throughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.
4.1.3 Design-centre rating system. Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under average conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component spread and variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations or spread in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device* in equipment operating at the stated normal supply-voltage.
Note*. A bogey tube is a tube whose characteristics have the published nominal values for the type. A bogey tube for any particular application can be obtained by considering only those characteristics which are directly related to the application.

GENERAL

t.V. PICTURE TUBES

4.2 If the tube data specify limiting values according to more than one rating system the circuit has to be designed so that none of these limiting values is exceeded under the relevant conditions.
4.3 In addition to the limiting values given in the individual data sheets the directives in the following paragraphs should be observed.

5. HEATER CIRCUIT

Any deviation from the nominal heater voltage (in case of parallel connection) or from the nominal heater current (in case of series connection) has a detrimental effect on tube performance and life, and should therefore be kept at a minimum. Such deviations may be caused by:
a) Mains voltage fluctuations.
b) Spread in the characteristics of components such as transformers, resistors capacitors etc.
Designers of heater circuits are strongly recommended to bear this in mind when dealing with equipment to be used in areas where the actual mains voltage is likely to differ from the nominal value.

5.1 Parallel connection

The maximum deviation of the heater voltage should not exceed $\pm 15 \%$ (design maximum value).
This condition will be fulfilled when the mains voltage fluctuates by $\pm 10 \%$ and a ordinary transformer (see below) is used.

5.2 Series connection

The maximum deviation of the heater current should not exceed $\pm 8 \%$ (design maximum value).
When a small number of tubes with large differences in the heater voltage is used in series connection combined with a series resistor or a series capacitor, the maximum permitted deviation of the heater current may be exceeded.
To avoid this, certain restrictions must be imposed on the composition of the heater chain; the maximum part of the supply voltage that can be eliminated, and the tolerances of the voltage dropper in series with the heaters. A number of circuits for If $=300 \mathrm{~mA}$ will be described in detail below.

$\mathrm{V}_{\mathrm{S}}=\underset{\text { source voltage (mains voltage or mains voltage stepped down via a }}{ } \quad \begin{aligned} & \text { transformer) }\end{aligned}$
$\mathrm{V}_{\text {Rs }}=$ voltage drop over series resistor
$\mathrm{V}_{\mathrm{ftot}} .=\mathrm{V}_{\mathrm{f} 1}+\mathrm{V}_{\mathrm{f} 2}+\mathrm{V}_{\mathrm{f} 3} \ldots \ldots \ldots \ldots \ldots+\mathrm{V}_{\mathrm{fmin}} .+\ldots \ldots \ldots \ldots .$.
$\mathrm{V}_{\text {fmin }}$. $=$ lowest individual heater voltage of all tubes in the chain
$\mathrm{R}_{\mathrm{S}} \quad=$ series resistor

Voltage source
The following spreads have been taken into account for the source voltage:

- Mains voltage spread $\pm 10 \%$ either or not combined with the voltage spread caused by a transformer with a permanent deviation from the nominal value of $\pm 1 \%$ and with a spread of $\pm 2 \%$ (ordinary, well made transformer).

The following circuits are allowed:
5.2.1 Supply directly from a voltage source ($V_{S}=V_{f t o t}$.)

- No restrictions.
5.2.2 Supply from a voltage source via a 5% series resistor ($\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{Rs}}+\mathrm{V}_{\mathrm{ftot}}$.)
a. One single tube: permitted if $\frac{\mathrm{VRs}}{\mathrm{Vftot}} \leq 2$
b. Heater chain consisting of 2 or more tubes:
the maximum permitted ratio $\frac{\mathrm{V}_{\mathrm{Rs}}}{\mathrm{V}_{\text {ftot }}}$. can be read from diagram number 1
as follows:
Determine $\frac{V_{\text {fmin }}}{V_{\text {ftot }}}$. of the heater chain. Draw a vertical line through the corresponding point in the diagram. Draw a horizontal line through the point of intersection of this vertical line with the line which indicates the total number of tubes in the chain. The point of intersection of this horizontal line with the vertical axis gives the maximum permitted ratio between the series resistor and the sum of the heater voltages of all tubes in the chain.

GENERAL

5.2.3 Supply from a voltage source via a series diode $\left(\frac{\mathrm{V}_{\mathrm{S}}}{\sqrt{2}}=\mathrm{V}_{\mathrm{ftot}}\right)$

- No restrictions.
5.2.4 Supply from a voltage source via a series diode and a series resistor
$\left(\frac{V_{S}}{\sqrt{2}}=V_{\text {ftot }} .+V_{R S}\right)$
In the above formula Vftot. and VR's are RMS values and the maximum permitted ratio $\frac{V R s}{V f t o t}$. can be read from diagram number 1 (see 5.2.2).
For calculation of R_{S} divide the required VRs (RMS) by the nominal heater current: $\mathrm{R}_{\mathrm{S}}=\frac{\mathrm{VRs}}{0.3}$

Remark to 5.2.3 and 5.2.4:
When series diodes are applied, the D.C. component of the resulting heater voltage should preferably be negative with respect to the cathodes of the tubes.
5.2.5 Supply from a voltage source via a series capacitor
a. One single 300 mA tube ; permitted if $\frac{\text { Vftot. }}{V_{S}} \geq 0.50$ when 5% paper capacitors are applied.
b. $\frac{\mathrm{V}_{\text {ftot }}}{\mathrm{V}_{\mathrm{S}}} \geq 0.70$ when 10% metallized polycarbonate eapacitors are applied.
c. Heater chain consisting of 2 tubes or more; permitted if $\frac{V_{f t o t}}{V_{S}}$
$\frac{\text { Vftot. }}{V_{S}} \geq 0.6$ when 5% paper capacitors are applied.
$\frac{\text { Vftot. }}{V_{S}} \geq 0.8$ when 10% metallized polycarbonate capacitors are applied.

5.3 Stand-by (instant - on circuits)

In order to maintain reliability during life, it is recommended to reduce the heater voltage of the tubes during stand-by operation to $\leq 75 \%$ of the nominal value.

Note
If other designs for the heater supply circuit are wanted than the configurations described above it is strongly recommended to contact the tube manufacturer.

Diagram No. 1
6. CATHODE TO HEATER VOLTAGE

The voltage between cathode and heater should be as low as possible and never exceed the limiting value given on the data sheets of the individual tubes. The values given under "Limiting values" relate to that side of the heater where the voltage between cathode and heater is greatest. The voltage between cathode and heater may be D.C., A.C. or a combination of both voltages. Unless otherwise stated, the maximum values quoted for the voltage between cathode and heater indicate the maximum permissible value (D.C. component). If an A.C. voltage, or an combination of D.C. and A.C. voltages. is applied the peak value may be twice the rated V_{kf}; however. unless otherwise stated, the peak value shall never exceed 315 V . The D.C. component is not allowed to exceed the published value.
Unless otherwise stated, the V_{kf} max. holds for both polarities of the voltage; however, a positive cathode is usually the most favourable in view of insulation during life.
In order to avoid excessive hum the A.C. component of the heater to cathode voltage should be as low as possible and never exceed $20 \mathrm{~V}_{\mathrm{rms}}$ (mains frequency).
7. INTERMEDIATE ELECTRODES (between cathode and final accelerator)

In no circumstances should the tube be operated without a D.C. connection between each electrode and the cathode. The total effective impedance between each electrode and the cathode should never exceed the published maximum value. However, no electrode should be connected directly to a high energy source such as the hot line. When such a connection is required, it should be made via a series resistor of not less then $1 \mathrm{k} \Omega$.

8. ELECTRODE VOLTAGES

All electrode voltages are given with respect to cathode.
For cathode drive service the reference point is grid No. 1
8.1 Grid No. 1 cut-off voltage

Generally curves showing the limits of grid No. 1 cut-off voltage for specific values of the first accelerator voltage are included in the data. The brightness control should be so dimensioned that it can handle any tube within the limits shown, at the appropriate first accelerator voltage.
The published limits are determined at an ambient illumination level of 10 lux with the aid of a focused raster. Because the brightness of a focused spot is in general greater than that of a raster. the visual cut-off voltage determined with the aid of a spot will be more negative by about 5 V .
8.2 Grid No. 2 voltage

For each individual tube the grid No.2, voltage can be adjusted so that the beam current is cut off at a fixed value within the published range of the grid No. 1 voltage.
In the data, graphs are included giving the relationship between the grid No. 2 voltage and the grid No. 1 cut-off voltage.
8.3 Focusing electrode voltage

Individual tubes will have satisfactory focus over the entire screen at some value within the published range of the focusing voltage.
If centre-focusing is desired this range will shift in the negative direction.
9. LUMINESCENT SCREEN

To prevent permanent damage to the screen material care should be taken
a. not to operate the tube with a stationary picture at high beam currents for extended periods
b. not to operate the tube with a stationary or slowly moving spot except at extremely low beam currents
c. to choose the time constants of the grid No. 1 the grid No. 2 and the time bases supply line circuits such that sufficient beam current is maintained to discharge the e.h.t. capacitance before deflection has ceased after equipment has been switched off.

10. EXTERNAL CONDUCTIVE COATING

The external conductive coating must be connected to the chassis. The capacitance of this coating to the final accelerating electrode may be used to provide smoothing for the e.h.t. supply.
The coating is not a perfect conductor and in order to reduce radiation caused by the line time base it may be necessary to make multiple connections to the coating. See also 12 .

GENERAL

t.V. PICTURE TUBES

11. METAL RIMBAND

An appreciable capacitance exist between the metal rimband and the internal conductive coating of the tube; its value is quoted in the individual data sheets. To avoid electric shocks, a D.C. connection should be provided between the metal band and the rest of the receiver. In receivers where the chassis can be connected directly to the mains there is a risk of electric shock if acces is made to the metal band. To reduce the shock to the safe limit, it is suggested that a $2 \mathrm{M} \Omega$ resistor capable of handling the peak voltages be inserted between the metal band and the point of contact with the external conductive coating. This safety arrangement will provide the necessary insulation from the mains but in the event of flash-over high voltages will be induced on the metal band. It is therefore recommended that the $2 \mathrm{M} \Omega$ resistor be bypassed by a 4.7 nF capacitor capable of withstanding the peak voltage determined by the voltage divider formed by this capacitor and the capacitance of the metal rimband to the internal conductive coating.
The 4.7 nF capacitor also serves to reduce the radiation from the band.
12. FLASH-OVER

Picture tubes, in common with other high voltage devices, are prone to internal flash-over. During a breakdown arcing occurs between an electrode connected to the e.h.t. capacitor and an electrode terminated in a pin on the base of the tube. The resulting transient currents and voltages may be of sufficient magnitude to cause damage to the tube itself and to various components on the chassis. Arcing terminates when the e.h.t. capacitor is discharged.
During the subsequent recharging period an additional load is imposed on the e.h.t. generator.

It is of vital importance to provide protective circuits with spark gaps, particularly when semiconductor devices are employed. The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.
Additional information available on request.

13. HANDLING

The precautions taken in manufacture reduce the possibility of spontaneous im plosion to a minimum but any additional stress due to mishandling considerably increases the risk of implosion: such an implosion may occur immediately or may be delayed. Care should be taken not to scratch or bump any part of the bulb, particularly the screen to cone area, as this will appreciably reduce the strength of the bulb and may lead to implosion.

GENERAL

T.V. PICTURE TUBES

When a tube is not in its equipment or original packing and is placed screen downwards, it should be placed on a soft pad of suitable material free from abrasive substances. Stresses on the neck should be avoided.

If the transportation method uses the lugs it is necessary to employ at least two lugs in the lifting of the tube. The lift should be made in such a way that the applied forces are equally distributed between the lugs.
The maximum force that may be applied to one lug, at any angle, shall not exceed twice the weight of the tube.
The tube should not be subjected to accelerations higher than 30 g .
Before removing the tube from the equipment the capacitance $C_{a m}$ should be discharged via a resistor of approx. $50 \mathrm{k} \Omega$.

The manufacturers notify all concerned that they do not accept any responsibility for any damage on injury sustained in any manner in connection with the picture tube, neither is any condition or warranty given or to be implied.

14. MOUNTING

Unless otherwise specified on the data sheets for individual tubes there are no restrictions on the position of mounting.
The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.
The weight of the socket and possible additional circuitry should not be more than 80 g . With tubes with a 7-pin miniature base the socket may not be used for mounting components.
Tubes having all-glass bases must not be soldered direct into the wiring. It is very desirable that tubes should not be exposed to strong electrostatic and magnetic fields.
In front of the face of a mono-panel T.V. picture tube a protecting screen of transparent material should be placed. The screen should be of adequate strength to withstand the effects of an implosion of the tube.
Tubes having integral protection do not require a protective screen.

15. DIMENSIONS

In designing the equipment the tolerances given on the dimensional drawings should be considered. Under no circumstances should the equipment be designed a round dimensions taken from individual tubes.

16. REFERENCE LINE

The reference line indicated on the tube outline drawing is determined by means of a gauge.
Drawings of these gauges are given in this book.

GENERAL

17. CORNER CUTTING OR NECK SHADOWING

Corner cutting is caused by a direct interception of the deflected electron beam before it is reaching the screen and results in a non-scanned corner of the raster. It may be avoided by applying an appropriate deflection unit.

18. RASTER CENTRING

To centre the raster on the screen it is recommended that either a magnetic field just behind the deflection coils (viewed from the screen) be used or a direct current be passed through the deflection coils.

The centring device should provide a shift to allow for non-centrality of the spot with respect to the geometric centre of the screen, in addition the centring device should provide the shift needed to allow for non-centrality of the visible raster (i.e. to compensate for line blanking and also time base non-linearity, if any) and the earth magnetic field.
The use of a too strong centring magnetic field should be avoided; this may result in raster distortion and even corner cutting.

RATING SYSTEMS
 (in accordance with I.E.C. publication 134)

Absolute maximum rating system

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute-maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

Design-maximum rating system

Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

Design-centre rating system

Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in aver age applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply-voltage.

TYPE DESIGNATION

PRO-ELECTRON TYPE DESIGNATION CODE

Single letter, group of figures, hyphen, group of figures, letter or letter group.
The first letter indicates the prime application of the tube:
A - Television display tube for domestic application.
M - Television display tube for professional application-direct view.
First group of figures: Diameter or diagonal of the face in cm .
Second group of figures: Development or design number.
Final letter or letter group: Properties of the phosphor screen.
The first letter denotes the colour of the fluorescence, the second letter, if any, other specific differences in screen properties.
W - White screen for T ? display tubes.
X - Three-colour screen for T.V. display tubes.

SCREEN PHOSPHORS

Kelly Chart

Colour point tolerance area for W phosphor

7Z09635

Colour coordinates

	x	y
red	0,630	0,340
green	0,315	0,600
blue	0,150	0,065

REFERENCE LINE GAUGES

REFERENCE LINE GAUGE C (JEDEC 126) (IEC 67-IV-3)

The millimetre dimensions are derived from the original inch dimensions.

ref	inches				millimetres				notes
	min	nom	\max	\min	nom	\max			
	-	5,000	-	-	127,00	-	-		
B	-	4,500	-	-	114,30	-	-		
C	-	2,000	-	-	50,80	-	-		
D	1,168	1,168	1,171	29,668	29,668	29,743	-		
E	1,241	1,242	1,243	31,522	31,547	31,572	-		
F	4,248	4,250	4,252	107,900	107,950	108,000	-		
G	-	0,279	-	-	7,09	-	2		
H	-	0,250	-	-	6,35	-	-		
L	1,165	1,170	1,175	29,60	29,72	29,84	2		
M	-	1,634	-	-	41,50	-	-		
N	-	0,920	-	-	23,37	-	1		
P	-	0,250	-	-	6,35	-	-		
R	-	1,000	-	-	$25,40 \mathrm{r}$	-	-		
S	0,712	0,714	0,716	18,085	18,136	18,186	-		
T	-	3,214	-	-	81,64	-	-		
V	2,490	2,500	2,510	63,25	63,50	63,75	-		

1. $y=0,58 x^{2}+0,576$ inches $\left(0,0228 x^{2}+14,630 \mathrm{~mm}\right)$ ' y ' values must be held to $\pm 0,002^{\prime \prime}(0,05 \mathrm{~mm})$. The Y -axis is $0,920^{\prime \prime}(23,368 \mathrm{~mm})$ below the $\mathrm{X}-\mathrm{X}^{\prime}$ reference plane.
2. $4^{\circ} \pm 30^{\prime}$ taper between planes G and L .

Reference line gauge for 90° deflection angle

Reference line gauge for 90° deflection angle colour tubes

Reference line gauge for 110° deflection angle colour tubes

Reference line gauge for 110° deflection angle

BASES

[^2]
7 PIN MINIATURE BASE WITH PUMPING STEM

Dimensions of this base are within the JEDEC E7-91 dimensions

${ }^{1}$) Base-pin and pumping stem positions are held to tolerances such that entire length of pins and stem will without undue forcepassinto and disengage from a flat-plate gauge having a thickness of $6,35 \mathrm{~mm}$ and eight holes with diameters of $1,27 \pm 0,013 \mathrm{~mm}$ so located on a $9,525 \pm 0,013 \mathrm{~mm}$ diameter circle that the distance along the chord between any two adjacent hole centres is $3,645 \pm 0,013 \mathrm{~mm}$ and a centre hole of $5,97+$ $0,025 \mathrm{~mm}$ being chamfered at the top over $1,52 \mathrm{~mm}$ with an angle of 45 degrees.
${ }^{2}$) This dimension around the periphery of any individual pin may vary within the limits shown.

12 PIN BASE JEDEC B12-246, IEC-67-I-47a

pin contour

Colour TV picture tubes

ز

90° COLOUR TELEVISION PICTURE TUBE

Three-gun temperature-compensated shadow-mask rectangular colour television tube with electrostatic focus, magnetic deflection and convergence, metal-backed three-colour phosphor dot screen. A high white luminance is obtained at near unity current ratio. Being temperature compensated the shadow-mask makes for optimum field purity and good unifomity during warm-up. Minimum occurence of the moiré effect is ensured by optimizing the mask for the reproduction of 625 -line pictures. The tube has a reinforced envelope and therefore no separate safety screen is necessary.

QUICK REFERENCE DATA	
TEMPERATURE-COMPENSATED SHADOW -MASK	
SHADOW-MASK OPTIMIZED FOR 625-LINE SYSTEM	
HIGH WHITE LUMINANCE AT UNITY CURRENT RATIO	
Face diagonal	56 cm
Deflection angle	92 o
Neck length	164.2 mm
Envelope	reinforced
	suitable for push through
Focusing	electrostatic
Deflection	magnetic
Convergence	magnetic
Heating	$6.3 \mathrm{~V}, 900 \mathrm{~mA}$
Light transmission of face glass	54.5%

SCREEN

Metal-backed tricolour phosphor dots

Phosphor type

Dot arrangement
Spacing between centres of adjacent dot trios
Light transmission at centre of face glass

Red: Europium activated rare earth Green and blue: sulphide type

Triangular
0.68 mm
54.5%

heating

Indirect by A.C. or D.C. ; parallel or series supply

| Heater voltage | V_{f} | 6.3 V |
| :--- | :--- | :--- | :--- |
| Heater current | I_{f} | 900 mA |

For maximum cathode life it is recommended that the heater supply be regulated at 6.3 V . If the tube is connected in a series heater chain the r.m.s. surge heater voltage must not exceed 9.5 V when the supply is switched on.

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal rimband
Grid No. 1 of any gun to all other electrodes
Cathodes of all guns (connected in parallel) to all other electrodes

Cathode of any gun to all other electrodes

Grid No. 3 (focusing electrode)
to all other electrodes
FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle 92°
Horizontal deflection angle 79°
Vertical deflection angle 61°
CONVERGENCE magnetic

MECHANICAL DATA

Overall length
Neck length

Diagonal	
Horizontal axis	of bulb
Vertical axis	

Useful screen

diagonal	\min.	533 mm	
horizontal axis	\min.	447	mm
vertical axis	\min.	337 mm	

$472.2 \pm 9.5 \mathrm{~mm}$
$\max . \quad 168.7 \mathrm{~mm}$ $\max . \quad 566.2 \mathrm{~mm}$ max. 486.3 mm $\max .381 .8 \mathrm{~mm}$

MECHANICAL DATA (continued)

Mounting position: any
Net weight: approx. $150 \mathrm{~N}(15 \mathrm{~kg})$
Base: 12 pin base JEDEC B12-244 but with a 5 mm shorter spigot.
Anode contact: Small cavity contact J1-21, IEC 67-III 2.

Magnetic shielding:

Magnetic shielding should be provided by means of a metal shield extending 24 cm over the cone of the tube measured from the centre of the face plate. The metal shell is preferably constructed of min .0 .5 mm cold rolled steel properly annealed. The air gap between the shield and the metal rimband should be as small as possible and not exceed 10 mm . The magnetic shield should be connected to the outer conductive coating.

NOTES TO OUTLINE DRAWING (See pages 4 and 5)

1. Reference line, determined by the plane of the upper edge of the flange of the reference line gauge E , when the gauge is resting on the cone.
2. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base will fall within a circle concentric with bulb axis and having a diameter of 55 mm .
3. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
4. To clean this area, whipe only with a solft dry lintless cloth.
5. The displacement of any lug with respect to the plane through the three other lugs is $\max .2 \mathrm{~mm}$.
6. Minimum space to be reserved for mounting lug.
7. The position of the mounting screw in the cabinet must be within a circle of 9.5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $476.5 \mathrm{~mm} \times 370 \mathrm{~mm}$.
8. Co-ordinates for radius $\mathrm{R}=16 \mathrm{~mm}: \mathrm{x}=203.92 \mathrm{~mm}, \mathrm{y}=145.50 \mathrm{~mm}$.

MECHANICAL DATA (continued)

Notes see page 3.

MECHANICAL DATA (continued)

Dimensions in mm

		Distance from centre (max, values)															
$\begin{array}{\|l\|} \mathrm{Sec}- \\ \text { tion } \end{array}$	Nom distance from point " Z "	$\begin{aligned} & 00 \\ & \text { Long } \end{aligned}$	10°	20°	25°	30°	$33^{\circ} 30^{\prime}$	$\begin{gathered} 35030^{\prime} 29.4^{\prime \prime} \\ \text { Diagona! } \end{gathered}$	370	390	42°	45°	50°	000	70°	800	900 Short
1	227.20	79.87	79.87	79.87	79.87	79.87	79.87	74.87	79.87	79.87	79.87	79.87	79.87	79.87	79.87	79.87	79.87
2	222.60	87.66	87.64	87.57	87.52	87.47	87.43	87.41	87.39	67.37	87.34	87.31	87.26	87.18	87.13	87.09	87.09
3	214.60	103.28	102.93	102.07	101.53	100.96	100.55	100.32	100.15	99.93	99.6	99.29	98.82	98.00	97.58	97.35	97.3
4	200.60	117.96	117.41	115.98	115.05	114.03	113.3	112.87	112.56	112.13	111.51	100.91	109.95	108.3	107.1	106.4	106.18
5	198.60	130.96	130.45	128.93	127.85	126.6	125.65	125.08	124.06	124.08	123.2	122.33	120.89	118.27	116.19	114.80	114.39
6	190.00	142.65	142.33	141.09	140.04	138.72	137.04	130.97	136.40	135.74	134.04	133.44	131.50	127.85	124.78	122.75	122.02
7	182.60	153.27	153.25	152.55	151.7	150.43	144.3	148.56	147.97	147.14	145.8	144.34	141.92	137.01	132.86	130.1	129.12
8	174.60	163	163.32	163.37	162.85	161.77	100.64	159.85	159.21	158.27	150.71	155	151.94	145.71	140.44	136.90	135.73
9	166.00	172.07	172.74	173.65	173.55	172.76	171.69	170.88	170.18	169.14	167.34	165.31	161.59	153.95	147.53	143.36	141.9
10	158.00	180.58	181.0	183.42	183.83	183.42	182.40	181.04	180.9	179.75	177.09	175.3	170.80	101.7	154.13	149.32	147.66
11	150.60	188.58	189.94	192.7	193.7	193.75	192.97	192.15	191.37	150.1	187.73	184.95	179.7	108.95	160.29	154.88	153.04
12	142.00	190.14	197.8	201.52	203.14	203.70	203.22	202.42	201.54	2110.14	197.40	194.21	188.09	175.72	100	100.06	158.06
13	134.60	203.27	205.21	209.87	212.17	213.45	213.24	212.46	211.59	210.03	200.86	203.08	196.01	182.01	171.31	104.88	162.75
14	126.00	210.01	212.21	217.77	220.78	222.82	223.01	222.29	221.36	219.03	215.93	211.53	20.3.43	187.81	170.21	169.37	167.11
15	118.60	216.38	218.82	225.24	228.98	231.87	232.56	231.9	230.91	228.98	224.64	214.53	210.33	193.14	180.74	173.53	171.17
16	110.60	222.42	225.06	232.28	230.75	240,58	241.80	241.31	240.25	238.188	232.98	227.00	210.09	198.01	184.9	177.38	174.94
17	102.60	228.13	230.96	238.91	244.11	248.96	251	250.52	244.34	246.9 .3	240.93	234.08	222.49	202.42	188.71	180.94	178.42
18	94.00	233.31	230.3	244.94	250.88	250.89	259.85	254.54	238.35	255.57	248.48	240.57	227.71	206.38	192.18	184.21	181.64
19	86.60	237.31	240.42	249.09	256.43	263.92	208.3	208.38	207.22	204.13	255.09	246.51	232.3	209.80	195.3	187.2	184.6
20	78.60	240.24	243.42	253.18	260.67	264.8	276.118	270.83	275.80	272.51	202.37	251.08	236.1	212.8	198.05	189.9	187.29
21	70.60	242.23	245.43	255.39	263.22	273.18	280.54	2×1.74	280.44	277.51	200.4	254.80	238.59	214.9	290.00	191.89	189.28
22	62.60	243.35	246.56	250.59	204.5	274.08	282.32	283.65	282.42	279.49	268.10	256.4	23.39 .94	216.11	201.22	193.02	190.4
23	57.35	243.81	247.03	257.00	204.98	275.10	282.78	2×4.11	283.38	279.97	208.08	250.95	240.49	210.63	201.71	193.49	190.80

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid No. 3 (focusing electrode) voltage

$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{5}, \mathrm{~g}_{4}}$	25	kV	
V_{3}	4.2 to	5	kV
V_{2}	210 to	495	$\left.\mathrm{~V}^{1}\right)$
$\mathrm{V}_{\mathrm{g} 1}$	-70 to -140	$\mathrm{~V} 2)$	

Grid No.l voltage for spot cut-off

$$
\text { at } \mathrm{V}_{2}=300 \mathrm{~V}
$$

-70 to -140 V 2)
Luminance at the centre of the screen
See page 21
EQUIPMENT DESIGN VALUES (each gun if applicable)
Valid for final accelerator voltages between 20 kV and 27.5 kV .

Grid No. 3 (focusing electrode) voltage

Grid No. 2 voltage ${ }^{1}$)

Grid No. 1 voltage for visual extinction of focused spot (cut-off voltage) 2)

Difference in cut-off voltages between guns in any tube
$\begin{array}{ll}\text { Grid No. } 3 \text { (focusing electrode) current } & \mathrm{I}_{\mathrm{g}_{3}} \\ \text { Grid No. } 2 \text { current } & \mathrm{I}_{\mathrm{g}_{2}} \\ \text { Grid No. } 1 \text { current at } \mathrm{V}_{\mathrm{g}_{1}}=-150 \mathrm{~V} & \mathrm{I}_{\mathrm{g}}\end{array}$
16.8 to 20% of final accelerator voltage See cut-off design chart page 22

See cut-off design chart page 22
lowest value is min. 65% of highest value

	$3)$	$4)$	$5)$	
x	0.310	0.265	0.281	
y	0.316	0.290	0.311	
	43.5	27.9	32.2	$\%$
	30.0	34.9	35.6	$\%$
	26.5	37.2	32.2	$\%$
min.	1.05	0.60	0.65	
av.	1.45	0.80	0.90	
max.	2.00	1.10	1.25	
min.	1.20	0.55	0.75	
av.	1.65	0.75	1.00	
\max.	2.25	1.05	1.35	

Notes see page 8.

EQUIPMENT DESIGN VALUES (continued)

Required centring, measured at the centre of the screen in any direction \max. 13 mm

Correction which must be supplied by purifying magnet to compensate for mis-register (including caused by earth's magnetic field) when using recommended components. Measured at the centre of the screen in
any direction.
$\max .115 \mu \mathrm{~m}$
Lateral distance between the blue spot and the converged red and green spots

Radial convergence displacement excluding effects of dynamic convergence (each beam)
max. 6 mm
(in both directions)
max. 9 mm ${ }^{6}$)
(in both directions)

1) This range of $V_{g_{2}}$ has to be used when in circuit design fixed values for cut-off of the three guns are used.
${ }^{2}$) This range of $V_{g_{1}}$ has to be used when in circuit design fixed values for $V_{g_{2}}$ of the three guns are used.
${ }^{3}$) To produce colour pictures with the best possible quality, this white point should be used as the transmission systems are based on this point. (Point C)
${ }^{4}$) To produce black/white pictures a more bluish white point would be preferable. This white point corresponds virtually with the white point of current black/white picture tubes.
2) This point is a compromise between the white point C and the white point $x=0.265$ and $y=0.290$, given in order to enable good rendition of colour and black-andwhite pictures with one white point.
${ }^{6}$) Dynamic convergence to be effected by currents of approximately parabolic waveshape synchronized with scanning.

LIMITING VALUES (Each gun if applicable)(Design centre rating system unless otherwise specified)

Final accelerator voltage
Average current for 3 guns

$$
\mathrm{I}_{\mathrm{a}}
$$

Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage, peak, including video signal voltage

Grid No. 1 voltage, negative
negative, operating cut-off
positive
positive péak

$$
\mathrm{V}_{\mathrm{a}, \mathrm{~g}_{5}, \mathrm{~g}_{4}}
$$

V_{3}
$\mathrm{V}_{\mathrm{g}_{2} \mathrm{p}}$
$-V_{g_{1}}$
$-V_{g_{1}}$
$V_{g_{1}}$
$V_{g_{1}}$

$\left.\max .27 .5 \mathrm{kV} \mathrm{l}^{2}\right)^{3}$)
min. 20 kV l$)^{4}$)
$\max .1000 \quad \mu \mathrm{~A} 5$)
$\max .6000 \mathrm{~V}$
$\max .1000 \mathrm{~V}$
$\max .400 \mathrm{~V}$
$\max .200 \mathrm{~V}$
$\max . \quad 0 \quad \mathrm{~V}$
$\max . \quad 2 \mathrm{~V}$
max. $\left.250 \quad V^{6}\right)^{7}$)
$\max .300 \mathrm{~V}$
max. 135 V
$\max .180$ V

1) Absolute max. rating system.
2) The X-ray dose rate remains below the acceptable value of $0.5 \mathrm{mr} / \mathrm{h}$, measured with ionization chambre when the tube is used within its limiting values.
${ }^{3}$) For optimal operating conditions the final accelerator voltage has to be stabilized. Therefore its absolute maximum value can be approached in actual operation and for this reason this value is given instead of the design centre value. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs the brightness and resolution and may have a detrimental effect on colour purity.
3) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.

6) In order to avoid excessive hum the a.c. component of the heater to chassis voltage should be as low as possible and must not exceed $20 \mathrm{~V}_{\mathrm{rms}}$.
7) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{kf}}$ is allowed to rise to 410 V . Between 15 s and 45 s after switching on a decrease in V_{kf} proportional with time from 410 V to 250 V is permissible.

REMARK

With the high voltage used with this tube (max. 27.5 kV) internal flash overs may occur, which may destroy the cathode(s). Therefore it is necessary to provide protective circuits, using spark gaps.
The sparkgaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissi ble.
Additional information available on request.

REFERENCE LINE GAUGE

Gauge E. See chapter "Reference line gauges" in front of this book.

DESCRIPTION OF THE TUBE

The A56-120X is a rectangular temperature compensated shadow-mask colour picture tube for use in colour television receivers. The tube can display a picture, either in full colour or in black and white, on an almost rectangular, almost flat screen, with rounded-off corners of small curvature. Mounting the tube with the screen protruding through the cabinet front is possible since the rimband is clamped some distance from the screen edge. The minimum useful screen area measures $447 \mathrm{~mm} \times 337 \mathrm{~mm}$ and has a projected area of $1471 \mathrm{~cm}^{2}$
The A56-120X has

- a deflection angle of 92°
- a neck diameter of 36.5 mm
- a three-colour phosphor dot screen, composed of closely spaced dots in a regular pattern of tri-angular groups, each containing a red, a green and a blue light emitting dot.
- Three electron guns with axes tilted towards the screen centre, with electrostatic focusing systems and mounted side by side in the neck of the tube 120° apart.
Colour selection is effected by a metal graded-hole shadow mask positioned in front of the tricolour phosphor-dot screen. This mask is aligned with the dot pattern so that the electron beam from each gun lands only on phosphor dots of the associated colour.
The shadow mask has graded holes that increase gradually in diameter from the edge of the mask towards the centre. Grading enables correct purity to be achieved over the whole screen with minimum adjustment.
Although the three guns are tilted towards the screen centre so that their axes intersect at the shadow mask, lateral and radial convergence are necessary to ensure correct convergence over the entire screen. Each of the three guns is therefore provided with a pair of radial converging pole pieces.
Radial convergence can be achieved by means of magnets and coils mounted externally on the neck of the tube. The magnetic flux provided is coupled through the glass neck of the tube to associated internal pole pieces. The shape of the pole pieces, together with the internal magnetic shielding, is shown in Fig.1. Internal shielding prevents interaction of the various magnetic fields.

Fig. 1 Fig. 2

Fig. 2 shows the position of the components on the neck of the tube.
Lateral convergence is achieved by a separate assembly mounted on the neck of the tube. This assembly causes horizontal movement of the blue beam, and simultaneously, movemerits of the red and green beams in the opposite direction.
Facilities for dynamic blue lateral convergence are also provided in this convergence assembly.

APPLICATION NOTES

1. Magnetic shielding

The tube should be fitted with a magnetic shield around the cone, to minimize the effects of external magnetic fields, including the horizontal, vertical and axial components of the earth's magnetic field. The latter so influences the colour purity that compensation by means of the purifying magnets is not possible.
The metal shield should preferably be constructed of coldrolled steel, at least 0.5 mm thick and properly annealed at $850^{\circ} \mathrm{C}$. Since the tube re-inforcing band is an essential part of the magnetic circuit used for degaussing, the air gap between the band and the shield should be as small as possible and certainly not more than 10 mm . To be effective, the shield must be degaussed as described under "Adjustment procedures". Building-in of an automatic degaussing system is advised.
2. Centring of raster on the screen.

Raster centring in a shadow-mask colour picture tube is achieved by passing direct current of the required value through each pair of deflection coils. The values for raster displacement given in the data apply when all components are properly adjusted.
3. Component considerations.

The necessary components are the deflection coil, the radial convergence assembly, the purifying magnets and the blue lateral convergence magnet.
Basically the functions of the components are:

- deflection of the three beams over the entire screen: deflection coil.
- good convergence of the three beams over the screen: radial convergence assembly and blue lateral convergence magnet.
- landing adjustment: purifying magnets and deflection coil

The mounting positions of the components are as follows:
The deflection coil: in such a way that its deflection centre coincides with the one used in the screen-laying process during manufacturing. The coil must therefore be designed so that sufficient movement in the axial direction is possible.

The radial convergence assembly: with its pole pieces centred above the convergence pole pieces inside the tube. Initially, the assembly should be mounted upright. Small rotations of the whole assembly influence the convergence and can be used during adjustment of the blue lateral correction to obtain optimum lateral convergence.

APPLICATION NOTES (continued)

The purifying magnets: over the gap between the electrode g3 and g4 of the gun, or still closer to the deflection coil. Placing the purifying magnets closer to the base results in poorer performance as the spot quality is adversely affected.

The blue lateral convergence magnet: as near as possible to the rear side of the purifying magnets but not shifted backwards more than halfway along electrode g3 of the gun.

3.1 Convergence

Static convergence, i.e. convergence of the three beams onto the centre of the screen, is usually accomplished with permanent magnets which are part of the radial convergence assembly, or with D.C. currents through the convergence coils in combinations with the lateral converging magnet.
The strength of the magnetic field that is adjustably coupled to the radial convergence pole pieces of the gun should be such that each beam can be moved 9 mm in both directions towards the centre of the screen excluding effects of dynamic convergence. The static blue lateral convergence magnet should provide a magnetic field adjustable in magnitude and polarity.
This field exerts a directive force on the blue beam and simultaneously a force in the opposite direction on the green and the red beams.
The displacement of the blue beam opposite to the movement of the red and green beams should be 6 mm in both directions.
With these four adjustable magnetic fields static convergence of the three beams can be attained.
For good convergence over the entire screen dynamic radial convergence is required together with a small amount of dynamic lateral convergence in line direction.
The radial convergence assembly consists fundamentally of three cores with associated windings. Through the windings are passed the necessary currents for maintaining convergence when the beams are deflected over the screen.
The required form of the currents can be obtained by adding a current with a sawtooth wave form to one with a parabolic wave form. Two separate windings are required for correction in the horizontal and the vertical direction. The parabolic and sawtooth currents should be adjustable in amplitude and the sawtooth currents and the vertical blue parabola should, in addition be adjustable in polarity.
The blue lateral convergence magnet consists of a core and associated windings to obtain dynamic lateral convergence in line direction.

3.2 Landing

Landing is defined as the relative position of each beam with respect to its as sociated phosphor dot.
Good landing is achieved when each beam excites only its associated colour phosphor dot.
Optimum landing is achieved by adjusting both the purifying magnets and the deflection coil.

APPLICATION NOTES (continued)

3.2.1 Purifying magnets

Purifying magnets are required to compensate for the effects of outside magnetic fields, (including the earth's magnetic field), and manufacturing variations, which could cause mislanding.
Such purifying magnets, designed to provide a magnetic field adjustable in magnitude and direction, effect good landing over the entire screen when the deflection coil position is properly adjusted.

3.2.2 Deflection coil

The position of the deflection centre must be adjustable to make sure that proper landing can be attained in any set. To achieve this the deflection coil should be free to move along the neck over a minimum distance of 12 mm from its most forward position when the purity adjustment is made with the aid of a microscope, or about 20 mm if purity is adjusted by means of the socalled "red ball" method. (See 6.1.2.1.)

4. Drive requirements

To calculate the drive voltages which should be supplied to the tube the following points should be taken into account.
4.1 In presently known systems the luminance signal is composed as follows:
$Y=0.30 R+0.59 G+0.11 B$.
The colour information is carried by two chrominance signals which in the receiver after subcarrier detection, deliver the so-call colour difference signals $R-Y, G-Y$ and $B-Y$.
These have to be combined with the Y-signal in a matrix circuit to recover the original red, green and blue signals. With the aid of the luminance signal equation it is possible to calculate the maximum voltage ranges for the colour difference signals. The maximum values are reached when the primary colours and their complementaries are produced at maximum brightness.
These values are tabulated below. All values are referred to the maximum value $\mathrm{Y}=\mathrm{R}=\mathrm{G}=\mathrm{B}=1$ for peak white and are considered positive if they cause an increase in beam current.

Colour	R	G	B	Y	R-Y	G-Y	B-Y
Red	1	0	0	0.3	0.7	-0.3	-0.3
Green	0	1	0	0.59	-0.59	0.41	-0.59
Blue	0	0	1	0.11	-0.11	-0.11	0.89
Cyan	0	1	1	0.7	-0.7	0.3	0.3
Magenta	1	0	1	0.41	0.59	-0.41	0.59
Yellow	1	1	0	0.89	0.11	0.11	-0.89

APPLICATION NOTES (continued)

Signal
R-Y
$G-Y$
B-Y

Minimum
-0.7
-0.41
-0.89

Maximum
0.7

Total range
1.4
0.41
0.82
0.89
1.78

In practice the saturation of the colours is lower than that of the primary colours as considered above, so that the demands on the colour difference signals can be lower than those indicated.
4.2 The combining of the Y-signal with the $R-Y, G-Y$ and $B-Y$ signals can be performed by two methods:

Method 1. Letting the picture tube perform the matrix function by driving the cathodes with the luminance signal while putting the colour difference signals onto the three first grids of the picture tube. (colour difference drive)

Method 2. By means of a separate matrix circuit that delivers red, green and blue signals to the picture tube. (R.G.B. drive). If fed to the three cathodes these signals attain the same maximum amplitudes as the Y-signal in the first method, and it should be remembered that each channel requires full video bandwidth.
In both methods it should be recognized that with cathode drive a higher slope is obtained than with grid drive and to compensate for this higher drive voltages are required for grid drive in each case. For grid drive the relation between grid drive voltage $\left(V_{d r g}\right)$ and beam current $\left(I_{a}\right)$ is approximately:

$$
\mathrm{I}_{\mathrm{a}}=\mathrm{k} \frac{\mathrm{~V}_{\mathrm{drg}}{ }^{3}}{\mathrm{~V}_{\operatorname{cog}{ }^{3 / 2}}} \quad \begin{aligned}
& \left(\mathrm{I}_{\mathrm{a}} \text { in } \mu \mathrm{A}\right) \\
& \left(\mathrm{V}_{\operatorname{cog}} \text { is cut-off voltage for grid drive }\right) \\
& (\mathrm{k}=\mathrm{k} \text { factor })
\end{aligned}
$$

For cathode drive this function reads:

$$
I_{\mathrm{a}}=\frac{\mathrm{k}(1+\mathrm{D})^{3}}{\left(1+\mathrm{D} \frac{\mathrm{~V}_{\mathrm{drk}}}{\mathrm{~V}_{\mathrm{cok}}}\right)^{3 / 2} \cdot\left(\mathrm{~V}_{\mathrm{cok}}\right)^{3 / 2}} \begin{aligned}
& \mathrm{V}_{\mathrm{drk}}{ }^{3} \\
& \left(\mathrm{D} \quad \begin{array}{l}
\left(\mathrm{V}_{\mathrm{drk}}=\right. \\
\left(\mathrm{V}_{\mathrm{cok}}\right.
\end{array}=\begin{array}{l}
\text { cuthode drive voltage }) \\
\text { drive })
\end{array}\right. \\
& \\
& (\text { penetration factor })
\end{aligned}
$$

This shows that there is a difference in sensivity between the two drive techniques, and that the relationship between them is not strictly linear. In practice the best result is obtained if the gridsignal amplitudes are made 20% larger than the corresponding cathode signal amplitudes.
4.3 Unequal currents are required for the red, green and blue signals to produce white as the efficiencies of the red, green and blue phosphors are different. (See Equipment Design Values)
4.4 Spread occuring in picture tube properties:
(1) k factor, (2) penetration of g 2
(D) and (3) phosphor efficiencies.

APPLICATION NOTES (continued)

(1) The k factor, having a nominal value of 3.0 , spreads between 2.6 and 3.1 but it can be derived from the $I_{a}=f\left(V_{d r}\right)$ graph for cathode drive that compensation for this spread is attainable when the luminance drive stage is capable of producing approx. 6 volts more than the nominal peak drive needed for the red gun.
(2) The penetration D may spread from 0.18 to 0.40 with a nominal value of 0.29 and is experienced as a spread in V_{co}. It can be offset - if required - by adjustment of $\mathrm{V}_{\mathrm{g}_{2}}$ (See page 22).
(3) Phosphor efficiencies: the ratios of cathode currents for white having, for example, CIE x and y coordinates:
$x=0.281$ and $y=0.311$, may spread as follows:
$\frac{\mathrm{I}_{\mathrm{R}}}{\mathrm{I}_{\mathrm{G}}}=0.90$ with a min. value of 0.65 and a max. value of 1.25
$\frac{I_{R}}{I_{B}}=1.00$ with a min. value of 0.75 and a max. value of 1.35
In calculations, for the worst case the values $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{G}}=1.25$ and $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{B}}=1.35$ should be used if the compromise white point is chosen ($\mathrm{x}=0.281 \mathrm{y}=0.311$). If the white point C is chosen for reproduction of colours then for the worst case the current ratio values, $I_{R} / I_{G}=2.00$ and $I_{R} / I_{B}=2.25$ should be used.
5. Raster shape correction

It appears that for 90° deflection the combination of picture tube and deflection coil can give good convergence and landing, but it is not practical to design the combination such that a perfectly rectangular raster is obtained. To avoid the pin cushion raster which results it is necessary to provide raster correction electrically by modulating the deflecting current.
6. Adjustment procedures

The following procedures are suggested to ensure good landing, optimum convergence of the three beams over the entire area of the screen and good grey scale tracking.

Exact focusing is the final operation in the sequence of adjustments, see 6.3.
When starting the sequence it is sufficient to adjust the convergence test pattern for optimum sharpness.

Prior to the adjustment procedure the picture tube has to be degaussed. This treatment will correct for localized areas of colour impurity resulting from any magnetization of the shield and internal tube parts and minimize the effect of the earth's magnetic field. Degaussing can be obtained by a coil that consists of 800 turns of 0.7 mm dia. enamelled copper wire (for $220 \mathrm{~V}_{\mathrm{rms}}$) and has an outer diameter of approx. 300 mm .
The coil should be moved such that the entire screen is subjected to its field. After about 10 seconds, the coil is moved away from the face plate to a distance of at least 2 m and disconnected from the A.C. power supply.

APPLICATION NOTES (continued)

During manufacture the receiver chassis should be degaussed in a similar manner, with the receiver switched on and care should be taken that the assembly line is properly degaussed. An automatic degaussing system built into the receiver serves for degaussing during normal operation.
It is recommended that the receiver has some adjustments made before the picture tube is built in. These adjustments should include EHT and deflection, and the dynamic convergence in order to facilitate the adjustment of purity and static convergence. Before deflection power and high voltage are applied to the tube, the bias control should be adjusted for maximum bias. After deflection power and high voltage are applied, the beam currents should be increased gradually to minimize the possibility of tube damage in the event of circuit faults. With the application of a test signal, initial adjustment of focus, raster size, linearity and centring should be made.
6.1 Colour purity and convergence procedures

The normal sequence involves, first, static convergence adjustment next the purifying magnet and adjustment of the axial position of the deflection coil, and lastly final adjustment of dynamic convergence.
6.1.1 Static convergence adjustment

A crosshatch pattern is the most suitable signal for convergence adjustments. The pattern should be displayed at moderate brightness to improve the accuracy. It is advisable to converge red and green first, with the blue gun cut off, and then to converge blue into the yellow pattern formed by the coinciding of red and green lines.
The red and green beams are made to converge statically by adjusting the permanent magnets of the radial convergence assembly, or the corresponding D.C. currents. Correct convergence is obtained when the lines in the centre converge to give yellow.
Before the blue lateral convergence magnet is used, the blue lines are brought horizontally adjacent to the yellow lines by means of the radial blue static convergence adjustment (permanent magnet or D.C. current).
Hereafter the blue lines are made to converge with the yellow lines in the centre with the aid of the blue lateral convergence magnet, resulting in white lines in the centre. If necessary this procedure is repeated.

6.1.2 Adjustment for colour purity

Adjustment for colour purity involves two steps:
Adjustment of the purifying magnets. (6.1.2.1)
Adjustment of the position of the deflection coil. (6.1.2.2)
To obtain optimum adjustment, the static and dynamic convergence should be adjusted previously and the picture tube degaussed and well warmed up to normal operating temperature (approx. 30 min , total beam current $600 \mu \mathrm{~A}$). Purity assessments are best made on a plain raster.

APPLICATION NOTES (continued)

Adjustment of the purifying magnets influences purity all over the screen. The deflection coil adjustment influences purity mainly at the screen edges. Therefore, the magnets have to be adjusted before the coil.
6.1.2.1 The purifying magnets are adjusted, judging by the landing in the screen centre. There are two ways of doing this.
The first method makes use of a microscope (magnification about 50x). With this method, the deflection coil need not possess more axial adjustment margin than that needed to cope with the spreads of the deflection centres. (12 mm total).
With the microscope, the position of the spot trio's is compared with the position of the phosphor dot trio's at the screen centre. To do this, the three colour rasters are displayed simultaneously, and the phosphor dots are illuminated by means of a light source, shining onto the screen at a small angle. The spot trio's should be made to land on the phosphor dot trio's as shown in Fig.1, with their centre points coinciding.
Due to the beam grouping used in this tube (which improves the overall landing) the spots will then be approx. $25 \mu \mathrm{~m}$ eccentric with respect to their corresponding phosphor dots.

Fig.1. Correct landing in the screen centre.
The second method ("Red ball" method) is applicable if the mounting of the deflection coil is such that it can be drawn away approx. 20 mm backwards from its foremost position when it touches the funnel.
The coil is moved backwards as far as possible, and only the red raster is turned on. (The red gun needs relatively the highest current, thus mislanding on blue and green phosphor dots is seen more clearly so that a sharp indication is obtained).
Now a red area of approx. 10 cm diameter is visible on the screen, surrounded by discoloured and blue and green areas. With the aid of the purifying magnets, the red area is positioned near the screen centre. In or der that the above mentioned beam grouping shows to full adventage, the red area should be positioned 20 mm down to the left of the screen centre, see Fig. 2.

APPLICATION NOTES (continued)

Fig. 2
6.1.2.2 After adjustment of the purifying magnets, the deflection coil is adjusted by shifting it axially until optimum landing over the entire screen is reached. This can be done in two stages:

1. Only the red raster turned on, and the coil position giving an overall pure red raster sought.
2. For the final adjustment, a white raster is displayed and, if necessary, very slight adjustment of the deflection coil position made to obtain the best white uniformity.
After having completed 1 and 2, the red, green and blue rasters are checked separately for their purity, and if necessary the procedure repeated.

6.1.3 Adjustment of dynamic convergence

Just as for the static convergence a crosshatch pattern is recommended, dis played at low luminance.
It is advisable to adjust first the convergence in the vertical direction (with frame frequency) and then the horizontal convergence (with currents of line frequency). During the dynamic convergence adjustments, the static convergence (6.1.1) may need readjustment depending on the efficiency of any clamping circuits used.

A favourable sequence is to adjust the red and green convergence controls first so that both rasters coincide to display yellow lines while the blue gun is kept cut-off. Thereafter the blue pattern is added and adjusted to coincide with the yellow to give a white pattern. However, as the blue horizontal convergence system usually has a significant power consumption which influences the line time base to some degree, it is often advisable to start the whole convergence procedure by adjusting the blue horizontal convergence controls coarsely to give a straight blue horizontal centre line.

During the vertical dynamic convergence adjustment, the vertical axis of the screen should be taken as reference, while the horizontal adjustments should be referred to the horizontal axis. During the latter sequence the lateral blue dynamic convergence is also adjusted.

APPLICATION NOTES (continued)

The currents for dynamic convergence (except blue lateral) consist of two components, viz. one of parabolic and one of sawtooth wave form. Usually both have their own controls which have to be adjusted in combination to obtain convergence. The parabolic ("amplitude") controls are used to make the configurations at the extremities of the picture axis equal to that at the centre. With the sawtooth ("phase" or "tilt") control the two extremities of the picture axis are made equal to each other as far as possible.
In addition, the blue horizontal convergence needs an extra waveform correction to correct for the tilting of the outer edges.
The blue lateral waveform needed is basically a sawtooth. Left-to-right asymmetry can be adjusted by slight rotation of the radial convergence assembly.

By repeated adjustments of the controls the line patterns in the various colours ultimately coincide and become parallel to each other. Thereafter these are made to coincide with the aid of the static convergence magnets to white lines.

After convergence onto the axes is obtained, usually some errors in the corners of the picture remain. Slight readjustment may be needed to minimize these errors.

At the end of the procedure purity is checked, and readjusted if needed, with the aid of the purifying magnets.

6.2 Adjustment of grey scale

This adjustment is carried out last of all and the sequence of the manipulations depends on receiver circuitry.

To obtain a constant hue of white over the whole grey scale when displaying a monochrome signal, the three guns must track accurately. This can be achieved by adjusting two points of each gun characteristic, one near cut-off and one near the highlights. To this end the following variables are available, and in a receiver two of them must be made adjustable for each gun:

1. cut-off point $\left(\mathrm{V}_{\mathrm{g}_{1}}\right)$
2. slope $\left(\mathrm{Vg}_{2}\right)$
3. drive

The proper adjustment procedure depends on receiver circuitry. After adjustment, the luminance and contrast controls should not cause any change in hue, and the chosen white point should be displayed.

6.3 Focusing

The focusing voltage for all three guns can be adjusted via the common focus base pin No.9. In order to obtain optimum focus it is recommended to use a black-and-white picture with a low peak to mean luminance ratio, such as the RMA test picture, running at a total mean current of about 1 mA (peak currents in the three guns in the order of 2.5 mA), and to focus at the highlights. This procedure will give best overall focus.

Luminance at the centre of the screen as a function of $\mathrm{I}_{\text {total }}$

Scanned area $447 \mathrm{~mm} \times 337 \mathrm{~mm}$

110° COLOUR TELEVISION TUBE

Three-gun temperature-compensated shadow-mask rectangular colour television tube with electrostatic focus, magnetic deflection and convergence, metal-backed three-colour phosphor dot screen and internal magnetic shield. A high white luminance is obtained at near unity current ratio. Being temperature compensated, the shadow-mask makes for optimum field purity and good uniformity during warm-up. The design is such that minimum occurence of the moiré effect is ensured. The tube has a reinforced envelope and therefore no separate safety screen is necessary.

QUICK REFERENCE DATA	
TEMPERATURE-COMPENSATED SHADOW -MASK	
DESIGNED FOR MINIMUM MOIRE EFFECT	
HIGH WHITE LUMINANCE AT UNITY CURRENT RATIO	
Face diagonal	56 cm
Deflection angle	1100
Neck diameter	36.5 mm
Envelope	reinforced
	suitable for push through
Magnetic shield	internal
Focusing	bipotential
Convergence	magnetic
Heating	$6.3 \mathrm{~V}, 900 \mathrm{~mA}$
Light transmission of face glass	54.5%

SCREEN

Metal -backed phosphor dots
Phosphor type

Dot arrangement
Red: Europium activated rare earth
Green: Sulphide type
Blue: Sulphide type
Triangular
Spacing between centres of adjacent dot trios
0.81 mm
54.5%

Light transmission at centre of face glass
HEATING : indirect by A.C. or D.C.; parallel or series supply Heater voltage V_{f} 6.3 V Heater current If 900 mA

For maximum cathode life it is recommended that the heater supply be regulated at 6.3 V. If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal rimband
Grid No. 1 of any gun to all other electrodes

Cathodes of all guns (connected in parallel) to all other electrodes

Cathode of any gun to all other electrodes

Grid No. 3 (focusing electrode) to all other electrodes

FOCUSING
DEFLECTION
magnetic
Diagonal deflection angle 110 o
Horizontal deflection angle
97 o
Vertical deflection angle 77 o

CONVERGENCE magnetic

MECHANICAL DATA
Overall length
Neck diameter
$\left.\begin{array}{l}\text { Diagonal } \\ \text { Horizontal axis }\end{array}\right\}$ of bulb
Vertical axis
Useful screen
diagonal
horizontal axis
vertical axis

387.3	to	400.3
	36.5	mm
mm		
max.	566.2	mm
max.	486.3	mm
max.	381.8	mm
min.	533	mm
min.	447	mm
min.	337	mm

Mounting position : any
Net weight : approx. 14.5 kg
Base : 12 pin base JEDEC B12-246
Anode contact : Small cavity contact J1-21, IEC 67-III-2
Magnetic shielding, degaussing: The tube is provided with an internal magnetic shield. The internal magnetic shield and the shadow-mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering left and right cone parts. For proper degaussing an initial m.m.f. of 450 ampereturns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. After decreasing to 10 A.t. or less, sudden switch off is permissible. In the steady state, no significant m.m.f. should remain in the coils ($\leq 0.5 \mathrm{~A} . \mathrm{t}_{\text {. }}$).
To ease the mounting of the coils, the rimband is provided with rectangular holes.

NOTES TO OUTLINE DRAWING (See pages 4, 5, and 6)

1) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge, when the gauge is resting on the cone.
2) The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. . Bottom circumference of base will fall within a concentric circle with the tube axis and having a diameter of 55 mm .
3) Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
4) To clean this area, whipe only with a soft lintless cloth.
5) The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
6) Minimum space to be reserved for mounting lug.
7) The position of the mounting screw in the cabinet must be within a circle of 9.5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $476.5 \mathrm{~mm} \times 370 \mathrm{~mm}$.
8) Coördinates for radius $R=15.95 \mathrm{~mm}: \mathrm{x}=203.95 \mathrm{~mm}, \mathrm{y}=145.52 \mathrm{~mm}$.
9) Distance from point Z to any hardware.
10) Maximum dimensions in plane of lugs.

$\overline{\text { Notes see page } 3}$

MECHANICAL DATA (continued)
Dimensions in mm

$\overline{\text { Notes see page } 3}$

MECHANICAL DATA (continued)
Dimensions in mm

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{g}}=-105 \mathrm{~V}$
Grid No. 1 voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=300 \mathrm{~V}$
$\mathrm{V}_{\mathrm{a}}, \mathrm{g} 5, \mathrm{~g} 4$
$\mathrm{V}_{\mathrm{g} 3}$
$\mathrm{V}_{\mathrm{g} 2}$
$\mathrm{V}_{\mathrm{g} 1}$
-70 to -140 V
2)

Luminance at the centre of the screen

EQUIPMENT DESIGN VALUES (each gun if applicable)
Valid for final accelerator voltages between 20 kV and 27.5 kV .

Grid No. 3 (focusing electrode) voltage

Grid No. 1 voltage for visual extinction of focused spot (cut-off voltage) ${ }^{2}$)

Difference in cut-off voltages between guns in any tube

Grid No. 3 (focusing electrode) current
Grid No. 2 current
Grid No. 1 current at $\mathrm{V}_{\mathrm{g}_{1}}=-150 \mathrm{~V}$
To produce white of the following CIE coordinates

Percentage of total anode current supplied by each gun (typical)
red gun green gun blue gun

Ratio of anode currents red gun to green gun

Ratio of anode currents red gun to blue gun

$$
\mathrm{V}_{\mathrm{g} 3}
$$

$\mathrm{V}_{\mathrm{g} 2} \quad$ See cut-off design
chart page 12
16.8
to 20% of final accelerator voltage
$\mathrm{V}_{\mathrm{gl}} \quad$ See cut -off design
chart page 12
$\Delta \mathrm{Vgl} \quad \begin{aligned} & \text { lowest value is min. } \\ & 65 \% \text { of highest value }\end{aligned}$

$\mathrm{I}_{\mathrm{g} 3}$	-5	to $+5 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 2}$	-5	to $+5 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 1}$	-5	to $+5 \mu \mathrm{~A}$

	3)	4)	6)
x	0.265	0.281	0.313
y	0.290	0.311	0.329
	25.8	30.2	41.0
	33.5	34.5	31.3
	40.7	35.3	27.7
\min.	0.55	0.65	0.95
av.	0.75	0.90	1.30
\max.	1.10	1.25	1.80
\min.	0.50	0.65	1.15
av.	0.65	0.85	1.50
\max.	0.85	1.15	2.00

[^3]
EQUIPMENT DESIGN VALUES (continued)

Required centring, measured at the
centre of the screen in any direction
max. 11 mm
Correction that must be supplied by purifying magnet to compensate for mis-register in any direction $\quad \max .100 \mu \mathrm{~m}$

Lateral distance between blue spot and the
converged red and green spots
max. 4.5 mm
(in both directions)
Radial convergence displacement excluding effects of dynamic convergence (each gun) ${ }^{5}$)
$\max \quad 7 \mathrm{~mm}$ (in both directions)

1) This range of $\mathrm{V}_{\mathrm{g} 2}$ has to be used when in circuit design fixed values for cut-off of the three guns are used.
2) This range of $V_{g_{1}}$ has to be used when in circuit design fixed values for V_{g} of the three guns are used.
${ }^{3}$) To produce black/white pictures a bluish white point would be preferable. This white point corresponds virtually with the white point of current black/white picture tubes.
3) This point is a compromise between white point D and the white point $x=0.265$ $y=0.290$, given in order to enable good rendition of colour and black and white pictures with one white point.
4) Dynamic convergence to be effected by currents of approximately parabolic wave shape through the convergence coils synchronized with scanning.
${ }^{6}$) To produce colour pictures with the best possible quality, this white point should be used when the transmission system is based on this point (Point D).

LIMITING VALUES (Each gun if applicable)
(Design centre rating system unless otherwise specified)

Final accelerator voltage
Average current for three guns
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage, peak, including video signal voltage

Grid No. 1 voltage,
negative
negative, operating cut-off
positive
positive peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak
$\mathrm{V}_{\mathrm{a}}, \mathrm{g}_{5}, \mathrm{~g}_{4}$
Ia max.
$\mathrm{V}_{\mathrm{g} 3}$
$\mathrm{V}_{\mathrm{g} 2 \mathrm{p}}$

Vglp
V_{kf}
$\mathrm{V}_{\mathrm{kf}} \mathrm{p}$
$-V_{k f}$
$-V_{k f}$
max.
min. $\quad 20 \mathrm{kVl})^{4}$)
$\max \quad 1000 \quad \mu \mathrm{~A}^{5}$)
$\max .6000 \mathrm{~V}$
max. 1000 V
$\max .400 \mathrm{~V}$
$\max .200 \mathrm{~V}$
$\max . \quad 0 \quad \mathrm{~V}$
$\max . \quad 2 \mathrm{~V}$
max. $\left.\left.\quad 250 \quad V^{6}\right)^{7}\right)$
$\max . \quad 300 \mathrm{~V}$
$\max . \quad 135 \mathrm{~V}$
$\max .180 \mathrm{~V}$

1) Absolute max. rating system.
2) The X -ray dose rate remains below the acceptable value of $0.5 \mathrm{mr} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
${ }^{3}$) For optimal operating conditions the final accelerator voltage has to be stabilized. Therefore its absolute maximum value can be approached in actual operation and for this reason this value is given instead of the design centre value.
During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary ad justments for normal operation without picture tube.
3) Operation of the tube at lower voltages impairs brightness and resolution and may have a detrimental effect on colour purity.
4) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
5) In order to avoid excessive hum the a.c.component of the heater to chassis volt age should be as low as possible and must not exceed $20 \mathrm{~V}_{\text {rms }}$.
${ }^{7}$) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{kf}}$ is allowed to rise to 410 V . Between 15 s and 45 s after switching on a decrease in V_{kf} proportional with time from 410 V to 250 V is permissible.

REMARKS

With the high voltage used with this tube (max. 27.5 kV) internal flash-overs may occur. These may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.
Additional information is given in Application Information 258, available on request.
During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

REFERENCE LINE GAUGE (Gauge F)

Gauge F. See chapter "Reference line gauges" in front of this book.

Luminance at the centre of the screen as a function of $I_{\text {total }}$

Scanned area $447 \mathrm{~mm} \times 337 \mathrm{~mm}$

A56.140X

$\begin{aligned} & \text { Ses } \\ & \text { Hon } \end{aligned}$	Nom. dispatice from section 1	Dishame trom centre (max. values)														
		0°	10	20	35	30	$3330{ }^{\circ}$	diag	$37^{\circ} 30^{\circ}$	$40^{\circ \prime}$	45°	50°	60°	70°	80°	90
1	0	248.0	251.2	261.3	26.9 .3	279.5	286.8	288.0	286.8	281.7	262,3	245.9	222.0	207.0	198.7	190.0
2	10	244.4	247.6	257.5	26.5 .4	275.3	282.3	2×3.3	282.0	276.8	257.8	241.6	218,0	203.2	195.0	192.4
3	20	240.5	243.6	252.9	259.6	267.0	271.2	271.3	269.7	265.3	250.6	236,6	214.2	199.6	191.4	188.8
4	30	235.0	237.8	245.5	250.2	254.4	255.7	255.0	253.3	249.9	239.5	228.3	208.6	194.8	186.9	184.3
5	40	227.7	220.9	235.2	237.8	239.1	238, 7	237.6	236.0	233.3	225.8	217,3	201.0	188.8	181.6	179.2
6	50	218.2	219.6	2ッロ:2	222.9	222.3	220.8	219.6	218.1	215.8	210.1	203.6	191.0	180.9	174.7	172.6
7	60	200.4	200.8	206, 8	205.9	204.0	302.2	200.9	199.5	107.5	1033.1	188.4	179.2	171.6	166.8	165,2
8	70	191.6	190.9	188.5	180.6	184.1	182.2	181.0	179.8	178.2	175.0	171.7	165.7	160.8	157.7	156.6
t)	80	172.5	170.9	1609.8	164.4	161.9	160.1	159,1	158.2	157.0	154.8	152.9	149.7	145.6	146.5	146.2
10	00	147.0	14.4 .8	140.5	138.3	136.3	135.0	134.3	133.6	132.9	131.7	130.8	130.0	130,3	131.3	132.0
11	1021	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4	90.4	99.4	99.4	99.4

110° COLOUR TELEVISION PICTURE TUBE

Three-gun temperature compensated shadow-mask rectangular colour television tube with electrostatic focus, magnetic deflection and convergence, metal-backed threecolour phosphor dot screen and internal magnetic shield. A high white luminance is obtained at near unity current ratio. Being temperature compensated, the shadow-mask makes for optimum field purity and good uniformity during warm-up. The design is such that minimum occurrence of the moire effect is ensured. The tube has a reinforced envelope and therefore no separate safety screen is necessary. The tube features a quick heating cathode; typically, a legible picture will appear within approx. 5 s .

QUICK REFERENCE DATA	
TEMPERATURE COMPENSATED SHADOW MASK	
DESIGNED FOR MINIMUM MOIRE EFFECT	
HIGH WHITE LUMINANCE AT UNITY CURRENT RATIO	
Face diagonal	56
Deflection angle	110
Neck diameter	36,5
Envelope	reinforced
Magnetic shield	suitable for push through
Focusing	internal
Deflection	bi-potential
Convergence	magnetic
Heating	magnetic
Light transmission of face glass	$6,3 \mathrm{~V}, 730 \mathrm{~mA}$
Quick heating cathode	54,5
	with a typical tube a legible picture

SCREEN

Metal-backed phosphor dots
Phosphor type

Dot arrangement
Spacing between centres of adjacent dot trios
Red : Europium activated rare earth
Green: Sulphide type
Blue : Sulphide type
Triangular

0,81	mm
54,5	$\%$

Light transmission of face glass
54,5 \%

HEATING: indirect by a.c. or d.c. ; parallel supply

Heater voltage	V_{f}	6,3	V
Heater current	I_{f}	730	$\left.\mathrm{~mA}^{1}\right)$

For maximum cathode life it is recommended that the heater supply be regulated at $6,3 \mathrm{~V}$. For heating time as a function of source impedance see graph page 12 below.

CAPACITANCES

Final accelerator to external conductive coating

$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, g 4 / \mathrm{m}}$max. min.	1800	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, g 4 / \mathrm{m}^{\prime}}$	400	pF
$\mathrm{C}_{\mathrm{g} 1}$	7	pF
		pF

Cathodes of all guns (connected in parallel) to all other electrodes

Cathode of any gun to all other electrodes
Grid no. 3 (focusing electrode) to all other electrodes

C_{k}	15	pF
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	5	pF

Final accelerator to rimband
Grid no. 1 of any gun to all other electrodes

FOCUSING electrostatic (bi-potential)

DEFLECTION magnetic

Diagonal deflection angle 110 deg
Horizontal deflection angle 97 deg
Vertical deflection angle $\quad 77$ deg

CONVERGENCE magnetic

[^4]
MECHANICAL DATA

Overall length
Neck diameter
Diagonal
Horizontal axis $\}$ of bulb
Vertical axis
Useful screen
diagonal
horizontal axis
vertical axis

387, 3	400, 3	mm
	36,5	mm
max.	566, 2	mm
max.	486, 3	mm
max.	381, 8	mm
min.	533	mm
min.	447	mm
min.	337	mm

Mounting position : any
Net weight : approx. $14,5 \mathrm{~kg}$
Base : 12 pin base IEC 67-I-47a, type 2
Anode contact : Small cavity contact J1-21, IEC 67-III-2
Magnetic shielding, degaussing: The tube is provided with an internal magnetic shield. The internal magnetic shield and the shadow-mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering left and right cone parts. For proper degaussing an initial m.m.f. of 450 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate cir cuitry. After decreasing to 10 A.t. or less, sudden switch off is permi-sible. In the steady state, no significant m.m.f. should remain in the coils ($<0,5$ A.t.).
To ease the mounting of the coils, the rimband is provided with rectangular holes.
NOTES TO OUTLINE DRAWING (see pages 4,5 , and 6)

1) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge, when the gauge is resting on the cone.
2) The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
3) Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
4) To clean this area, wipe only with a soft lintless cloth.
5) The displacement of any lug with respect to the plane through the three other lugs is $\max .2 \mathrm{~mm}$.
6) Minimum space to be reserved for mounting lug.
7) The position of the mounting screw in the cabinet must be within a circle of $9,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e, the corners of a rectangle of $476,5 \mathrm{~mm} \times 370 \mathrm{~mm}$.
${ }^{8)}$ Coßrdinates for radius $\mathrm{R}=15,95 \mathrm{~mm}: \mathrm{x}=203,95 \mathrm{~mm}, \mathrm{y}=145,52 \mathrm{~mm}$.
${ }^{9}$) Distance from point z to any hardware.
8) Maximum dimensions in plane of lugs.

[^5]

Notes see page 3

MECHANICAL DATA

[^6]

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid no. 3(focusing electrode voltage)
Grid no. 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{g} 1}=-105 \mathrm{~V}$
Grid no. 1 voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=300 \mathrm{~V}$
Luminance at the centre of the screen
$\left.\begin{array}{llrl}\mathrm{V}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4} & 25 & \mathrm{kV} \\ \mathrm{V}_{\mathrm{g} 3} & 4,2 & \text { to } & 5\end{array}\right] \mathrm{kV}$.

EQUIPMENT DESIGN VALUES (each gun if applicable)
Valid for final accelerator voltages between 20 kV and $27,5 \mathrm{kV}$.

Grid no. 3 (focusing electrode) voltage

Grid no. 2 voltage

Grid no. 1 voltage for visual extinction of focused spot (cut-off voltage)

Difference in cut-off voltages between guns in any tube

Grid no. 3 (focusing electrode) current
Grid no. 2 current
Grid no. 1 current at $\mathrm{V}_{\mathrm{gl}}=-150 \mathrm{~V}$

To produce white of the following CIE co-ordinates

Percentage of total anode current
supplied by each gun (typical)

Ratio of anode current red gun to green gun

Ratio of anode currents red gun to blue gun
$\mathrm{V}_{\mathrm{g} 3} \quad 16,8$ to 20% of final accelerator voltage
$\mathrm{V}_{\mathrm{g} 2} \quad$ See cut-off design chart page 12

V_{gl}	See cut-off design chart page 12
$\Delta \mathrm{~V}_{\mathrm{gl}}$	lowest value is min.

red gun green gun blue gun

	33,5	34,5	31,3	$\%$
40,7	35,3	27,7	$\%$	
\min.	0,55	0,65	0,95	
av.	0,75	0,90	1,30	
\max.	1,10	1,25	1,80	
\min.	0,50	0,65	1,15	
$\operatorname{av.}$	0,65	0,85	1,50	
\max.	0,85	1,15	2,00	

[^7]EQUIPMENT DESIGN VALUES (continued)
Required centring, measured at the centre of the screen in any direction
$\max \quad 11 \mathrm{~mm}$
Correction that must be supplied by purifying magnet to compensate for mis-register in any direction $\max \quad 100 \quad \mu \mathrm{~m}$

Lateral distance between blue spot and the converged red and green spots
$\max \quad 4,5 \mathrm{~mm}$
(in both directions)
Radial convergence displacement excluding effects of dynamic convergence (each gun) ${ }^{5}$)
max. 7 mm (in both directions)

1) This range of $\mathrm{V}_{\mathrm{g} 2}$ has to be used when in circuit design fixed values for cut-off of the three guns are used.
2) This range of $\mathrm{V}_{\mathrm{g} 1}$ has to be used when in circuit design fixed values for $\mathrm{V}_{\mathrm{g} 2}$ of the three guns are used.
3) To produce black/white pictures a bluish white point would be preferable.

This white point corresponds virtually with the white point of current black/ white picture tubes.
${ }^{4}$) This point is a compromise between white point D and the white point $\mathrm{x}=0,265$, $y=0,290$ given in order to enable good rendition of colour and black and white pictures with one white point.
5) Dynamic convergence to be effected by currents of approximately parabolic waveshape through the convergence coils synchronized with scanning.
${ }^{6}$) To produce colour pictures with the best possible quality, this white point should be used when the transmission system is based on this point. (Point D).

LIMITING VALUES (Each gun if applicable)

(Design centre rating system unless otherwise specified)

Final accelerator voltage
Average current for three guns
Grid no. 3 (focusing electrode) voltage
Grid no. 2 voltage, peak, including video signal voltage

Grid no. 1 voltage,
negative
negative, operating cut-off
positive
positive peak
Cathode to heater voltage,

> positive
positive peak
negative
negative peak

V a, g5, g4	\max. min.	$\begin{array}{r} 27,5 \\ 20 \end{array}$	$\begin{aligned} & \left.\left.\left.\mathrm{kV} \mathrm{l}^{1}\right)^{2}\right)^{3}\right) \\ & \left.\left.\mathrm{kV} \mathrm{I}^{4}\right)^{4}\right)^{2} \end{aligned}$
I_{a}	max.	1000	$\mu \mathrm{A}{ }^{5}$)
$\mathrm{v}_{\mathrm{g} 3}$	max.	6000	V
$\mathrm{V}_{\mathrm{g} 2 \mathrm{p}}$	max.	1000	V
$-\mathrm{V}_{\mathrm{gl}}$	max.	400	V
$-\mathrm{V}_{\mathrm{g} 1}$	max.	200	V
V_{gl}	max.	0	V
$\mathrm{V}_{\mathrm{gl} \mathrm{p}_{\mathrm{p}}}$	max.	2	V

V_{kf}	\max.	250	$\left.\mathrm{~V}^{6}{ }^{6}\right)$	$=$
V_{kf}	\max.	300	V	
$-\mathrm{V}_{\mathrm{kf}}$	\max.	135	V	$=$
$-\mathrm{V}_{\mathrm{kf}}$	\max.	180	V	$=$

1) Absolute max. rating system.
${ }^{2}$) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mr} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
${ }^{3}$) For optimal operating conditions the final accelerator voltage has to be stabilized. Therefore its absolute maximum value can be approached in actual operation and for this reason this value is given instead of the design centre value, During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs luminance and resolution and may have a detrimental effect on colour purity.
2) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
${ }^{6}$) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{kf}}$ is allowed to rise to 385 V . Between 15 s and 45 s after switching on a decrease in V_{kf} propotional with time from 385 V to 250 V is permissible.

REMARKS

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$) internal flash-overs may occur. These may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible. Additional information is given in Application Information 258, available on request.

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

\rightarrow REFERENCE LINE GAUGE

Gauge F. See chapter "Reference line gauges" in front of this book.

Luminance at the centre of the screen as a function of $\mathrm{I}_{\text {total }}$.

Scanned area $447 \mathrm{~mm} \times 337 \mathrm{~mm}$

A56-410X

Cathode heating time to attain $\mathrm{x} \%$ of the cathode current at equilibrium condition

Simultaneous excitation of red, green, and blue phosphors to produce white of $x=0,281, y=0,311$

Exact shape of the peaks depends on the
resolution of the measuring apparatus.

Colour co-ordinates

red	0,630	0,340
green	0,315	0,600
blue	0,150	0,065

.

90° COLOUR TELEVISION PICTURE TUBE

Three-gun temperature-compensated shadow-mask rectangular colour television tube with electrostatic focus, magnetic deflection and convergence, metal-backed three-colour phosphor dot screen. A high white luminance is obtained at near unity current ratio. Temperature compensating the shadow-mask has led to optimum field purity and good uniformity during warm-up. Minimum occurrence of the moiré effect is ensured by optimizing the mask for the reproduction of 625 -line pictures. The tube has a reinforced envelope and therefore no separate safety screen is necessary.

QUICK REFERENCE DATA	
TEMPERATURE-COMPENSATED SHADOW-MASK	
SHADOW-MASK OPTIMIZED FOR 625-LINE SYSTEM	
HIGH WHITE LUMINANCE AT UNITY CURRENT RATIO	
Face diagonal	63 cm
Deflection angle	900
Neck length	164.2 mm
Envelope	reinforced
	suitable for push through
Focusing	electrostatic
Deflection	magnetic
Convergence	magnetic
Heating	$6.3 \mathrm{~V}, 900 \mathrm{~mA}$
Light transmission of face glass	52.5%

SCREEN

Metal-backed tricolour phosphor dots

Phosphor type
Dot arrangement

\{ Red: Europium activated rare earth (Green and blue: sulphide type Triangular

Spacing between centres of adjacent dot trios 0.81 mm

Light transmission at centre of face glass

HEATING

Indirect by A.C. or D.C.; parallel or series supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	900	mA

For maximum cathode life it is recommended that the heater supply be regulated at 6.3 V . If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rm}}$ s when the supply is switched on.

CAPACTTANCES

Final accelerator to external conductive coating

Final accelerator to metal rimband
Grid No. 1 of any gun to all other electrodes

Cathodes of all guns (connected in parallel) to all other electrodes

Cathode of any gun to all other electrodes

Grid No. 3 (focusing electrode) to all other electrodes

$\mathrm{C}_{\mathrm{ag}_{5} \mathrm{~g}_{4} / \mathrm{m}}$	max. min.	2500 pF 2000 pF $\mathrm{C}_{\mathrm{ag}_{5} \mathrm{~g}_{4} / \mathrm{m}^{\prime}}$	500 pF

$\mathrm{C}_{\mathrm{g} 1} \quad 7 \mathrm{pF}$

C_{k}	15	pF
C_{kR}	5	pF
$\mathrm{C}_{\mathrm{k}_{\mathrm{G}}}$	5	pF
C_{kB}	5	pF
$\mathrm{C}_{\mathrm{g}_{3}}$	7	pF

FOCUSING electrostatic

DEFLECTION magnetic
Diagonal deflection angle 90°
Horizontal deflection angle 79°
Vertical deflection angle 62°

CONVERGENCE magnetic

MECHANICAL DATA

Overall length
Neck length
$\left.\begin{array}{l}\text { Diagonal } \\ \text { Horizontal axis } \\ \text { Vertical axis }\end{array}\right\}$ of bulb
Useful screen
diagonal
horizontal axis
vertical axis

	521 ± 9.5	mm
	164.2 ± 4.5	mm
max.	626	mm
\max.	548.1	mm
max.	440.5	mm
min.	584	mm
min.	504	mm
\min.	396	mm

$164.2 \pm 4.5 \mathrm{~mm}$
min. 396 mm

Mounting position: any
Net weight: approx. 188 N (18.8 kg)
Base: 12 pin base JEDEC B12-246
Anode contact: Small cavity contact J1-21, IEC67-III-2.
Magnetic shielding
Magnetic shielding should be provided by means of a metal shield extending 28 cm over the cone of the tube measured from the centre of the face plate. The metal shell is preferably constructed of min. 0.5 mm cold rolled steel properly annealed. The air gap between the shield and the metal rimband should be as small as possible and not exceed 10 mm . The magnetic shield should be connected to the outer conductive coating.

NOTES TO OUTLINE DRAWING (See pages 4 and 5)

1. Reference line, determined by the plane of the upper edge of the flange of the reference line gauge E , when the gauge is resting on the cone.
2. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base will fall within a circle concentric with bulb axis and having a diameter of 55 mm .
3. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
4. To clean this area, whipe only with a soft dry lintless cloth.
5. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
6. Minimum space to be reserved for mounting lug.
7. The position of the mounting screw in the cabinet must be within a circle of 9.5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $517 \mathrm{~mm} \times 411 \mathrm{~mm}$.
8. Co-ordinates for radius $\mathrm{R}=30 \mathrm{~mm}: \mathrm{x}=213.66 \mathrm{~mm}, \mathrm{y}=151.63 \mathrm{~mm}$.

MECHANICAL DATA
Dimensions in mm

Notes see page 3

MECHANICAL DATA (continued)

Notes see page 3

Dimensions in mm

MAXIMUM CONE CONTOUR DRAWING

	$\begin{aligned} & \text { U } \\ & \frac{0}{7} \\ & = \end{aligned}$	Distance from centre (max, values)														
$\begin{gathered} \frac{c}{0} \\ \underset{U}{U} \\ \text { in } \end{gathered}$	$\begin{aligned} & \dot{0} \\ & \text { E } \\ & \text { E } \\ & \text { Z } \end{aligned}$	Long axis 0°	10°	200	25°	30°	$32^{\circ} 30^{\prime}$	$35^{\circ} 21^{\prime} 38^{\prime \prime}$ Diag.	37030 '	40°	450	50°	60°	70°	800	Short axis 900
1	265.5	82.5	82.6	83.0	83.0	83.0	83.0	83.0	83.0	83.0	83.3	83.5	83.5	83.0	82.8	82.8
2	255.5	107.6	107.4	106.7	106.1	105.7	105.5	105.2	105.1	105.0	104.7	104.5	106.3	111.0	115.0	115.5
3	245.5	129.3	129.5	128.0	127.3	126.6	125.8	124.8	124.0	123.2	122.2	121.4	122.5	126.9	129.9	130.2
4	235.5	147.4	147.2	146.0	145.0	144.8	144.2	142.0	141.2	139.6	137.2	135.4	134.7	138.0	140.0	140.0
5	225.5	162.8	102.8	101.6	100.7	160.3	159.4	157.7	156.2	154.3	150.4	147.7	145.0	146.4	148.2	148.0
6	215.5	176.3	176.3	175.4	175.0	174.3	173.5	171.0	169.9	167.9	163.1	159.0	154.4	154.0	155.4	155.3
7	205.5	188.2	188.2	187.8	187.0	187.2	186.6	185.2	183.4	181.1	175.4	169.9	163.5	101.2	161.6	161.5
8	195.5	198.8	199.0	199.2	199.4	199.6	199.1	197.8	196.1	193.4	186.9	180.3	171.9	170.0	167.4	167.2
9	185.5	208.2	208.8	209.6	210.3	211.1	210.9	209.7	207.8	205.3	197.9	190.3	179.7	174.4	172.9	172.7
10	175.5	216.9	217.9	219.2	220.5	222.2	222.2	221.3	218.9	216.1	208.0	199.4	187.2	180.8	178.2	178.1
11	105.5	224.7	225.6	227.7	229.7	231.9	232.2	231.0	229.6	226.4	217.5	208.0	194.4	186.9	183.5	182.9
12	155.5	231.9	232.9	235.9	238.5	241.4	242.1	241.9	240.1	237.0	226.9	216.4	201.5	191.5	188.6	187.7
13	145.5	238.2	239.7	243.6	246.8	250.5	251.7	251.9	250.4	247.0	236.0	224.5	208.3	198.0	193.4	192.3
14	135.5	244.4	240.3	251.0	254.9	259.5	261.3	261.8	260.5	257.1	245.3	232.6	214.8	203.4	198.2	196.8
15	125.5	250.3	252.2	258.0	262.3	268.1	270.5	271.3	270.1	266.3	254.0	240.4	220.9	208.5	202.4	200.3
16	115.5	256.1	258.2	264.9	270.0	276.6	279.6	280.7	279.3	275.4	262.4	247.8	226.8	213.7	206.6	204.1
17	105.5	260.0	263.4	270.8	276.8	284.7	287.9	289.3	287.9	283.9	270.0	254.7	232.3	218.5	210.5	207.7
18	95.5	265.6	268.3	276.4	283.3	292.4	295.7	297.6	296.3	292.1	277.0	261.0	237.6	223.1	214.3	211.2
19	85.5	269.4	272.4	281.5	289.4	299.4	302.9	305.2	304.2	299.6	283.8	267.1	242.6	227.2	217.9	214.7
20	75.5	272.3	275.5	286.0	294.0	304.6	309.4	311.1	310.5	305.9	289.8	272.5	247.0	230.6	221.2	218.0
21	67.1	273.3	276.79	287.04	290.17	307.1	311.8	313.6	312.6	308.79	292.55	275.38	248.85	232.15	222.91	219.95

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid No. 3 (focusing electrode) voltage

$\mathrm{V}_{\mathrm{a}}, \mathrm{g} 5, \mathrm{~g} 4$	25	kV	
V_{3}	4.2 to 5	kV	
V_{2}	210 to 495	V	${ }^{1}$)
V_{1}	-70 to -140	$\mathrm{~V}^{2}$	${ }^{2}$)

Luminance at the centre of the screen
See page 21
EQUIPMENT DESIGN VALUES (each gun if applicable)
Valid for final accele rator voltages between 20 kV and 27.5 kV .

Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage ${ }^{1}$)
Grid No. 1 voltage for visual extinction
of focused spot (cut-off voltage) ${ }^{2}$)
Difference in cut-off voltages between guns in any tube
Grid No. 3 (focusing electrode) current
Grid No. 2 current
Grid No. 1 current at $V_{g_{1}}=-150 \mathrm{~V}$
To produce white of the following
CIE co-ordinates CIE co-ordinates
V_{3}
16.8 ta 20% of final accelerator voltage

To produce white of the following CIE co-ordinates	x y	$\begin{gathered} \text { 3) } \\ 0.310 \\ 0.316 \end{gathered}$	$\begin{gathered} \left.4^{4}\right) \\ 0.265 \\ 0.290 \end{gathered}$	$\begin{gathered} 5) \\ 0.281 \\ 0.311 \end{gathered}$
Percentage of total anode current supplied by each gun (typical) red gun green gun blue gun		$\begin{aligned} & 43.5 \\ & 30.0 \\ & 26.5 \end{aligned}$	$\begin{aligned} & 27.9 \\ & 34.9 \\ & 37.2 \end{aligned}$	$\begin{aligned} & 32.2 \\ & 35.6 \\ & 32.2 \end{aligned}$
Ratio anode currents red gun to green gun	min. av. max.	$\begin{aligned} & 1.05 \\ & 1.45 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.80 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.90 \\ & 1.25 \end{aligned}$
Ratio of anode currents red gun to blue gun	min. av. max.	$\begin{aligned} & 1.20 \\ & 1.65 \\ & 2.25 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.75 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 1.00 \\ & 1.35 \end{aligned}$

red gun to green gun

Ratio of anode currents
red gun to blue gun
$\mathrm{V}_{\mathrm{g}_{2}}$ See cut-off design chart page 22
V_{1} See cut-off design chart page 22 of highest value 6 of highest value

I_{3}	-15 to +15	$\mu \mathrm{~A}$
I_{2}	-5 to +5	$\mu \mathrm{~A}$
I_{1}	-5 to +5	$\mu \mathrm{~A}$

[^8]EQUIPMENT DESIGN VALUES (continued)
Required centring, measured at the
centre of the screen in any direction
\max.
15
mm
Correction which must be supplied by purifying magnet to compensate for misregister (including that caused by earth's magnetic field) when using recommended components. Measured at the centre of the screen in any direction

Lateral distance between the blue spot and the converged red and green spots

Radial convergence displacement excluding effects of dynamic convergence (each beam)
max. $\quad 9.5 \mathrm{~mm}^{6}$) (in both directions)

1) This range of $\mathrm{V}_{\mathrm{g}_{2}}$ has to be used when in circuit design fixed values for cut-off of the three guns are used.
${ }^{2}$) This range of $V_{g_{1}}$ has to be used when in circuit design fixed values for $V_{g_{2}}$ of the three guns are used.
${ }^{3}$) To produce colour pictures with the best possible quality, this white point should be used as the transmission systems are based on this point. (Point C).
2) To produce black/white pictures a more bluish white point would be preferable. This white point corresponds virtually with the white point of current black/white picture tubes.
3) This point is a compromise between the white point C and the white point $x=0.265$ and $y=0.290$, given in order to enable good rendition of colour and black-andwhite pictures with one white point.
4) Dynamic convergence to be effected by currents of approximately parabolic waveshape synchronized with scanning.

LIMITING VALUES (Each gun if applicable) (Design centre rating system unless otherwise specified)

Final accelerator voltage
Average current for 3 guns
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage, peak, including
video signal voltage
Grid No. 1 voltage,
negative
negative, operating cut-off
positive
positive peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak

$\mathrm{V}_{\mathrm{a}, \mathrm{g}} \mathrm{g}_{5}, \mathrm{~g}_{4}$	$\begin{aligned} & \max \\ & \min \end{aligned}$	$\begin{array}{r} 27.5 \\ 20 \end{array}$	$\left.\left.\begin{array}{l} \mathrm{kV} \\ \left.\left.\mathrm{l})^{2}\right)^{3}\right) \\ \mathrm{kV} \\ \hline \end{array}\right)^{4}\right)$
I_{a}	max.	1000	$\left.\mu \mathrm{A}{ }^{5}\right)$
$\mathrm{V}_{\mathrm{g} 3}$	max.	6000	V
$\mathrm{V}_{\mathrm{g} 2 \mathrm{p}}$	\max.	1000	V

$-V_{g_{1}}$	\max.	400	V
$-\mathrm{V}_{\mathrm{g}_{1}}$	\max.	200	V
$\mathrm{~V}_{g_{1}}$	\max.	0	V
$\mathrm{~V}_{g_{1 p}}$	\max.	2	V

V_{kf}	\max.	250	$\left.v^{6}\right)^{7}$)
V_{kf}	max .	300	V
- V_{kf}	\max.	135	V
$-\mathrm{V}_{\mathrm{kf}}$	\max.	180	V

1) Absolute maximum rating system.
${ }^{2}$) The X-ray dose rate remains below the acceptable value of $0.5 \mathrm{mr} / \mathrm{h}$, measured with ionisation chambre when the tube is used within its limiting values.
2) For optimal operating conditions the final accelerator voltage has to be stabilized. Therefore its absolute maximum value can be approached in actual operation and for this reason this value is given instead of the design centre value. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs brightness and resolution and may have a detrimental effect on colour purity.
3) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
4) In order to avoid excessive hum the a.c. component of the heater to chassis voltage should be as low as possible and must not exceed $20 \mathrm{~V}_{\mathrm{RMS}}$.
${ }^{7}$) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{k} / \mathrm{f}}$ is allowed to rise to 410 V . Between 15 s and 45 s after switching on a decrease in $\mathrm{V}_{\mathrm{k} / \mathrm{f}}$ proportional with time from 410 V to 250 V is permissible.

REMARK

With the high voltage used with this tube (max. 27.5 kV) internal flash-overs may occur. These may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No outer connections between the outer conductive coating and the chassis are permissible.
Additional information available on request.

REFERENCE LINE GAUGE

 Dimensions in mmReference line E. See chapter "Reference line gauges" in front of this book.

DESCRIPTION OF THE TUBE

The A63-120X is a rectangular temperature compensated shadow-mask colour picture tube for use in colour television receivers. The tube can display a picture, either in full colour or in black and white measuring $504 \mathrm{~mm} \times 396 \mathrm{~mm}$ minimum (projected area of $1905 \mathrm{~cm}^{2}$).
The A63-120X has

- a deflection angle of 90°
- a neck diameter of 36.5 mm
- a three-colour phosphor dot screen, composed of closely spaced dots in a regular pattern of tri-angular groups, each containing a red, a green and a blue light emitting dot.
- Three electron guns with axes tilted towards the screen centre, with electrostatic focusing systems and mounted side by side in the neck of the tube 1200 apart.
Colour selection is effected by a metal graded-hole shadow mask positioned in front of the tricolour phosphor-dot screen. This mask is aligned with the dot pattern so that the electron beam from each gun lands only on phosphor dots of the associated colour.
The shadow mask has graded holes that increase gradually in diameter from the edge of the mask towards the centre. Grading enables correct purity to be achieved over the whole screen with minimum adjustment.
Although the three guns are tilted towards the screen centre so that their axes intersect at the shadow mask, lateral and radial convergence are necessary to ensure correct convergence over the entire screen. Each of the three guns is therefore provided with a pair of radial converging pole pieces.
Radial convergence can be achieved by means of magnets and coils mounted externally on the neck of the tube. The magnetic flux provided is coupled through the glass neck of the tube to associated internal pole pieces. The shape of the pole pieces. together with the internal magnetic shielding, is shown in Fig.1. Internal shielding prewents interaction of the various magnetic fields.

Fig. 1
Fig. 2

Fig. 2 shows the position of the components on the neck of the tube.
Lateral convergence is achieved by a separate assembly mounted on the neck of the tube. This assembly causes horizontal movement of the blue beam, and simultaneously, movements of the red and green beams in the opposite direction.
Facilities for dynamic blue lateral convergence are also provided in this convergence assembly.

APPLICATION NOTES

1. Magnetic shielding

The tube should be fitted with a magnetic shield around the cone, to minimize the effects of external magnetic fields, including the horizontal. vertical and axial components of the earth's magnetic field. The latter so influences the colour purity that compensation by means of the purifying magnets is not possible.
The metal shield should preferably be constructed of coldrolled steel, at least 0.5 mm thick and properly annealed at $850^{\circ} \mathrm{C}$. Since the tube re-inforcing band is an essential part of the magnetic circuit used for degaussing, the air gap between the band and the shield should be as small as possible and certainly not more than 10 mm . To be effective, the shield must be degaussed as described under "Adjustment procedures". Building-in of an automatic degaussing system is advised.
2. Centring of raster on the screen.

Raster centring in a shadow-mask colour picture tube is achieved by passing direct current of the required value through each pair of deflection coils. The values for raster displacement given in the data apply when all components are properly adjusted.
3. Component considerations.

The necessary components are the deflection coil, the radial convergence assembly, the purifying magnets and the blue lateral convergence magnet.
Basically the functions of the components are:

- deflection of the three beams over the entire screen: deflection coil.
- good convergence of the three beams over the screen: radial convergence assembly and blue lateral convergence magnet.
- landing adjustment: purifying magnets and deflection coil

The mounting positions of the components are as follows:
The deflection coil: in such a way that its deflection centre coincides with the one used in the screen-laying process during manufacturing. The coil must therefore be designed so that sufficient movement in the axial direction is possible.

The radial convergence assembly: with its pole pieces centred above the convergence pole pieces inside the tube. Initially, the assembly should be mounted upright. Small rotations of the whole assembly influence the convergence and can be used during adjustment of the blue lateral correction to obtain optimum lateral convergence.

APPLICATION NOTES (continued)

The purifying magnets: over the gap between the electrode g3 and g4 of the gun, or still closer to the deflection coil. Placing the purifying magnets closer to the base results in poorer performance as the spot quality is adversely affected.

The blue lateral convergence magnet: as near as possible to the rear side of the purifying magnets but not shifted backwards more than halfway along electrode g3 of the gun.

3.1 Convergence

Static convergence, i.e. convergence of the three beams onto the centre of the screen, is usually accomplished with permanent magnets which are part of the radial convergence assembly, or with D.C. currents through the convergence coils in combinations with the lateral converging magnet.
The strength of the magnetic field that is adjustably coupled to the radial convergence pole pieces of the gun should be such that each beam can be moved 9.5 mm in both directions towards the centre of the screen excluding effects of dynamic convergence. The static blue lateral convergence magnet should provide a magnetic field adjustable in magnitude and polarity.
This field exerts a directive force on the blue beam and simultaneously a force in the opposite direction on the green and the red beams.
The displacement of the blue beam opposite to the movement of the red and green beams should be 6.5 mm in both directions
With these four adjustable magnetic fields static convergence of the three beams can be attained.
For good convergence over the entire screen dynamic radial convergence is required together with a small amount of dynamic lateral convergence in line direction.
The radial convergence assembly consists fundamentally of three cores with associated windings. Through the windings are passed the necessary currents for maintaining convergence when the beams are deflected over the screen.
The required form of the currents can be obtained by adding a current with a sawtooth wave form to one with a parabolic wave form. Two separate windings are required for correction in the horizontal and the vertical direction. The parabolic and sawtooth currents should be adjustable in amplitude and the sawtooth currents and the vertical blue parabola should, in addition be adjustable in polarity.
The blue lateral convergence magnet consists of a core and associated windings to obtain dynamic lateral convergence in line direction.

3.2 Landing

Landing is defined as the relative position of each beam with respect to its as sociated phosphor dot.
Good landing is achieved when each beam excites only its associated colour phosphor dot.
Optimum landing is achieved by adjusting both the purifying magnets and the deflection coil.

APPLICATION NOTES (continued)

3.2.1 Purifying magnets

Purifying magnets are required to compensate for the effects of outside mag netic fields, (including the earth's magnetic field), and manufacturing variations, which could cause mislanding.
Such purifying magnets, designed to provide a magnetic field adjustable in magnitude and direction, effect good landing over the entire screen when the deflection coil position is properly adjusted.

3.2.2 Deflection coil

The position of the deflection centre must be adjustable to make sure that proper landing can be attained in any set. To achieve this the deflectioncoil should be free to move along the neck over a minimum distance of 12 mm from its most forward position when the purity adjustment is made with the aid of a microscope, or about 20 mm if purity is adjusted by means of the socalled "red ball" method. (See 6.1.2.1.)
4. Drive requirements

To calculate the drive voltages which should be supplied to the tube the following points should be taken into account.
4.1 In presently known systems the luminance signal is composed as follows: $Y=0.30 R+0.59 \mathrm{G}+0.11 \mathrm{~B}$.
The colour information is carried by two chrominance signals which in the receiver after subcarrier detection, deliver the so-call colour difference signals R-Y, G-Y and B-Y.
These have to be combined with the Y-signal in a matrix circuit to recover the original red, green and blue signals. With the aid of the luminance signal equation it is possible to calculate the maximum voltage ranges for the colour dif ference signals. The maximum values are reached when the primary colours and their complementaries are produced at maximum brightness. These values a re tabulated below. All values are referred to the maximum value $Y=R=G=B=1$ for peak white and are considered positive if they cause an increase in beam current.

Colour	R	G	B	Y	R-Y	G-Y	B-Y
Red	1	0	0	0.3	0.7	-0.3	-0.3
Green	0	1	0	0.59	-0.59	0.41	-0.59
Blue	0	0	1	0.11	-0.11	-0.11	0.89
Cyan.	0	1	1	0.7	-0.7	0.3	0.3
Magenta	1	0	1	0.41	0.59	-0.41	0.59
Yellow	1	1	0	0.89	0.11	0.11	-0.89

APPLICATION NOTES (continued)

Signal
R-Y
$G-Y$
$B-Y$

Minimum
-0.7
-0.41
-0.89

Maximum
0.7
0.41
0.89

Total range
1.4
0.82
1.78

In practice the saturation of the colours is lower than that of the primary colours as considered above, so that the demands on the colour difference signals can be lower than those indicated.
4.2 The combining of the Y -signal with the $\mathrm{R}-\mathrm{Y}, \mathrm{G}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals can be performed by two methods:

Method 1. Letting the picture tube perform the matrix function by driving the cath odes with the luminance signal while putting the colour difference signals onto the three first grids of the picture tube. (colour difference drive)

Method 2. By means of a separate matrix circuit that delivers red, green and blue signals to the picture tube. (R.G.B. drive). If fed to the three cathodes these signals attain the same maximum amplitudes as the Y-signal in the first method, and it should be remembered that each channel requires full video bandwidth.
In both methods it should be recognized that with cathode drive a higher slope is obtained than with grid drive and to compensate for this higher drive voltages are required for grid drive in each case. For grid drive the relation between grid drive voltage ($\mathrm{V}_{\mathrm{cirg}}$) and beam current $\left(\mathrm{I}_{\mathrm{a}}\right)$ is approximately:

$$
I_{a}=k \frac{V_{d r g^{3}}}{V_{\operatorname{cog}}{ }^{3 / 2}} \quad \begin{aligned}
& \left(I_{a} \text { in } \mu \mathrm{A}\right) \\
& \left(V_{\operatorname{cog}} \text { is cut-off voltage for grid drive }\right) \\
& (\mathrm{k}=\mathrm{k} \text { factor })
\end{aligned}
$$

For cathode drive this function reads:

$$
I_{\mathrm{a}}=\frac{k(1+D)^{3}}{\left(1+D \frac{V_{d r k}}{V_{\text {cok }}}\right)^{3 / 2} \cdot\left(V_{\text {cok }}\right)^{3 / 2}} \quad \begin{aligned}
& \left(V_{\text {drk }}{ }^{3}\right. \\
& \left(V_{\text {cok }}=\begin{array}{l}
\text { cut } \\
\text { drive })
\end{array}\right. \\
& \text { (D voltage for cathode } \\
& =\text { penetration factor })
\end{aligned}
$$

This shows that there is a difference in sensivity between the two drive techniques, and that the relationship between them is not strictly linear. In practice the best result is obtained if the gridsignal amplitudes are made 20% larger than the corresponding cathode signal amplitudes.
4.3 Unequal currents are required for the red, green and blue signals to produce white as the efficiencies of the red, green and blue phosphors are different. (See Equipment Design Values)
4.4 Spread occuring in picture tube properties:
(1) k factor, (2) penetration of g 2 (D) and (3) phosphor efficiencies.

APPLICATION NOTES (continued)

(1) The k factor, having a nominal value of 3.0 , spreads between 2.6 and 3.1 but it can be derived from the $I_{a}=f\left(V_{d r}\right)$ graph for cathode drive that compensation for this spread is attainable when the luminance drive stage is capable of producing approx. 6 volts more than the nominal peak drive needed for the red gun.
(2) The penetration D may spread from 0.18 to 0.40 with a nominal value of 0.29 and is experienced as a spread in V_{Co}. It can be offset - if required - by ad justment of $\mathrm{V}_{\mathrm{g}_{2}}$ (See page 22).
(3) Phosphor efficiencies: the ratios of cathode currents for white having, for example, CIE x and y coordinates:
$x=0.281$ and $y=0.311$, may spread as follows:
$\frac{\mathrm{I}_{\mathrm{R}}}{\mathrm{I}_{\mathrm{G}}}=0.90$ with a min. value of 0.65 and a max. value of 1.25
$\frac{I_{R}}{I_{B}}=1.00$ with a min. value of 0.75 and a max. value of 1.35
In calculations, for the worst case the values $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{G}}=1.25$ and $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{B}}=1.35$ should be used if the compromise white point is chosen ($x=0.281 \mathrm{y}=0.311$). If the white point C is chosen for reproduction of colours then for the worst case the current ratio values, $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{G}}=2.00$ and $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{B}}=2.25$ should be used.
5. Raster shape correction

It appears that for 90° deflection the combination of picture tube and deflection coil can give good convergence and landing, but it is not practical to design the combination such that a perfectly rectangular raster is obtained. To avoid the pin cushion raster which results it is necessary to provide raster correction electrically by modulating the deflecting current.
6. Adjustment procedures

The following procedures are suggested to ensure good landing, optimum convergence of the three beams over the entire area of the screen and good grey scale tracking.

Exact focusing is the final operation in the sequence of adjustments, see 6.3.
When starting the sequence it is sufficient to adjust the convergence test pattern for optimum sharpness.
Prior to the adjustment procedure the picture tube has to be degaussed. This treatment will correct for localized areas of colour impurity resulting from any magnetization of the shield and internal tube parts and minimize the effect of the earth's magnetic field. Degaussing can be obtained by a coil that consists of 800 turns of 0.7 mm dia. enamelled copper wire (for $220 \mathrm{~V}_{\mathrm{rms}}$) and has an outer diameter of approx. 300 mm .
The coil should be moved such that the entire screen is subjected to its field. After about 10 seconds, the coil is moved away from the face plate to a distance of at least 2 m and disconnected from the A.C. power supply.

APPLICATION NOTES (continued)

During manufacture the receiver chassis should tee degaussed in a similar manner, with the receiver switched on and care should be taken that the assembly line is properly degaussed. An automatic degaussing system built into the receiver serves for degaussing during normal operation.
It is recommended that the receiver has some adjustments made before the picture tube is built in. These adjustments should include EHT and deflection, and the dynamic convergence in order to facilitate the adjustment of purity and static convergence. Before deflection power and high voltage are applied to the tube, the bias control should be adjusted for maximum bias. After deflection power and high voltage are applied, the beam currents should be increased gradually to minimize the possibility of tube damage in the event of circuit faults. With the application of a test signal, initial adjustment of focus, raster size, linearity and centring should be made.
6.1 Colour purity and convergence procedures

The normal sequence involves, first, static convergence adjustment next the purifying magnet and adjustment of the axial position of the deflection coil, and lastly final adjustment of dynamic convergence.

6.1.1 Static convergence adjustment

A crosshatch pattern is the most suitable signal for convergence adjustments. The pattern should be displayed at moderate brightness to improve the accuracy. It is advisable to converge red and green first, with the blue gun cut off, and then to converge blue into the yellow pattern formed by the coinciding of red and green lines.
The red and green beams are made to converge statically by adjusting the permanent magnets of the radial convergence assembly, or the corresponding D.C. currents. Correct convergence is obtained when the lines in the centre converge to give yellow.
Before the blue lateral convergence magnet is used, the blue lines are brought horizontally adjacent to the yellow lines by means of the radial blue static convergence adjustment (permanent magnet or D.C. current).
Hereafter the blue lines are made to converge with the yellow lines in the centre with the aid of the blue lateral convergence magnet, resulting in white lines in the centre. If necessary this procedure is repeated.

6.1.2 Adjustment for colour purity

Adjustment for colour purity involves two steps:
Adjustment of the purifying magnets. (6.1.2.1)
Adjustment of the position of the deflection coil. (6.1.2.2)
To obtain optimum adjustment, the static and dynamic convergence should be adjusted previously and the picture tube degaussed and well warmed up to normal operating temperature (approx. 30 min , total beam current $600 \mu \mathrm{~A}$). Purity assessments are best made on a plain raster.

APPLICATION NOTES (continued)

Adjustment of the purifying magnets influences purity all over the screen. The deflection coil adjustment influences purity mainly at the screen edges. Therefore, the magnets have to be adjusted before the coil.
6.1.2.1 The purifying magnets are adjusted, judging by the landing in the screen centre. There are two ways of doing this.
The first method makes use of a microscope (magnification about 50x).
With this method, the deflection coil need not possess more axial adjustment margin than that needed to cope with the spreads of the deflection centres. (12 mm total).
With the microscope, the position of the spot trio's is compared with the position of the phosphor dot trio's at the screen centre. To do this, the three colour rasters are displayed simultaneously, and the phosphor dots are illuminated by means of a light source, shining onto the screen at a small angle. The spot trio's should be made to land on the phosphor dot trio's as shown in Fig.1, with their centre points coinciding.
Due to the beam grouping used in this tube (which improves the overall landing) the spots will then be approx. $25 \mu \mathrm{~m}$ eccentric with respect to their corresponding phosphor dots.

Fig.1. Correct landing in the screen centre.
The second method ("Red ball" method) is applicable if the mounting of the deflection coil is such that it can be drawn away approx. 20 mm backwards from its foremost position when it touches the funnel.
Thie coil is moved backwards as far as possible, and only the red raster is turned on. (The red gun needs relatively the highest current, thus mis landing on blue and green phosphor dots is seen more clearly so that a sharp indication is obtained).
Now a red area of approx. 10 cm diameter is visible on the screen, surrounded by discoloured and blue and green areas. With the aid of the purifying magnets, the red area is positioned near the screen centre. In order that the above mentioned beam grouping shows to full adventage, the red area should be positioned 20 mm down to the left of the screen centre, see Fig. 2.

APPLICATION NOTES (continued)

Fig. 2
6.1.2.2 After adjustment of the purifying magnets, the deflection coil is adjusted by shifting it axially until optimum landing over the entire screen is reached. This can be done in two stages:

1. Only the red raster turned on, and the coil position giving an overall pure red raster sought.
2. For the final adjustment, a white raster is displayed and, if necessary, very slight adjustment of the deflection coil position made to obtain the best white uniformity.
After having completed 1 and 2, the red, green and blue rasters are checked separately for their purity, and if necessary the procedure repeated.

6.1.3 Adjustment of dynamic convergence

Just as for the static convergence a crosshatch pattern is recommended, dis played at low brightness.
It is advisable to adjust first the convergence in the vertical direction (with frame frequency) and then the horizontal convergence (with currents of line frequency). During the dynamic convergence adjustments, the static convergence (6.1.1) may need readjustment depending on the efficiency of any clamping circuits used.

A favourable sequence is to adjust the red and green convergence controls first so that both rasters coincide to display yellow lines while the blue gun is kept cut-off. Thereafter the blue pattern is added and adjusted to coincide with the yellow to give a white pattern. However, as the blue horizontal convergence system usually has a significant power consumption which influences the line time base to some degree, it is often advisable to start the whole convergence procedure by adjusting the blue horizontal convergence controls coarsely to give a straight blue horizontal centre line.

During the vertical dynamic convergence adjustment, the vertical axis of the screen should be taken as reference, while the horizontal adjustments should be referred to the horizontal axis. During the latter sequence the lateral blue dynamic convergence is also adjusted.

APPLICATION NOTES (continued)

The currents for dynamic convergence (except blue lateral) consist of two components, viz. one of parabolic and one of sawtooth wave form Usually both have their own controls which have to be adjusted in combination to obtain convergence. The parabolic ("amplitude") controls are used to make the configurations at the extremities of the picture axis equal to that at the centre. With the sawtooth ("phase" or "tilt") control the two extremities of the picture axis are made equal to each other as far as possible.
In addition, the blue horizontal convergence needs an extra waveform correc tion to correct for the tilting of the outer edges.
The blue lateral waveform needed is basically a sawtooth. Left-to-right asymmetry can be adjusted by slight rotation of the radial convergence assembly.
By repeated adjustments of the controls the line patterns in the various colours ultimately coincide and become parallel to each other. Thereafter these are made to coincide with the aid of the static convergence magnets to white lines.

After convergence onto the axes is obtained, usually some errors in the corners of the picture remain. Slight readjustment may be needed to minimize these errors.

At the end of the procedure purity is checked, and readjusted if needed, with the aid of the purifying magnets.
6.2 Adjustment of grey scale

This adjustment is carried out last of all and the sequence of the manipulations depends on receiver circuitry.

To obtain a constant hue of white over the whole grey scale when displaying a monochrome signal, the three guns must track accurately. This can be achieved by adjusting two points of each gun characteristic, one near cut-off and one near the highlights. To this end the following variables are available, and in a receiver two of them must be made adjustable for each gun:

1. cut-off point $\left(\mathrm{V}_{\mathrm{g}_{1}}\right)$
2. slope $\left(\mathrm{V}_{\mathrm{g}_{2}}\right)$
3. drive

The proper adjustment procedure depends on receiver circuitry. After adjustment, the brightness and contrast controls should not cause any change in hue, and the chosen white point should be displayed.
6.3 Focusing

The focusing voltage for all three guns can be adjusted via the common focus base pin No.9. In order to obtain optimum focus it is recommended to use a black-and-white picture with a low peak to mean brightness ratio, such as the RMA test picture, running at a total mean current of about 1 mA (peak currents in the three guns in-the order of 2.5 mA), and to focus at the highlights. This procedure will give best overall focus.

Luminance at the centre of the screen as a function of $\mathrm{I}_{\text {total }}$

Scanned area $504 \mathrm{~mm} \times 396 \mathrm{~mm}$

$7203684-1 . f c-a 0.24$

90° COLOUR TELEVISION TUBE

Three-gun temperature-compensated shadow-mask rectangular colour television tube with electrostatic focus magnetic deflection and convergence, metal-backed three-colour phosphor dot screen. A high white luminance is obtained at near unity current ratio. Being temperature compensated, the shadow-mask makes for optimum field purity and good uniformity during warm-up. Minimum occurrence of the moiré effect is ensured by optimizing the shadow-mask for reproduction of 625 -line pictures. The tube has a reinforced envelope and therefore no separate safety screen is necessary. The rimband leaves the edge of the faceplate free.

QUICK REFERENCE DATA	
TEMPERATURE COMPENSATED SHADOW - MASK	
SHADOW -MASK OPTIMIZED FOR 625-LINE SYSTEM	
HIGH WHITE LUMINANCE AT UNITY CURRENT RATIO	
Face diagonal	66 cm
Deflection angle	90°
Neck diameter	36.5 mm
Envelope	reinforced
	suitable for push through
Focusing	electrostatic
Deflection	magnetic
Convergence	magnetic
Heating	$6.3 \mathrm{~V}, 900 \mathrm{~mA}$
Light transmission	52.5%

SCREEN

Metal-backed tricolour phosphor dots
Phosphor type
Dot arrangement
Red: Europium activated rare earth Green and blue: sulphide type

Triangular
Spacing between centres of adjacent dot trios
0.81 mm

Light transmission at centre of face glass

HEATING

Indirect by A.C. or D.C.; parallel or series supply

| Heater voltage | V_{f} | 6.3 V |
| :--- | :---: | :--- | :--- |
| Heater current | I_{f} | 900 mA |

For maximum cathode life it is recommended that the heater supply be regulated at 6.3 V. If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal rimband
Grid No. 1 of any gun to all other electrodes

Cathodes of all guns (connected in parallel) to all other electrodes
Cathode of any gun to all other electrodes

Grid No. 3 (focusing electrode) to all other electrodes
$\max .2500 \mathrm{pF}$
$C_{a g 5 g 4 / m}$
min. 2000 pF
$\mathrm{C}_{\mathrm{ag} 5 \mathrm{~g} 4 / \mathrm{m}}{ }^{\prime} \quad 500 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$
7 pF
$\mathrm{C}_{\mathrm{k}} \quad 15 \mathrm{pF}$

C_{kR}	5 pF
$\mathrm{C}_{\mathrm{k}_{\mathrm{G}}}$	5 pF
C_{kB}	5 pF
$\mathrm{C}_{\mathrm{g} 3}$	7 pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle

$$
92^{\circ}
$$

Horizontal deflection angle
Vertical deflection angle

CONVERGENCE magnetic

MECHANICAL DATA

Overall length
$521.8 \pm 6.5 \mathrm{~mm}$
Neck length
Diagonal
Horizontal axis of bulb
Vertical axis
$164.2 \pm 4.5 \mathrm{~mm}$
max. 657.6 mm
max. 556.4 mm
$\max .435 .3 \mathrm{~mm}$
Useful screen
diagonal
horizontal axis
vertical axis
min. 617.8 mm
min. 518 mm
min. 390 mm
Mounting position: any
Net weight: approx. 21.5 kg
Base: 12 pin base JEDEC B12-246
Anode contact: Small cavity contact J1-21, IEC67-III-2
Magnetic shielding
Magnetic shielding should be provided by means of a metal shield extending 285 mm over the cone of the tube measured from the centre of the face plate. The metal shield is preferably constructed of min. 0.5 mm cold rolled steel properly annealed. The air gap between the shield and the metal rimband should be as small as possible and not exceed 10 mm . The magnetic shield should be connected to the outer conductive coating.
NOTES TO OUTLINE DRAWING (See pages 4, 5 and 6)

1. Reference line determined by the plane of the upper edge of the flange of the reference line gauge, when the gauge is resting on the cone. Gauge see page 10 .
2. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base will fall within a circle concentric with bulb axis and having a diameter of 55 mm .
3. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
4. To clean this area, whipe only with a soft lintless cloth.
5. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm
6. Minimum space to be reserved for mounting lug.
7. The position of the mounting screw in the cabinet must be within a circle of 9.5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $549 \mathrm{~mm} \times 422 \mathrm{~mm}$.
8. Coördinates for radius $\mathrm{R}=18.2 \mathrm{~mm}: \mathrm{x}=236.6 \mathrm{~mm}, \mathrm{y}=168.9 \mathrm{~mm}$
9. Distance from point Z to any hardware.
10. Maximum dimension in plane of lugs.
11. $\mathrm{a}=30.0 \mathrm{~mm}$ on diagonal, 28.4 mm on major axis, 18.8 mm on minor axis.

MECHANICAL DATA (continued)

Notes see page 3

MECHANICAL DATA (continued)
Dimensions in mm

Notes see page 3

[^9]

TYPICAL OPERATING CONDITIONS

Final accelcrator voltage
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage for a spot cut-off
voltage $\mathrm{V}_{\mathrm{g}_{1}}=-105 \mathrm{~V}$

$\mathrm{V}, \mathrm{g} 5 \cdot \mathrm{~g}_{4}$		25	kV
$\mathrm{V}_{\mathrm{g} 3}$	4.2 to	5	kV

Grid No. 1 voltage for spot cut-off at $\mathrm{V}_{\mathrm{g}_{2}}=300 \mathrm{~V}$
$\mathrm{V}_{2} \quad 210$ to $495 \mathrm{~V}^{1}$)
$V_{g_{1}}$
Luminance at centre of screen
-70 to $-140 \mathrm{~V}^{2}$)
see page 11

EQUIPMENT DESIGN VALUES (each gun if applicable)
Valid for final accelerator voltages between 20 kV and 27.5 kV

Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage ${ }^{1}$)

Grid No. 1 voltage for visual extinction of focused spot (cut-off voltage) ${ }^{2}$)

Difference in cut-off voltages between guns in any tube

Grid No. 3 (focusing electrode) current Grid No. 2 current
Grid No. 1 current at $\mathrm{V}_{\mathrm{g}_{1}}=-150 \mathrm{~V}$
To produce white of the following CIE coordinates

Percentage of total anode current supplied by each gun (typical) red gun green gun blue gun
Ratio of anode currents red gun to green gun

Ratio of anode currents red gun to blue gun
$\mathrm{V}_{\mathrm{g} 3}$
$\mathrm{V}_{\mathrm{g} 2}$
V_{g} $\Delta \mathrm{V}_{\mathrm{I}}$ I_{3}
I_{2}
I_{g}

	$\left.{ }^{3}\right)$	4,	$5)$	$6)$	
x	0.310	0.265	0.281	0.313	
y	0.316	0.290	0.311	0.329	
	43.5	27.9	32.3	43.1	$\%$
	30.0	34.9	35.6	32.0	$\%$
	26.5	37.2	32.2	24.9	$\%$
\min.	1.05	0.55	0.65	0.95	
av.	1.45	0.80	0.90	1.35	
\max.	2.00	1.10	1.25	1.85	
\min.	1.25	0.55	0.75	1.30	
$\operatorname{av.}$	1.65	0.75	1.00	1.75	
\max.	2.25	1.00	1.35	2.35	

[^10]
EQUIPMENT DESIGN VALUES (continued)

Required centring, measured at the centre of the screen in any direction
$\max .15 \mathrm{~mm}$
Correction that must be supplied by purifying magnet to compensate for mis-register in any direction
$\max .100 \mu \mathrm{~m}$
Lateral distance between blue spot and the converged red and green spots
$\max .6 .4 \mathrm{~mm}$ (in both directions)

Radial convergence displacement excluding effects of dymanic convergence (each beam)
$\max .9 .4 \mathrm{~mm}{ }^{7}$)
(in both directions)

[^11]2) This range of Vg_{1} has to be used when in circuit design fixed values for Vg_{2} of the three guns are used.
${ }^{3}$) To produce colour pictures with the best possible quality, this white point should be used when the transmission system is based on this point. (Point C).
${ }^{4}$) To produce black/white pictures a more bluish white point would be preferable. This white point corresponds virtually with the white point of current black/white picture tubes.
${ }^{5}$) This point is a compromise between the white point C and the white point $x=0.265$ and $y=0.290$, given in order to enable good rendition of colour and black and white pictures with one white point.
6) To produce colour pictures with the best possible quality, this white point should be used when the transmission system is based on this point. (Point D).
${ }^{7}$) Dynamic convergence to be effected by currents of approximately parabolic waveshape synchronized with scanning.

LIMITING VALUES (Each gun if applicable)
(Design centre rating system unless otherwise specified)

Final accelerator voltage
Average current for three guns
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage, peak, including video signal voltage
Grid No. 1 voltage,
negative
negative, operating cut-off
positive
positive peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak
$V_{a}, \mathrm{~g} 5, \mathrm{~g} 4$

Ia

Vg_{3}
$\mathrm{Vg}_{2} \mathrm{p} \quad \max .1000 \mathrm{~V}$
$-\mathrm{Vgl}$

- Vgl

Vgl
Vglp
$\begin{aligned} & V_{k f} \\ & V_{k f} \\ &-V_{k f} \\ &- V_{k f_{p}}\end{aligned}$
$\max .400 \mathrm{~V}$
$\max .200 \mathrm{~V}$
$\max . \quad 0 \quad \mathrm{~V}$
$\max .2 \mathrm{~V}$

$\left.\left.\max .250 \quad V^{6}\right)^{7}\right)$
$\max .300 \mathrm{~V}$
$\max .135 \mathrm{~V}$
$\max .180 \mathrm{~V}$

1) Absolute max , rating system.
${ }^{2}$) The X-ray dose rate remains below the acceptable value of $0.5 \mathrm{mr} / \mathrm{h}$, measured with ionization chambre when the tube is used within its limiting values.
${ }^{3}$) For optimal operating conditions the final accelerator voltage has to be stabilized. Therefore its absolute maximum value can be approached in actual operation and for this reason this value is given instead of the design centre value. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustment for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs brightness and resolution and may have a detrimental effect on colour purity.
2) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
${ }^{6}$) In order to avoid excessive hum the a.c. component of the heater to chassis voltage should be as low as possible and must not exceed $20 \mathrm{~V}_{\mathrm{rms}}$.
${ }^{7}$) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{kf}}$ is allowed to rise to 410 V . Between 15 s and 45 s after switching on a decrease in V_{kf} proportional with time from 410 V to 250 V is permissible.

REMARKS

With the high voltage used with this tube (max. 27.5 kV) internal flash-overs may occur, these may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.
Additional information available on request.
During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any directions.

REFERENCE LINE GAUGE (gauge E)
Gauge E. See chapter "Reference line gauges" in front of this book

Luminance at the centre of the screen as a function of $\mathrm{I}_{\text {total }}$

Scanned area $518 \mathrm{~mm} \times 390 \mathrm{~mm}$

110° COLOUR TELEVISION TUBE

Three-gun temperature-compensated shadow-mask rectangular colour television tube with electrostatic focus, magnetic deflection and convergence, metal-backed three-colour phosphor dot screen and internal magnetic shield. A high white luminance is obtained at near unity current ratio. Being temperature compensated, the shadow-mask makes for optimum field purity and good uniformity during warm-up. The design is such that minimum occurence of the moiré effect is ensured. The tube has a reinforced envelope and therefore no separate safety screen is necessary.

QUICK REFERENCE DATA	
TEMPERATURE-COMPENSATED SHADOW-MASK	
DESIGNED FOR MINIMUM MOIRE EFFECT	
HIGH WHITE LUMINANCE AT UNITY CURRENT RATIO	
Face diagonal	66 cm
Deflection angle	1100
Neck diameter	36.5 mm
Envelope	reinforced
	suitable for push through
Magnetic shield	internal
Focusing	bi-potential
Deflection	magnetic
Convergence	magnetic
Heating	$6.3 \mathrm{~V}, 900 \mathrm{~mA}$
Light transmission of face glass	52.5%

SCREEN

Metal-backed phosphor dots

Phosphor type

Dot arrangement
Red: Europium activated rare earth Green: Sulphide type
Blue: Sulphide type
Triangular
Spacing between centres of adjacent dot trios
0.81 mm

Light transmission at centre of face glass
HEATING: indirect by A.C. or D.C.; parallel or series supply

Heater voltage	Vf $_{f}$	6.3	V
Heater current	I_{f}	900	mA

For maximum cathode life it is recommended that the heater supply be regulated at 6.3 V . If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

CAPACITANCES

Final accelerator to external conductive coating	$\mathrm{Ca}_{\mathrm{a}}, \mathrm{g}_{5}, \mathrm{~g}_{4} / \mathrm{m}$	$\begin{array}{ll} \max . & 2100 \\ \min . & 1600 \end{array}$	pF
Final accelerator to metal rimband	$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{5}, \mathrm{~g}_{4} / \mathrm{m}^{\text {b }}$	500	pF
Grid No. 1 of any gun to all other electrodes	Cg_{1}	7	pF
Cathodes of all guns (connected in parallel) to all other electrodes	C_{k}	15	pF
Cathode of any gun to all other electrodes	$\begin{aligned} & \mathrm{C}_{\mathrm{kR}} \\ & \mathrm{CkG}_{\mathrm{kG}} \\ & \mathrm{CkB}^{2} \end{aligned}$	5 5 5	pF pF pF
Grid No. 3 (focusing electrode) to all other electrodes	Cg_{3}	7	pF
FOCUSING electrostatic (bi-pot			
DEFLECTION magnetic			
Diagonai deflection angle Horizontal deflection angle Vertical deflection angle		110 97 77	-

CONVERGENCE magnetic

MECHANICAL DATA

Overall length
Neck diameter
Diagonal
Horizontal axis \quad of bulb
Vertical axis
Useful screen
diagonal
horizontal axis
vertical axis

425.1	438.1	mm
	36.5	mm
\max.	657.6	mm
\max.	556.4	mm
\max.	435.3	mm
min.	617.8	mm
min.	518	mm
min.	390	mm

Mounting position: any
Net weight : approx. 20 kg
Base : 12 pin base JEDEC B12-246
Anode contact : Small cavity contact J1-21, IEC 67-III-2
Magnetic shielding, degaussing: The tube is provided with an internal magnetic shield.
The internal magnetic shield and the shadow-mask with its suspension system may be providedwith an automatic degaussing system, consisting of two coils covering left and right cone parts. For proper degaussing an initial m.m.f. of 500 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriatecircuitry. After decreasing to 10 A.t. or less, sudden switch off is permissible. In the steady state, no significant m.m.f. should remain in the coils (≤ 0.5 A.t).
To ease the mounting of the coils, the rimband is provided with rectangular holes.
NOTES TO OUTLINE DRAWINGS (See pages 4, 5, and 6)
${ }^{1}$) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge, when the gauge is resting on the cone.
2) The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
3) Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
4) To clean this area, wipe only with a soft lintless cloth.
5) The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
${ }^{6}$) Minimum space to be reserved for mounting lug.
${ }^{7}$) The position of the mounting screw in the cabinet must bewithin a circle of 9.5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $549 \mathrm{~mm} \times 422 \mathrm{~mm}$.
8) Cördinates for radius $R=18.2 \mathrm{~mm}: x=236.6 \mathrm{~mm}, \mathrm{y}=168.9 \mathrm{~mm}$.
${ }^{9}$) Distance from point z to any hardware.
10) Maximum dimensions in plane of lugs.
11) Dimension $a=30.0 \mathrm{~mm}$ on diagonal, 28.4 mm on major axis, 18.8 mm on minor axis.

MECHANICAL DATA (continued)

Dimensions in mm

Notes see page 3

		Distance from centre														
$\begin{aligned} & \text { sec- } \\ & \text { non } \end{aligned}$	Distance from section 13	$\begin{aligned} & 0^{\circ} \\ & \text { Long } \end{aligned}$	10°	20°	25°	30°	$32^{\circ} 30^{4}$	$\begin{aligned} & 35^{\circ} 31^{\prime} \\ & \text { Diagon. } \end{aligned}$	$37^{\circ} 30^{\text {d }}$	40°	45°	50°	60°	70°	80°	90° Short
1	119.5 nmm .	99.41	99.18	98.70	98.46	98.26	98.18	98.11	98.07	98.05	98.05	98.13	98.51	99.08	99.65	99.93
2	109.5	142.11	139.07	133.90	131.47	129.35	128.43	127.45	126.89	126.28	125.38	124.90	125.89	126.92	129.46	131.09
3	99.5	171.81	168.10	161.35	157.99	154.92	153.52	151.98	151.06	149.99	148.22	146.91	145.65	145.90	147.25	148.22
4	89.5	193.96	191.36	185.57	182.25	178.92	177.30	175.41	174.22	172.78	170.12	167.81	164.25	162.10	161.14	160.96
5	79.5	213.30	211.91	207.82	204.94	201.66	199.92	197.75	196.31	194.48	190.86	187.37	181.15	176.39	173.40	172.38
6	69.5	230.11	229.83	227.80	225.69	222.75	220.99	218.64	216.97	214.70	210.09	205.28	196.20	188.93	184.26	182.04
7	59.5	243.54	244.45	245.30	244.63	242.68	241.15	238.79	236.97	234.39	228.50	222.08	209.60	199.67	193.44	191.31
8	49.5	253.95	253.93	260.00	261.38	261.16	260.19	258.10	256.19	253.23	245.82	237.40	221.05	208.54	200.97	198.44
9 10	39.5	262.25	265.05	272.04	275.72	277.94	277.99	276.37	274.36	270.89	261.35	250.54	230.35	215.70	207.15	204.34
10	29.5 19.5	268.70	272.13	281.47	287.43	292.66	294.27	293.44	291.30	287.13	274.58	261.11	237.50	221.30	212.11	209.13
11	19.5	273.39	277.11	288.19	296.17	304.82	308.65	309.17	307.00	301.85	285.09	268.75	242.46	225.33	215.81	212.75
12	9.5	276.43	280.34	292.47	301.96	313.84	320.37	323.09	321.27	314.80	292.49	273.50	245.58	228.11	218.52	215.46
13	0	279.00	282.96	295.36	305.23	318.01	325.40	329.00	327.49	320.66	296.49	276.73	248.34	230.73	221.08	218.00

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{gl}}=-105 \mathrm{~V}$
Grid No. 1 voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=300 \mathrm{~V}$
Luminance at the centre of the screen

Va, g5, g4 25 kV
$\mathrm{V}_{\mathrm{g} 3} \quad 4.2$ to 5 kV
$\mathrm{V}_{\mathrm{g} 2} \quad 212$ to $495 \mathrm{~V}^{\mathrm{l}}$)
V_{g}
-70 to $-140 \mathrm{~V}^{2}$)
See page 12

EQUIPMENT DESIGN VALUES (each gun if applicable)
Valid for final accelerator voltages between 20 kV and 27.5 kV .
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage
Grid No. 1 voltage for visual extinction of focused spot (cut-off voltage) ${ }^{2}$)

Difference in cut-off voltages between guns in any tube

Grid No. 3 (focusing electrode) current
Grid No. 2 current
Grid No. 1 current at $\mathrm{V}_{\mathrm{gl}}=-150 \mathrm{~V}$
To produce white of the following CIE coordinates

Percentage of total anode current
supplied by each gun (typical)
red gun
green gun
blue gun
Ratio of anode currents red gun to green gun

Ratio of anode currents red gun to blue gun
$\begin{array}{ll}\mathrm{V} 33 & 16.8\end{array}$
to 20% of $\mathrm{fi}-$ nal accelerator voltage
$\mathrm{V}_{\mathrm{g} 2} \quad$ See cut-off design chart page 13
$\mathrm{V}_{\mathrm{gl}} \quad$ See cut-off design chart page 13
$\Delta V_{g l} \quad$ lowest value is min. 65% of highest value

$\mathrm{I}_{\mathrm{g} 3}$	-5	to
$\mathrm{I}_{\mathrm{g} 2}$	$-5 \mu \mathrm{~A}$	
$\mathrm{I}_{\mathrm{g} 1}$	-5	to
$+5 \mu \mathrm{~A}$		
		to
$+5 \mu \mathrm{~A}$		

	3 3		4)
x	6,		
x	0.265	0.281	0.313
y	0.290	0.311	0.329
	25.8	30.2	41.0
	33.5	34.5	31.3
	40.7	35.3	27.7
\min.	0.55	0.65	0.95
av.	0.75	0.90	1.30
\max.	1.10	1.25	1.80
\min.	0.50	0.65	1.15
av.	0.65	0.85	1.50
\max.	0.85	1.15	2.00

[^12]
EQUIPMENT DESIGN VALUES (continued)

Required centring, measured at the centre of the screen in any direction $\max 12 \mathrm{~mm}$

Correction that must be supplied by purifying magnet to compensate for mis-register in any direction $\max . \quad 100 \quad \mu \mathrm{~m}$

Lateral distance between blue spot and the converged red and green spots
$\max .5 \mathrm{~mm}$ (in both directions)

Radial convergence displacement excluding effects of dynamic convergence (each gun) ${ }^{5}$)
max. 8 mm (in both directions)

1) This range of $\mathrm{V}_{\mathrm{g} 2}$ has to be used when in circuit design fixed values for cut-off of the three guns are used.
${ }^{2}$) This range of $V_{g 1}$ has to be used when in circuit design fixed values for V_{g} of the three guns are used.
${ }^{3}$) To produce black/white pictures a bluish white point would be preferable. This white point corresponds virtually with the white point of current black/white picture tubes.
${ }^{4}$) This point is a compromise between white point D and the white point $x=0.265$ $y=0.290$, given in order to enable good rendition of colour and black and white pictures with one white point.
${ }^{5}$) Dynamic convergence to be effected by currents of approximately parabolic waveshape through the convergence coils synchronized with scanning.
${ }^{6}$) To produce colour pictures with the best possible quality, this white point should be used when the transmission system is based on this point.(Point D).

LIMITING VALUES (Each gun if applicable)
(Design centre rating system unless otherwise specified)

Final accelerator values	$\mathrm{Va}, \mathrm{g} 5, \mathrm{~g} 4$	max. min.	$\begin{array}{r} 27.5 \\ 20 \end{array}$	$\begin{aligned} & \left.k V 1,2)^{3}\right) \\ & k V^{1}, 4 \end{aligned}$
Average current for three guns	I_{a}	max.	1000	$\left.\mu \mathrm{A}{ }^{5}\right)$
Grid No. 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max..	6000	V
Grid No. 2 voltage, peak, including video signal voltage	Vg2p	\max.	1000	V
Grid No. 1 voltage, negative negative, operating cut-off positive positive peak	$\begin{aligned} & -\mathrm{Vg}_{1} \\ & -\mathrm{Vg}_{1} \\ & \mathrm{Vg}_{1} \\ & \mathrm{~V}_{\mathrm{gl}} \mathrm{lp}_{\mathrm{p}} \end{aligned}$	max. \max. max. max.	400 200 0 2	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Cathode to heater voltage, positive positive peak negative negative peak	Vkf $\mathrm{V}_{\mathrm{kf}} \mathrm{p}$ $-V_{k f}$ $-\mathrm{V}_{\mathrm{kf}} \mathrm{p}$	max. max. max. max.	$\begin{aligned} & 250 \\ & 300 \\ & 135 \\ & 180 \end{aligned}$	$\begin{aligned} & \left.V^{6}\right)^{7} \text {) } \\ & V \\ & V \\ & V \end{aligned}$

${ }^{1}$) Absolute max. rating system.
${ }^{2}$) The X-ray dose rate remains below the acceptable value of $0.5 \mathrm{mr} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
${ }^{3}$) For optimal operating conditions the final accelerator voltage has to be stabilized. Therefore its absolute maximum value can be approached in actual operation and for this reason this value is given instead of the design centre value. During adjustment on the production line this value is likely to be surpassedconsiderably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs brightness and resolution and may have a detrimental effect on colour purity.
5) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
${ }^{6}$) In order to avoid excessive hum the a.c. component of the heater to chassis voltage should be as low as possible and must not exceed $20 \mathrm{~V}_{\mathrm{rms}}$.
7) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{kf}}$ is allowed to rise to 410 V . Between 15 s and 45 s after switching on a decrease in V_{kf} proportional with time 410 V to 250 V is permissible.

REMARK

With the high voltage used with this tube (max. 27.5 kV) internal flash-overs may occur. These may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.
Additional information is given in Application Information 258, available on request.
During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

REFERENCE LINE GAUGE (Gauge F)

Gauge F. See chapter "Reference line gauges" in front of this book.

Luminance at the centre of the screen as function of $I_{\text {total }}$

Scanned area $518 \mathrm{~mm} \times 390 \mathrm{~mm}$

A66-140X

110° COLOUR TELEVISION PICTURE TUBE

Three-gun temperature-compensated shadow-mask rectangular colour television tube with electrostatic focus, magnetic deflection and convergence, metal-backed threecolour phosphor dot screen and internal magnetic shield. A high white luminance is obtained at near unity current ratio. Being temperature compensated, the shadow-mask makes for optimum field purity and good uniformity during warm-up. The design is such that minimum occurence of the moire effect is ensured. The tube has a reinforced envelope and therefore no separate safety screen is necessary. Typically, a legible picture will appear within 5 s .

QUICK REFERENCE DATA		
TEMPERATURE-COMPENSATED SHADOW-MASK		
DESIGNED FOR MINIMUM MOIRE EFFECT		
HIGH WHITE LUMINANCE AT UNITY CURRENT RATIO		
Face diagonal	66	cm
Deflection angle	110	deg
Neck diameter	36,5	mm
Envelope	reinforced	
Magnetic shield	internal	
Focusing	bi-potential	
Deflection	magnetic	
Convergence	magnetic	
Heating	$6,3 \mathrm{~V}, 730 \mathrm{~mA}$	
Light transmission of face glass	52,5	$\%$
Quick heating cathode	with a typical tube a legible picture	
	will appear after within 5 s	

SCREEN

Metal-backed phosphor dots

Phosphor type

Dot arrangement
Spacing between centres of adjacent dot trios
Light transmission at centre of face glass

Red: Europium activated rare earth
Green: Sulphide type
Blue: Sulphide type
Triangular
$0,81 \mathrm{~mm}$
52,5 \%

HEATING : indirect by a.c. or d.c. ; parallel supply

Heater voltage	V_{f}	6,3	V
Heater current	I_{f}	730	$\mathrm{~mA}^{1}$)

For maximum cathode life it is recommended that the heater supply be regulated at $6,3 \mathrm{~V}$. For heating time as a function of source impedance see graph page 13 below.

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal rimband
Grid no. 1 of any gun to all other electrodes
Cathodes of all guns (connected in parallel) to all other electrodes

Cathode of any gun to all other electrodes
Grid no. 3 (focusing electrode) to
all other electrodes
FOCUSING electrostatic (bi-potential)
DEFLECTION magnetic
Diagonal deflection angle
Horizontal deflection angle110°
Vertical deflection angle
$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{4} / \mathrm{m}$
max. 2100
min. 1600
pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 4 / \mathrm{m}} \quad 500 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1} \quad 7 \mathrm{pF}$
$\begin{array}{lrl}\mathrm{C}_{\mathrm{k}} & 15 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}} & 5 & \mathrm{pF}\end{array}$
Cg_{3}
7 pF

CONVERGENCE magnetic

[^13]
MECHANICAL DATA

Overall length		425.1	4.38, 1	mm
Neck diameter			36.5	mm
Diagonal		max.	657.6	mm
Horizontal axis	of bulb	max.	556.4	mm
Vertical axis		max.	4.35 .3	mm
Useful screen				
diagonal		min.	617.8	mm
horizontal axis		min.	518	mm
vertical axis		min.	390	mm

Mounting position: any
Net weight : approx. 20 kg
Base : 12 pin base JEDEC B12-246
Anode contact : Small cavity contact J1-21. IEC 67-III-2
Magnetic shielding, degaussing: The tube is provided with an internal magnetic shicld.
The internal magnetic shield and the shadow - mask with its suspension system may be provided with an automatic degaussing system. consisting of two coils covering left and right cone parts. For proper degaussing an initial m. m.f. of 500 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. After decreasing to $10 \mathrm{~A} . \mathrm{t}$. or less, sudden switch off is permissible. In the steady state, no significant m. m.f. should remain in the coils ($<0,5 \mathrm{~A} . t$.).
To ease the mounting of the coils, the rimband is provided with rectangular holes.
NOTES TO OUTLINE DRAWING (see pages 4, 5, and 6)
${ }^{1}$) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge, when the gauge is resting on the cone.
${ }^{2}$) The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
${ }^{3}$) Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
4) To clean this area, wipe only with a soft lintless clotch.
${ }^{5}$) The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
${ }^{6}$) Minimum space to be reserved for mounting lug.
7) The position of the mounting screw in the cabinet must be within a circle of $9,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $549 \mathrm{~mm} \times 422 \mathrm{~mm}$.
${ }^{8}$) Co8rdinates for radius $\mathrm{R}=18,2 \mathrm{~mm}: \mathrm{x}=236,6 \mathrm{~mm}, \mathrm{y}=168,9 \mathrm{~mm}$.
${ }^{9}$) Distance from point z to any hardware.
10) Maximum dimensions in plane of lugs.
11) Dimension $\mathrm{a}=30,0 \mathrm{~mm}$ on diagonal, $28,4 \mathrm{~mm}$ on major axis, $18,8 \mathrm{~mm}$ on minor axis.

[^14]

Notes see page 3

green gun gun

[^15]

Distance from centre																
$\begin{aligned} & \text { Sec - } \\ & \text { tion } \end{aligned}$	Distance from sectton 13	$\begin{gathered} 0^{\circ} \\ \text { Long } \end{gathered}$	10°	20°	25°	30°	$32^{\circ} 30^{\circ}$	$\begin{aligned} & 35^{\circ} 31^{\prime} \\ & \text { Diagon. } \end{aligned}$	$37^{\circ} 30 \cdot$	40°	45°	50°	60°	70°	80°	90° Short
1	119.5 nom.	99, 41	99,18	98, 70	98, 46	98, 26	98, 18	98, 11	98.07	98, 05	98,05	98, 13	98,51	99,08	99.65	99.93
2	109.5 "	142.11	139,07	13.3,90	131,47	129, 75	128, 43	127,45	126.89	126, 28	125,38	124,90	125.19	126,92	129,46	131.09
3	99.5	171,81	168, 10	161.35	157.99	154,92	153,52	151.98	151.06	149.99	148,22	146,91	145.65	145.96	147, 25	148.22
4	89.5	193,96	191. 36	185,57	182, 25	178,92	177,30	175, 41	174.22	172.78	170.12	167,81	164. 25	162.10	161.14	160.98
5	79.5	213, 30	211,91	207.82	204, 94	201.66	199.92	197, 75	196.31	194.48	190,86	187.37	181,15	176, 39	173.40	172.38
A	$69.5 \quad \text { " }$	230, 11	229, 8.3	227. 80	225.69	222.75	220,99	218.64	216.97	214.76	210.09	205. 28	196. 20	188.93	184. 26	182.64
7	59.5	243,54	244.45	245,3日	244,63	242.68	241.15	238.79	236.97	234, 39	228, 50	222.08	209.60	199.67	193.44	191.31
8	49.5 "	253,95	255,93	260.00	261. 38	261.16	260,19	258.10	256.19	253.23	245, 82	237.40	221.05	208,54	200,97	198, 44
9	39,5	262, 25	265, 05	272,04	275, 72	277,94	277,99	276,37	274,36	270,89	261,35	250, 54	230, 35	215, 70	207,15	204, 34
10	29,5	268, 76	272, 13	281,47	287, 43	292,66	294, 27	293.44	291,30	287,13	274, 58	261,11	237, 50	221, 30	212,11	209,13
11	19.5	273, 39°	277, 11	289, 19	296, 17	304.82	308, 65	309.17	307,00	301.85	285,09	268, 75	242, 46	225, 33	215,81	212, 75
12	9.5	276, 43	280,34	292,47	301,96	313, 84	320, 37	323,09	321, 27	314.80	292.49	273, 50	245, 58	228.11	218.52	215.46
13	0	279,00	282,96	295, 36	305. 23	318.01	325,40	329.00	327, 49	320.66	296,49	276, 73	248, 34	230.73	221.08	218,00

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid No. 3 (Focusing electrode) voltage
Grid No. 2 voltage for a spot cut-off
voltage $\mathrm{V}_{\mathrm{g} 1}=-105 \mathrm{~V}$
Grid No. 1 voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=300 \mathrm{~V}$
Luminance at the centre of the screen

Va, g5, g4		25 kV		
$\mathrm{V}_{\mathrm{g} 3}$	4,2 to	5	kV	
$\mathrm{V}_{\mathrm{g} 2}$	212 to	495	V	${ }^{1}$)
V_{gl}	$-70 \text { to }$ See pag	$\begin{array}{r} -140 \\ -12 \end{array}$	V	${ }^{2}$)

EQUIPMENT DESIGN VALUES (each gun if applicable)
Valid for final accelerator voltages between 20 kV and $27,5 \mathrm{kV}$.

Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage
Grid No. 1 voltage for visual extinction of focused spot (cut-off voltage) ${ }^{2}$)

Difference in cut-off voltages between guns in any tube

Grid No. 3 (focusing electrode) current Grid No. 2 current
Grid No. 1 current at $\mathrm{V}_{\mathrm{g} 1}=-150 \mathrm{~V}$
To produce white of the following CIE coordinates

Percentage of total anode current supplied by each gun (typical)
red gun
green gun
blue gun
Ratio of anode currents red gun to green gun

Ratio of anode currents red gun to blue gun
$\mathrm{V}_{\mathrm{g} 3}$
$\mathrm{V}_{\mathrm{g} 2}$
V_{gl}

$$
\Delta \mathrm{V}_{\mathrm{gl}}
$$

$$
\begin{gather*}
{ }_{\mathrm{I}}^{\mathrm{g} 3} \tag{6}\\
\mathrm{I}_{\mathrm{g} 2} \\
\mathrm{I}_{\mathrm{g} 1}
\end{gather*}
$$

16,8 to 20% of final accelerator voltage See cut-off design chart page 13

See cut-off design chart page 13
lowest value is min . 65% of highest value

3, | -5 | to | +5 | $\mu \mathrm{~A}$ |
| :--- | :--- | :--- | :--- |
| -5 | to | +5 | $\mu \mathrm{~A}$ |
| -5 | to | +5 | $\mu \mathrm{~A}$ |

0, 313
0,329

41, 0
31, 3
27, 7

0,95
min.
av.
-
min.

av.	0,65	0,85	1,50

[^16]
EQUIPMENT DESIGN VALUES (continued)

Required centring, measured at the centre of the screen in any direction
max.

| 12 | mm |
| :--- | :---: | :---: |
| max. | $100 \quad \mathrm{~mm}$ |
| max. | 5 mm |
| (in both directions) | |

Radial convergence diaplacement excluding effects of dynamic convergence (each gun) ${ }^{5}$) max. 8 mm (in both directions)
$\overline{1_{)} \text {This range of } V_{g 2} \text { has to be used when in circuit design fixed values for cut-off of the }}$ three guns are used.
${ }^{2}$) This range of $V_{g l}$ has to be used when in circuit design fixed values for $V_{g 2}$ of the three guns are used.
${ }^{3}$) To produce black/white pictures a bluish white point would be preferable. This white point corresponds virtually with the white point of current black/white picture tubes.
4) This point is a compromise between white point D and the white point $x=0.265$ $y=0.290$, given in order to enable good rendition of colour and black and white pictures with one white point.
5) Dynamic convergence to be effected by currents of approximately parabolic waveshape through the convergence coils synchronized with scanning.
6) To produce colour pictures with the best possible quality, this white point should be used when the transmission system is based on this point. (Point D).

LIMITING VALUES (Each gun if applicable)
(Design centre rating system unless otherwise specified)

Final accelerator values

Average current for three guns
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage, peak, including video signal voltage

Grid No. 1 voltage,
negative,
negative, operating cut-off
positive
positive peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}, \mathrm{~g} 5, \mathrm{~g} 4 \\
& \mathrm{I}_{\mathrm{a}} \\
& \mathrm{~V}_{\mathrm{g} 3}
\end{aligned}
$$

$$
V_{g 2 p}
$$

$$
\begin{gathered}
-V_{g I} \\
-V_{g 1} \\
V_{g l} \\
V_{g l p}^{g l}
\end{gathered}
$$

$$
\begin{gathered}
V_{k f} \\
V_{k f p} \\
- \\
-V_{k f} \\
- \\
-V_{k f p}
\end{gathered}
$$

\max.	27,5	kV 1) $\left.\left.{ }^{2}\right)^{3}\right)$
\min.	20	$\mathrm{kV} \mathrm{I)}$
4)		
\max.	1000	$\mu \mathrm{~A}$
\max.	6000	V

$\max .1000 \mathrm{~V}$

\max.	400	V
max.	200	V
max.	0	V
\max.	2	V

$\max .250 \mathrm{~V}^{6}$)
max. 300 V
max. 135 V
$\max .180 \mathrm{~V}$

1) Absolute max. rating system.
${ }^{2}$) The X -ray dose rate remains below the acceptable value of $0,5 \mathrm{mr} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
${ }^{3}$) For optimal operating conditions the final accelerator voltage has to be stabilized. Therefore its absolute maximum value can be approached in actual operation and for this reason this value is given instad of the design centre value. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs brightness and resolution and may have a detrimental effect on colour purity.
2) 1500 HA permitted provided a current limiting circuit is used.
3) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{kf}}$ is allowed to rise to 385 V . Between 15 s and 45 s after switching on a decrease in V_{kf} proportional with time from 385 V to 250 V is permissible.

REMARKS

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$) internal flash-overs may occur. These may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.
Additional information is given in Application Information 258, available on request.
During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

REFERENCE LINE GAUGE (gauge F)

Gauge F. See chapter "Reference line gauges" in front of this book.

Luminance at the centre of the screen as a function of $\mathrm{I}_{\text {total }}$.

Scanned area $518 \mathrm{~mm} \times 390 \mathrm{~mm}$

Cathode heating time to attain $x \%$ of the cathode current at equilibrium condition

Black and white
TV picture tubes

tV PICTURE TUBE

$31 \mathrm{~cm}(12), 110^{\circ}$, rectangular direct vision picture tube with integral protection for black and white TV. The 20 mm neck diameter ensures a low deflection energy. A special feature of this tube is its short cathode heating time.

QUICK REFERENCE DATA.			
Face diagonal		31	cm (12 in)
Deflection angle		110°	
Overall length	max.	233	mm
Neck diameter		20	mm
Heating	11 V	140	mA
Grid no. 2 voltage		250	V
Final accelerator voltage		to 15	kV
Quick heating cathode	with pictu	pical t vill ap	e a legible within 5 s .

SCREEN

Metal-backed phosphor
Luminescence white
Light transmission of face glass
50 \%
Useful diagonal
min. 295 mm
Useful width
min. 257 mm
Useful height
min. 195 mm

HEATING

Indirect by a.c. or d.c.; parallel supply
Heater voltage
Heater current

V_{f}	11	V
I_{f}	140	mA

Limits (Absolute max. rating system) of

For heating time as a function of source impedance see page 11 .
1, This limit also applies during equipment warming up. Use of the tube in a series heater chain is not allowed.

Notes see page 4

Mounting position : any
Net mass \quad : approx. $2,8 \mathrm{~kg}$.
Base : JEDEC E7-91
The socket for the base should not be rigidly mounted, it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWINGS

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone. (Gauge G).
2. The configuration of the external conductive coating may be different but contains the contact area shown in the drawing.
The external conductive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference li ne gauge G.
4. This area must be kept clean.
5. Recessed cavity contact IEC 67-III-2.
6. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
7. The mounting screws in the cabinet must be situated inside a circle of 7 mm diameter drawn around the true geometrical positions, i.e. at the corners of a rectangle of $267,5 \mathrm{~mm} \times 204,4 \mathrm{~mm}$.
8. The metal band must be earthed.

Electrical contact between the metal band and the mounting lugs is guaranteed.
9. Distance from reference point Z to any hardware.

$\begin{aligned} & \text { Sec- } \\ & \text { tion } \end{aligned}$	Nom, distance irom suction 1	Distance from centre (max. values)														
		0°	10°	20°	25°	38^{\prime}	$32^{\circ} 30^{\prime}$	drag	$37^{\circ} 30{ }^{1}$	40°	45°	50°	$60)^{n}$	70°	$81)^{\circ}$	900°
13	59.0	72, 2	72,0	71,7	71, 4	71. 2	71, 1	71.0	71.0	70,9	70.8	70.7	70.6	70.7	70.8	70.8
12	うう	85,9	85,6	84,9	84,4	84, 0	83, 8	63.5	83.3	83,1	82, 7	82,4	81,9	81,6	81.5	81, 5
11	511	99.5	99.4	98,9	98.5	97, 9	97.5	97. 1	96.8	96, 3	95,4	97.4	92.4	90,7	89.5	89, 1
111	45	112,3	112.4	112,2	111,7	110,9	110,4	109.7	109, 1	108.3	106,6	104,7	100, 9	97, 7	95,5	94.7
9	40	121.3	121,3	122,8	122,9	122.4	121.9	121.2	120.5	119.5	117.1	114.3	108. 6	10.3.8	100.8	90. ${ }^{-}$
8	35	127.9	128,9	131,2	132.1	140, h	132, 3	131.7	1.30,9	129,7	126.5	122,7	114.9	108.8	105.0	103.7
7	30	132,6	134,0	137.4	139.3	147, 2	141,2	140.9	140,2	138,8	134.6	129,5	119,7	112.5	108. 2	106. 8
6	25	136.0	1.37.5	141,7	144, 4	151.6	148,3	148,5	147,9	146,5	140,9	134,3	122,9	115.0	110,5	109,0
5	20	1.38, 4	140,0	. $1+4.5$	147,8	154, 6	15.3.2	153, 7	15.3.2	151.7	$14+8$	1.37. 1	124,7	116.5	111.8	110, 3
$+$	15	140,3	141, ${ }^{1}$	146.6	150,2	156,5	156,6	157,4	156,9	155,1	147,1	138,5	125, 4	117.0	112,3	110,8
3	10	141,6	143,2	$1+8.0$	151,8	154,6	158.7	159,5	159.0	157,1	148,5	139.4	126,0	117.6	112,9	111.4
2	5	142.4	14.3,9	$1+8.8$	152,6	157.4	159,5	160.7	160.2	158.2	149.4	140.1	126.6	118,1	113,4	111.9
1	0	142,8	144,4	149.3	153.1	157,9	160.2	161.1	160.6	158,7	$1+9,9$	140,6	127.1	118.5	113,8	112.3

CAPACITANCES

Final accelerator to external conductive coating

$\mathrm{C}_{\mathrm{a}, \mathrm{g}, \mathrm{g}, \mathrm{g}} \mathrm{g} / \mathrm{m}$	$<900 \mathrm{pF}$ $>450 \mathrm{pF}$
$\mathrm{C}_{\mathrm{a}, \mathrm{g}, \mathrm{g}, \mathrm{g} 5 / \mathrm{m}^{\prime}}$	150 pF
C_{k}	3 pF
C_{gl}	7 pF

FOCUSING electrostatic
DEFLECTION magnetic

Diagonal deflection angle	110°
Horizontal deflection angle	99°
Vertical deflection angle	80°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe). Maximum distance between centre of field of this magnet and reference line : 47 mm .

\rightarrow TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Grid no. 1 voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	12 to 15	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to 350	V 1)
$\mathrm{V}_{\mathrm{g} 2}$	250	V

$\mathrm{V}_{\mathrm{GR}} \quad-35$ to -69 V

Cathode drive service
Voltages are specified with respect to grid no. 1
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	12 to 15	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to 350	$\mathrm{~V}^{1}$)
$\mathrm{V}_{\mathrm{g} 2}$	250	V

Cathode voltage for visual extinction of focused raster
$\mathrm{V}_{\mathrm{KR}} \quad 32$ to 58 V

[^17]LIMITING VALUES (Design max. rating system)

Final accelerator voltage
Grid No. 4 voltage
positive
negative
Grid No. 2 voltage
Grid No. 2 to grid No. 1 voltage
Cathode to grid No. 1 voltage
positive
positive peak
negative
negative peak
Cathode-to-heater voltage
positive

CIRCUIT DESIGN VALUES

Grid No. 4 current
positive
negative
Grid No. 2 current
positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
$\begin{array}{llrl} & & \text { max. } & 17 \\ \text { V }, ~ g 3, ~ & \mathrm{kV} \\ \text { min. } & 9 & \mathrm{kV}\end{array}$
$\mathrm{V}_{\mathrm{g} 4} \quad \max .500 \mathrm{~V}$
$-V_{g 4} \quad \max .50 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g} 2}$
$\mathrm{V}_{\mathrm{g} 2} / \mathrm{g} 1 \quad \max .450 \mathrm{~V}$
$\begin{array}{llrl}V_{k / g 1} & \max . & 200 & \mathrm{~V} \\ \mathrm{~V}_{\mathrm{k} / \mathrm{glp}} & \max . & 400 & \mathrm{~V} l_{)} \\ -\mathrm{V}_{\mathrm{k} / \mathrm{g} 1} & \max . & 0 & \mathrm{~V} \\ -\mathrm{V}_{\mathrm{k} / \mathrm{g} 1 \mathrm{p}} & \max . & 2 & \mathrm{~V}\end{array}$
$\mathrm{V}_{\mathrm{k} / \mathrm{f}} \quad \max .200 \mathrm{~V}$

$I_{g 4}$	\max.	25	$\mu \mathrm{~A}$
${ }^{-1} \mathrm{I}_{\mathrm{g} 4}$	\max.	25	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 2}$	\max.	5	$\mu \mathrm{~A}$
${ }^{-} \mathrm{I}_{\mathrm{g} 2}$	\max.	5	$\mu \mathrm{~A}$

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{gl} 1}$	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{gl} 1}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

[^18]

Final accelerator voltage as a function of cathode voltage

Final accelerator voltage as a function of grid no. 1 voltage

Limits of cathode cut-off voltage as a function of grid no. 2 voltage

Cathode heating time to attain $\mathrm{x} \%$ of the cathode current at equilibrium condition

TV PICTURE TUBE

31 cm (12 in), 110°, rectangular direct vision picture tube with integral protection for black and white TV. The 20 mm neck diameter ensures a low deflection energy. A special feature of this tube is its short cathode heating time.

	QUICK REFERENCE DATA		
Face diagonal	31	$\mathrm{~cm}(12 \mathrm{in})$	
Deflection angle	110°		
Overall length	max.	233	mm
Neck diameter	$11 \mathrm{~V}, 140$	mA	
Heating	130	m	
Grid no.2 voltage	12 to 15	kV	
Final accelerator voltage	with a typical tube a		
Quick heating cathode	legible picture will appear		
within 5 s.			

SCREEN

Metal-backed phosphor

Luminescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height
white

	50	$\%$
min.	295	mm
min.	257	mm
min.	195	mm

\%
min. 295 mm
min. 257 mm
min. 195 mm

HEATING

Indirect by a.c. or d. c. ; parallel supply
Heater voltage
Heater current
Limits (Absolute max. rating system) of r.m.s. heater voltage

V_{f}	11	V
I_{f}	140	mA

For heating time as a function of source impedance see page 10 .

1) This limit also applies during equipment warming-up. Use of the tube in a series heaterchain is not allowed.

Mounting position : any
Net mass : approx. $2,8 \mathrm{~kg}$
Base : JEDEC E7-91
The socket for this base should not be mounted rigidly, it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWINGS

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone (Gauge G).
2. The configuration of the external conductive coating may be different, but covers the contact area shown in the drawing. The external conductive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge G.
4. This area must be kept clean.
5. Recessed cavity contact IEC 67-III-2.
6. The displacement of any lug with respect to the plane through the three other lugs is $\max .2 \mathrm{~mm}$.
7. The mounting screws in the cabinet must be situated inside a circle of 7 mm diameter drawn around the true geometrical positions, i.e. at the corners of a rectangle of $267,5 \mathrm{~mm} \times 204,4 \mathrm{~mm}$.
8. Electrical contact between the metal band and the mounting lugs is guaranteed.
9. Distance from reference point Z to any hardware.

$\begin{aligned} & \mathrm{Sec}- \\ & \text { tion } \end{aligned}$	Nom. distance from section 1	Distance from centre (max. values)														
		0°	10°	20°	25°	38^{*}	$32^{\circ} 30^{\prime}$	diag	$37^{\circ} 30^{\prime}$	40°	45°	50°	60°	70°	810°	90°
13	59.6	72, 2	72,0	71,7	71,4	71,2	71,1	71,0	71,0	70,9	70,8	70,7	70,6	70, 7	70.8	70,8
12	55	85,9	85,6	84,9	84, 4	84,0	83, 8	83, 5	83, 3	83, 1	82,7	82,4	81, 9	81, 6	81.5	81.5
11	511	99, 5	99,4	98,9	98,5	97,9	97, 5	97, 1	96, 8	96,3	95, 4	94, 4	92, 4	90, 7	89.5	89.1
10	45	112, 3	112, 4	112, 2	111,7	110,9	110, 4	109, 7	109, 1	108,3	106,6	104, 7	100,9	97, 7	45,5	94,7
9	40	121.3	121,3	122,8	122,9	122.4	121,9	121, 2	120, 5	119,5	117, 1	114,3	108,6	103, 8	100, 8	99.7
8	35	127,9	128,9	131,2	132.1	140, 8	132, 3	131,7	130, 9	129,7	126,5	122,7	114,9	108.8	105, 0	103. 7
7	30	132, 6	134,0	137,4	139, 3	147, 2	141,2	140,9	140, 2	138,8	134,6	129,5	119.7	112,5	108, 2	106, 8
6	25	136,0	137, 5	141,7	144, 4	151, 6	148, 3	148, 5	147,9	146,5	140,9	134,3	122,9	115,0	110, 5	109, 0
5	20	138, 4	140,0	1+4. 5	147, 8	154,6	153,2	153,7	153.2	151,7	144,8	137.1	124.7	116.5	111,8	110,3
4	15	140, 3	141,9	146,6	150, 2	156.5	156,6	157, +	156, 9	155, 1	147, 1	138, 5	125, 4	117,0	112, 3	110,8
3	10	141, 6	143,2	$1+8,0$	151,8	154,6	158,7	159,5	159,0	157, 1	148, 5	1.39, 4	126,0	117,6	112,9	111,4
2	5	142, 4	143,9	148,8	152, 6	157.4	159,5	160, 7	160, 2	158, 2	149, 4	140,	126,6	118, 1	113, 4	111,9
1	0	142,8	144, 4	149, 3	153, 1	157,9	160.2	161, 1	160,6	158,7	149,9	140, 6	127,1	118.5	113, 8	112,3

CAPACITANCES

Final accelerator to external conductive coating
Final accelerator to metal band
Cathode to all
Grid no. 1 to all

$C_{a}, g 3, g 5 / \mathrm{m}<900$	pF	
$\mathrm{C}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}^{\prime}$	150	pF
C_{k}	3	pF
C_{gl}	7	pF

FOCUSING electrostatic
DEFLECTION magnetic
Diagonal deflection angle 110°
Horizontal deflection angle 99°
Vertical deflection angle 80°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe). Maximum distance between centre of field of this magnet and reference line: 47 mm .

TYPICAL OPERATING CONDITIONS

Cathode drive service
Voltages are specified with respect to grid no. 1

Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual extinction
of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	12 to	15	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to	130	(${ }^{1}$)
$\mathrm{V}_{\mathrm{g} 2}$		130	V
V_{KR}	30 to	50	V

${ }^{1}$) Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 and +130 V (e.g. two taps; 0 V and 130 V).
The optimum focusing voltage of individual tubes may be between -100 V and +200 V .

LIMITING VALUES (Design max. rating system)

Final accelerator voltage

Grid no. 4 voltage

> positive
negative
Grid no. 2 voltage
Cathode to grid no. 1 voltage
positive
positive peak
negative
negative peak
Cathode-to-heater voltage positive

CIRCUIT DESIGN VALUES

Grid no. 4 current.
positive
negative
Grid no. 2 current positive negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance

$$
\mathrm{V}_{\mathrm{a}, \mathrm{~g} 3, \mathrm{~g} 5} \begin{array}{lrl}
\text { max. } & 17 & \mathrm{kV} \\
\text { min. } & 9 & \mathrm{kV}
\end{array}
$$

$$
\begin{array}{rlll}
\mathrm{V}_{\mathrm{g} 4} & \text { max. } & 500 & \mathrm{~V} \\
-\mathrm{V}_{\mathrm{g} 4} & \text { max. } & 200 & \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g} 2} & \text { max. } & 200 & \mathrm{~V}
\end{array}
$$

$$
\begin{array}{clrcc}
\mathrm{V}_{\mathrm{k} / \mathrm{gl}} & \max . & 200 & \mathrm{~V} & \\
\mathrm{~V}_{\mathrm{k} / \mathrm{g}} l_{\mathrm{p}} & \max . & 400 & \mathrm{~V} & \left.l_{)}\right) \\
-\mathrm{V}_{\mathrm{k} / \mathrm{gl}} & \max . & 0 & \mathrm{~V} & \\
-\mathrm{V}_{\mathrm{k} / \mathrm{g} l_{\mathrm{p}}} & \max . & 2 & \mathrm{~V} &
\end{array}
$$

$$
\mathrm{V}_{\mathrm{k} / \mathrm{f}} \quad \max . \quad 200 \mathrm{~V}
$$

Final accelerator current as a function of cathode voltage

Limits of cathode cut-off voltage as a function of grid no. 2 voltage

Cathode heating time to attain $x \%$ of the cathode current at equilibrium condition

tV PICTURE TUBE

$34 \mathrm{~cm}(14 \mathrm{in}), 110^{\circ}$, rectangular direct vision picture tube with integral protection for black and white TV. The 20 mm neck diameter ensures a low deflection energy. A special feature of this tube is its short cathode heating time.
The tube is designed for "push through" application and is provided with four metal lugs for mounting into a cabinet.

	QUICK REFERENCE DATA		
Face diagonal		34	$\mathrm{~cm}(14 \mathrm{in})$
Deflection angle	max.	110°	
Overall length	247	mm	
Neck diameter		20	mm
Heating		$11 \mathrm{~V}, 140$	mA
Grid no. 2 voltage	130	V	
Final accelerator voltage		12 to 15	kV
Quick heating cathode	with a typical tube a legible		
	picture will appear within 5 s.		

SCREEN

Metal-backed phosphor
Luminance
Light transmission of face glass
Useful diagonal
Useful width
Useful height
white

approx.	48	$\%$
min.	322,3	mm
min.	270,2	mm
min.	210,7	mm

HEATING

Indirect by a.c. or d.c.
Heater voltage
Heater current
Limits (Absolute max. rating system) of r.m.s. heater voltage measured in any 20 ms

V_{f}		11	V
I_{f}		140	mA
$\mathrm{~V}_{\mathrm{f}}$	max. min.	12,7	V
	9,3	V	

For heating time as a function of source impedance see page 10 .

[^19]

Notes see page 4.

Mounting position : any
Netmass : approx. $3,2 \mathrm{~kg}$
Base :JEDEC E7-91
The socket for this base should not be mounted rigidly it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWINGS

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone (gauge G).
2. The configuration of the external conductive coating may be different, but covers the contact area shown in the drawing.
The external conductive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge G.
4. This area must be kept clean.
5. Recessed cavity contact IEC67-III-2.
6. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
7. The mounting screws in the cabinet must be situated inside a circle of 7 mm drawn around the true geometrical positions i. e. at the corners of a rectangle of $290 \mathrm{~mm} x$ 226 mm .
8. Electrical contact between the metal band and mounting lugs is guaranteed.
9. Distance from reference point Z to any hardware.

MAXIMUM CONE CONTOUR DRAWING

7269327

Sec tion	Nom . distance from section 1	Distance from centre (max. Values)														
		0°	10^{0}	20°	25°	30°	$32^{\circ} 30^{\prime}$	35°	$37^{\circ} 2$	40°	45°	50°	60°	70°	80°	90°
1	0	150,6	152,7	159, 3	164, 4	170, 4	173,4	175, 7	176,5	174,8	165, 3	154,6	138,6	128,6	123,2	121, 4
2	6, 3	150,6	152, 7	159,3	164, 4	170, 4	173,4	175, 7	176,5	174,8	165, 3	154,6	138,6	128,6	123,2	121,4
1	16,3	148, 1	150, 2	156,6	161,6	167,6	170,6	173.0	173,9	172,6	$16.3,7$	153,2	137,3	127,4	121,9	120, 2
4	26, 3	141,6	143,5	149,3	153,6	158,3	160,3	161,8	162,2	161,3	155,5	147,2	132,8	123,5	118,3	116,7
5	36, 3	133, 5	135,2	139,9	142,9	145, 7	145,7	147, 3	147,3	146, 4	142,8	137, 4	126,1	117,7	113,0	111,5
6	46, 3	124, 0	125,3	128,5	130, 1	131,2	1.31,4	131,4	131,1	130,3	127,9	124,6	116.9	110,3	106,2	104,9
7	56,3	112,2	113,0	114,1	114,3	114,2	114,0	112,6	113,2	112,5	110,0	109,1	104,7	100, 7	97, 8	96, 7
8	66,3	95.8	95,6	95,6	94,6	93,9	93,6	93, 2	92,9	92, 4	91,5	90,6	88,9	87,4	86, 3	85,9
9	71, 3	84,5	84, 1	$8.3,3$	82, 8	82,2	81,9	81,7	81, 4	81, 1	80,6	80,1	79, 3	78,8	78,5	78,5
10	76,0)	69,0	69,0	69,0	69,0	69, 0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0.

CAPACITANCES

Final accelerator to external conductive coating

Final accelerator to metal band
Cathode to all
Grid no. 1 to all

$\mathrm{C}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}$	<900 >400	pF
pF		

FOCUSING electrostatic

DEFLECTION magnetic
Diagonal deflection angle 110°
Horizontal deflection angle 102°
Vertical deflection angle 82°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe). Maximum distance between centre of field of this magnet and reference line: 47 mm .

TYPICAL OPERATING CONDITIONS

Cathode drive service
Voltages are specified with respect to grid no. 1.

Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual extinction of focused raster

$V_{a, g} 3, g 5$	12 to 15	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to 130	$\mathrm{~V}^{1}$)
$\mathrm{V}_{\mathrm{g} 2}$	130	V

$\mathrm{V}_{\mathrm{KR}} \quad 30$ to 50 V

1) Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 V and $+130 \mathrm{~V}(\mathrm{e} . \mathrm{g}$. two taps, 0 V and 130 V).
The optimum focus voltage of individual tubes may be between -100 V and +200 V .

LIMITING VALUES (Design max. rating system)

Final accelerator voltage at $\mathrm{I}_{\mathrm{a}, \mathrm{g}}, \mathrm{g} 5=0$
Grid no. 4 voltage,
positive
negative
Grid no. 2 voltage
Cathode to grid no. 1 voltage,
positive
positive peak
negative
negative peak
Cathode-to-heater voltage
positive

CIRCUIT DESIGN VALUES

Grid no. 4 current
positive
negative
Grid no. 2 current
positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5} \begin{array}{lrr}\max . & 17 & \mathrm{kV} \\ \min . & 9 & \mathrm{kV}\end{array}$

Vg4	max. 500	V
$-\mathrm{V}_{\mathrm{g} 4}$	$\max .200$	V
$\mathrm{~V}_{\mathrm{g} 2}$	$\max .200$	V

$\mathrm{Vk} / \mathrm{g} 1 \quad \max .200 \mathrm{~V}$
$\mathrm{V}_{\mathrm{k} / \mathrm{glp}} \max .400 \mathrm{~V}^{1}$)
$-V_{k / g l} \max .0 \quad \mathrm{~V}$
$-V_{k / g l p} \max .2 \mathrm{~V}$
$\mathrm{V}_{\mathrm{k} / \mathrm{f}} \quad \max .200 \mathrm{~V}$

$I_{g 4}$	\max.	25	$\mu \mathrm{~A}$
$-I_{g 4}$.	\max.	25	$\mu \mathrm{~A}$

$I_{g 2} \quad \max \quad 5 \mu \mathrm{~A}$
$-I_{g 2} \quad \max \quad 5 \mu \mathrm{~A}$

[^20]

Final accelerator current as a function of cathode voltage.

Limits of cathode cut-off voltage as a function of grid no. 2 voltage.

Cathode heating time to attain $\mathrm{x} \%$ of the cathode current at equilibrium condition.

tV PICTURE TUBE

$44 \mathrm{~cm}(17 \mathrm{in}), 110^{\circ}$, rectangular direct vision picture tube with integral protection for black-and-white TV.

	QUICK REFERENCE DATA
Face diagonal	44 cm
Deflection angle	110°
Overall length	$284,5 \mathrm{~mm}$
Neck diameter	$28,6 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 300 \mathrm{~mA}$
Grid no.2 voltage	400 V
Final accelerator voltage	20 kV

SCREEN

Metal-backed phosphor
Luminescence white
Light transmission of face glass
48%
Useful diagonal
min. 413 mm
Useful width
min. 346 mm
Useful height
min. 270 mm

HEATING

Indirect by a.c. or d.c.; series or parallel supply
Heater current
Heater voltage

| If $\quad 300 \mathrm{~mA}$ |
| :--- | :--- |
| $\mathrm{~V}_{\mathrm{f}} \quad 6,3 \mathrm{~V}$ |

If the tube is connected in a series heater chain the surge heater voltage must not exceed an r.m.s. value of $9,5 \mathrm{~V}$ when the supply is switched on.

MECHANICAL DATA

Dimensions in mm

Notes see page 5.

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H, IEC-67-1-31a
Net mass : approx. 6 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted: it should have flexible leads and be allowed to move freely.

[^21]
NOTES TO OUTLINE DRAWINGS

1. Small cavity contact IEC-67-III-2.
2. The metalrim-bandmust be earthed. The hole of 3 mm dia in each lug is provided for this purpose.
3. Spherical face-plate.
4. End of guaranteed contour. The maximum contour from reference line towards screen is given by the reference line gauge C ($18,13 \mathrm{~mm}$).
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing.
The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of $7,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of $363,5 \mathrm{~mm} \times 288,5 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. Max. curvatures of the outside rim-band are nominal bulb radius +4 mm .
11. Distance from reference point Z to any hardware.

MAXIMUM CONE CONTOUR DRAWING

Distance from centre (max. values)														
$\mathrm{Sec}-$	Nom. distance from point " Z '	$\begin{aligned} & 0^{0} \\ & \text { Long } \end{aligned}$	10°	20°	30°	$33^{0} 30^{\prime}$	$36^{\circ} 30^{\circ}$ Diagonal	40°	44°	50°	60°	70°	80°	$\begin{aligned} & 90^{\circ} \\ & \text { Short } \end{aligned}$
1	128,0	60,0	60,0	60,0	60, 0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0
2	117, 3	95, 9	95, 2	93, 0	92, 3	92, 1	92, 1	92, 3	92,6	93, 1	93, 8	94,6	94, 9	95, 1
3	107, 3	118,1	117,8	118, 3	118, 3	118,6	119, 2	117,8	117,7	117,2	115,5	113, 3	111,2	109,8
4	97, 3	135,0	136,1	138, 3	139,9	141,0	141,6	141,1	138,5	1.35, 4	130,5	125,6	121,8	120,8
5	87, 3	149,5	151, 1	155, 1	159, 1	161,3	162,0	161,5	157, 5	151,0	142,0	135,8	130,8	129,5
6	77, 3	162,5	164, 0	168,8	176,0	179, 0	179, 5	178,0	173,5	163, 4	150, 8	143, 3	138, 3	136,4
7	67,3	172,5	174, 4	180, 1	190,0	194, 1	196, 3	194,9	186,8	174,5	159, 1	149,3	143,9	141, 7
8	57, 3	179, 7	183, 1	189, 3	201, 1	207, 4	210,9	206, 1	196,0	182, 8	165,5	154, 0	147,9	145,6

CAPACITANCES

Final accelerator to external
conductive coating

	$<$	1300	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}}$	$>$	700	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}^{\prime}}$		200	pF
C_{k}		5	pF
C_{gl}		7	pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle 110°
Horizontal deflection angle 100°
Vertical deflection angle 83°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe).

Maximum distance between centre of field of this magnet and reference line : 57 mm .

TYPICAL OPERATING CONDITIONS

$\underline{\text { Grid drive service }}$
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Grid no. 1 voltage for visual extinction of focused raster

Cathode drive service
Voltages are specified with respect to grid no. 1

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	20	kV
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 4}$	0 to 400	V
Grid no. 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	400	V
Cathode voltage for visual extinction of focused raster	V_{KR}	36 to 66	V

[^22]LIMITING VALUES (Design max. rating system)
F inal accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5=0$

\max.	23	kV
\min.	12	kV

Grid no. 4 voltage,

positive	$\mathrm{V}_{\mathrm{g} 4}$	\max.	1000	V
negative	$-\mathrm{V}_{\mathrm{g} 4}$	\max.	500	V
Grid no.2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	\max.	700	$\mathrm{~V} 2)$
Grid no.2 to grid no. 1 voltage	$\mathrm{V}_{\mathrm{g} 2 / \mathrm{gl}}$	\min.	350	V
max.	850	V		

Grid no. 1 voltage
positive
positive peak
negative
negative peak

$V_{g l}$	\max.	0	V
$V_{g l_{p}}$	\max.	2	V
$-V_{g l}$	\max.	200	V
$-V_{g l_{p}}$	\max.	400	$\mathrm{~V} l_{\text {l }}$

Cathode to heater voltage,
positive
positive peak
negative
positive during equipment warm-up period not exceeding 15 s

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	250	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{fp}}$	\max.	300	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	200	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	\max.	450	$\left.\mathrm{~V}^{3}\right)$

[^23]
CIRCUIT DESIGN VALUES

Grid no. 4 current,
positive
negative
Grid no. 2 current,
positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance

$\mathrm{I}_{\mathrm{g} 4}$	$<$	25	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 4}$	$<$	25	$\mu \mathrm{~A}$

$\mathrm{I}_{\mathrm{g} 2}$	$<$	5	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 2}$	$<$	5	$\mu \mathrm{~A}$

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1,0	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1}$	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g} 1}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

72094069

Final accelerator current as a function of grid no. 1 voltage

Final accelerator current as a function of cathode voltage

$$
\frac{\Delta \mathrm{V}_{\mathrm{GR}}}{\Delta \mathrm{~V}_{\mathrm{a}, \mathrm{~g} 3, g 5}}=0,15 \times 10^{-3}
$$

Limits of grid No. 1 cut-off voltage as a function of grid no. 2 voltage

Limits of cathode cut-off voltage as a function of grid no. 2 voltage

TV PICTURE TUBE

44 cm (17 in), 110°, rectangular direct vision picture tube with integral protection for black and white TV. The 20 mm neck diameter ensures a low deflection energy. A special feature of this tube is its short cathode heating time.
The tube is designed for "push through" application and is provided with four metal lugs for mounting into a cabinet.

	QUICK REFERENCE DATA		
Face diagonal		44	$\mathrm{~cm} \mathrm{(17} \mathrm{in)}$
Deflection angle	110°		
Overall length	max.	288	mm
Neck diameter	20	mm	
Heating	$11 \mathrm{~V}, 140$	mA	
Grid no.2 voltage	130	V	
Final accelerator voltage	12 to 15	kV	
Quick heating cathode	with a typical tube a		
	legible picture will appear		
	within 5 s.		

SCREEN

Metal-backed phosphor
Luminescence
Light transmission of face glass
white

Useful diagonal
approx. 48 \%
Useful width
min. 413 mm
Useful height
min. 346 mm
min. 270 mm

HEATING

Indirect by a.c. or d.c.
Heater voltage
Heater current

V_{f}	11	V
I_{f}	140	mA

Limits (Absolute max. rating system) of r.m.s. heater voltage measured in any 20 ms

$$
\left.\begin{array}{llrll}
& \text { max. } & 12,7 & \mathrm{~V} & 1
\end{array}\right)
$$

For heating time as a function of source impedance see page 10 .

1) This limit also applies during equipment warming-up. Use of the tube in a series heater chain is not allowed.

Mounting position: any
Net mass : approx. 6 kg
Base : JEDEC E7-91
The socket for the base should not be mounted rigidly, it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWING

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone (gauge G).
2. The configuration of the external conductive coating may be different, but covers the contact area shown in the drawing.
The external conductive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge G.
4. This area must be kept clean.
5. Recessed cavity contact IEC-67-III 2.
6. Minimum space to be reserved for mounting lug.
7. The mounting screws in the cabinet must be situated inside a circle of $7,5 \mathrm{~mm}$ drawn around the true geometrical positions i.e. at the corners of a rectangle of $363,5 \mathrm{~mm}$ x $288,5 \mathrm{~mm}$.
8. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
9. The metal rim-band must be earthed. The hole of 3 mm dia in each lug is provided for this purpose. Electrical contact between the metal band and mounting lugs is guaranteed.
10. Max. curvatures of the outside rim-band are: nominal bulb radius +4 mm .
11. Distance from reference point Z to any hardware.

$\begin{aligned} & \mathrm{Sec} \\ & \text { tion } \end{aligned}$	Nom. distance from section 1	Distance from centre (max values)														
		0°	10°	20°	25°	30°	$32^{\circ} 30^{\prime}$	diag.	$37^{\circ} 30^{\prime}$	40°	45°	50°	60°	70°	80°	90°
10	90	73, 8	73,6	73,1	72,9	72,6	72, 5	72, 3	72, 2	72, 1	71,9	71,8	71,7	71,7	71,8	71,9
9	80	104, 7	103.9	102, 1	101.0	99,9	99.4	98,6	98,4	98,0	97, 2	96,5	95,6	95, 2	95, 2	95,3
8	70	123.9	12才,0	123,8	123,5	123,0	122.6	122,0	121,8	121,2	120,1	118,7	116,0	113,5	111,7	111,1
7	60	140, 4	141,3	143,3	144,1	144,5	144,5	144,0	143,8	143, 2	141,2	138,6	132,7	127,3	123,8	122,5
6	50	154,8	156,3	160,3	162,5	164,3	164,9	164,7	164,5	163,7	160,5	156,0	146,1	138,1	133, 2	131,5
5	40	166,9	168,9	174,5	178, 1	181,6	183,1	183, 4	183, 2	182, 1	177,2	170,2	156, 6	146,6	140.8	138,9
4	30	176,8	179,1	185,9	190,9	196,3	198,9	200,0	199,8	198,4	191.2	181,2	164,4	153,0	146.7	144,6
3	20	184,1	186,6	194, 4	200, 4	208,0	212,0	214, 6	214,3	212,6	202,0	189.0	169.6	157, 4	150, 8	148,6
2	10	188,6	191.2	199,3	205,6	213,9	218, 4	221,3	221, 2	219, 2	207. 2	193,1	172.9	160, 4	153,6	151, 4
1	0	190,0	192,6	200. 7	207,1	215,3	219.9	222,7	222,5	220,5	208,6	194,4	174,1	161,5	154, 7	152,5

CAPACITANCES

Final accelerator to external conductive coating
Final accelerator to metal rimband
Cathode to all
Grid no. 1 to all

$\mathrm{C}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}$	$\begin{array}{r} <1300 \\ >700 \end{array}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
	300	pF
C_{k}	3	pF
C_{gl}	7	pF

FOCUSING electrostatic
DEFLECTION magnetic
Diagonal deflection angle 110°
Horizontal deflection angle 980
Vertical deflection angle 790

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}(0$ to 10 Oe$)$. Maximum distance between centre of filed of this magnet and reference line : 47 mm .

TYPICAL OPERATING CONDITIONS

Cathode drive service
Voltages are specified with respect to grid no. 1
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage

$$
\begin{array}{lrl}
\mathrm{V}_{\mathrm{a}, \mathrm{~g} 3, \mathrm{~g} 5} & 12 \text { to } 15 & \mathrm{kV} \\
\mathrm{~V}_{\mathrm{g} 4} & 0 \text { to } 130 & \mathrm{~V} 1) \\
\mathrm{V}_{\mathrm{g} 2} & 130 & \mathrm{~V}
\end{array}
$$

Cathode voltage for visual extinction of focused raster
$\mathrm{V}_{\mathrm{KR}} \quad 30$ to $50 \quad \mathrm{~V}$

[^24]

LIMITING VALUES (Design max. rating system)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}=0$
$\begin{array}{llrl} & & \text { max. } & 17 \\ \mathrm{~V}, \mathrm{gV} 3, \mathrm{~g} 5 & \min . & 9 & \mathrm{kV}\end{array}$
Grid no. 4 voltage
Positive
Negative
Grid no. 2 voltage
Cathode to grid no. 1 voltage,
positive
positive peak
negative
negative peak

$\mathrm{V}_{\mathrm{g} 4}$	\max.	500	V
$-\mathrm{V}_{\mathrm{g} 4}$	\max.	200	V
$\mathrm{~V}_{\mathrm{g} 2 / \mathrm{k}}$	\max.	200	V

Cathode to heater voltage
positive

$$
\mathrm{V}_{\mathrm{k} / \mathrm{f}}
$$

$\max \quad 200$ V

CIRCUIT DESIGN VALUES

Grid no. 4 current
positive
negative
Grid no. 2 current
positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{f} / \mathrm{k}}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1}$	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g} 1}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

1) Maximum pulse duration 22% of a cycle but max. $1,5 \mathrm{~ms}$.

Final accelerator current as a function of cathode voltage.

Limits of cathode cut-off voltage as a function of grid no. 2 voltage.

Cathode heating time to attain $\mathrm{x} \%$ of the cathode current at equilibrium condition.

TV PICTURE TUBE

44 cm (17 in), 110°, rectangular direct vision picture tube with integral protection for black and white TV. A special feature of this tube is its short cathode heating time.

QUICK REFERENCE DATA	
Face diagonal	44 cm
Deflection angle	110°
Overall length	max. $\quad 291 \mathrm{~mm}$
Neck diameter	28,6 mm
Heating	$6,3 \mathrm{~V}, 240 \mathrm{~mA}$
Grid no. 2 voltage	130 V
Final accelerator voltage	20 kV
Quick heating cathode	with a typical tube a legible picture will appear within 5 s .

SCREEN

Metal backed phosphor
Luminescence white

Light transmission of face glass
Useful diagonal
Useful width
Useful height
white

HEATING

Indirect by a.c. or d.c.
Heater voltage
Heater current

V_{f}	$6,3 \mathrm{~V}$	
I_{f}		240 mA
$\mathrm{~V}_{\mathrm{f}}$	max. min.	$\left.7,3 \mathrm{~V}^{1}\right)$
	$5,3 \mathrm{~V}$	

For heating time as a function of source impedance see page 11 .

[^25]
MECHANICAL DATA

Dimensions in mm

$\overline{\text { Notes see page } 5}$

Notes see page 5

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H, IEC 67-1-3la
Net mass : approx. 6 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted: it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWING

1. Small cavity contact IEC 67-III-2.
2. The metal rim-band must be earthed. The hole of 3 mm dia in each lug is provided for this purpose.
3. Spherical face-plate.
4. End of guaranteed contour. The maximum contour from reference line towards screen is given by the reference line gauge $\mathrm{C}(18,13 \mathrm{~mm})$.
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing. The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of $7,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of $363,5 \mathrm{~mm} \times 288,5 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. Max. curvatures of the outside rim-band are nominal bulb radius +4 mm .
11. Distance from reference point Z to any hardware.

A44-520W

MAXIMUM CONE CONTOUR DRAWING

Distance from centre (max. values)														
Sec- tion	Nom. distance from point " Z"	$\begin{gathered} 0^{\circ} \\ \text { Long } \end{gathered}$	10°	20°	30°	$33^{\circ} 30^{\prime}$	$\begin{aligned} & 36^{\circ} 30^{\prime} \\ & \text { Diagonal } \end{aligned}$	40°	44°	50°	60°	70°	80°	$\begin{gathered} 90^{\circ} \\ \text { Short } \end{gathered}$
1	128,0	60,0	60,0	60,0	60,0	60, 0	60, 0	60, 0	60,0	60, 0	60,0	60, 0	60,0	60,0
2	117,3	95, 9	95, 2	93,0	92, 3	92, 1	92,1	92, 3	92,6	9,3, 1	93,8	94, 6	94, 9	95,1
3	107,3	118, 1	117,8	118, 3	118,3	118,6	119, 2	117,8	117, 7	117,2	115,5	113,3	111,2	109,8
4	97, 3	135,0	136, 1	138, 3	139,9	141,0	141,6	141, 1	138,5	135,4	130,5	125,6	121,8	120,8
5	87, 3	149, 5	151, 1	155, 1	159, 1	161,3	162,0	161,5	157,5	151,0	142,0	135,8	130,8	129,5
6	-7, 3	162,5	164,0	168, 8	176,0	179,0	179,5	178,0	173, 5	163, 4	150,8	143,3	138, 3	130, 4
7	67,3	172, 5	174, 4	180, 1	190,0	194, 1	196, 3	194,9	186,8	174, 5	159,1	149, 3	143,9	141, 7
8	57, 3	179, 7	183, 1	189, 3	201, 1	207, 4	210,9	206, 1	196, 0	182,8	165,5	154,0	147,9	145.6

CAPACITANCES

Final accelerator to external conductive coating

Final accelerator to metal band
Cathode to all
Grid no. 1 to all

$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}}$	$<$	1300	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}^{\prime}}$		200	pF
C_{k}		pF	
$\mathrm{C}_{\mathrm{g} 1}$		3	pF
	7	pF	

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle 110°
Horizontal deflection angle 100°
Vertical deflection angle 83°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}(0$ to 10 Oe$)$. Maximum distance between centre of field of this magnet and reference line : 57 mm .

TYPICAL OPERATING CONDITIONS

Cathode drive service
Voltages are specified with respect to grid no. 1
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual extinction
of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	20	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to 130	V
$\left.\mathrm{l}_{\text {}}\right)$		
$\mathrm{V}_{\mathrm{g} 2}$	130	V
$\mathrm{~V}_{\mathrm{KR}}$	42 to 62	V

[^26]LIMITING VALUES (Design max. rating system)
Final accelerator voltage at $I_{a}, g 3, g 5=0 \quad V_{a, g}, g 5 \quad \begin{array}{ccc}\max & 23 & \mathrm{kV} \\ \mathrm{min} . & 12 & \mathrm{kV}\end{array}$
Gridno. 4 voltage,

```
positive
```

negative
Grid no. 2 voltage
Cathode to grid no. 1 voltage,
positive
positive peak
negative
negative peak
Cathode-to-heater voltage

CIRCUIT DESIGN VALUES

Grid no. 4 current,

```
positive
```

negative
Grid no. 2 current.

> positive
negative

$\mathrm{I}_{\mathrm{g} 2}$	\max	5	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 2}$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	max.	1,0	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	max.	0,1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1}$	max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g} 1}(50 \mathrm{~Hz})$	max.	0,5	$\mathrm{M} \Omega$

[^27]

Final accelerator current as a function of cathode voltage
Cathode drive

$$
\mathrm{V}_{\mathrm{a},}, \mathrm{~g}_{3}, \mathrm{~g}_{5}=20 \mathrm{kV}
$$

Limits of cathode cut-off voltage as a function of grid no. 2 voltage

Cathode heating time to attain $\mathrm{x} \%$ of the cathode current at equilibrium conditions

TV PICTURE TUBE

$50 \mathrm{~cm}(20 \mathrm{in}), 110^{\circ}$, rectangular direct vision picture tube with integral protection for black-and-white TV.

QUICK REFERENCE DATA	
Face diagonal	$50 \mathrm{~cm} \mathrm{(20} \mathrm{in)}$
Deflection angle	110°
Overall length	$312,5 \mathrm{~mm}$
Neck diameter	$28,6 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 300 \mathrm{~mA}$
Grid no. 2 voltage	400 V
Final accelerator voltage	20 kV

SCREEN

Metal-backed phosphor
Luminescence white
Light transmission of face glass
Useful diagonal

approx.	45	$\%$
min.	473	mm
min.	394	mm
min.	308	mm

HEATING

Indirect by a.c. or d.c.; series or parallel supply
Heater current
Heater voltage

I_{f}	300	mA
$\mathrm{~V}_{\mathrm{f}}$	6,3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed an r.m.s. value of $9,5 \mathrm{~V}$ when the supply is switched on.

Notes see page 5

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H, IEC67-1-3la
Net mass $\quad:$ approx. $8,5 \mathrm{~kg}$
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .

The socket for the base should not be rigidly mounted: it should have flexible leads and be allowed to move freely.

[^28]
NOTES TO OUTLINE DRAWINGS

1. Small cavity contact IEC67-III-2.
2. The metal rim-band must be earthed. The holes of 3 mm dia in each lug are provided for this purpose.
3. Spherical face-plate.
4. End of guaranteed contour. The maximum neck-and-cone contour is given by the reference line gauge $\mathrm{C}(18,13 \mathrm{~mm})$.
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing.
The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of 8 mm diameter drawn around the true geometrical position i.e. at the corners of a rectangle of $414 \mathrm{~mm} \times 331 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. Max. curvatures of the outside rim-band are: nominal bulb radius +4 mm .
11. Distance from reference point Z to any hardware.

MAXIMUM CONE CONTOUR DRAWING

Distance from centre (max, values)															
Sec- tion	Nom distance from point " Z "	$\begin{gathered} 0^{\circ} \\ \text { Long } \end{gathered}$	10°	20°	25°	30°	32030	$\begin{gathered} 36^{\circ} 30^{\prime} \\ \text { Diagonal } \end{gathered}$	40°	45°	50°	60°	70°	80°	90° Short
1	157, 2	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0
2	147, 2	109, 2	107,8	107, 1	106,4	106, 0	105,9	105,5	105, 0	104, 5	103,9	102,8	102,6	102, 8	103, 4
3	137,2	136,7	134, 5	133, 7	133,0	132,3	131,8	130,7	129, 3	127, 5	125, 3	121,9	120, 7	120,2	120,2
4	127, 2	157, 2	156, 5	155, 7	154,8	153,8	153,0	151,5	150, 0	147, 5	144, 7	138, 7	134,9	133,4	132,5
5	117,2	174,2	174,0	174, 4	174, 3	173,4	172,8	171,0	169,3	165, 7	160,8	152,0	146, 5	143, 7	142, 3
6	107,2	185, 8	186, 3	188, 4	190,0	191,2	191,2	189,5	186, 7	181, 7	174, 7	163,2	156, 0	151,7	150, 4
7	97,2	194, 5	195, 7	202,2	203.8	206,9	207,3	206, 4	203, 5	196, 4	187, 4	173,0	163,5	158,6	156,9
8	87, 2	201, 7	203, 8	210, 2	215,4	220,6	222,1	222,2	218, 8	210, 5	198, 8	181.2	170,3	164, 7	162,7
9	77, 2	208, 2	210,6	218, 5	224,8	231, 4	234,8	236, 5	233,5	222,2	208, 5	188,5	176,6	169,9	167,9
10	67,2	213, 1	215,9	225,2	231,9	239,8	244,3	248, 5	244, 8	230, 3	216,0	194, 7	181,6	174,5	172,0
11	57,2	215,6	219,0	228,2	235, 4	244,5	249,6	253, 7	250,2	235, 7	220,5	198,6	184, 8	177, 2	174,7
12	49,3	217,0	219,8	229,3	236,6	246,0	251.2	254, 5	251, 7	237, 2	222,0	199,6	185, 6	177, 8	175, 7

CAPACITANCES

Final accelerator to external conductive coating

$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g} 5 / \mathrm{m}$	1300 pF
$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}^{\prime}$	850 pF
C_{k}	300 pF
C_{1}	5 pF
	7 pF

FOCUSING electroststic
DEFLECTION magnetic
Diagonal

$$
110^{\circ}
$$

Horizontal deflection angle 98°
Vertical deflection angle
81°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
$\left.\begin{array}{lrl}\mathrm{V}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g}_{5} & 20 & \mathrm{kV} \\ \mathrm{V}_{\mathrm{g} 4} & 0 \text { to } 400 & \mathrm{~V} \\ \mathrm{l}\end{array}\right)$

Grid no. 1 voltage for visual extinction of focused raster
$\mathrm{V}_{\mathrm{GR}} \quad-40$ to -77 V

Cathode drive service

Voltages are specifiec with respect to grid no. 1
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g}}, \mathrm{g} 5$	20	kV
V_{4}	0 to 400	$\mathrm{~V}^{\mathrm{l}}$)
$\mathrm{V}_{\mathrm{g} 2}$	400	V
$\mathrm{~V}_{\mathrm{KR}}$	36 to 66	V

[^29]LIMITING VALUES (Design max. rating system)

Final accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5}=0$	$\mathrm{V}_{\mathrm{a}, \mathrm{g}, \mathrm{g}, \mathrm{g}}$	\max. min.	$\begin{aligned} & 23 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$
Grid no. 4 voltage positive	$\mathrm{V}_{\mathrm{g} 4}$	max.	1000	V
negative	$-\mathrm{V}_{\mathrm{g}}$	max.	500	V
Grid no. 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	max. \min.	$\begin{aligned} & 700 \\ & 350 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Grid no. 2 to grid no. 1 voltage	$\mathrm{V}_{\mathrm{g} 2} / \mathrm{gl}$	max.	850	V
Grid no. 1 voltage, positive	$\mathrm{V}_{\mathrm{g} 1}$	max.	0	V
positive peak	$\mathrm{Vg1p}$	max.	2	V
negative	$-\mathrm{V}_{\mathrm{g}}$	max.	200	V
negative peak	$-\mathrm{Vglp}_{1}$	max.	400	$\mathrm{V}^{\text {l }}$)
Cathode-to heater voltage positive	$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	max.	250	V
positive peak	$\mathrm{V}_{\mathrm{k} / \mathrm{f}} \mathrm{p}$	max.	300	V
negative	$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	max.	200	V
positive during equipment warm-up period not exceeding 15 s	$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	max.	450	V^{3})

${ }^{1}$) Maximum pulse duration 22% of a cycle but maximum $1,5 \mathrm{~ms}$.
${ }^{2}$) At $V_{g 1 / k}=0 \mathrm{~V}$.
3) Between 15 s and 45 s after switching on a decrease in k / f voltage from 450 V to 250 V , linearly proportional with time, is permissible.

CIRCUIT DESIGN VALUES

Grid no. 4 current positive
negative
Grid no. 2 current positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1,0	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1}$	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g} 1}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

Final accelerator current as a function of grid no. 1 voltage

Final accelerator current as a function of cathode voltage

Limits of grid no. 1 cut-off voltage as a function of grid no. 2 voltage

Limits of cathode cut-off voltage as a function of grid no. 2 voltage
-

TV PICTURE TUBE

$50 \mathrm{~cm}(20 \mathrm{in}), 110^{\circ}$, rectangular direct vision picture tube with integral protection for black and white TV. A special feature of this tube is its short cathode heating time.

	QUICK REFERENCE DATA
Face diagonal	50 cm
Deflection angle	110^{0}
Overall length	319 mm
Neck diameter	$28,6 \mathrm{~mm}$
Heating	max
Grid no.2 voltage	with a typical tube a
Final accelerator voltage	legible picture will appear
Quick heating cathode	within 5 s.

SCREEN

Metal backed phosphor

Luminescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height
white
approx. $\quad 45 \%$
min. $\quad 473 \mathrm{~mm}$
min. $\quad 394 \mathrm{~mm}$
min. $\quad 308 \mathrm{~mm}$

HEATING

Indirect by a.c. or d.c.
Heater voltage
Heater current
Limits (Absolute max. rating system) of
r.m.s. heater voltage measured in any 20 ms

$\mathrm{V}_{\mathbf{f}}$	$6,3 \mathrm{~V}$	
I_{f}		240 mA
		$\left.7,3 \mathrm{~V} \mathrm{l}^{1}\right)$
V_{f}	max. min.	$5,3 \mathrm{~V}$

For heating time as a function of source impedance see page 11 .

1) This limit also applies during equipment warming up. Use of the tube in a series heater chain it not allowed.

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H, IEC 67-1-3la
Net mass \quad : approx. $8,5 \mathrm{~kg}$
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .

NOTES TO OUTLINE DRAWINGS

1. Small cavity contact IEC 67-III-2.
2. The metal rim-band must be earthed. The holes of 3 mm dia in each lug are provided for this purpose.
3. Spherical face plate.
4. End of guaranteed contour. The maximum neck-and-cone contour is given by the reference line gauge $C(18,13 \mathrm{~mm})$.
5. The configuration of the external conductive coating may be different but contains the the contact area as shown in the drawing. The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of 8 mm diameter drawn around the true geometrical position i.e. at the corners of a rectangle of $414 \mathrm{~mm} \times 331 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. Max. curvatures of the outside rim-band are: nominal bulb radius +4 mm .
11. Distance from reference point Z to any hardware.

MAXIMUM CONE CONTOUR DRAWING

450-120W A50-520W

Distance from centre (max, values)															
$\begin{aligned} & \mathrm{Sec}- \\ & \text { tion } \end{aligned}$	Nom distance from point " Z "	$\begin{gathered} 0^{\circ} \\ \text { Long } \end{gathered}$	10°	20°	25°	30°	32030^{\prime}	$\begin{gathered} 36^{\circ} 30^{\prime} \\ \text { Diagonal } \end{gathered}$	40°	450	500	600	70°	800	$\begin{aligned} & 900 \\ & \text { Short } \end{aligned}$
1	157,2	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0
2	147.2	109, 2	107,8	107, 1	106, 4	106,0	105,9	105,5	105,0	104,5	103,9	102,8	102,6	102,8	103,4
3	137.2	136, 7	134,5	133,7	133,0	132,3	131,8	130,7	129,3	127,5	125,3	121,9	120,7	120,2	120,2
4	127,2	157,2	156, 5	155,7	154,8	153,8	153,0	151,5	150.0	147, 5	144,7	138,7	134,9	133,4	132,5
5	117,2	174, 2	174,0	174,4	174,3	173,4	172,8	171,0	169,3	165, 7	160, 8	152,0	146. 5	143,7	142,3
6	107, 2	185, 8	186,3	188, 4	190,0	191,2	191,2	189,5	186,7	181,7	174,7	163,2	156.0	151,7	150,4
7	97,2	194,5	195.7	202,2	203,8	206,9	207,3	206, 4	203,5	196,4	187,4	173,0	163,5	158,6	156,9
8	87,2	201, 7	203,8	210,2	215,4	220,6	222,1	222,2	218,8	210,5	198,8	181,2	170,3	164,7	162, 7
9	77, 2	208,2	210,6	218,5	224,8	231, 4	234,8	236,5	233,5	222,2	208,5	188,5	176,6	169,9	167,9
10	67,2	213,1	215,9	225,2	231,9	239,8	244.3	248,5	244, 8	230,3	216,0	194,7	181,6	174,5	172,0
11	57,2	215,6	219,0	228,2	235,4	244,5	249,6	253, 7	250, 2	235,7	220, 5	198,6	184,8	177.2	174,7
12	49,3	217,0	219,8	229,3	236,6	246,0	251, 2	254, 5	251, 7	237,2	222,0	199,6	185,6	177,8	175, 7

CAPACITANCES

$\left.\begin{array}{llrl}\text { Final accelerator to external conductive coating } & \mathrm{C}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m} & <\begin{array}{r}1300 \\ 850\end{array} & \mathrm{pF} \\ \mathrm{pF}\end{array}\right)$

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal 110°

Horizontal deflection angle 98°
Vertical deflection angle 81°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}(0$ to 10 Oe$)$. Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Cathode drive service
Voltages are specified with respect to grid no. 1

Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual
extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	20	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to 130	$\left.\mathrm{~V}^{1}\right)$
$\mathrm{V}_{\mathrm{g} 2}$	130	V

$V_{K R} \quad 42$ to 62 V

[^30]LIMITING VALUES (Design max. rating system)
$\left.\begin{array}{lllrl}\text { Final accelerator voltage at } \mathrm{I}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5=0 & \mathrm{~V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5} & \begin{array}{c}\max . \\ \min .\end{array} & \begin{array}{c}23 \\ 12\end{array} & \mathrm{kV} \\ \mathrm{kV}\end{array}\right)$

CIRCUIT DESIGN VALUES

Grid no. 4 current, positive
negative
Grid no. 2 current,
positive
negative

$\mathrm{I}_{\mathrm{g} 4}$	max.	25
$-\mathrm{I} 44$	max.	25
$\mathrm{I}_{\mathrm{g} 2}$	max.	5
$-\mathrm{Ig} 2$	max.	5

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater	$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1,0	$\mathrm{M} \Omega$
Impedance between cathode and heater	$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
Grid no. 1 circuit resistance	$\mathrm{R}_{\mathrm{g} 1}$	\max.	1,5	$\mathrm{M} \Omega$
Grid no. 1 impedance	$\mathrm{Z}_{\mathrm{gl} 1}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

[^31]

Final accelerator current as a function of cathode voltage
Cathode drive

$$
\mathrm{v}_{\mathrm{a}, \mathrm{~g} 3, \mathrm{~g} 5}=20 \mathrm{kV}
$$

Limits of cathode cut-off voltage as a function of grid no. 2 voltage

Cathode heating time to attain $\mathrm{x} \%$ of the cathode current at equilibrium conditions

TV PICTURE TUBE

$61 \mathrm{~cm}(24 \mathrm{in}), 110^{\circ}$, rectangular direct vision picture tube with integral protection for black and white TV.

	QUICK REFERENCE DATA	
Face diagonal		61
Deflection angle	110°	
Overall length	max.	370
Neck diameter	28,6	mm
Heating	$6,3 \mathrm{~V}, 300$	mA
Grid no.2 voltage	400	V
Final accelerator voltage	20	kV

SCREEN

Metal backed phosphor
Luminescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height
white
approx. 42%
min. 577,5 mm
min. 481 mm
min. 375 mm

HEATING

Indirect by a.c. or d.c.; series or parallel supply
Heater current
Heater voltage

If	300	mA
$\mathrm{~V}_{\mathrm{f}}$	6,3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed an r.m.s. value of $9,5 \mathrm{~V}$ when the supply is switched on.

MECHANICAL DATA

Dimensions in mm

Notes see page 5.

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H, IEC-67-I-31a
Net mass : approx. $13,5 \mathrm{~kg}$.
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm ,
The socket for the base should not be rigidly mounted: it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWINGS

1. Small cavity contact I E C -67-III-2.
2. The metal rim-band must be earthed. The holes of 3 mm dia in each lug are provided for this purpose.
3. Spherical face plate.
4. End of guaranteed contour. The maximum contour from reference line towards screen is given by the reference line gauge C ($18,13 \mathrm{~mm}$).
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing. The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of 8 mm diameter drawn around the true geometrical position; i.e. at the corners of a rectangle of $496 \times 392 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. The max. outer contour of the tube with the rim-band is determined by adding 5 mm to the nominal bulb dimensions.
11. Distance from reference point Z to any hardware.

MAXIMUM CONE CONTOUR DRAWING

Section	Nom. distance from section 1	Distance from centre (max. values)														
		00	10°	20°	25°	30°	$32^{\circ} 30$	diag.	$37^{\circ} 30^{\prime}$	40°	45°	50°	60°	70°	80°	90°
1	130	72,9	72, 4	71,6	71, 1	70, 7	70,5	70,3	70, 3	70,2	70, 1	70,0	70,2	70, 8	71, 5	71,8
2	120	104, 4	102, 6	99, 4	97, 8	96, 5	96, 0	95, 2	95, 1	94,7	94, 2	94, 0	94,5	96,0	98, 0	99,3
3	110	134, 3	131,5	126, 5	124, 2	122, 1	121, 2	119,9	119,6	119,0	118,0	117,4	117, 4	118, 7	120, 7	122,0
4	100	160,4	157, 1	151, 1	148, 1	145, 3	144, 1	142, 2	141, 8	140, 8	139, 1	137,9	136,7	136,9	137,9	138,7
5	90	178, 7	176,9	172,9	170, 1	167, 5	166, 1	164, 0	163, 5	162, 3	159,9	157, 8	154, 3	151,9	150,7	150, 3
6	80	193, 3	193, 0	191,4	189,9	187, 8	186, 6	184,4	183, 4	182, 4	179,2	175, 9	169,6	164, 4	161,0	159, 8
7	70	205, 7	206, 5	207, 6	207, 5	206, 4	205, 5	203, 4	202, 8	201,1	196,9	192, 2	182, 7	174,8	169, 7	168,0
8	60	216,8	212, 5	222, 1	223, 5	223,8	223, 4	221, 5	220,9	218,9	213,6	207, 2	194,3	183,9	177,6	175, 4
9	50	226,9	229, 3	235,0	238, 1	240,0	240, 3	238,9	238, 2	235,9	229,0	220, 7	204, 4	192, 1	184, 7	182, 3
10	40	236,0	238, 7	246, 3	250, 9	254,9	256, 1	255, 4	254, 7	252, 4	243, 2	232, 7	213, 3	199, 3	191, 2	188,6
11	30	243, 7	246, 8	255,9	262,0	268,1	270,6	271,0	270, 3	267, 4	256,0	243,1	220,8	205, 7	197, 1	194, 3
12	20	250, 0	253, 4	263, 5	270,9	279, 3	283, 5	285, 5	284, 8	281, 6	267, 2	251,8	227, 2	211,1	202, 2	199, 4
13	10	255, 0	258, 5	269, 3	277, 7	288, 1	293,9	298,0	297, 6	294, 1	276, 2	258, 5	232, 1	215, 6	206,5	203, 6
14	0	258,5	262,0	273,1	281,9	293, 2	300,0	305, 4	305, 1	301, 5	281, 6	262, 7	235, 6	218, 8	209,6	206, 6

CAPACITANCES

Final accelerator to external conductive coating

Final accelerator to metal band
Cathode to all
Grid no. 1 to all

| $\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}}$ | $<2500 \mathrm{pF}$ |
| :--- | ---: | ---: |
| $\mathrm{Ca}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}^{\prime}$ | 1500 pF |
| C | 400 pF |
| C_{k} | 5 pF |
| C_{gl} | 7 pF |

FOCUSING electrostatic
DEFLECTION magnetic

Diagonal deflection angle	110°
Horizontal deflection angle	98°
Vertical deflection angle	81°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tupe axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}(0$ to 10 Oe$)$. Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	20 kV
Focusing electrode voltage	V_{4}	0 to $400 \mathrm{~V}^{1)}$
Grid no. 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	400 V
Grid no. 1 voltage for visual exinction of focused raster	V_{GR}	-40 to -77 V

Cathode drive service
Voltages are specified with respect to grid no. 1
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	20 kV
V 4	0 to
$\mathrm{V} 400 \mathrm{~V}^{1)}$	
V 2	400 V

Cathode voltage for visual extinction of focused raster
$V_{K R} \quad 36$ to 66 V

1) Individual tubes will have optimum focus within this range. In general an accept-
able picture will be obtained with a fixed focus voltage.

LIMITING VALUES (Design max. rating system)
Final accelerator voltage at Ia, $\mathrm{g} 3, \mathrm{~g} 5=0$
Grid no. 4 voltage,
positive
negative
Grid no. 2 voltage
Grid no. 2 to grid no. 1 voltage
Grid no. 1 voltage
positive
positive peak
negative
negative peak
Cathode_ta_heater voltage,
positive
positive peak
negative
positive during equipment warm-up period not exceeding 15 s

Va, g3, g5

Vg4 max. 1000 V
-Vg4 max. 500 V
Vg2
Vg2/g1 max. 850 V

Vgl	max.	0	V
Vglp	max.	2	V
- Vgl	max.	200	V
- Vglp	max.	400	V

Vk / f	max.	250	V
$\mathrm{Vk} / \mathrm{fp}$	max.	300	V
$-\mathrm{Vk} / \mathrm{f}$	\max.	200	V
Vk / f	max.	450	$\mathrm{~V} 3)$

1) Maximum pulse duration 22% of a cycle but maximum $1,5 \mathrm{~ms}$.
2) At $V g 1 / k=0 V$.
3) Between 15 s and 45 s after switching on a decrease in k / f voltage from 450 V to 250 V , linearly proportional with time, is permissible.

A61-120W

CIRCUIT DESIGN VALUES

Grid no. 4 current,

positive	$\operatorname{Ig} 4$	\max.	25	$\mu \mathrm{~A}$
negative	$-\operatorname{Ig} 4$	\max.	25	$\mu \mathrm{~A}$
rid no.2 current				
positive	$\operatorname{Ig} 2$	\max.	5	$\mu \mathrm{~A}$
negative	$-\operatorname{Ig} 2$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance

Rk / f	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Zk} / \mathrm{f}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
Rg 1	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Zgl}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

Final accelerator current as a function of grid no. 1 voltage.

Final accelerator current as a function of cathode voltage.

Limits of grid no. 1 cut-off voltage as a function of grid no. 2 voltage.

Limits of cathode cut-off voltage as a function of grid no. 2 voltage.

TV PICTURE TUBE

$61 \mathrm{~cm}(24 \mathrm{in}), 110^{\circ}$, rectangular direct vision picture tube with integral protection for black and white TV. A special feature of this tube is its short cathode heating time.

QUICK REFERENCE DATA	
Face diagonal	61 cm
Deflection angle	110°
Overall length	max. $\quad 370 \mathrm{~mm}$
Neck diameter	$28,6 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 240 \mathrm{~mA}$
Grid no. 2 voltage	130 V
Final accelerator voltage	20 kV
Quick heating cathode	with a typical tube a legible picture will appear within 5 s .

SCREEN

Metal backed phosphor

Luminescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height
white

HEATING

Indirect by a.c. or d.c.

Heater voltage	V_{f}	$6,3 \mathrm{~V}$	
Heater current	I_{f}		240 mA
Limits (Absolute max. rating system) of		\max.	$7,3 \mathrm{~V}^{\mathrm{l}}$)
r. $\mathrm{m} . \mathrm{s}$. heater voltage measured in any 20 ms	$\mathrm{~V}_{\mathrm{f}}$	\min.	$5,3 \mathrm{~V}$

For heating time as a function of source impedance see page 11 .

For notes see page 5

Mounting position: any
Base
: neo eightar 7 pin JEDEC B7-208, B8H, IEC-67-I-31a
Net mass $\quad:$ approx. $13,5 \mathrm{~kg}$
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted: it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWINGS

1. Small cavity contact IEC 67-III-2.
2. The metal rim-band must be earthed. The holes of 3 mm dia in each lug are provided for this purpose.
3. Spherical face plate.
4. End of guaranteed contour. The maximum contour from reference line towards screen is given by the reference line gauge $C(18,13 \mathrm{~mm})$.
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing. The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of 8 mm diameter drawn around the true geometrical position; i.e. at the corners of a rectangle of $496 \times 392 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. The max. outer contour of the tube with the rim-band is determined by adding 5 mm to the nominal bulb dimensions.
11. Distance from reference point Z to any hardware.

Section	Nom. distance from section 1	Distance from centre (max. values)														
		00	10°	20°	25°	30°	$32^{\circ} 30$ '	diag.	$37^{\circ} 30^{\prime}$	40°	45°	50°	60°	70°	80°	90°
1	130	72,9	72, 4	71,6	71,1	70, 7	70.5	70, 3	70, 3	70, 2	70, 1	70,0	70.2	70, 8	71,5	71,8
2	120	104, 4	102, 6	99, 4	97, 8	96, 5	96,0	95, 2	95, 1	94, 7	94, 2	94, 0	94, 5	96, 0	98, 0	99, 3
3	110	134, 3	131,5	126,5	124, 2	122,1	121, 2	119,9	119,6	119,0	118,0	117, 4	117, 4	118,7	120, 7	122,0
4	100	160, 4	157, 1	151, 1	148, 1	145, 3	144, 1	142, 2	141,8	140,8	139, 1	137, 9	136,7	136, 9	137,9	138,7
5	90	178, 7	176,9	172,9	170, 1	167, 5	166, 1	164, 0	163, 5	162, 3	159, 9	157, 8	154, 3	151,9	150, 7	150, 3
6	80	193, 3	193, 0	191,4	189,9	187, 8	186, 6	184, 4	183, 4	182, 4	179, 2	175, 9	169,6	164, 4	161,0	159,8
7	70	205, 7	206,5	207,6	207, 5	206, 4	205, 5	203, 4	202, 8	201, 1	196,9	192, 2	182, 7	174,8	169, 7	168,0
8	60	216,8	212,5	222, 1	223, 5	223, 8	223, 4	221, 5	220,9	218,9	213, 6	207, 2	194, 3	183, 9	177,6	175, 4
9	50	226, 9	229, 3	235, 0	238, 1	240,0	240, 3	238, 9	238, 2	235, 9	229, 0	220, 7	204, 4	192, 1	184, 7	182, 3
10	40	236,0	238,7	246, 3	250, 9	254,9	256, 1	255, 4	254, 7	252, 4	243, 2	232, 7	213, 3	199, 3	191, 2	188, 6
11	30	243, 7	246, 8	255, 9	262, 0	268, 1	270, 6	271,0	270, 3	267, 4	256, 0	243, 1	220.8	205, 7	197, 1	194, 3
12	20	250, 0	253, 4	263, 5	270,9	279, 3	283, 5	285, 5	284, 8	281, 6	267, 2	251, 8	227, 2	211, 1	202, 2	199,4
13	10	255, 0	258, 5	269, 3	277, 7	288, 1	293, 9	298, 0	297,6	294, 1	276, 2	258, 5	232, 1	215, 6	206,5	203, 6
14	0	258, 5	262,0	273,1	281,9	293, 2	300, 0	305, 4	305, 1	301, 5	281, 6	262, 7	235, 6	218,8	209,6	206,6

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal band
Cathode to all
Grid no. 1 to all

| $\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}$ | $<2500 \mathrm{pF}$ |
| :--- | ---: | ---: |
| $\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}^{\prime}$ | 350 pF |
| C_{k} | 3 pF |
| $\mathrm{C}_{\mathrm{g} 1}$ | 3 pF |
| | 7 pF |

FOCUSING electrostatic
DEFLECTION magnetic

Diagonal deflection angle	110°
Horizontal deflection angle	98°
Vertical deflection angle	81°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Cathode drive service
Voltages are specified with respect to grid no. 1

Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual extinction of focused raster
$\left.\begin{array}{lrl}\mathrm{V}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g} 5 & 20 & \mathrm{kV} \\ \mathrm{V}_{4} & 0 \text { to } 130 & \mathrm{~V} \\ \\ \mathrm{l}_{4}\end{array}\right)$
$\mathrm{V}_{\mathrm{KR}} \quad 42$ to 62 V

[^32]LIMITING VALUES (Design max. rating system)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5=0 \quad \mathrm{~V}, \mathrm{~g} 3, \mathrm{~g} 5 \quad \begin{aligned} & \max .\end{aligned} \begin{array}{cc}23 & \mathrm{kV} \\ \mathrm{min} . & 12\end{array}$
Grid no. 4 voltage,
positive
negative
Grid no. 2 voltage

$\mathrm{V}_{\mathrm{g} 4}$	max.	1000	V
$-\mathrm{V}_{\mathrm{g} 4}$	\max.	500	V
	max.	200	V
$\mathrm{~V}_{\mathrm{g} 2}$	min.	80	V

Cathode to grid no. 1 voltage
positive
positive peak
negative
negative peak
Cathode to heater voltage

$\mathrm{V}_{\mathrm{k} / \mathrm{g}}$	\max.	200	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{g} 1_{\mathrm{p}}}$	\max.	400	$\left.\mathrm{~V}{ }^{2}\right)$
$-\mathrm{V}_{\mathrm{k} / \mathrm{g} 1}$	\max.	0	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{g} 1_{\mathrm{p}}}$	\max.	2	V
$\mathrm{~V}_{\mathrm{kf}}$	\max.	200	V

CIRCUIT DESIGN VALUES

Grid no. 4 current positive
negative
Grid no. 2 current positive
negative

$I_{g 4}$	\max.	25	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 4}$	\max.	25	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 2}$	\max.	5	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 2}$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1}$	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g} 1}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

[^33]

Final accelerator current as a function of cathode voltage.
Cathode drive $\quad \mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}=20 \mathrm{kV}$

Limits of cathode cut-off voltage as a function of grid no. 2 voltage.

Cathode heating time to attain $\mathrm{x} \%$ of the cathode current at equilibrium conditions.

Index; Maintenance type list

MAINTENANCE TYPES (Abridged data)

INDEX OF TYPE NUMBERS

Type number	Section	Type number	Section
A31-410W	BW	A56-410X	C
A31-510W	BW	A61-120W	BW
A34-510W	BW	A61-520W	BW
A44-120W	BW	A63-120X.	C
A44-510W	BW	A66-120X	C
A44-520W	BW	A66-140X	C
A50-120W	BW	A66-410X	C
A50-520W	BW		
A56-120X	C		
A56-140X	C		

BW = Black and white TV picture tubes
C = Colour TV picture tubes

General section

Colour TV picture tubes
Black and white TV picture tubes
Index; Maintenance type list

[^0]: This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use: specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part without the written consent of the publisher.

[^1]: *) Deflection assemblies for camera tubes are now included in handbook series
 "Electron tubes", Part 5b.

[^2]: ${ }^{1}$) Base-pin positions are held to tolerances such that the base will fit a flat-plate gauge having a thickness of 9,53 and eight equally spaced holes of $1,40 \pm 0,01$ diameter located on a $15,24 \pm 0,01$ diameter circle. The gauge is also provided with a centre hole to provide 0,25 diametric clearance for the lug and key. Pin fit in the gauge shall be such that the entire length of pins will, without undue force, pass into and disengage from the gauge.
 ${ }^{2}$) This dimension may vary within the limits shown around the periphery of any individual pin.

[^3]: Notes see page 8

[^4]: ${ }^{1}$) If the heater is supplied from a mains transformer designed for tube type A56-140X, the source impedance should not exceed $0,6 \Omega$ to ensure that the heater voltage of the A56-410X is not exceeded.

 If the heater is supplied from a line time base designed for tube type A56-140X, the series impedance, if any, should match the lower heater current of the quick -heating tube.

[^5]: Notes see page 3

[^6]: Notes see page 3

[^7]: Notes see page 8

[^8]: Notes see page 8.

[^9]: Notes see page 3

[^10]: Notes see page 8

[^11]: ${ }^{1}$) This range of Vg_{2} has to be used when in circuit design fixed values for cut-off of the three guns are used.

[^12]: Notes see page 9.

[^13]: ${ }^{1}$) If the heater is fed from a mains transformer designed for tube type A66-140X, the source impedance should not exceed $0,6 \Omega$ to ensure that the heater voltage of the A66-410X is not exceeded.

 If the heater is fed from a line time base designed for tube type A66-140X, the series impedance, if any, should match the lower heater current of the quick-heating tube.

[^14]: $\overline{\text { Notes see page } 3}$

[^15]: Notes see page 3

[^16]: Notes see page 9.

[^17]: 1) Individual tubes will have optimum focus within this range. In general an acceptable picture will be obtained with a fixed focus voltage.
[^18]: ${ }^{1}$) Maximum pulse duration 22% of a cycle but max. $1,5 \mathrm{~ms}$.

[^19]: 1) This limit also applies during equipment warming up. Use of the tube in a series heater chain is not allowed.
[^20]: ${ }^{1}$) Maximum pulse duration 22% of a cycle but max. $1,5 \mathrm{~ms}$.

[^21]: Notes see page 5

[^22]: 1) Individual tubes will have optimum focus within this range. In general an acceptable picture will be obtained with a fixed focus voltage.
[^23]: 1) Maximum pulse duration 22% of a cycle but maximum $1,5 \mathrm{~ms}$.
 2) At $V_{g 1 / k}=0 \mathrm{~V}$.
 3) Between 15 s and 45 s after switching on a decrease in k / f voltage from 450 V to 250 V , linearly proportional with time, is permissible.
[^24]: 1) Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 V and +130 V (e.g. two taps, 0 V and 130 V).
 The optimum focus voltage of individual tubes may be between -100 V and +200 V .
[^25]: ${ }^{1}$) This limit also applies during equipment warming up. Use of the tube in a series heater chain is not allowed.

[^26]: ${ }^{1}$) Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 and +130 V (e.g. two taps, 0 V and 130 V).
 The optimum focus voltage of individual tubes may be between -100 V and +200 V .

[^27]: 1) $\overline{A t} V_{k / g l}=0 \mathrm{~V}$.
 2) Maximum pulse duration 22% of a cycle but maximum $1,5 \mathrm{~ms}$.
[^28]: Notes see page 5

[^29]: ${ }^{1}$) Individual tubes will have optimum focus within this range. In general an acceptable picture will be obtained with a fixed focus voltage.

[^30]: 1) Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 and +130 V (e.g. two taps, 0 V and 130 V).
 The optimum focus voltage of individual tubes may be between -100 V and +200 V .
[^31]: 1) At $V_{g l / k}=0 \mathrm{~V}$.
 2) Maximum pulse duration 22% of a cycle but maximum $1,5 \mathrm{~ms}$.
[^32]: ${ }^{1}$) Because of the flat focus characteristic it is suffient to choose a focusing voltage between 0 and 130 V (e.g. two taps, 0 V and 130 V).
 The optimum focus voltage of individual tubes may between -100 V and +200 V .

[^33]: 1) At $V_{k / g 1}=0 \mathrm{~V}$.
 2) Maximum pulse duration 22% of a cycle but maximum $1,5 \mathrm{~ms}$.
