PHILIPS
 DATA HANDBOOK
 ELECTRON TUBES

PART 8 AUGUST 1969

T.V. Picture Tubes

ELECTRON TUBES

Part 8
August 1969

General section
T.V. Picture tubes

DATA HANDBOOK SYSTEM

To provide you with a comprehensive source of information on electronic components, subassemblies and materials, our Data Handbook System is made up of three series of handbooks, each comprising several parts.
The three series, identified by the colours noted, are:

ELECTRON TUBES (9 parts) BLUE
SEMICONDUCTORS AND INTEGRATED CIRCUITS (5 parts) RED
COMPONENTS AND MATERIALS (5 parts)
GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued annually; the contents of each series are summarized on the following pages.
We have made every effort to ensure that each series is as accurate, comprehensive and up-to-date as possible, and we hope you will find it to be a valuable source of reference. You will understand that we can not guarantee that all products listed in any one edition of the handbook will remain available, or that their specifications will not be changed, before the next edition is published. If you need confirmation that the published data about any of our products are the latest available, may we ask that you contact our representative. He is at your service and will be glad to answer your inquiries.

ELECTRON TUBES (BLUE SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1

December 1968
Transmitting tubes (Tetrodes, Pentodes)

Part 2

Tubes for microwave equipment

Part 3

Special Quality tubes

Part 4

Receiving tubes

Part 5

Cathode-ray tubes
Photo tubes
Camera tubes

Part 6

Photomultiplier tubes
Scintillators
Photoscintillators

Part 7

Voltage stabilizing and reference tubes
Counter, selector, and indicator tubes
Trigger tubes
Switching diodes

Part 8

T.V. Picture tubes

Part 9

Transmitting tubes (Triodes)
Tubes for R.F. heating (Triodes)

July 1969
Thyratrons
Ignitrons
Industrial rectifying tubes
High-voltage rectifying tubes
August 1969

December 1968
Associated accessories
7Z2 9299

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Diodes and Thyristors

September 1969

General
Signal diodes
Variable capacitance diodes
Voltage regulator diodes

Part 2 Germanium Transistors ${ }^{1}$)

General section
Germanium transistors

Part 3-4 Silicon Transistors ${ }^{1}$)

General section
Silicon transistors
Accessories and heatsinks

Part 5 Integrated Circuits

January 1969
Rectifier diodes
Thyristors, diacs, triacs
Rectifier stacks
Accessories
Heatsinks
October 1968
Photo devices
Accessories and heatsinks
November 1968
-

General section
Digital integrated circuits
Linear integrated circuits

1) Parts 2 (October 1968) and 3-4 (November 1968) will be re-arranged as follows:

Part 2 Low frequency; Deflection

October 1969

General
Low frequency transistors (low power)
Low frequency power transistors

Part 3 High frequency

November 1969
General
High frequency transistors

Part 4 Special types

December 1969
General
Transmitting transistors
Field effect transistors
Dual transistors

Deflection transistors Accessories

COMPONENTS AND MATERIALS (GREEN SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Circuit Blocks, Input/Output Devices

September 1968

Circuit blocks:
100 kHz Series
1 -Series
10 -Series
20-Series
40 -Series
Norbits (60-Series)

Circuit blocks for ferrite core memory drive
Input/ output devices
Accessories for circuit blocks:
Power supplies
Mounting chassis ${ }^{1}$)
Printed-wiring boards ${ }^{2}$)

November 1968
Polycarbonate, paper, mica, polystyrene capacitors
Electrolytic capacitors
Variable capacitors

January 1969
Television tuners
Components for black and white television
Components for colour television
Deflection assemblies for camera tubes

Part 3 Radio, Audio, Television
FM tuners
Coils and resonators
Audio and mains transformers
Loudspeakers
Electronic organ assemblies

Part 4 Magnetic Materials, White Ceramics

March 1969

Ferrites for radio, audio
and television
Ferroxcube potcores
Microchokes

Ferroxcube transformer cores
Piezoxide
Insulating and dielectric materials
Permanent magnet materials

Part 5 Memory Products, Magnetic Heads, Quartz Crystals, June 1969 Microwave Devices, Variable Transformers, Electro-mechanical Components

Ferrite memory cores
Matrix planes, matrix stacks
Complete memories
Magnetic heads

Quartz crystal units, crystal filters
Isolators, circulators
Variable mains transformers
Electro-mechanical components

[^0]
T.V. Picture tubes

LIST OF SYMBOLS

Symbols denoting electrodes/elements and electrode/element connections
Heater or filament f
Cathode k
Grid gGrids are distinguished by means of an additional numeral; theelectrode nearest to the cathode having the lowest number.
External conductive coating, rim-band m
Fluorescent screen 1
Tube pin which must not be connected externally i.c.
Tube pin which may be connected externally n.c.
Symbols denoting voltages
Symbol for voltage, followed by an index V
denoting the relevant electrode/element
Heater or filament voltageV_{f}
Peak value of a voltage
Peak to peak value of a voltageV_{p}
Symbols denoting currents
Remark I The positive electrical current is directed oppositeto the direction of the electron current.
Remark II The symbols quoted represent the average values ofthe concerning current unless otherwise stated.
Symbol for current followed by an index I
denoting the revelant electrode
Heater or filament I_{f}
Symbols denoting powers
Dissipation of the fluorescent screen W_{ℓ}
Grid dissipation W_{g}
Symbols denoting capacitances
See I.E.C. Publication 100

Symbols denoting resistances
Symbol for resistance followed by an index
for the revelant electrode pair. When only one index is given the second electrode is the cathode.
Ditto impedance Z

Symbols denoting various quantities

Brightness B
Frequency f
Magnetic field strength H

GENERAL OPERATIONAL RECOMMENDATIONS t.V. PICTURE TUBES

CONTENTS
1 Introduction
2 Spread in tube characteristics
3 Spread and variation in operating conditions
3.1 Spread
3.2 Variation

4 Limiting values
4.1 Rating systems
4.1.1 Absolute max. rating system
4.1.2 Design max. rating system
4.1.3 Design centre rating system
4.2 More than one rating system

5 Heater circuit
5.1 Deviation from nominal heater voltage or current
5.2 Series capacitors
5.3 Series diodes
5.4 Heater supply from the line output transformer
5.5 Stand-by condition of the heater

6 Cathode to heater voltage
7 Intermediate electrodes
8 Electrode voltages
9 Luminescent screen
10 External conductive coating
11 Metal rimband
12 Flash-over
13 Handling
14 Mounting
15 Dimensions
16 Reference line
17 Corner cutting or neck shadowing
18 Raster centring

GENERAL OPERATIONAL RECOMMENDATIONS T.V. PICTURE TUBES

1. INTRODUCTION

Equipment design should be based on the characteristics as stated in the data sheets.
Where deviations from these general recommendations are permissible or necessary, statements to that effect will be made.
If applications are considered not referred to in the data sheets of the relevant tube type extra care should be taken with circuit design to avoid that the tube is overloaded due to unfavourable operating conditions.

2. SPREAD IN TUBE CHARACTERISTICS

The spread in tube characteristics is the difference between maximum and minimum values. Values not qualified as maximum or minimum are nominal ones. It is evident that average or nominal values, as well as spread figures, may differ according to the number of tubes of a certain type that are being checked. No guarantee is given for values of characteristics in settings substantially differing from those specified in the data sheets.

3. SPREAD AND VARIATION IN OPERATING CONDITIONS

The operating conditions of a tube are subject to spread and/or variation.
3.1 Spread. Spread in an operating condition is a permanent deviation from an average condition due to, e.g., component value deviations. The average condition is found from such a number individual cases taken at random that an increase of the number will have a negligible influence.
3.2 Variation. Variation in an operating condition is non-permanent (occurs as a function of time), e.g., due to supply voltage fluctuations. The average value is calculated over a period such that a prolongation of that period will have negligible influence.

4. LIMITING VALUES

4.1 Limiting values are in accordance with the applicable rating system as defined by I. E. C. publication 134.
Reference may be made to one of the following 3 rating systems.
4.1.1 Absolute maximum rating system. Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.
The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment components spread and variation, equipment control adjustment, load variations, signal variation, environmental conditions, and spread or variations in characteristics of the device under considerations and of all other electronic devices in the equipment.
4.1.2 Design-maximum rating system. Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.
4.1.3 Design-centre rating system. Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under average conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component spread and variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations or spread in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device* in equipment operating at the stated normal supply-voltage.

Note*. A bogey tube is a tube whose characteristics have the published nominal values for the type. A bogey tube for any particular application can be obtained by considering only those characteristics which are directly related to the application.
4.2 If the tube data specify limiting values according to more than one rating system the circuit has to be designed so that none of these limiting values is exceeded under the relevant conditions.
4.3 In addition to the limiting values given in the individual data sheets the directives in the following paragraphs should be observed.

5. HEATER CIRCUIT (See also 3)

5.1 Any deviation from the nominal heater voltage (tubes for parallel connection) or from the nominal heater current (tubes for series connection) has a detrimental effect on tube performance and life, and should therefore be kept at a minimum. Such deviations may be caused by:
a) Spread in the characteristics of components such as transformers, resistors, capacitors etc.
b) Mains voltage variations.

The maximum deviation of the heater voltage should not exceed $\pm 15 \%$ (design maximum value) in the case of parallel connection, and the maximum deviation of the heater current should not exceed $\pm 7.5 \%$ (design maximum value) in the case of series connection.
5.2 In case of series capacitors being applied in a heater chain the tolerances specified in the graph below should not be exceeded.

Series capacitance in a heater chain as a function of the total heater voltage for 220 V mains supply and 50 Hz , together with capacitance-tolerance zones.
5.3 When series diodes are applied the D.C. component of the resulting heater voltage should preferably be negative with respect to the cathodes of the tubes. In the case of series diodes being used in combination with a series or parallel resistor the following formulae can be applied:
5. 3 for a series resistor

$$
R_{\mathrm{s}}=\frac{\frac{1}{2} 2 \mathrm{~V}_{\mathrm{m}}-\mathrm{V}_{\mathrm{f}}}{\mathrm{I}_{\mathrm{f}}}
$$

for a parallel resistor

$$
\mathrm{V}_{\mathrm{f}}^{2}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}}^{2} 1+\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{p}}+\mathrm{R}_{\mathrm{f}}} 2
$$

In the above formulae:
$\mathrm{V}_{\mathrm{m}}=$ nominal mains voltage
$R_{S}=$ nominal series resistor
$R_{p}=$ nominal parallel resistor
$\mathrm{V}_{\mathrm{f}}=$ sum of nominal heater voltages for all tubes in the chain
$\mathrm{I}_{\mathrm{f}}=$ nominal heater current
$\mathrm{R}_{\mathrm{f}}=$ sum of nominal heater resistors for all tubes in the chain
Variations in the series or parallel resistor and the mains voltage should not result in heater current deviations greater than $\pm 7.5 \%$ (design maximum value).
5.4 Heater supply from the line output transformer.

Heater supply from the line output transformer is permissible provided the r.m.s. value of the heater voltage remains within the limits given under 5.1. An "Application Note" is available on request.
5. 5 Stand-by condition of the heater.

In order not to impair the tube life it is recommended that during stand-by the heater voltage be decreased to a maximum of 75% of its nominal value.

6. CATHODE TO HEATER VOLTAGE

The voltage between cathode and heater should be as low as possible and never exceed the limiting value given on the data sheets of the individual tubes. The values given under "Limiting values" relate to that side of the heater where the voltage between cathode and heater is greatest. The voltage between cathode and heater may be D.C., A.C., or a combination of both voltages. Unless otherwise stated, the maximum values quoted for the voltage between cathode and heater indicate the maximum permissible value (D.C. component). If an A.C. voltage, or an combination of D.C. and A.C. voltages, is applied the peak value may be twice the rated V_{kf}; however, unless otherwise stated, the peak value shall never exceed 315 V . The D.C. component is not allowed to exceed the published value.

Unless otherwise stated, the V_{kf} max. holds for both polarities of the voltage; however, a positive cathode is usually the most favourable in view of insulation during life.
In order to avoid excessive hum the A.C. component of the heater to cathode voltage should be as low as possible and never exceed $20 \mathrm{~V}_{\mathrm{rms}}$ (mains frequency).
7. INTERMEDIATE ELECTRODES (between cathode and final accelerator)

In no circumstances should the tube be operated without a D.C. connection between each electrode and the cathode. The total effective impedance between each electrode and the cathode should never exceed the published maximum value. However, no electrode should be connected directly to a high energy source such as the hot line. When such a connection is required, it should be made via a series resistor of not less than $1 \mathrm{k} \Omega$.

8. ELECTRODE VOLTAGES

All electrode voltages are given with respect to cathode.
For cathode drive service the reference point is grid No. 1

8.1 Grid No. 1 cut-off voltage

Generally curves showing the limits of grid No. 1 cut-off voltage for specific values of the first accelerator voltage are included in the data. The brightness control should be so dimensioned that it can handle any tube within the limits shown, at the appropriate first accelerator voltage.
The published limits are determined at an ambient illumination level of 10 lux with the aid of a focused raster. Because the brightness of a focused spot is in general greater than that of a raster, the visual cut-off voltage determined with the aid of a spot will be more negative by about 5 V .
8.2 Grid No. 2 voltage

For each individual tube the grid No. 2 voltage can be adjusted so that the beam current is cut off at a fixed value within the published range of the grid No. 1 voltage.
In the data, graphs are included giving the relationship between the grid No. 2 voltage and the grid No. 1 cut-off voltage.
8.3 Focusing electrode voltage

Individual tubes will have satisfactory focus over the entire screen at some value within the published range of the focusing voltage.
If centre-focusing is desired this range will shift in the negative direction.
9. LUMINESCENT SCREEN

To prevent permanent damage to the screen material care should be taken
a. not to operate the tube with a stationary picture at high beam currents for extended periods
b. not to operate the tube with a stationary or slowly moving spot except at ex tremely low beam currents
c. to choose the time constants of the grid No. 1 the grid No. 2 and the time bases supply line circuits such that sufficient beam current is maintained to discharge the e.h.t. capacitance before deflection has ceased after equipment has been switched off.

10. EXTERNAL CONDUCTIVE COATING

The external conductive coating must be connected to the chassis. The capacitance of this coating to the final accelerating electrode may be used to provide smoothing for the e.h.t. supply.
The coating is not a perfect conductor and in order to reduce radiation caused by the line time base it may be necessary to make multiple connections to the coating. See also 12 .

11. METAL RIMBAND

An appreciable capacitance exist between the metal rimband and the internal conductive coating of the tube; its value is quoted in the individual data sheets. To avoid electric shocks, a D.C. connection should be provided between the metal band and the rest of the receiver. In receivers where the chassis can be connected directly to the mains there is a risk of electric shock if acces is made to the metal band. To reduce the shock to the safe limit, it is suggested that a $2 \mathrm{M} \Omega$ resistor capable of handling the peak voltages be inserted between the metal band and the point of contact with the external conductive coating. This safety arrangement will provide the necessary insulation from the mains but in the event of flash-over high voltages will be induced on the metal band. It is therefore recommended that the $2 \mathrm{M} \Omega$ resistor be bypassed by a 4.7 nF capacitor capable of withstanding the peak voltage determined by the voltage divider formed by this capacitor and the capacitance of the metal rimband to the internal conductive coating.
The 4.7 nF capacitor also serves to reduce the radiation from the band.

12. FLASH-OVER

Picture tubes, in common with other high voltage devices, are prone to internal flash-over. During a breakdown arcing occurs between an electrode connected to the e.h.t. capacitor and an electrode terminated in a pin on the base of the tube. The resulting transient currents and voltages may be of sufficient magnitude to cause damage to the tube itself and to various components on the chassis. Arcing terminates when the e.h.t. capacitor is discharged.
During the subsequent recharging period an additional load is imposed on the e.h.t. generator.

It is of vital importance to provide protective circuits with spark gaps, particularly when semiconductor devices are employed. The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.
Additional information available on request.

13. HANDLING

The precautions taken in manufacture reduce the possibility of spontaneous implosion to a minimum but any additional stress due to mishandling considerably increases the risk of implosion: such an implosion may occur immediately or may be delayed. Care should be taken not to scratch or bump any part of the bulb, particularly the screen to cone area, as this will appreciably reduce the strength of the bulb and may lead to implosion.
When a tube is not in its equipment or original packing and is placed screen downwards, it should be placed on a soft pad of suitable material free from abrasive substances. Stresses on the neck should be avoided.

Before removing the tube from the equipment the capacitance $C_{a m}$ should be discharged via a resistor of approx. $50 \mathrm{k} \Omega$.

The manufacturers notify all concerned that they do not accept any responsibility for any damage on injury sustained in any manner in connection with the picture tube, neither is any condition or warranty given or to be implied.

14. MOUNTING

Unless otherwise specified on the data sheets for individual tubes there are no restrictions on the position of mounting.

With tubes without mounting means the main support should be at the end nearer the screen and so arranged that no stresses are produced in the glass. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.
The weight of the socket and possible additional circuitry should not be more than 80 g . With tubes with a 7 -pin miniature base the socket may not be used for mounting components.

Tubes having all-glass bases must not be soldered direct into the wiring. It is very desirable that tubes should not be exposed to strong electrostatic and magnetic fields.

No connections should be made to a pin marked i.c.
In front of the face of a mono-panel T. V. picture tube a protecting screen of transparent material should be placed. The screen should be of adequate strength to withstand the effects of an implosion of the tube.
Tubes having integral protection do not require a protective screen.

15. DIMENSIONS

In designing the equipment the tolerances given on the dimensional drawings should be considered. Under no circumstances should the equipment be designed around dimensions taken from individual tubes.

16. REFERENCE LINE

The reference line indicated on the tube outline drawing is determined by means of a gauge.
Drawings of these gauges are given in this book.

17. CORNER CUTTING OR NECK SHADOWING

Corner cutting is caused by a direct interception of the deflected electron beam before it is reaching the screen and results in a non-scanned corner of the raster. It may be avoided by applying an appropriate deflection unit.

18. RASTER CENTRING

To centre the raster on the screen it is recommended that either a magnetic field just behind the deflection coils (viewed from the screen) be used or a direct current be passed through the deflection coils.

The centring device should provide a shift to allow for non-centrality of the spot with respect to the geometric centre of the screen, in addition the centring device should provide the shift needed to allow for non-centrality of the visible raster (i.e. to compensate for line blanking and also time base non-linearity, if any) and the earth magnetic field.
The use of a too strong centring magnetic field should be avoided; this may result in raster distortion and even corner cutting.

RATING SYSTEMS
 (in accordance with I.E.C. publication 134)

Absolute maximum rating system

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute-maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

Design-maximum rating system

Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

Design-centre rating system

Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in aver age applications, taking responsibility fór normal changes in operating conditions due to rated supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply-voltage.

TYPE DESIGNATION

Two type designation systems are currently in use for T.V. Picture tubes.

1. PRO-ELECTRON TYPE DESIGNATION CODE

Single letter, group of figures, hyphen, group of figures, letter or letter group.
The first letter indicates the prime application of the tube:
A- Television display tube for domestic application.
M-Television display tube for professional application-direct view.
First group of figures: Diameter or diagonal of the face in cm .
Second group of figures: Development or design number.
Final letter or letter group: Properties of the phosphor screen.
The first letter denotes the colour of the fluorescence, the second letter, if any, other specific differences in screen properties.
W- White screen for T.V. display tubes.
X- Three-colour screen fot T.V. display tubes.

OLD SYSTEM

Two letters, group of figures, hyphen, group of figures.
First letter: Method of focusing and deflection:
A-Electrostatic focusing and magnetic deflection.
M-Electromagnetic focusing and electromagnetic deflection.
Second letter: Properties of phosphor screen. (see above).
First group of figures: Diameter or diagonal of face in cm .
Second group of figures: Development or design number.

SCREEN PHOSPHORS

W SCREEN

Colour coordinates

	x	y
	0.630	0.340
red	0.63	0.600
green	0.315	0.060

REFERENCE LINE GAUGES

REFERENCE LINE GAUGE A
Dimensions in mm

Reference line gauge for 70° deflection angle.

Reference line gauge for 90° deflection angle.

If x and y are expressed in inches, the parabolic formula for the inner contour reads $y=0.58 x^{2}+0.576$
Reference line gauge for 110° deflection angle.

BASES

SMALL-BUTTON EIGHTAR BASE JEDEC B7-183

1) Base-pin positions are held to tolerances such that the base will fit a flatplate gauge having a thickness of 9.53 and eight equally spaced holes of 1.40 ± 0.01 diameter located on a 15.24 ± 0.01 diameter circle.
The gauge is also provided with a center hole to provide 0.25 diametric clearance for the lug and key. Pin fit in the gauge shall be such that the entire length of pins will, without undue force, enter into and disengage from the gauge.
${ }^{2}$) This dimension around the periphery of any individual pin may vary within the limits shown.

${ }^{1}$) Base-pin positions are held to tolerances such that the base will fit a flatplate gauge having a thickness of 9.53 and eight equally spaced holes of 1.40 ± 0.01 diameter located on a 15.24 ± 0.01 diameter circle.
The gauge is also provided with a center hole to provide 0.25 diametric clearance for the lug and key. Pin fit in the gauge shall be such that the entire length of pins will, without undue force, enter into and disengage from the gauge.
${ }^{2}$) This dimension may vary within the limits shown around the periphery of any individual pin.

It should be noted that the vertical dimensions are referred to the underside of a base as differentiated from past practice in this standard of dimensioning from the outer rim.

${ }^{1}$) Underside of base

${ }^{2}$) Not including increase in pin diameter due to solder.
${ }^{3}$) This dimension may be increased by $0.030^{\prime \prime}$ (0.76 mm) max. for solder.
${ }^{4}$) Any projection on the u.der-surface of the base other than these shown, such as a rim or external barriers, have a height not exceeding $0.0065^{\prime \prime}$ (1.65 mm).

[^1]

T.V. PICTURE TUBE

28 cm (11 inch), 90°, rectangular direct vision picture tube for black- and white T.V. with integral protection.

QUICK REFERENCE DATA	
Face diagonal	28 cm (11 inch)
Deflection angle	90°
Overall length	245 mm
Neck length	105.5 mm
Neck diameter	20 mm
Light transmission of face glass	50 \%
Focusing	electrostatic
Bulb	reinforced
Heating	$11 \mathrm{~V}, 68 \mathrm{~mA}$

SCREEN

Metal backed phosphor
Luminescence
white
Light transmission of face glass
Useful diagonal
Useful width
min. 262.5 mm

Useful height
min. 228 mm

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage	V_{f}	11	V
Heater current	I_{f}	68	mA

The maximum permissible total deviation from the nominal heater voltage is 15%. The deviation may consist of:
$\max .7 \%$ continuous deviation, e.g. due to component spread,
max. 10% temporary variation.
In case of supply direct from a battery, the heater voltage must be within the limits given under type A28-14W.

Mounting position: any
Base $: 7$ pins miniature, but with pumping stem
Net weight : approx. 2.2 kg
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

For notes see page 4

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal band
Cathode to all
Grid No. 1 to all

$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}$	$\begin{aligned} & <850 \\ & >550 \end{aligned}$	pF pF
Ca, $\mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}^{\prime}$	150	pF
C_{k}	3	pF
C_{1}	7	pF

FOCUSING electrostatic

DEFLECTION magnetic
Diagonal deflection angle 90°
Horizontal deflection angle 80°
Vertical deflection angle 63°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 55 mm . The centring magnet should be mounted as close to the deflection coils as possible.

NOTES TO OUTLINE DRAWING

1. Opening of metal rim band (see also the detail). Eccentricity with respect to centre of screen max. 1 mm .
2. Meniscus of resin filler on screen.
3. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone. Reference line gauge D .
4. The configuration of the external conductive coating is optional but contains the contact area shown in the drawing. The external conductive coating must be earthed.
5. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge D.
6. This area must be kept clean.
7. Recessed cavity contact.
8. Maximum unflatness of the rim is 1 mm .
9. The mounting screws in the cabinet must be situated inside a circle with a diameter of 5 mm drawn around the corner points of a geometrical rectangle of $240 \mathrm{~mm} \times 182.5 \mathrm{~mm}$

The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.

TYPICAL OPERATING CONDITIONS

See A28-14W

T.V. PICTURE TUBE

28 cm (11 inch), 90°, rectangular direct vision picture tube with integral protection for black and white T.V.

QUICK REFERENCE DATA		
Face diagonal	28	cm (11 inch)
Deflection angle	90°	
Overall length	245	mm
Neck length	105.5	mm
Neck diameter	20	mm
Light transmission of face glass	50	\%
Focusing		electrostatic
Bulb		reinforced
Heating	$11 \mathrm{~V}, 68$	mA

SCREEN

Metal backed phosphor

Luminescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height
white
50 \%
min. 262.5 mm
min. 228 mm
min. 171 mm

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

V_{f}	11	V
If	68	mA

The maximum total deviation from the nominal heater voltage is 15%. The deviation may consist of:
max. 7% continuous deviation, e.g. due to component spread,
max. 10% temporary variation
In case of supply direct from a battery, the heater voltage must be within the limits given on page 9 above.

Mounting position: any
Base $: 7$ pins miniature, with pumping stem
Net weight : approx. 2.2 kg
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

For notes see page 5

$\begin{aligned} & \text { 志 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		Distance from centre (max. values)												
		Long axis 0°	10°	20°	25°	30°	$\begin{aligned} & 34^{\circ} 40^{\circ} \\ & \text { Diag. } \\ & \hline \end{aligned}$	40°	45°	50°	60°	70°	80°	$\begin{gathered} \text { Short } \\ \text { axis } \\ 90^{\circ} \end{gathered}$
1	27.5	130.00	131.62	136.64	140.59	145.50	147.50	144.87	136.81	127.86	114.90	106.84	102.41	101.00
2	37.5	127.35	128.90	133.85	137.70	142.40	144.90	141.80	133.30	124.85	112.60	105.15	101.15	99.90
3	47.5	121.10	122.60	126.85	130.45	134.70	137.55	133.90	125.55	118.45	108.25	102.00	98.95	97.90
4	57.5	114.05	115.15	118.70	121.65	125.25	127.30	124.50	117.50	111.55	103.10	98.10	95.75	95.20
5	67.5	106.35	107.20	110.00	112.25	114.85	116.40	114.25	108.85	104.00	97.20	93.50	92.00	91.75
6	77.5	97.60	98.25	100.05	101.45	103.30	104.45	102.80	98.80	95.10	90.00	87.45	86.85	86.95
7	87.5	87.40	87.75	88.85	89.70	90.70	91.40	90.25	87.70	85.15	81.70	80.40	80.50	81.00
8	97.5	75.05	75.35	76.15	76.70	76.95	76.85	76.05	74.90	73.85	72.45	72.15	72.75	73.40
9	107.5	60.65	60.65	60.65	60.65	60.65	60.65	60.65	60.55	60.35	60.20	60.60	61.00	61.35
10	117.5	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00

CAPACITANCES

Final accelerator to external conductive coating

Final accelerator to metal band
Cathode to all
Grid No. 1 to all

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle 90°
Horizontal deflection angle 80°
Vertical deflection angle 63°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 55 mm . The centring magnet should be mounted as close to the deflection coils as possible.

NOTES TO OUTLINE DRAWING

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone. Reference line gauge D .
2. The configuration of the external conductive coating is optional but contains the contact area shown in the drawing.
The external conductive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge D.
4. This area must be kept clean.
5. Recessed cavity contact.
6. Maximum unflatness of the rim is 1 mm .
7. The mounting screws in the cabinet must be situated inside a circle with a diameter of 5 mm drawn around the corner points of a geometrical rectangle of $240 \mathrm{~mm} \times 182.5 \mathrm{~mm}$.

FACE PLATE CONTOUR

Dimensions of the outer contour of the face plate on the mold match line.

REFERENCE LINE GAUGE D

Dimensions in mm
The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage
Focusing electrode voltage
Grid No. 2 voltage

$\mathrm{V}, \mathrm{g}_{3}, \mathrm{~g}_{5}$	11	kV
V_{4}	0 to 350	V l)
V_{g}	250	V

Grid No. 1 voltage for visual extinction of focused raster
$\mathrm{V}_{\mathrm{g}} \quad-35$ to -69 V
Cathode drive service
Voltages are specified with respect to grid No.l
Final accelerator voltage
Focusing electrode voltage
Grid No. 2 voltage

$\mathrm{V}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5}$	11	kV
$\mathrm{V}_{\mathrm{g}_{4}}$	0 to 350	V l)
V_{g}	200 to 350	V

Cathode voltage for visual extinction of focused raster

LIMITING VALUES (Design centre rating system, unless otherwise stated)
Final accelerator voltage

$$
\begin{array}{llrl}
\mathrm{V}_{\mathrm{a}, \mathrm{~g}_{3}, \mathrm{~g}_{5}} & \begin{array}{l}
\max . \\
\min .
\end{array} & 7.5 & \mathrm{kV} \\
\mathrm{kV} 2)
\end{array}
$$

Grid No. 4 voltage
positive
negative
Grid No. 2 voltage
Grid No. 2 to grid No. 1 voltage
Grid No. 1 voltage

positive	$\mathrm{V}_{\mathrm{g}_{1}}$	\max.	0	V
positive peak	$\mathrm{V}_{1 \mathrm{p}}$	\max.	2	V
negative	$-\mathrm{V}_{\mathrm{g}_{1}}$	\max.	100	V
negative peak	$-\mathrm{V}_{\mathrm{g}_{1 \mathrm{p}}}$	\max.	350	V

[^2]\square

LIMITING VALUES (continued)
Cathode to grid No. 1 voltage
positive
positive peak
negative
negative peak
Cathode to heater voltage
positive
positive peak

CIRCUIT DESIGN VALUES

Grid No. 4 current
positive
negative

$\max .25 \mu \mathrm{~A}$
$\max .25 \mu \mathrm{~A}$
Grid No. 2 current
positive
negative

$\mathrm{V}_{\mathrm{k} / \mathrm{g}}$	max. 100	V
$\mathrm{V}_{\mathrm{k} / \mathrm{g}}^{\mathrm{l}} \mathrm{p}$	max. 350	V^{1})
$-\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}}$	max. 0	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1 p}}$	max. 2	V

$V_{k / f}$
$\mathrm{V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$
$\max .110 \mathrm{~V}$
$\max .130 \mathrm{~V}$
$\max .5 \mu \mathrm{~A}$
$\max .5 \mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater	$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	$\max .1$	$\mathrm{M} \Omega$
Impedance between cathode and heater	$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	$\max .0 .1$	$\mathrm{M} \Omega$
Grid No.1 circuit resistance	$\mathrm{R}_{\mathrm{g}_{1}}$	$\max .1 .5$	$\mathrm{M} \Omega$
Grid No.1 circuit impedance	$\mathrm{Z}_{\mathrm{g}_{1}}(50 \mathrm{~Hz})$	$\max .0 .5$	$\mathrm{M} \Omega$
Resistance between external conductive coating and rimband	$\mathrm{R}_{\mathrm{m} / \mathrm{m}^{\prime}}$	$\max .2$	$\mathrm{M} \Omega$

[^3]

T.V. PICTURE TUBE

31 cm (12 inch), 90°, rectangular direct vision picture tube with integral protection for black - and white T.V. The rimband leaves the edge of the faceplate free.

QUICK REFERENCE DATA	
Face diagonal	31 cm (12 inch)
Deflection angle	90°
Overall length	272 mm
Neck length	105.5 mm
Neck diameter	20 mm
Light transmission of face glass	54%
Focusing	electrostatic
Bulb	reinforced
Heating	11 V,

SCREEN

Metal backed phosphor
Luminescence white
Light transmission of face glass
Useful diagonal
54
Useful width
min. 295 mm
Useful height
min. 257 mm
min. 195 mm

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage	V_{f}	11	V
	I_{f}	68	mA

The maximum total deviation from the nominal heater voltage is 15%.
The deviation may consists of:
max. 7% continuous deviation, e.g. due to component spread, max. 10% temporary variation.
In case of supply direct from a battery, the heater voltage must be within the limits given on page 7.

MECHANICAL DATA

Dimensions in mm

detail of base

spherical face plate

Mounting position: any

Net weight	$:$ approx. 2.9 kg
$\underline{\text { Base }}$	$: 7$ pins miniature, with pumping stem

The socket for the base should not be rigidly mounted, it should have flexible leads and be allowed to move freely .

Notes see page 4

NOTES TO OUTLINE DRAWING

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge D when the gauge is resting on the cone.
2. The configuration of the external conductive coating may be different but contains the contact area shown in the drawing.
The external conductive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge D.
4. This area must be kept clean.
5. Recessed cavity contact I.E.C. 67-III-2.
6. Maximum unflatness of the rim is 1.2 mm .
7. The mounting screws in the cabinet must be situated inside a circle of 6 mm diameter drawn around the true geometrical positions, i.e. at the corners of a rectangle of $266.4 \mathrm{~mm} \times 204.8 \mathrm{~mm}$.
8. Meniscus of resin filler.
9. The metal rimband must be earthed.

CAPACITANCES

Final accelerator to external conductive coating
Final accelerator to metal band
Cathode to all
Grid No. 1 to all

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle	90°
Horizontal deflection angle	80°
Veryical deflection angle	63°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 55 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5}$	11	kV
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	250	$\mathrm{~V}^{1}$)
Grid No. 2 voltage	$\mathrm{V}_{\mathrm{g}_{2}}$	250	V
Grid No.1 voltage for visual extinction of focused raster	$\mathrm{V}_{\mathrm{g}_{1}}$	-35 to	-69

Cathode drive service

Voltages are specified with respect to grid No. 1
$\left.\begin{array}{llrl}\text { Final accelerator voltage } & \mathrm{V}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} & 11 & \mathrm{kV} \\ \text { Focusing electrode voltage } & \mathrm{V}_{4} & 250 & \mathrm{~V} 1\end{array}\right)$

[^4]LIMITING VALUES (Design centre rating system, unless otherwise stated)

Final accelerator voltage
Grid No. 4 voltage
positive
negative
Grid No. 2 voltage
Grid No. 2 to grid No. 1 voltage
Cathode to grid No. 1 voltage
positive
positive peak
negative
negative peak
Cathode to heater voltage
positive
positive peak
$\left.\begin{array}{llrl} & \begin{array}{l}\text { max. }\end{array} & \begin{array}{l}12 \\ \mathrm{kV} \\ \mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5\end{array} & \text { min. } \\ 7.5 & \mathrm{kV} & 1\end{array}\right)$

CIRCUIT DESIGN VALUES

Grid No. 4 current
positive
negative
Grid No. 2 current
positive
negative

I_{4}	\max.	25	$\mu \mathrm{~A}$
$-\mathrm{I}_{4}$	\max.	25	$\mu \mathrm{~A}$

I_{2}	\max.	5	$\mu \mathrm{~A}$
$-\mathrm{I}_{2}$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
Resistance between external conductive coating and rimband

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0.1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}_{1}}$	\max.	1.5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}_{1}}(50 \mathrm{~Hz})$	\max.	0.5	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{m} / \mathrm{m}^{\prime}}$	\min.	2	$\mathrm{M} \Omega$

[^5]

A31-20W

Final accelerator current as a function of grid No. 1 voltage

[^6]

Limits of cathode cut-off voltage as a function of grid No. 2 voltage

T.V. PICTURE TUBE

44 cm (17 in), 110°, rectangular direct vision picture tube with integral protection for black-and-white T.V. The rimband leaves the edge of the faceplate free.

	QUICK REFERENCE DATA
Face diagonal	$44 \mathrm{~cm} \mathrm{(17} \mathrm{in)}$
Deflection angle	110°
Overall length	284.5 mm
Neck length	110 mm
Neck diameter	28.6 mm
Light transmission of face glass	$48 \quad \%$
Focusing	electrostatic
Bulb	reinforced
Heating	$6.3 \mathrm{~V}, 300 \mathrm{~mA}$

SCREEN

Metal backed phosphor
Luminescence white
Light transmission of face.glass $\quad 48$ \%
Useful diagonal min. 413 mm
Useful width
Useful height
min. 346 mm
min. 270 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply
Heater current
Heater voltage

I_{f}	300	mA
$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

MECHANICAL DATA (continued)

For notes see page 5

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H, I.E.C.67-I-31a
Net weight : approx. 5.5 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted: it should have flexible leads and be allowed to move freely.

MAXIMUM CONE CONTOUR DRAWING

Dimensions in mm

Distance from centre (max. values)														
$\begin{array}{\|l} \text { Sec- }- \\ \text { tion } \end{array}$	Nom. distance from point " Z "	$\begin{aligned} & 0^{\circ} \\ & \text { Long } \end{aligned}$	10°	20°	30°	$33^{\circ} 30^{\prime}$	$\begin{aligned} & 36^{\circ} 30^{\prime} \\ & \text { Diagonal } \end{aligned}$	40°	44°	50°	60°	70°	800	$\begin{gathered} 90^{\circ} \\ \text { Short } \end{gathered}$
1	128	60	60	60	60	60	60	60	60	60	60	60	60	60
2	117.3	95.9	95.2	93	92.3	92.1	92.1	92.3	92.6	93.1	93.8	94.6	94.9	95.1
3	107.3	118.1	117.8	118.3	118.3	118.6	119.2	117.8	117.7	117.2	115.5	113.3	111.2	109.8
4	97.3	135	136.1	138.3	139.9	141	141.6	141.1	138.5	135.4	130.5	125.6	121.8	120.8
5	87.3	149.5	151.1	155.1	159.1	161.3	162	161.5	157.5	151	142	135.8	130.8	129.5
6	77.3	162.5	164	168.8	176	179	179.5	178	173.5	163.4	150.8	143.3	138.3	136.4
7	67.3	172.5	174.4	180.1	190	194.1	196.3	194.9	186.8	174.5	159.1	149.3	143.9	141.7
8	57.3	179.7	183.1	189.3	201.1	207.4	210.9	206.1	196	182.8	165.5	154	147.9	145.6

NOTES TO OUTLINE DRAWING

1. Small cavity contact I.E.C.-67-III-2 .
2. The metal rimband must be earthed. The hole of 3 mm dia in each lug is provided for this purpose.
3. Spherical faceplate.
4. End of guaranteed contour. The maximum contour from reference line towards screen is given by the reference line gauge $C(18.13 \mathrm{~mm})$.
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing. The external conductive coating must be earthed.

6 . This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of 7.5 mm diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of $363.5 \mathrm{~mm} \times 288.5 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. Max. curvatures of the outside tension band are nominal bulb radius +4 mm .
11. Distance from reference point Z to any hardware.

CAPACITANCES

Final accelerator to external conductive coating

$\mathrm{C}_{\mathrm{a},}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}$	$<$	1300 pF
$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}^{\prime}$	700 pF	
C_{k}	200 pF	
$\mathrm{C}_{\mathrm{g}_{1}}$	5 pF	
		7 pF

FOCUSING electrostatic

DEFLECTION magnetic
Diagonal deflection angle 110°
Horizontal deflection angle 100°
Vertical deflection angle 830

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5}}$	18	kV
Focusing electrode voltage			
Grid No. 2 voltage	V_{4}	0 to 400	V 1)

Cathode drive service

Voltages are specified with respect to grid No. 1

Final accelerator voltage
Focusing electrode voltage
Grid No. 2 voltage
Cathode voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5}$	18	kV
$\mathrm{V}_{\mathrm{g}_{4}}$	0 to 400	V
	1)	
V_{g}	400	V

$\mathrm{V}_{\mathrm{k}} \quad 36$ to 66 V

[^7]LIMITING VALUES (Design centre rating system, unless otherwise stated)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5}=0$

		max.	18
$\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5}$	min. min.	12	$\mathrm{kV} \mathrm{1})$

Grid No. 4 voltage,
positive
negative
Grid No. 2 voltage
Grid No. 2 to grid No. 1 voltage
Grid No. 1 voltage,
positive
positive peak
negative
negative peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak
positive during equipment warm-up period not exceeding 15 s
$\max .1000 \mathrm{~V}$
$\max .500 \mathrm{~V}$
$\max .700 \mathrm{~V}^{3}$)
min. 350 V
max. 850 V

V_{g}	\max.	0	V
$\mathrm{~V}_{1 \mathrm{p}}$	\max.	2	V
$-\mathrm{V}_{\mathrm{g}_{1}}$	\max.	150	V
$-\mathrm{V}_{\mathrm{g}}$	\max.	400	V
	$2)$		

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	250	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	\max.	300	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	135	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	\max.	180	V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}} \quad \max .410 \mathrm{~V}$ 4)

1) Absolute maximum rating system.
2) Maximum pulse duration 22% of a cycle but maximum 1.5 ms .
3) At $V_{g_{1} / k}=0 \mathrm{~V}$.
4) Between 15 s and 45 s after switching on a decrease in k / f voltage, linear proportional with time, from 410 V to 250 V is permissible.

CIRCUIT DESIGN VALUES

Grid No. 4 current,

positive	$\mathrm{I}_{g_{4}}$	\max.	25	$\mu \mathrm{~A}$
negative	$-\mathrm{I}_{4}$	\max.	25	$\mu \mathrm{~A}$
rid No.2 current,				
positive	$\mathrm{I}_{g_{2}}$	\max.	5	$\mu \mathrm{~A}$
negative	$-\mathrm{I}_{g_{2}}$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
Resistance between external conductive coating and rimband

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1.0	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0.1	$\mathrm{M} \Omega$
R_{g}	\max.	1.5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}_{1}}(50 \mathrm{~Hz})$	\max.	0.5	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{m} / \mathrm{m}^{\prime}}$	\min.	2	$\mathrm{M} \Omega$

In order to avoid excessive hum, the A.C.component of the heater to chassis voltage should be. as low as possible and must not exceed $20 \mathrm{~V}_{\mathrm{rms}}$.

Final accelerator current as a function of grid No. 1 voltage

7209407

Final accelerator current as a function of cathode voltage

Limits of grid No. 1 cut-off voltage as a function of grid No. 2 voltage

Limits of cathode cut-off voltage as a function of grid No. 2 voltage

T.V. PICTURE TUBE

47 cm (19 inch), 110°, rectangular direct vision picture tube for black- and white T.V. with integral protection.

QUICK REFERENCE DATA			
Face diagonal		47	cm (19 inch)
Deflection angle		110°	
Overall length		302.5	mm
Neck length		110	mm
Neck diameter		28.6	mm
Light transmission of face glass		48	\%
Focusing			electrostatic
Bulb			reinforced
Heating	6.3	V, 300	mA

SCREEN

Metal backed phosphor
Luminescence white

Light transmission of face glass		48	$\%$
Useful diagonal	min. 446	mm	
Useful width	min. 384	mm	
Useful height	min. 305	mm	

HEATING

Indirect by A.C. or D.C.; series or parallel supply

Heater current	$\mathrm{I}_{\mathrm{f}} \quad 300 \mathrm{~mA}$	
	$\mathrm{~V}_{\mathrm{f}}$	6.3
Heater voltage		

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

MECHANICAL DATA

Dimensions in mm

Mounting position: any

Base : neo eightar 7 pin JEDEC B7-208, B8H

Net weight : approx. 7.5 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

For notes see page 4

CAPACITANCES

Final accelerator to external conductive coating
Final accelerator to metal band
Cathode to all
Grid No. 1 to all

$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}$	$<1500 \mathrm{pF}$	
$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}^{\prime}$	$<1000 \mathrm{pF}$	
C_{k}		250 pF
$\mathrm{C}_{\mathrm{g}_{1}}$	4	pF
		6 pF

FOCUSING electrostatic

DEFLECTION magnetic
Diagonal deflection angle 110°
Horizontal deflection angle 990
Vertical deflection angle 82°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

See A47-26W

NOTES TO OUTLINE DRAWING

1. Opening of the metal rimband (see detail A). Eccentricity with respect to centre screen max. 1.5 mm .
2. Small cavity contact.
3. 8 tags for earthing the rim band. The metal rim band must be earthed by means of these tags. No electrical contact between the band and the mounting lugs can be guaranteed.
4. Meniscus of resin filler on screen.
5. The screen radius of 1219 mm applies to the centre area of the screen.
6. The screen radius of 533.5 mm applies outside the centre area of the screen.
7. End of free zone. The maximum contour from reference line towards screen is given by the reference line gauge. C (18.13 mm) .
8. The configuration of the external conductive coating is optional but contains the contact area as shown in the drawing.
The external conductive coating must be earthed.
9. This area must be kept clean.
10. Minimum space to be reserved for mounting lugs.

The mounting screws in the cabinet must be situated inside a circle of 8.5 mm diameter drawn around the true geometrical position i.e. corners of a rectangle of $392.6 \times 315.9 \mathrm{~mm}$.

T.V. PICTURE TUBE

47 cm (19 inch), 110°, rectangular direct vision picture tube for black- and white T.V.

QUICK REFERENCE DATA		
Face diagonal	47	cm (19 inch)
Deflection angle	110°	
Overall length	302.5	mm
Neck length	110	mm
Neck diameter	28.6	mm
Light transmission of face glass A47-14W	48	\%
Focusing		electrostatic
Bulb		mono-panel
Heating	$6.3 \mathrm{~V}, 300$	mA

SCREEN

Metal backed phosphor
Luminescence
white

Light transmission of face glass
Useful diagonal
min. 446 mm
Useful width
min. 384 mm
Useful height
min .305 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply

Heater current	I_{f}	300	mA
	$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

Mounting position: any
Base : JEDEC B7 208. Neo-eightar 7p., B8H
Net weight $\quad:$ approx. 7 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

For notes see page 5.

MAXIMUM CONE CONTOUR DRAWING
All values are given as nominal unless otherwise indicated.

Section	Distance from Ref. line	Distance from centre (max. values)										
		Long 0°	10°	20°	30°	Diag.	40°	50°	60°	70°	80°	Short 90°
1	18.3	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0
2	24.2	106.1	105.6	105.6	103.8	102.7	101.6	99.1	96.2	93.7	92.4	92.4
3	29.2	125.3	125.7	124.6	122.3	120.6	118.9	115. 1	111.0	106.7	104.2	103.9
4	34.2	138.2	138.9	137.8	136.0	134.3	132.3	127.5	121.8	117.0	113.7	113.0
5	39.2	148.6	149.0	148.5	147.7	146.3	144.2	138.0	131.3	125.2	121.6	120.6
6	49.2	164.5	164.6	165.2	167.3	166.8	164.6	156.0	146.8	139.0	134.5	133.1
7	59.2	176.5	176.6	178.7	183.4	184.0	181.4	170.2	158.9	149.8	144.6	142.9
8	69.2	186.3	186.5	190.3	197.0	198.9	195.8	182.3	169.0	158.9	152.8	151.1
9	79.2	194.2	195.0	200.2	209.1	212.0	208.6	192.5	177.5	166.2	159.8	157.9
10	89.2	200.7	202.1	208.4	219.6	223.5	219.7	200.4	184.2	172.3	165.8	163.4
11	99.2	206.0	208.0	215.0	227.9	232.8	228.6	206.6	189.2	176.9	170.0	167.9
12	109.2	210.0	212.3	219.6	233.0	238.1	233.9	210.9	193.2	180.5	173.6	171.3
13	118.0	212.2	214.6	221.8	234.9	240.5	236.0	213.1	195.1	182.6	175.7	173.5

A47-14W

CAPACITANCES

Final accelerator to external conductive coating	Ca, $\mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}$	$\begin{array}{ll} <1500 & \mathrm{pF} \\ >1000 & \mathrm{pF} \end{array}$
Cathode to all	C_{k}	4 pF
Grid No. 1 to all	$\mathrm{C}_{\mathrm{g}_{1}}$	6 pF
FOCUSING electrostatic		

DEFLECTION magnetic

Diagonal deflection angle 110°
Horizontal deflection angle 99°
Vertical deflection angle 82°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

NOTES TO OUTLINE DRAWING

1. Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone. Reference line gauge C.
2. Outer radius of 1219 mm applies to this area.
3. The external conductive coating must be earthed. The configuration of the outer coating is optional, but contains the contact area as shown.
4. This area must be kept clean.
5. Small cavity contact.
6. At any point around the splice line seal the bulge at this seal will not protrude more than 1.6 mm beyond the tube circumference at the mould-match line.
7. Mould-match line (= reference line for measuring the maximum dimensions).
8. Minimum undisturbed area between mould-match line and splice line. No excessive pressure should be exerted by the support band on the splice line seal.

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage	V a, $\mathrm{g}_{3}, \mathrm{~g}_{5}$	18	kV
Focusing electrode voltage	V_{g}	0 to 400	V^{1})
Grid No. 2 voltage	Vg_{2}	400	V
Grid No. 1 voltage for visual extinction of focused raster	V_{g}	-40 to -77	V

Cathode drive service

Voltages are specified with respect to grid No. 1
$\left.\begin{array}{llrl}\text { Final accelerator voltage } & \mathrm{V}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5}} & 18 & \mathrm{kV} \\ \text { Focusing electrode voltage } & \mathrm{V}_{4} & 0 \text { to } & 400 \\ \text { V l) }\end{array}\right)$

LIMITING VALUES (Design centre rating system, unless otherwise stated)

Final accelerator voltage at $\mathrm{I}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5}=0 \quad \quad \mathrm{~V}_{\mathrm{a}, \mathrm{g}_{3}, g_{5}} \quad$| $\max .$ |
| :--- |$\quad 18 \mathrm{kV}}^{\min .} 13 \mathrm{kV}$

Grid No. 4 voltage,
$\left.\begin{array}{lcll}\text { positive } & \mathrm{Vg}_{4} & \max .1000 & \mathrm{~V} \\ \text { positive peak } & \mathrm{Vg}_{4 \mathrm{p}} & \max .2500 & \mathrm{~V} \\ 2\end{array}\right)$

Grid No. 1 voltage,
positive
positive peak
negative
negative peak

V_{1}	max.	0	V
$\mathrm{~V}_{1 \mathrm{p}}$	\max.	2	V
$-\mathrm{V}_{1}$.	max.	150	V
$-\mathrm{V}_{\mathrm{g}_{1 \mathrm{p}}}$	max.	400	$\left.\mathrm{~V}^{2}\right)$

[^8]
LIMITING VALUES (continued)

Cathode to grid No. 1 voltage,
positive
positive peak
negative
negative peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak
positive during equipment warm-up period not exceeding 45 s

$\mathrm{V}_{\mathrm{k}} / g_{1}$	\max.	150	V
$\mathrm{~V}_{\mathrm{k}} / g_{\mathrm{lp}}$	\max.	400	$\left.\mathrm{~V}{ }^{\mathrm{l}}\right)$
$-\mathrm{V}_{\mathrm{k}} / g_{1}$	\max.	0	V
$-\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{1 \mathrm{p}}$	\max.	2	V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	200	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	\max.	300	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	125 V	
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	\max.	250	V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}} \quad \max .410 \mathrm{~V}$

CIRCUIT DESIGN VALUES

Grid No. 4 current,
positive
negative
Grid No. 2 current
positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater

$$
\mathrm{R}_{\mathrm{k} / \mathrm{f}}
$$

$$
\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})
$$

Rg_{1}
$\mathrm{Z}_{\mathrm{g}}(50 \mathrm{~Hz}) \quad \max .0 .5 \mathrm{M} \Omega$

[^9]
T.V. PICTURE TUBE

47 cm (19 in), 110°, rectangular direct vision picture tube with integral protection for black- and white T.V. The rimband leaves the edge of the faceplate free.

QUICK REFERENCE DATA		
Face diagonal	47	
Deflection angle (19 in)		
Overall length	110°	
Neck length	302.5 mm	
Neck diameter	110 mm	
Light transmission of face glass	28.6 mm	
Focusing	48	$\%$
Bulb		electrostatic
Heating	$6.3 \mathrm{~V}, 300$	mA

SCREEN

Metal backed phosphor

Luminescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height
white

48	$\%$
$\min .446$	mm
$\min .384$	mm
$\min .305$	mm

HEATING

Indirect by A.C. or D.C.: series or parallel supply
Heater current
Heater voltage

I_{f}	300	mA
$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

MECHANICAL DATA (continued)

Dimensions in mm

$\overline{\text { For notes see page } 5 .}$

Mounting position: any

Base : neo eightar 7 pin JEDEC B7-208, B8H, I.E.C.67-1-31a
Net weight $\quad:$ approx. 8 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .

Distance from centre (max. values)												
Section	Nom. distance from point " Z "	$\begin{gathered} 0^{\circ} \\ \text { Long } \end{gathered}$	10°	20°	30°	$\begin{array}{\|c\|} \hline 35^{\circ} 22^{\prime} \\ \text { Diarronal } \end{array}$ Diagonal	40°	50°	60°	70°	80°	$\begin{gathered} 90^{\circ} \\ \text { Short } \end{gathered}$
1	145.7	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0
2	139.8	106.1	105.6	105.6	103.8	102.7	101.6	99.1	96.2	93.7	92.4	92.4
3	134.8	125.3	125.7	124.6	122.3	120.6	118.9	115.1	111.0	106.7	104.2	103.9
4	129.8	138.2	138.9	137.8	136.0	134.3	132.3	127.5	121.8	117.0	113.7	113.0
5	124.8	148.6	149.0	148.5	147.7	146.3	144.2	138.0	131.3	125.2	121.6	120.6
6	114.8	164.5	164.6	165.2	167.3	166.8	164.6	156.0	146.8	139.0	134.5	133.1
7	104.8	176.5	176.6	178.7	183.4	184.0	181.4	170.2	158.9	149.8	144.6	142.9
8	94.8	186.3	186.5	190.3	197.0	198.9	195.8	182.3	169.0	158.9	152.8	151.1
9	84.8	194.2	195.0	200.2	209.1	212.0	208.6	192.5	177.5	166.2	159.8	157.9
10	74.8	200.7	202.1	208.4	219.6	223.5	219.7	200.4	184.2	172.3	165.8	163.4
11	64.8	206.0	208.0	215.0	227.9	232.8	228.6	206.6	189.2	176.9	170.0	167.9
12	54.8	210.0	212.3	219.6	233.0	238.1	233.9	210.9	193.2	180.5	173.6	171.3
13	46.3	212.25	214.68	222.18	235.43	240.5	236.68	214.1	195.79	182.93	175.79	173.5

NOTES TO OUTLINE DRAWING

1. Small cavity contact I. E. C. -67-III-2
2. The metal rimband must be earthed. The hole of 3 mm dia in each lug is provided for this purpose.
3. The screen radius of 533.5 mm applies also to the diagonal.
4. End of guaranteed contour. The maximum contour from reference line towards screen is given by the reference line gauge C (18.13 mm).
5. The configuration of the external conductive coating is optional but contains the contact area as shown in the drawing. The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of 8.5 mm diameter drawn around the true geometrical positions, i.e. at the corners of a rectangle of $392.6 \times 315.9 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. Max. curvatures of the outside tension band are nominal bulbradius +4 mm .
11. Area for clip on tension band. Max. thickness with respect to bulb 8 mm .
12. Distance from reference point Z to any hardware.

CAPACITANCES

Final accelerator to external conductive coating		<	$\begin{aligned} & 1500 \\ & 1000 \end{aligned}$	pF pF
Final accelerator to metal band	$\mathrm{C}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}^{\prime} \text { ' }{ }^{\text {r }} \text {, }}$		400	pF
Cathode to all	C_{k}		5	pF
Grid No. 1 to all	C_{1}		7	pF

FOCUSING electrostatic
DEFLECTION magnetic
Diagonal deflection angle 110°
Horizontal deflection angle 990
Vertical deflection angle 82°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage
Focusing electrode voltage
Grid No. 2 voltage
Grid No. 1 voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5}}$	20 kV	
V_{4}	0 to 400	$\left.\mathrm{~V}^{\mathrm{l}}\right)$
V_{2}	400	V

$\mathrm{V}_{1} \quad-40$ to -77 V

20 kV
0 to $400 \mathrm{~V}^{\text {l }}$)
400 V
$\mathrm{V}_{\mathrm{k}} \quad 36$ to 66 V

[^10]LIMITING VALUES (Design centre rating system, unless otherwise stated)
Final accelerator voltage at $\left.I_{a}, g_{3}, g_{5}=0 \quad V_{a}, g_{3}, g_{5} \begin{array}{l}\max .\end{array} \begin{array}{cc}20 & \mathrm{kV} \\ \min . & \mathrm{kV} \mathrm{l}\end{array}\right)$
Grid No. 4 voltage,
positive
negative
Grid No. 2 voltage
Grid No. 2 to grid No. 1 voltage

V_{4}	max.	1000	V
$-\mathrm{V}_{\mathrm{g}_{4}}$	max.	500	V
V_{g}	max. min.	$\begin{aligned} & 700 \\ & 350 \end{aligned}$	$\left.V^{3}\right)$
$\mathrm{V}_{\mathrm{g}} / \mathrm{g}_{1}$	max.	850	V

Grid No. 1 voltage, positive
positive peak
negative
negative peak

$\mathrm{V}_{g_{1}}$	\max.	0	V
$\mathrm{~V}_{\mathrm{g}_{1 p}}$	\max.	2	V
$-\mathrm{V}_{\mathrm{g}_{1}}$	\max.	150	V
$-\mathrm{V}_{\mathrm{g}_{1 \mathrm{p}}}$	\max.	400	$\left.\mathrm{~V}^{2}\right)$

Cathode to heater voltage,
positive
positive peak
negative
negative peak

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	250	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	\max.	300	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	135	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	\max.	180	V

positive during equipment warm-up
period not exceeding 15 s
$\mathrm{V}_{\mathrm{k} / \mathrm{f}} \quad \max . \quad 410 \quad \mathrm{~V}^{4}$)

1) Absolute maximum rating system.
2) Maximum pulse duration 22% of a cycle but maximum 1.5 ms .
3) At $V_{g_{1} / k}=0 \mathrm{~V}$.
4) Between 15 s and 45 s after switching on a decrease in k / f voltage, linear proportional with time, from 410 V to 250 V is permissible.

CIRCUIT DESIGN VALUES

Grid No. 4 current,

positive	$\mathrm{I}_{\mathrm{g}_{4}}$	\max.	25
negative	$-\mathrm{I}_{4}$	\max.	25
A			

Grid No. 2 current,
positive negative
I_{2}
$-\mathrm{I}_{2}$
$\max . \quad 5 \mu \mathrm{~A}$
$\max . \quad 5 \mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
Resistance between external conductive coating and rimband
$\mathrm{R}_{\mathrm{k} / \mathrm{f}} \quad \max . \quad 1.0 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz}) \max .0 .1 \mathrm{M} \Omega$
$R_{g_{1}} \quad \max . \quad 1.5 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}}(50 \mathrm{~Hz}) \max .0 .5 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{m} / \mathrm{m}} \quad \min .2 \mathrm{M} \Omega$

In order to avoid excessive hum, the A.C. component of the heater to chassis voltage should be as low as possible and must not exceed $20 \mathrm{~V}_{\mathrm{rms}}$.

Final accelerator current as a function of grid No. 1 voltage

7209407

Final accelerator current as a function of cathode voltage

Limits of grid No. 1 cut-off voltage as a function of grid No. 2 voltage

Limits of cathode cut-off voltage as a function of grid No. 2 voltage

T.V. PICTURE TUBE

$50 \mathrm{~cm}(20 \mathrm{in}), 110^{\circ}$, rectangular direct vision picture tube with integral protection for black-and-white T.V. The rimband leaves the edge of the faceplate free.

QUICK REFERENCE DATA		
Face diagonal	50	$\mathrm{~cm} \mathrm{(20} \mathrm{in)}$
Deflection angle	1100	
Overall length	312.5	mm
Neck length	110	mm
Neck diameter	28.6 mm	
Light transmission of face glass	45	$\%$
Focusing	electrostatic	
Bulb	reinforced	
Heating	$6.3 \mathrm{~V}, 300$	mA

SCREEN

Metal backed phosphor
Luminescence white
Light transmission of face glass
,
Useful diagonal
min. 473 mm
Useful width min. 394 mm
Useful height
min. 308 mm

HEATING

Indirect by A.C. or D.C.: series or parallel supply

Heater current	$\mathrm{I}_{\mathrm{f}} 300 \mathrm{~mA}$	
	$\mathrm{~V}_{\mathrm{f}}$	6.3 V

If the tube is connected in a series heater chain the surge heater voltage must not exceed 9.5 Vrms when the supply is switched on.
\longrightarrow MECHANICAL DATA
Dimensions in mm

A50-120W

MECHANICAL DATA (continued)

Dimensions in mm

For notes see page 4

MECHANICAL DATA (continued)
Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H, I.E.C. 67-1-31a
Net weight : approx. 8.5 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .

NOTES TO OUTLINE DRAWING

1. Small cavity contact I.E.C. 67-III-2 .
2. The metal rimband must be earthed. The hole of 3 mm dia in each lug is provided for this purpose.
3. Spherical face plate.
4. End of guaranteed contour. The maximum neck-and-cone contour is given by the reference line gauge C (18.13 mm).
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing.
The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of 8 mm diameter drawn around the true geometrical position i.e. at the corners of a rectangle of $414 \mathrm{~mm} \times 331 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. Max. curvatures of the outside tension band are: nominal bulbradius +4 mm .
11. Distance from reference point Z to any hardware.

MAXIMUM CONE CONTOUR DRAWING

Distance from centre (max. values)															
$\begin{aligned} & \mathrm{Sec}- \\ & \text { tion } \end{aligned}$	Nom distance from point " Z "	0^{0} Long	10°	20°	25°	30°	$32^{\circ} 30^{\prime}$	$36^{\circ} 30^{\prime}$ Diagonal	40°	45°	50°	60°	70°	80°	$\begin{gathered} 90^{\circ} \\ \text { Short } \end{gathered}$
1	157.2	69	69	69	69	69	69	69	69	69	69	69	69	69	69
2	147.2	109.2	107.8	107.1	106.4	100	105.9	105.5	105	104.5	103.9	102.8	102.6	102.8	103.4
3	137.2	136.7	134.5	133.7	133	132.3	131.8	130.7	129.3	127.5	125.3	121.9	120.7	120.2	120.2
4	127.2	157.2	156.5	155.7	154.8	153.8	153	151.5	150	147.5	144.7	138.7	134.9	133.4	132.5
5	117.2	174.2	174	174.4	174.3	173.4	172.8	171	169.3	165.7	160.8	152	146.5	143.7	142.3
6	107.2	185.8	186.3	188.4	190	191.2	191.2	189.5	186.7	181.7	174.7	163.2	156	151.7	150.4
7	97.2	194.5	195.7	202.2	203.8	206.9	207.3	206.4	203.5	196.4	187.4	173	163.5	158.6	156.9
8	87.2	201.7	203.8	210.2	215.4	220.6	222.1	222.2	218.8	210.5	198.8	181.2	170.3	174.7	162.7
9	77.2	208.2	210.6	218.5	224.8	231.4	234.8	236.5	233.5	222.2	208.5	188.5	176.6	169.9	167.9
10	67.2	213.1	215.9	225.2	231.9	239.8	244.3	248.5	244.8	230.3	216	194.7	181.6	174.5	172
11	57.2	215.6	219	228.2	235.4	244.5	249.6	253.7	250.2	235.7	220.5	198.6	184.8	177.2	174.7
12	49.3	217	219.8	229.3	236.6	246	251.2	254.5	251.7	237.2	222	199.6	185.6	177.8	175.7

CAPACITANCES

Final accelerator to external conductive coating	Ca, $\mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}$	$<$	$\begin{aligned} & 1600 \\ & 1100 \end{aligned}$	pF
Final accelerator to metal band	$\mathrm{C}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}^{\prime} \text { ' }{ }^{\text {r }} \text {, }}$		500	pF
Cathode to all	C_{k}		5	pF
Grid No. 1 to all	$\mathrm{C}_{\mathrm{g}_{1}}$		7	pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal 1100
Horizontal deflection angle 98°
Vertical deflection angle 81°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage
Focusing electrode voltage
Grid No. 2 voltage
Grid No. 1 voltage for visual extinction of focused raster

Va, g_{3}, g_{5}
V_{4}
V_{2}
V_{g} -40 to -77 V

Cathode drive service
Voltages are specified with respect to grid No. 1
Final accelerator voltage

$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5}}$	20	kV
V_{4}	0 to 400	V l)
V_{2}	400	V
$\mathrm{~V}_{\mathrm{k}}$	36 to 66	V

1) Individual tubes will have optimum focus within this range. In general an acceptable picture will be obtained with a fixed focus voltage.

LIMITING VALUES (Design centre rating system, unless otherwise stated)
Final accelerator voltage at $\left.\mathrm{I}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5}=0 \quad \quad \mathrm{~V}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} \begin{array}{l}\max .\end{array} \begin{array}{cc}20 & \mathrm{kV} \\ \min . & \mathrm{kV} \mathrm{l}\end{array}\right)$
Grid No. 4 voltage,
positive
negative
Grid No. 2 voltage
Grid No. 2 to grid No. 1 voltage
Grid No. 1 voltage, positive
positive peak
negative
negative peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak
positive during equipment warm-up period not exceeding 15 s
$\mathrm{V}_{4} \quad \max . \quad 1000 \mathrm{~V}$

$-\mathrm{V}_{\mathrm{g}_{4}}$	\max.	500	V
V	\max.	700	V ${ }^{3}$
g_{2}	min.	350	V
$\mathrm{V}_{\mathrm{g}_{2} / \mathrm{g}_{1}}$	max.	850	V

V_{1}	\max.	0	V
$\mathrm{~V}_{1 p}$	\max.	2	V
$-\mathrm{V}_{1}$	\max.	150	V
$-\mathrm{V}_{1 \mathrm{p}}$	\max.	400	V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	250	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	\max.	300	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	135	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	$\max :$	180	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	\max.	410	$\left.\mathrm{~V}^{4}\right)$

1) Absolute maximum rating system.
2) Maximum pulse duration 22% of a cycle but maximum 1.5 ms .
3) At $V_{g_{1} / k}=0 \mathrm{~V}$.
4) Between 15 s and 45 s after switching on a decrease in k / f voltage, linear proportional with time, from 410 V to 250 V is permissible.

CIRCUIT DESIGN VALUES

Grid No. 4 current,
positive
negative
Grid No. 2 current, positive
negative

I_{4}	\max.	25	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g}_{4}}$	\max.	25	$\mu \mathrm{~A}$

$$
\mathrm{Ig}_{2} \quad \max . \quad 5 \mu \mathrm{~A}
$$

$$
-\mathrm{I}_{\mathrm{g}_{2}} \quad \max . \quad 5 \mu \mathrm{~A}
$$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
Resistance between external conductive coating and rimband
$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz}) \max$. $0.1 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}_{1}}$
$Z_{g_{1}}(50 \mathrm{~Hz}) \quad \max \cdot 0.5 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{m} / \mathrm{m}^{\prime}} \quad \min .2 \mathrm{M} \Omega$

In order to avoid excessive hum, the A.C.component of the heater to chassis volt age should be as low as possible and must not exceed $20 \mathrm{~V}_{\mathrm{R}} \mathrm{MS}$.

Final accelerator current as a function of grid No. 1 voltage

Final accelerator current as a function of cathode voltage

Limits of grid No. 1 cut-off voltage as a function of grid No. 2 voltage

Limits of cathode cut-off voltage as a function of grid No. 2 voltage

90° RECTANGULAR COLOUR TELEVISION PICTURE TUBE WITH INTEGRAL PROTECTION

Three-gun temperature-compensated shadow-mask rectangular colour television tube with electrostatic focus, magnetic deflection and convergence, metal-backed three-colour phosphor dot screen. A high white brightness is obtained by the use of improved red, green and blue phosphors at near unity current ratio. Being temperature compensated the shadow-mask makes for optimum field purity and good uniformity during warm-up. Minimum occurrence of the moire effect is ensured by optimizing the mask for the reproduction of 625 -line pictures. The tube has a reinforced envelope and therefore no separate safety screen is necessary. The rimband leaves the edge of the face plate free.

QUICK REFERENCE DATA	
TEMPERATURE-COMPENSATED SHADOW-MASK	
SHADOW -MASK OPTIMIZED FOR 625-LINE SYSTEM	
HIGH WHITE BRIGHTNESS AT UNITY CURRENT RATIO	
Face diagonal	56 cm
Deflection angle	92 o
Neck length	164.2 mm
Envelope	reinforced
Focusing	electrostatic
Deflection	magnetic
Convergence	magnetic
Heating	$6.3 \mathrm{~V}, 900 \mathrm{~mA}$
Light transmission of face glass	53

SCREEN

Metal-backed tricolour phosphor dots Phosphor type

Dot arrangement
Spacing between centres of adjacent dot trios
Light transmission at centre of face glass
\{ Red: Europium activated rare earth (Green and blue: sulphide type Triangular

HEATING

Indirect by A. C. or D.C.; parallel or series supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	900	mA

For maximum cathode life it is recommended that the heater supply be regulated at 6.3 V . If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

CAPACITANCES

Final accelerator to external conductive coating

Final accelerator to metal rimband
Grid No. 1 of any gun to all other electrodes

Cathodes of all guns (connected in parallel) to all other electrodes

Cathode of any gun to all other electrodes

Grid No. 3 (focusing electrode) to all otheŕ electrodes

$\mathrm{Cag}_{5} \mathrm{~g}_{4} \mathrm{~m}$	max. min.	$\begin{aligned} & 2300 \\ & 1700 \end{aligned}$	pF pF
$\mathrm{Cag}_{5} \mathrm{~g}_{4} / \mathrm{m}^{\prime}$		400	pF
C_{1}		7	pF
C_{k}		15	pF
C_{kR}		5	pF
C_{k}		5	pF
$\mathrm{C}_{\mathrm{k} \text { B }}$		5	pF
Cg_{3}		7	pF

FOCUSING electrostatic

DEFLECTION magnetic
Diagonal deflection angle 92°
Horizontal deflection angle 790
Vertical deflection angle 61°
CONVERGENCE magnetic

MECHANICAL DATA

Overall length
Neck lenght
$\left.\begin{array}{l|}\text { Diagonal } \\ \text { Horizontal axis } \\ \text { Vertical axis }\end{array}\right\}$ of bulb

Useful screen
diagonal
horizontal axis
vertical axis
$472.2 \pm 9.5 \mathrm{~mm}$
$164.2 \pm 4.5 \mathrm{~mm}$
$564.2 \pm 2 \mathrm{~mm}$
$484.3 \pm 2 \mathrm{~mm}$
$379.8 \pm 2 \mathrm{~mm}$
min. $\quad 533 \mathrm{~mm}$
min. $\quad 447 \mathrm{~mm}$
min. $\quad 337 \mathrm{~mm}$
Mounting position: any
Net weight: approx. $150 \mathrm{~N}(15 \mathrm{~kg})$
Base: 12 pin base JEDEC B12-244 but with a 5 mm shorter spigot.
Anode contact: Small cavity contact Jl-21, IEC 67-III-2.

MECHANICAL DATA (continued)

Magnetic shielding:
Magnetic shielding should be provided by means of a metal shield extending 24 cm over the cone of the tube measured from the centre of the face plate. The metal shell is preferably constructed of min .0 .5 mm cold rolled steel properly annealed. The air gap between the shield and the metal rimband should be as small as possible and not exceed 10 mm . The magnetic shield should be connected to the outer conductive coating.

NOTES TO OUTLINE DRAWING(See pages 4 and 5)

1. Reference line, determined by the plane of the upper edge of the flange of the reference line gauge, when the gauge is resting on the cone. Gauge see page 10 .
2. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base will fall with in a circle concentric with bulb axis and having a diameter of 55 mm .
3. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
4. To clean this area, whipe only with a solft dry lintless cloth.
5. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
6. Minimum space to be reserved for mounting lug.
7. The position of the mounting screw in the cabinet must be within a circle of 9.5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $476.5 \mathrm{~mm} \times 370 \mathrm{~mm}$.
8. Coördinates for radius $\mathrm{R}=16 \mathrm{~mm}: \mathrm{x}=203.92 \mathrm{~mm}, \mathrm{y}=145.50 \mathrm{~mm}$.

MECHANICAL DATA (continued)
Dimensions in mm

MECHANICAL DATA (continued)

Notes see page 3 .

		Distance from centre (max. values)															
$\mathrm{Sec}-$ tion	Nom. distance from point " Z "	$\begin{aligned} & 0^{\circ} \\ & \text { Long } \end{aligned}$	10°	20°	25°	30°	$33^{\circ} 30^{\prime}$	$\begin{gathered} 35^{\circ} 30^{\prime} 29.4^{\prime \prime} \\ \text { Diagonal } \end{gathered}$	37°	39°	42°	45°	50°	60°	70°	80°	900 Short
1	227.20	79.87	79.87	79.87	79.87	87	79.87	79.87	79.87	79.87	79.87	79.87	79.87	79.87	79.87	79.87	79.87
2	222.60	87.06	87.64	87.57	87.52	87.47	87.43	87.41	87.39	87.37	87.34	87.31	87.26	87.18	87.13	87.09	87.09
3	214.60	103.28	102.93	102.07	101.53	100.96	100.55	100.32	100.15	99.93	99.6	99.29	98.82	98.06	97.58	97.35	97.3
4	206.60	117.96	117.41	115.98	115.05	114.03	113.3	112.87	112.56	112.13	111.51	100.91	109.95	108.3	107.1	106.4	106.18
5	198.60	130.96	130.45	128.93	127.85	126.6	125.65	125.08	124.66	124.08	123.2	122.33	120.89	118.27	116.19	114.80	114.39
6	190.60	142.65	142.33	141.09	140.04	138.72	137.64	136.97	136.46	135.74	134.04	133.49	131.36	127.85	124,78	122.75	122.02
7	182.60	153.27	153.25	152.55	151.7	150.43	149.3	148.56	147.97	147.14	145.8	144.39	141.92	137.01	132.86	130.1	129.12
8	174.60	163	163.32	163.37	162.85	161.77	160.64	159.85	159.21	158.27	156.71	155	151.94	145.71	140.44	136.96	135.73
9	166.60	172.07	172.74	173.65	173.55	172.76	171.64	170.88	170.18	169.14	167.34	165.31	161.59	153.95	147.53	143.36	141.9
10	158.60	180.58	181.6	183.42	183.83	183.42	182.46	181.64	180.9	179.75	177.69	175.3	170.86	161.7	154.13	149.32	147.66
11	150.60	188.58	189.94	192.7	193.7	193.75	192.97	192.15	191.37	190.1	187.73	184.95	179.7	168.95	160.29	154.88	153.04
12	142.60	196.14	197.8	201.52	203.14	203.76	203.22	202.42	201.59	200.14	197.46	194.21	188.09	175.72	166	160.06	158.06
13	134.00	203.27	205:21	209.87	212.17	213.45	213.24	212.46	211.59	210.03	206.86	203.08	196.01	182.01	171.31	164.88	162.75
14	126.60	210.01	212.21	217.77	220.78	222.82	223.01	222.29	221.36	219.63	215.93	211.53	203.43	187.81	176.21	169.37	167.11
15	118.60	216.38	218.82	225.24	228.98	231.87	232.56	231.9	230.91	225.98	224.64	219.53	210.33	193.14	180.74	173.53	171.17
16	110.60	222.42	225.06	232.28	236.75	240.58	241.89	241.31	240.25	238.08	232.98	227.106	216.69	198.01	184.9	177.38	174.94
17	102.60	228.13	230.96	238.91	244.11	248.96	251	250.52	249.39	246.93	240.93	234.188	222.49	202.42	188.71	180.94	178,42
18	94.60	233.31	230.3	244.94	250.88	250.89	259.85	259.54	258.35	255.57	248.48	240.57	227.71	206.38	192.18	184.21	181.64
19	86.60	237.31	240.42	249.69	256.43	263.92	268.3	208.38	267.22	264.13	255.69	246.51	232.3	209.86	195.3	187.2	184.6
20	78.60	240.24	243.42	253.18	260.07	209.8	270.08	270.83	275.80	272.51	202.37	251.08	236.1	212.8	198.05	189.9	187.29
21	70.60	242.23	245.43	255.39	263.22	273.18	280.54	281.74	280. 94	277.51	206.4	254.86	238.59	214.9	200.06	191.89	189.28
22	62.60	243.35	246.56	256.59	264.5	274.68	282.32	283.05	282.92	279.49	268.10	250.4	239.94	216.11	201.22	193.02	190.4
23	57.35	243.81	247.03	257.06	204.98	275.16	282.78	284, 11	283.38	279.97	208.68	256.45	240.49	216.63	201.71	193.49	190.86

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid No. 3 (focusing electrode) voltage
$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{5}, \mathrm{~g}_{4}}$
$\mathrm{~V}_{\mathrm{g}_{3}}$

4.2 to \quad| 25 | kV |
| ---: | ---: |
| 5 | kV |

Grid No. 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{g}_{1}}=-105 \mathrm{~V}$
Grid No. 1 voltage for spot cut-off at $\mathrm{V}_{2}=300 \mathrm{~V}$
Brightness at the centre of the screen
V_{g}
210 to $495 \mathrm{~V}^{1}$)
V_{g}
-70 to -140 V 2)
See page 21

EQUIPMENT DESIGN VALUES (each gun if applicable)
Valid for final accelerator voltages between 20 kV and 27.5 kV .
Grid No. 3 (focusing electrode) voltage

Grid No. 2 voltage ${ }^{1}$)

Grid No. 1 voltage for visual extinction of focused spot (cut-off voltage) 2)
Difference in cut-off voltages between guns in any tube
Grid No. 3 (focusing electrode) curre
Grid No. 2 current
Grid No. 1 current at $V_{g_{1}}=-150 \mathrm{~V}$
To produce white of the following CIE coördinates

Percentage of total anode current supplied by each gun (typical)
red gun
green gun
blue gun
Ratio of anode currents red gun to green gun

Ratio of anode current red gun to blue gun
$\Delta V_{g_{1}}$
$\mathrm{V}_{\mathrm{g}_{3}}$
$\mathrm{V}_{\mathrm{g} 2}$
V_{g}
I_{3}
I_{2}
I_{g}
16.8 to 20% of final accelerator voltage

See cut-off design chart page 22

See cut-off design chart page 22
lowest value is min. 65% of highest value

-15 to	+15	$\mu \mathrm{~A}$
-5 to	+5	$\mu \mathrm{~A}$
-5 to	+5	$\mu \mathrm{~A}$

	$3)$	$4)$	$5)$	
x	0.310	0.265	0.281	
y	0.316	0.290	0.311	
	43.5	27.9	32.2	$\%$
	30.0	34.9	35.6	$\%$
	26.5	37.2	32.2	$\%$
\min.	1.05	0.60	0.65	
av.	1.45	0.80	0.90	
\max.	2.00	1.10	1.25	
\min.	1.20	0.55	0.75	
av.	1.65	0.75	1.00	
\max.	2.25	1.05	1.35	

Notes see page 8.

EQUIPMENT DESIGN VALUES (continued)

Required centring, measured at the centre of the screen in any direction
$\max .13 \mathrm{~mm}$
Correction which must be supplied by purifying magnet to compensate for mis-register (including caused by earth's magnetic field) when using recommended components. Measured at the centre of the screen in any direction.

Lateral distance between the blue spot and the converged red and green spots
Radial convergence displacement excluding effects of dynamic convergence (each beam) $\max .115 \mu \mathrm{~m}$
$\max .6 \mathrm{~mm}$ (in both directions)
$\max .9 \mathrm{~mm}{ }^{6}$) (inboth directions)

1) This range of Vg_{2} has to be used when in circuit design fixed values for cut-off of the three guns are used.
${ }^{2}$) This range of $V_{g_{1}}$ has to be used when in circuit design fixed values for $V_{g_{2}}$ of the three guns are used.
${ }^{3}$) To produce colour pictures with the best possible quality, this white point should be used as the transmission systems are based on this point. (Point C)
${ }^{4}$) To produce black/white pictures a more bluish white point would be preferable. This white point corresponds virtually with the white point of current black/white picture tubes.
2) This point is a compromise between the white point C and the white point $x=0.265$ and $y=0.290$, given in order to enable good rendition of colour and black-andwhite pictures with one white point.
3) Dynamic convergence to be effected by currents of approximately parabolic waveshape synchronized with scanning.

LIMITING VALUES (Each gun if applicable)(Design centre rating system unless otherwise specified)

Final accelerator voltage
Average current for 3 guns
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage, peak, including video signal voltage

Grid No. 1 voltage, negative
negative, operating cut-off positive
positive péak
Cathode to heater voltage, positive
positive peak
negative
negative peak
$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{5}, \mathrm{~g}_{4}}$

$$
\mathrm{I}_{\mathrm{a}}
$$

V_{3}
$\mathrm{V}_{\mathrm{g}_{2} \mathrm{p}}$

V_{g}
V_{g}
V_{kf}
$\mathrm{V}_{\mathrm{kf}}^{\mathrm{p}}$
$-\mathrm{V}_{\mathrm{kf}}$
$-\mathrm{V}_{\mathrm{kf}}^{\mathrm{p}}$

max.	27.5	$\left.\left.\mathrm{kV}{ }^{1}\right)^{2}\right)^{3}$)
min.	20	$\left.\mathrm{kV}^{1}\right)^{4}$)
max.	1000	$\mu \mathrm{A} 5)$
max.	6000	V
max.	1000	V
max.	400	V
\max.	200	V
max.	0	V
max.	2	V
max.	250	$\left.\mathrm{V}^{6}\right)^{7}$)
max.	300	V
max.	135	V
max.	180	V

1) Absolute max. rating system.
2) The X-ray dose rate remains below the acceptable value of $0.5 \mathrm{mr} / \mathrm{h}$, measured with ionization chambre when the tube is used within its limiting values.
${ }^{3}$) For optimal operating conditions the final accelerator voltage has to be stabilized. Therefore its absolute maximum value can be approached in actual operation and for this reason this value is given instead of the design centre value. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs the brightness and resolution and may have a detrimental effect on colour purity.
3) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
4) In order to avoid excessive hum the a.c. component of the heater to chassis voltage should be as low as possible and must not exceed $20 \mathrm{~V}_{\mathrm{rms}}$.
5) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{kf}}$ is allowed to rise to 410 V . Between 15 s and 45 s after switching on a decrease in V_{kf} proportional with time from 410 V to 250 V is permissible.

REMARK

With the high voltage used with this tube (max. 27.5 kV) internal flash overs may occur, which may destroy the cathode(s). Therefore it is necessary to provide protective circuits, using spark gaps.
The sparkgaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.
Additional information available on request.

REFERENCE LINE GAUGE

DESCRIPTION OF THE TUBE

The A56-120X is a rectangular temperature compensated shadow-mask colour picture tube for use in colour television receivers. The tube can display a picture, either in full colour or in black and white, on an almost rectangular, almost flat screen, with rounded-off corners of small curvature. Mounting the tube with the screen protruding through the cabinet front is possible since the rimband is clamped some distance from the screen edge. The minimum useful screen area measures $447 \mathrm{~mm} \times 337 \mathrm{~mm}$ and has a projected area of $1471 \mathrm{~cm}^{2}$
The A56-120X has

- a deflection angle of 92°
- a neck diameter of 36.5 mm
- a three-colour phosphor dot screen, composed of closely spaced dots in a regular pattern of tri-angular groups, each containing a red, a green and a blue light emitting dot.
- Three electron guns with axes tilted towards the screen centre, with electrostatic focusing systems and mounted side by side in the neck of the tube 120° apart.
Colour selection is effected by a metal graded-hole shadow mask positioned in front of the tricolour phosphor-dot screen. This mask is aligned with the dot pattern so that the electron beam from each gun lands only on phosphor dots of the associated colour.
The shadow mask has graded holes that increase gradually in diameter from the edge of the mask towards the centre. Grading enables correct purity to be achieved over the whole screen with minimum adjustment.
Although the three guns are tilted towards the screen centre so that their axes intersect at the shadow mask, lateral and radial convergence are necessary to ensure correct convergence over the entire screen. Each of the three guns is therefore provided with a pair of radial converging pole pieces.
Radial convergence can be achieved by means of magnets and coils mounted externally on the neck of the tube. The magnetic flux provided is coupled through the glass neck of the tube to associated internal pole pieces. The shape of the pole pieces, together with the internal magnetic shielding, is shown in Fig.1. Internal shielding prevents interaction of the various magnetic fields.

Fig. 1

Fig. 2 shows the position of the components on the neck of the tube.
Lateral convergence is achieved by a separate assembly mounted on the neck of the tube. This assembly causes horizontal movement of the blue beam, and simultaneously, movements of the red and green beams in the opposite direction.
Facilities for dynamic blue lateral convergence are also provided in this convergence assembly.

APPLICATION NOTES

1. Magnetic shielding

The tube should be fitted with a magnetic shield around the cone, to minimize the effects of external magnetic fields, including the horizontal, vertical and axial components of the earth's magnetic field. The latter so influences the colour purity that compensation by means of the purifying magnets is not possible.
The metal shield should preferably be constructed of coldrolled steel, at least 0.5 mm thick and properly annealed at $850^{\circ} \mathrm{C}$. Since the tube re-inforcing band is an essential part of the magnetic circuit used for degaussing, the air gap between the band and the shield should be as small as possible and certainly not more than 10 mm . To be effective, the shield must be degaussed as described under "Adjustment procedures". Building-in of an automatic degaussing system is advised.
2. Centring of raster on the screen.

Raster centring in a shadow-mask colour picture tube is achieved by passing direct current of the required value through each pair of deflection coils. The values for raster displacement given in the data apply when all components are properly adjusted.
3. Component considerations.

The necessary components are the deflection coil, the radial convergence assembly, the purifying magnets and the blue lateral convergence magnet.
Basically the functions of the components are:

- deflection of the three beams over the entire screen: deflection coil.
- good convergence of the three beams over the screen: radial convergence assembly and blue lateral convergence magnet.
- landing adjustment: purifying magnets and deflection coil

The mounting positions of the components are as follows:
The deflection coil: in such a way that its deflection centre coincides with the one used in the screen-laying process during manufacturing. The coil must therefore be designed so that sufficient movement in the axial direction is possible.

The radial convergence assembly: with its pole pieces centred above the convergence pole pieces inside the tube. Initially, the assembly should be mounted upright. Small rotations of the whole assembly influence the convergence and can be used during adjustment of the blue lateral correction to obtain optimum lateral convergence.

APPLICATION NOTES (continued)

The purifying magnets: over the gap between the electrode g 3 and g 4 of the gun, or still closer to the deflection coil. Placing the purifying magnets closer to the base results in poorer performance as the spot quality is adversely affected.

The blue lateral convergence magnet: as near as possible to the rear side of the purifying magnets but not shifted backwards more than halfway along electrode g3 of the gun.

3.1 Convergence

Static convergence, i.e. convergence of the three beams onto the centre of the screen, is usually accomplished with permanent magnets which are part of the radial convergence assembly, or with D.C. currents through the convergence coils in combinations with the lateral converging magnet.
The strength of the magnetic field that is adjustably coupled to the radial convergence pole pieces of the gun should be such that each beam can be moved 9 mm in both directions towards the centre of the screen excluding effects of dynamic convergence. The static blue lateral convergence magnet should provide a magnetic field adjustable in magnitude and polarity.
This field exerts a directive force on the blue beam and simultaneously a force in the opposite direction on the green and the red beams.
The displacement of the blue beam opposite to the movement of the red and green beams should be 6 mm in both directions.
With these four adjustable magnetic fields static convergence of the three beams can be attained.
For good convergence over the entire screen dynamic radial convergence is required together with a small amount of dynamic lateral convergence in line direction.
The radial convergence assembly consists fundamentally of three cores with associated windings. Through the windings are passed the necessary currents for maintaining convergence when the beams are deflected over the screen.
The required form of the currents can be obtained by adding a current with a sawtooth wave form to one with a parabolic wave form. Two separate windings are required for correction in the horizontal and the vertical direction. The parabolic and sawtooth currents should be adjustable in amplitude and the sawtooth currents and the vertical blue parabola should, in addition be adjustable in polarity.
The blue lateral convergence magnet consists of a core and associated windings to obtain dynamic lateral convergence in line direction.

3.2 Landing

Landing is defined as the relative position of each beam with respect to its as sociated phosphor dot.
Good landing is achieved when each beam excites only its associated colour phosphor dot.
Optimum landing is achieved by adjusting both the purifying magnets and the deflection coil.

APPLICATION NOTES (continued)

3.2.1 Purifying magnets

Purifying magnets are required to compensate for the effects of outside magnetic fields, (including the earth's magnetic field), and manufacturing variations, which could cause mislanding.
Such purifying magnets, designed to provide a magnetic field adjustable in magnitude and direction, effect good landing over the entire screen when the deflection coil position is properly adjusted.

3.2.2 Deflection coil

The position of the deflection centre must be adjustable to make sure that proper landing can be attained in any set. To achieve this the deflection coil should be free to move along the neck over a minimum distance of 12 mm from its most forward position when the purity adjustment is made with the aid of a microscope, or about 20 mm if purity is adjusted by means of the socalled "red ball" method. (See 6.1.2.1.)
4. Drive requirements

To calculate the drive voltages which should be supplied to the tube the following points should be taken into account.
4.1 In presently known systems the luminance signal is composed as follows: $\mathrm{Y}=0.30 \mathrm{R}+0.59 \mathrm{G}+0.11 \mathrm{~B}$.
The colour information is carried by two chrominance signals which in the receiver after subcarrier detection, deliver the so-call colour difference signals $\mathrm{R}-\mathrm{Y}, \mathrm{G}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$.
These have to be combined with the Y-signal in a matrix circuit to recover the original red, green and blue signals. With the aid of the luminance signal equation it is possible to calculate the maximum voltage ranges for the colour difference signals. The maximum values are reached when the primary colours and their complementaries are produced at maximum brightness.
These values are tabulated below. All values are referred to the maximum value $\mathrm{Y}=\mathrm{R}=\mathrm{G}=\mathrm{B}=1$ for peak white and are considered positive if they cause an increase in beam current.

Colour	R	G	B	Y	R-Y	G-Y	B-Y
Red	1	0	0	0.3	0.7	-0.3	-0.3
Green	0	1	0	0.59	-0.59	0.41	-0.59
Blue	0	0	1	0.11	-0.11	-0.11	0.89
Cyan	0	1	1	0.7	-0.7	0.3	0.3
Magenta	1	0	1	0.41	0.59	-0.41	0.59
Yellow	1	1	0	0.89	0.11	0.11	-0.89

APPLICATION NOTES (continued)

Signal
$\mathrm{R}-\mathrm{Y}$
$\mathrm{G}-\mathrm{Y}$
B-Y

Minimum
-0.7
-0.41
-0.89

Maximum
0.7
0.41
0.89

Total range
1.4
0.82
1.78

In practice the saturation of the colours is lower than that of the primary colours as considered above, so that the demands on the colour difference signals can be lower than those indicated.
4.2 The combining of the Y-signal with the $\mathrm{R}-\mathrm{Y}, \mathrm{G}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals can be performed by two methods:

Method 1. Letting the picture tube perform the matrix function by driving the cathodes with the luminance signal while putting the colour difference signals onto the three first grids of the picture tube. (colour difference drive)
Method 2. By means of a separate matrix circuit that delivers red, green and blue signals to the picture tube. (R.G.B. drive). If fed to the three cathodes these signals attain the same maximum amplitudes as the Y -signal in the first method, and it should be remembered that each channel requires full video bandwidth.
In both methods it should be recognized that with cathode drive a higher slope is obtained than with grid drive and to compensate for this higher drive voltages are required for grid drive in each case. For grid drive the relation between grid drive voltage $\left(\mathrm{V}_{\mathrm{drg}}\right)$ and beam current $\left(\mathrm{I}_{\mathrm{a}}\right)$ is approximately:

$$
\mathrm{I}_{\mathrm{a}}=\mathrm{k} \frac{\mathrm{~V}_{\mathrm{drg}}{ }^{3}}{\mathrm{~V}_{\operatorname{cog}}^{3 / 2}} \quad \begin{aligned}
& \left(\mathrm{I}_{\mathrm{a}} \text { in } \mu \mathrm{A}\right) \\
& \left(\mathrm{V}_{\mathrm{cog}} \text { is cut-off voltage for grid drive }\right) \\
& (\mathrm{k}=\mathrm{k} \text { factor })
\end{aligned}
$$

For cathode drive this function reads:

$$
\mathrm{I}_{\mathrm{a}}=\frac{\mathrm{k}(1+\mathrm{D})^{3}}{\left(1+\mathrm{D} \frac{\mathrm{~V}_{\mathrm{drk}}}{\mathrm{~V}_{\text {cok }}}\right)^{3 / 2} \cdot\left(\mathrm{~V}_{\text {cok }}\right)^{3 / 2}} \quad \begin{aligned}
& \left(\mathrm{V}_{\mathrm{drk}}=\text { cathode drive voltage }\right) \\
& \left(\mathrm{V}_{\mathrm{cok}}=\begin{array}{c}
\text { cut } \\
\text { drive })
\end{array}\right.
\end{aligned}
$$

(D = penetration factor)
This shows that there is a difference in sensivity between the two drive techniques, and that the relationship between them is not strictly linear. In practice the best result is obtained if the gridsignal amplitudes are made 20% larger than the corresponding cathode signal amplitudes.
4.3 Unequal currents are required for the red, green and blue signals to produce white as the efficiencies of the red, green and blue phosphors are different. (See Equipment Design Values)
4.4 Spread occuring in picture tube properties:
(1) k factor, (2) penetration of $g 2$ (D) and (3) phosphor efficiencies.

APPLICATION NOTES (continued)

(1) The k factor, having a nominal value of 3.0 , spreads between 2.6 and 3.1 but it can be derived from the $I_{a}=f\left(V_{d r}\right)$ graph for cathode drive that compensation for this spread is attainable when the luminance drive stage is capable of producing approx. 6 volts more than the nominal peak drive needed for the red gun.
(2) The penetration D may spread from 0.18 to 0.40 with a nominal value of 0.29 and is experienced as a spread in V_{co}. It can be offset - if required - by adjustment of $\mathrm{V}_{\mathrm{g}_{2}}$ (See page 22).
(3) Phosphor efficiencies: the ratios of cathode currents for white having, for example, CIE x and y coordinates:
$\mathrm{x}=0.281$ and $\mathrm{y}=0.311$, may spread as follows:
$\frac{\mathrm{I}_{\mathrm{R}}}{\mathrm{I}_{\mathrm{G}}}=0.90$ with a min. value of 0.65 and a max. value of 1.25
$\frac{\mathrm{I}_{\mathrm{R}}}{\mathrm{I}_{\mathrm{B}}}=1.00$ with a min. value of 0.75 and a max. value of 1.35
In calculations, for the worst case the values $\mathrm{IR}_{\mathrm{R}} / \mathrm{I}_{\mathrm{G}}=1.25$ and $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{B}}=1.35$ should be used if the compromise white point is chosen $(x=0.281 y=0.311)$. If the white point C is chosen for reproduction of colours then for the worst case the current ratio values, $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{G}}=2.00$ and $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{B}}=2.25$ should be used.
5. Raster shape correction

It appears that for 90° deflection the combination of picture tube and deflection coil can give good convergence and landing, but it is not practical to design the combination such that a perfectly rectangular raster is obtained. To avoid the pin cushion raster which results it is necessary to provide raster correction electrically by modulating the deflecting current.
6. Adjustment procedures

The following procedures are suggested to ensure good landing, optimum convergence of the three beams over the entire area of the screen and good grey scale tracking.

Exact focusing is the final operation in the sequence of adjustments, see 6.3. When starting the sequence it is sufficient to adjust the convergence test pattern for optimum sharpness.

Prior to the adjustment procedure the picture tube has to be degaussed. This treatment will correct for localized areas of colour impurity resulting from any magnetization of the shield and internal tube parts and minimize the effect of the earth's magnetic field. Degaussing can be obtained by a coil that consists of 800 turns of 0.7 mm dia. enamelled copper wire (for $220 \mathrm{~V}_{\mathrm{rms}}$) and has an outer diameter of approx. 300 mm .
The coil should be moved such that the entire screen is subjected to its field. After about 10 seconds, the coil is moved away from the face plate to a distance of at least 2 m and disconnected from the A.C. power supply.

APPLICATION NOTES (continued)

During manufacture the receiver chassis should be degaussed in a similar manner, with the receiver switched on and care should be taken that the assembly line is properly degaussed. An automatic degaussing system built into the receiver serves for degaussing during normal operation.
It is recommended that the receiver has some adjustments made before the picture tube is built in. These adjustments should include EHT and deflection, and the dynamic convergence in order to facilitate the adjustment of purity and static convergence. Before deflection power and high voltage are applied to the tube, the bias control should be adjusted for maximum bias. After deflection power and high voltage are applied, the beam currents should be increased gradually to minimize the possibility of tube damage in the event of circuit faults. With the application of a test signal, initial adjustment of focus, raster size, linearity and centring should be made.
6.1 Colour purity and convergence procedures

The normal sequence involves, first, static convergence adjustment next the purifying magnet and adjustment of the axial position of the deflection coil, and lastly final adjustment of dynamic convergence.

6.1.1 Static convergence adjustment

A crosshatch pattern is the most suitable signal for convergence adjustments. The pattern should be displayed at moderate brightness to improve the accuracy. It is advisable to converge red and green first, with the blue gun cut off, and then to converge blue into the yellow pattern formed by the coinciding of red and green lines.
The red and green beams are made to converge statically by adjusting the permanent magnets of the radial convergence assembly, or the corresponding D.C. currents. Correct convergence is obtained when the lines in the centre converge to give yellow.
Before the blue lateral convergence magnet is used, the blue lines are brought horizontally adjacent to the yellow lines by means of the radial blue static convergence adjustment (permanent magnet or D.C. current).
Hereafter the blue lines are made to converge with the yellow lines in the centre with the aid of the blue lateral convergence magnet, resulting in white lines in the centre. If necessary this procedure is repeated.

6.1.2 Adjustment for colour purity

Adjustment for colour purity involves two steps:
Adjustment of the purifying magnets. (6.1.2.1)
Adjustment of the position of the deflection coil. (6.1.2.2)
To obtain optimum adjustment, the static and dynamic convergence should be adjusted previously and the picture tube degaussed and well warmed up to normal operating temperature (approx. 30 min , total beam current $600 \mu \mathrm{~A}$). Purity assessments are best made on a plain raster.

APPLICATION NOTES (continued)

Adjustment of the purifying magnets influences purity all over the screen. The deflection coil adjustment influences purity mainly at the screen edges. Therefore, the magnets have to be adjusted before the coil.
6.1.2.1 The purifying magnets are adjusted, judging by the landing in the screen centre. There are two ways of doing this.
The first method makes use of a microscope (magnification about 50x). With this method, the deflection coil need not possess more axial adjustment margin than that needed to cope with the spreads of the deflection centres. (12 mm total).
With the microscope, the position of the spot trio's is compared with the position of the phosphor dot trio's at the screen centre. To do this, the three colour rasters are displayed simultaneously, and the phosphor dots are illuminated by means of a light source, shining onto the screen at a small angle. The spot trio's should be made to land on the phosphor dot trio's as shown in Fig.1, with their centre points coinciding.
Due to the beam grouping used in this tube (which improves the overall landing) the spots will then be approx. $25 \mu \mathrm{~m}$ eccentric with respect to their corresponding phosphor dots.

Fig.1. Correct landing in the screen centre.
The second method ("Red ball" method) is applicable if the mounting of the deflection coil is such that it can be drawn away approx. 20 mm backwards from its foremost position when it touches the funnel.
The coil is moved backwards as far as possible, and only the red raster is turned on. (The red gun needs relatively the highest current, thus mislanding on blue and green phosphor dots is seen more clearly so that a sharp indication is obtained).
Now a red area of approx. 10 cm diameter is visible on the screen, surrounded by discoloured and blue and green areas. With the aid of the purifying magnets, the red area is positioned near the screen centre. In or der that the above mentioned beam grouping shows to full adventage, the red area should be positioned 20 mm down to the left of the screen centre, see Fig. 2.

APPLICATION NOTES (continued)

Fig. 2
6.1.2.2 After adjustment of the purifying magnets, the deflection coil is adjusted by shifting it axially until optimum landing over the entire screen is reached. This can be done in two stages:

1. Only the red raster turned on, and the coil position giving an overall pure red raster sought.
2. For the final adjustment, a white raster is displayed and, if necessary, very slight adjustment of the deflection coil position made to obtain the best white uniformity.
After having completed 1 and 2, the red, green and blue rasters are checked
separately for their purity, and if necessary the procedure repeated.

6.1.3 Adjustment of dynamic convergence

Just as for the static convergence a crosshatch pattern is recommended, displayed at low brightness.
It is advisable to adjust first the convergence in the vertical direction (with frame frequency) and then the horizontal convergence (with currents of line frequency). During the dynamic convergence adjustments, the static convergence (6.1.1) may need readjustment depending on the efficiency of any clamping circuits used.

A favourable sequence is to adjust the red and green convergence controls first so that both rasters coincide to display yellow lines while the blue gun is kept cut-off. Thereafter the blue pattern is added and adjusted to coincide with the yellow to give a white pattern. However, as the blue horizontal convergence system usually has a significant power consumption which influences the line time base to some degree, it is often advisable to start the whole convergence procedure by adjusting the blue horizontal convergence controls coarsely to give a straight blue horizontal centre line.

During the vertical dynamic convergence adjustment, the vertical axis of the screen should be taken as reference, while the horizontal adjustments should be referred to the horizontal axis. During the latter sequence the lateral blue dynamic convergence is also adjusted.

APPLICATION NOTES (continued)

The currents for dynamic convergence (except blue lateral) consist of two components, viz. one of parabolic and one of sawtooth wave form. Usually both have their own controls which have to be adjusted in combination to obtain convergence. The parabolic ("amplitude") controls are used to make the configurations at the extremities of the picture axis equal to that at the centre. With the sawtooth ("phase" or "tilt") control the two extremities of the picture axis are made equal to each other as far as possible.
In addition, the blue horizontal convergence needs an extra waveform correction to correct for the tilting of the outer edges.
The blue lateral waveform needed is basically a sawtooth. Left-to-right asymmetry can be adjusted by slight rotation of the radial convergence assembly.

By repeated adjustments of the controls the line patterns in the various colours ultimately coincide and become parallel to each other. Thereafter these are made to coincide with the aid of the static convergence magnets to white lines .

After convergence onto the axes is obtained, usually some errors in the corners of the picture remain. Slight readjustment may be needed to minimize these errors.

At the end of the procedure purity is checked, and readjusted if needed, with the aid of the purifying magnets.
6.2 Adjustment of grey scale

This adjustment is carried out last of all and the sequence of the manipulations depends on receiver circuitry.

To obtain a constant hue of white over the whole grey scale when displaying a monochrome signal, the three guns must track accurately. This can be achieved by adjusting two points of each gun characteristic, one near cut-off and one near the highlights. To this end the following variables are available, and in a receiver two of them must be made adjustable for each gun:

1. cut-off point $\left(\mathrm{V}_{\mathrm{g}}\right)$
2. slope $\left(\mathrm{Vg}_{2}\right)$
3. drive

The proper adjustment procedure depends on receiver circuitry. After adjustment, the brightness and contrast controls should not cause any change in hue, and the chosen white point should be displayed.

6.3 Focusing

The focusing voltage for all three guns can be adjusted via the common focus base pin No.9. In order to obtain optimum focus it is recommended to use a black-and-white picture with a low peak to mean brightness ratio, such as the RMA test picture, running at a total mean current of about 1 mA (peak currents in the three guns in the order of 2.5 mA), and to focus at the highlights. This procedure will give best overall focus.

Brightness at the centre of the screen as a function of $I_{\text {total }}$ for white CIE coordinates
$x=0.310, y=0.316 \quad 3$)

Brightness at the centre of the screen as a function of $I_{\text {total }}$ for white CIE coordinates
$x=0.265, y=0.290 .4$)

Brightness at the centre of the screen as a function of $I_{\text {total }}$ for white CIE coordinates
$x=0.281, y=0.3115$)

Scanned area $447 \mathrm{~mm} \times 337 \mathrm{~mm}$

[^11]

Colour coordinates

	x	y
	0.630	0.340
red	0.315	0.600
green	0.35	
blue	0.150	0.060

T.V. PICTURE TUBE

59 cm (23 inch), 110°, rectangular direct vision picture tube for black- and white T.V. with integral protection.

QUICK REFERENCE DATA		
Face diagonal	59 cm (23 inch)	
Deflection angle	110°	
Overall length	359	mm
Neck length	110 mm	
Neck diameter	28.6 mm	
Light transmission of face glass	45	$\%$
Focusing		electrostatic
Bulb	6.3	$\mathrm{~V}, 300$
Heating	mA	

SCREEN

Metal backed phosphor
Luminescence white
Light transmission of face glass
Useful diagonal
48/75 \%

Useful width
min. 566 mm

Useful widn
min. 489 mm
Useful height
min. 385 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply
Heater current
Heater voltage

I_{f}	300	mA
$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

A59-11W

MECHANICAL DATA (continued)
Dimensions in mm

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H
Net weight: approx. 13 kg
${ }^{6}$ The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

For notes see page 5.

		Distance from centre (max. values)										
$\begin{gathered} \mathrm{Sec}- \\ \text { tion } \end{gathered}$	Nom, distance from point " Z "	0^{0} Long	10°	20°	30°	$35^{\circ} 23^{\prime}$ Diagonal	40°	50°	60°	70°	80°	$\begin{aligned} & 90^{\circ} \\ & \text { Short } \end{aligned}$
1	190	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5
2	183	101.2	101.2	101.2	101.2	101.2	101.2	101.2	101.2	101.2	101.2	101.2
3	173	130.3	131.0	131.1	129.6	127.9	126.3	123.5	121.8	121.1	120.7	121.1
4	163	154.5	155.0	155.8	152.0	149.1	146.6	142.1	138.6	136.8	136.4	136.8
5	153	175.0	175.7	176.1	172.9	168.8	165.6	159.3	154.2	151.0	149.7	149.8
6	143	192.7	193.7	194.3	191.9	187.2	183.1	175.4	168.7	164.4	161.5	161.0
7	133	207.9	209.4	210.9	209.0	204.1	199.3	190.2	181.8	176.2	171.9	170.5
8	123	221.0	222.8	225.4	224.6	220.3	215.0	203.9	193.8	186.5	181.2	178.8
9	113	231.8	233.8	238.1	239.2	235.7	230.3	216.5	204.4	195.7	189.5	186.9
10	103	241.5	243.6	248.7	252.6	250.3	244.7	228.3	214.4	203.7	196.8	194.1
11	93	249.6	252.0	258.5	264.4	263.9	258.2	239.1	223.2	211.0	203.3	200.9
12	83	255.9	258.7	266.2	274.9	276.3	271.0	249.0	230.6	217.1	208.8	206.5
13	73	260.7	263.7	272.3	284.4	287.6	282.8	257.7	236.3	221.7	213.2	210.7
14	63	264.0	267.1	276.6	292.0	297.2	292.7	264.4	240.3	224.8	216.3	213.7
15	53	265.9	269.1	279.0	296.2	302.3	297.7	267.7	242.8	226.7	218.0	215.2
16	47.8	266.25	269.45	279.37	297.01	303.0	298.64	268.44	243.25	227.23	218.35	215.5

NOTES TO OUTLINE DRAWING

1. Opening of the metal rim band (see detail A). Eccentricity with respect to centre of screen max. 1.5 mm .
2. Small cavity contact.
3. 8 tags for earthing the rim band. The metal rim band must be earthed by means of these tags. No electrical contact between theband and the mounting lugs can be guaranteed.
4. Meniscus of resin filler on screen.
5. The screen radius of 1012 mm applies to the centre area of the screen.
6. The screen radius of 700 mm applies to the major axis and the diagonal.
7. End of free zone. The maximum contour from reference line towards screen is given by the reference line gauge C (18.13 mm).
8. Cancelled.
9. The configuration of the external conductive coating is optional but contains the contact area as shown in the drawing. The external conductive coating must be earthed.
10. This area must be kept clean.
11. Minimum space to be reserved for mounting lugs.

The mounting screws in the cabinet must be situated inside a circle of 9.5 mm diameter drawn around the true geometrical position i.e. corners of a rectangle of $522 \times 370.5 \mathrm{~mm}$.
12. The deviation of any lug with respect to the plane through the other three lugs is max. 2 mm .

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal band
Cathode to all
Grid No. 1 to all

$\mathrm{C}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}}$	<2500 >1700 pF pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}^{\prime}}$	350 pF
C_{k}	4
C_{g}	pF
	6 pF

FOCUSING electrostatic
DEFLECTION magnetic
Diagonal deflection angle 110°
Horizontal deflection angle 99°
Vertical deflection angle 82°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service
$\left.\begin{array}{llrl}\text { Final accelerator voltage } & \mathrm{V}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} & 20 & \mathrm{kV} \\ \text { Focusing electrode voltage } & \mathrm{V}_{4} & 0 \text { to } 400 & \mathrm{~V} \\ \\ \text { l }\end{array}\right)$

Cathode drive service

Voltages are specified with respect to grid No. 1
$\left.\begin{array}{llrl}\text { Final accelerator voltage } & \mathrm{Va}_{2}, \mathrm{~g}_{3}, \mathrm{~g}_{5} & 20 & \mathrm{kV} \\ \text { Focusing electrode voltage } & \mathrm{V}_{4} & 0 \text { to } 400 & \mathrm{~V} \\ \hline\end{array}\right)$
${ }^{1}$) Voltage range to obtain optimum overall focus at $100 \mu \mathrm{~A}$ beam current.

LIMITING VALUES (Design centre rating system, unless otherwise stated)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5}=0$

$$
\mathrm{V}_{\mathrm{a}, \mathrm{~g}_{3}, \mathrm{~g}_{5}} \begin{array}{llll}
\max . & 20 & \mathrm{kV} \\
\min . & 11 & \mathrm{kV} \mathrm{l}
\end{array}
$$

Grid No. 4 voltage,
positive
positive peak
negative
Grid No. 2 voltage
Grid No. 2 to grid No. 1 voltage
Grid No. 1 voltage,
positive
positive peak
negative
negative peak
Cathode to grid No. 1 voltage,
positive
positive peak
negative
negative peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak
positive during equipment warm-up period not exceeding 15 s

V_{4}	$\max .1000$	V	
$\mathrm{~V}_{4} \mathrm{p}$	$\max .2500$	V	$\left.{ }^{2}\right)$
$-\mathrm{V}_{\mathrm{g}_{4}}$	$\max .500$	V	
$\mathrm{~V}_{\mathrm{g}_{2}}$	$\max .700$	V	$\left.{ }^{3}\right)$
min. 350	V		

$\mathrm{V}_{2} / \mathrm{V}_{\mathrm{g}_{1}} \max .850 \mathrm{~V}$

$\mathrm{V}_{\mathrm{g}_{1}}$	max.	0	V
$\mathrm{~V}_{1 \mathrm{p}}$	\max.	2	V
$-\mathrm{V}_{1}$	\max.	150	V
$-\mathrm{V}_{1}$	\max.	400	V
$\mathrm{~g}_{1 \mathrm{p}}$	$\left.{ }^{2}\right)$		

$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}}$
$\mathrm{~V}_{\mathrm{k} / \mathrm{g}_{1 \mathrm{p}}}$
$-\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{1}$
$-\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{1 \mathrm{p}}$
$\max .150 \mathrm{~V}$
$\max .400 \mathrm{~V}^{2}$)
$\max . \quad 0 \mathrm{~V}$
$\max .2 \mathrm{~V}$

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	$\max .150$	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	\max.	400
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	135
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	\max.	180
		V

$\left.\mathrm{V}_{\mathrm{k} / \mathrm{f}} \quad \max .410 \quad \mathrm{~V} \quad 4\right)$
${ }^{1}$) Absolute maximum rating system.
${ }^{2}$) Maximum pulse duration 22% of a cycle but maximum 1.5 ms .
3) At $V_{g_{1}} / \mathrm{k}=0 \mathrm{~V}$.
${ }^{4}$) Between 15 s and 45 s after switching on a decrease in k / f voltage, linear proportional with time, from 410 V to 250 V is permissible.

CIRCUIT DESIGN VALUES

Grid No. 4 current,
positive
negative
Grid No. 2 current, positive negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No.l circuit resistance
Grid No. 1 circuit impedance
Resistance between external conductive coating and rimband
$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$
\max 1.0 $\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$
Rg_{1}
$\mathrm{Zg}_{1}(50 \mathrm{~Hz}) \quad \max .0 .5 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{m} / \mathrm{m}^{\prime}}$
\min.
$2 \mathrm{M} \Omega$

T.V. PICTURE TUBE

59 cm (23 inch), 110°, rectangular direct vision picture tube for black- and white T.V.

QUICK REFERENCE DATA		
Face diagonal	$59 \mathrm{~cm}(23 \mathrm{inch})$	
Deflection angle	110°	
Overall length	358	mm
Neck length	110	mm
Neck diameter	28.6 mm	
Light transmission of face glass	45	$\%$
Focusing		electrostatic
Bulb	6.3	$\mathrm{~V}, 300$
Heating		ma

SCREEN

Metal backed phosphor
Luminescence white

Light transmission of face glass

	45	$\%$
min.	566	mm
min.	489	mm
min.	385	mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply
Heater current
Heater voltage

I_{f}	300 mA	
$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

MECHANICAL DATA

Mounting position: any
Base $\quad:$ Neo-eightar 7 pin, Jedec B7-208, B8H
Net weight : approx. 12 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

For notes see page 5

MAXIMUM CONE CONTOUR DRAWING
All values are given as nominal unless otherwise indicated.

		Distance from centre (max. values)										
Section	$\begin{gathered} \text { Nom. dis }- \\ \text { tance from } \\ \text { ref. line } \end{gathered}$	Long 0^{0}	10°	20°	30°	Diag.	40°	50°	60°	70°	80°	Short 90°
1	18.3	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0	75.0
2	25.3	106.5	106.0	104.4	102.4	101.6	101.0	101.0	101.0	101.0	101.0	101.0
3	35.3	137.7	136.0	132.0	128.6	126.4	125.3	123.2	122.1	121.8	121.6	122.5
4	45.3	160.8	160.0	155.9	151.2	148.6	146.7	142.6	140.0	138.5	138.5	138.8
5	55.3	180.0	179.0	176.5	172.2	168.5	165.8	159.8	155.3	152.8	152.0	151.6
6	75.3	211.8	211.0	210.9	208.3	204.3	200.2	190.7	182.5	176.4	172.8	172.0
7	95.3	233.8	234.6	237.8	238.5	235.7	230.9	215.9	202.2	193.1	188.0	187.0
8	115.3	247.0	249.0	255.6	263.3	263.6	258.3	236.2	218.0	206.2	199.7	198.0
9	135.3	256.5	259.0	267.8	282.1	287.0	280.4	252.0	230.1	216.0	208.5	206.5
10	155.3	263.0	266.0	275.1	292.5	299.2	294.8	263.6	239.0	223.2	214.8	212.2
11	162.5	264.2	267.5	277.0	294.2	301.5	298.0	266.2	241.2	225.2	216.2	213.5

NOTES TO OUTLINE DRAWING

1. Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone. Reference line gauge C .
2. Outer radius of 1225 mm applies to this area.
3. This outer radius applies to the diagonals and the major axis and to the area in between.
4. This outer radius applies to the minor axis and increases steadily to 700 mm on the diagonals.
5. The external conductive coating must be earthed. The configuration of the outer coating is optional, but contains the contact area as shown.
6. This area must be kept clean.
7. Small cavity contact.
8. At any point around the splice-line seal the bulge at this seal will not protrude more than 1.6 mm beyond the tube circumference at the mould-match line.
9. Mould-match line (= reference line for measuring the maximum dimensions).
10. Minimum undisturbed area between mould-match line and splice line available for mounting a tube support band. No excessive pressure should be exerted by the support band on the splice line seal.

CAPACITANCES

Final accelerator to external conductive coating
$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}<2500 \mathrm{pF}$

Cathode to all
Grid No. 1 to all
C_{k}
4 pF
C_{1}
6 pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle 110°
Horizontal deflection angle 990
Vertical deflection angle 82°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5}}$	18	kV
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	0 to 400	$\mathrm{~V}{ }^{\mathrm{l}}$)
Grid No. 2 voltage	$\mathrm{V}_{\mathrm{g}_{2}}$	400	V
Grid No. 1 voltage for visual extinction of focused raster	$\mathrm{V}_{\mathrm{g}_{1}}$	-40 to -77	V

Cathode drive service

Voltages are specified with respect to grid No. 1
Final accelerator voltage
Focusing electrode voltage
Grid No. 2 voltage

$\mathrm{V}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5}$	18	kV
$\mathrm{V}_{g_{4}}$	0 to 400	$\left.\mathrm{~V}^{\mathrm{l}}\right)$
$\mathrm{V}_{\mathrm{g}_{2}}$	400	V

Cathode voltage for visual extinction of focused raster
$\mathrm{V}_{\mathrm{k}} \quad 36$ to 66 V

1) Voltage range to obtain optimum overall focus at $100 \mu \mathrm{~A}$ beam current.

A59-15W

LIMITING VALUES (Design centre rating system, unless otherwise stated)
Final accelerator voltage

$$
\text { at } \mathrm{I}_{\mathrm{a}}, \mathrm{~g}_{3}, \mathrm{~g}_{5}=0
$$

$$
\mathrm{V}_{\mathrm{a}, \mathrm{~g}_{3}, \mathrm{~g}_{5}} \begin{array}{llll}
\text { max. } & 18 & \mathrm{kV} \\
\text { min. } & 13 & \mathrm{kV}
\end{array}
$$

Grid No. 4 voltage,
positive positive peak negative

Grid No. 2 voltage
Grid No. 1 voltage,
$\left.\begin{array}{lllll}\text { positive } & \mathrm{V}_{\mathrm{g}} & \max . & 0 & \mathrm{~V} \\ \text { positive peak } & \mathrm{V}_{\mathrm{g}_{1 p}} & \max . & 2 & \mathrm{~V} \\ \text { negative } & -\mathrm{V}_{\mathrm{g}} & \max . & 150 & \mathrm{~V} \\ \text { negative peak } & -\mathrm{V}_{\mathrm{g}_{1 \mathrm{p}}} & \max . & 400 & \mathrm{~V} \\ \hline\end{array}\right)$

Cathode to grid No. 1 voltage,
positive
positive peak
negative
negative peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak
positive during equipment warm-up period not exceeding 45 s
$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}}$
$\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{1 \mathrm{p}}$
$-V_{k} / g_{1}$
$-\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{\mathrm{l}} \mathrm{p}$
max. 150 V
$\max .400 \mathrm{~V}^{\mathrm{l}}$)
$\max \quad 0 \quad \mathrm{~V}$
max. 2 V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	200	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	\max.	300	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	125	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	\max.	250	V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}} \quad \max .410 \mathrm{~V}$

1) Maximum pulse duration 22% of a cycle but maximum 1.5 ms

2) At $V_{g_{1} / k}=0 \mathrm{~V}$

CIRCUIT DESIGN VALUES

Grid No. 4 current, positive
negative
Grid No. 2 current
positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0.1	$\mathrm{M} \Omega$
R_{1}	\max.	1.5	$\mathrm{M} \Omega$
$\mathrm{Z}_{1}(50 \mathrm{~Hz})$	\max.	0.5	$\mathrm{M} \Omega$

T.V. PICTURE TUBE

59 cm (23 inch), 110°, rectangular direct vision picture tube for black-and white T.V.

QUICK REFERENCE DATA		
Face diagonal	$59 \mathrm{~cm} \mathrm{(23} \mathrm{inch)}$	
Deflection angle	110°	
Overall length	365.5	mm
Neck length	110	mm
Neck diameter	28.6 mm	
Light transmission of face glass	45	$\%$
Focusing		electrostatic
Bulb		twin-panel
Heating	$6.3 \quad \mathrm{~V}, 300$	mA

SCREEN

Metal backed phosphor
Luminescence white
Light transmission of face glass
45 \%
Useful diagonal
min. 566.5 mm
Useful width
min. 490.5 mm
Useful height
min. 387.5 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply

Heater current	I_{f}	300	mA
	$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed 9.5 V rms when the supply is switched on.

This type is equivalent with type 23 DGP4A.

MECHANICAL DATA

Dimensions in mm

MECHANICAL DATA (continued) Dimensions in mm

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H
Net weight : approx. 16 kg
The bottom circumference of the base vafer will fall withina circle concentric with the tube axis ans having a diameier of 40 mm .
The socket for the base should rot be rigidly mounted; it should have flexible leads and be allowed to move freely.
For notes see page 5

All dimensions (in mm) are maximum values, unless otherwise specified

$\begin{aligned} & \stackrel{\pi}{2} \\ & \frac{3}{3} \end{aligned}$		Long axis 0°	10°	20°	30°	Dia- gonal $35^{\circ} 23^{\prime}$	40°	50°	60°	70°	80°	Short axis 90°
1	18.3	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5
2	25.3	101.2	101.2	101.2	101.2	101.2	101.2	101.2	101.2	101.2	101.2	101.2
3	35.3	130.4	131.0	131.1	129.6	127.9	126.3	123.5	121.8	121.1	120.7	121.1
4	45.3	154.5	155.0	155.8	152.0	149.1	146.6	142.1	138.6	136.8	136.4	136.8
5	55.3	175.0	175.7	176.1	172.9	168.8	165.6	159.3	154.2	151.0	149.7	149.8
6	65.3	192.7	193.7	194.3	191.9	187.2	183.1	175.4	168.7	164.4	161.5	161.0
7	75.3	207.9	209.4	210.9	209.0	204.1	199.3	190.2	181.8	176.2	171.9	170.5
8	85.3	221.0	222.8	225.4	224.6	220.3	215.0	203.9	193.8	186.5	181.2	178.8
9	95.3	231.8	233.8	238.1	238.2	235.7	230.3	216.5	204.4	195.7	189.5	$186: 9$
10	105.3	241.5	243.6	248.7	252.6	250.3	244.7	228.3	214.4	203.7	196.8	194.1
11	115.3	249.6	252.0	258.5	264.4	263.9	258.2	239.1	223.2	211.0	203.3	200.9
12	125.3	255.9	258.7	266.2	274.8	276.3	271.0	249.0	230.5	217.1	208.8	205.5
13	135.3	260.7	263.7	272.3	284.4	287.6	282.8	257.7	236.3	221.7	213.2	210.7
14	145.3	264.0	267.1	276.6	292.0	297.2	292.7	264.4	240.3	224.8	216.3	213.7
15	155.3	265.9	269.1	279.0	296.2	302.3	297.7	267.7	242.8	226.7	218.0	215.2
16	160.5	266.25	269.45	279.37	297.01	303.00	298.64	268.44	243.25	227.23	218.35	215.50

CAPACITANCES

$\left.\begin{array}{llr}\begin{array}{l}\text { Final accelerator to external } \\ \text { conductive coating }\end{array} & & \mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}\end{array} \quad \begin{array}{r}<2500, \mathrm{pF} \\ >1700\end{array}\right) \mathrm{pF}$

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle	110°
Horizontal deflection angle	99°
Vertical deflection angle	82°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

NOTES TO OUTLINE DRAWING

1. Reference line. Reference line gauge C.
2. The centre of the panel may be eccentric with respect to the tube axis. The shift of the protective panel along its minor and major axes may be max. 1.5 mm .
3. Maximum contour given by reference line gauge.
4. The four lugs of the protective panel may be used for mounting the tube. However, the restrictions made under note ${ }^{5}$) should be observed.
5. Care should be taken that no mounting parts are in direct contact with the tube envelope unless the support is spaced from the envelope by cushioning parts.
No excessive pressure should be exerted by the support band on the splice line seal.

6 . The configuration of the outer coating is optional, but contains the contact area as shown in the drawing. The external coating must be earthed.
7. This area must be kept clean.
8. Recessed cavity contact.

For:
TYPICAL OPERATING CONDITIONS
LIMITING VALUES
CIRCUIT DESIGN VALUES
MAXIMUM CIRCUIT VALUES
CURVES
please refer to type A59-11W

T.V. PICTURE TUBE

59 cm (23 in), 110°, rectangular direct vision picture tube with integral protection for black- and white T.V. The rimband leaves the edge of the faceplate free.

QUICK REFERENCE DATA		
Face diagonal	59	$\mathrm{~cm} \mathrm{(23} \mathrm{in)}$
Deflection angle	1100	
Overall length	359	mm
Neck length	110	mm
Neck diameter	28.6 mm	
Light transmission of faceglass	45	$\%$
Focusing		electrostatic
Bulb		reinforced
Heating	$6.3 \mathrm{~V}, 300$	mA

SCREEN

Metal backed phosphor
Luminescence
white
Light transmission of face glass
45 \%
Useful diagonal
min. 566 mm
Useful width
min. 489 mm
Useful height
min. 385 mm

HEATING

Indirect by A.C. or D.C.: series or parallel supply
Heater current
Heater voltage

I_{f}	300	mA
$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

MECHANICAL DATA (continued)

Dimensions in mm

$\overline{\text { For notes see page } 5 .}$

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208. B8H, IEC-67-I-3la
Net weight : approx. 13 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .

		Distance from centre (max. values)										
Sec tion	Nom. distance from point "Z"	$\begin{aligned} & 0^{0} \\ & \text { Long } \end{aligned}$	10°	200	300	$\left\|\begin{array}{c} 35^{\circ} \\ \text { Diagonal } \end{array}\right\|$	40°	500	600	70°	800	$\begin{gathered} 90^{\circ} \\ \text { Short } \end{gathered}$
1	190	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5	77.5
2	183	101.2	101.2	101.2	101.2	101.2	101.2	101.2	101.2	101.2	101.2	101.2
3	173	130.3	131.0	131.1	129.6	127.9	126.3	123.5	121.8	121.1	120.7	121.1
4	163	154.5	155.0	155.8	152.0	149.1	146.6	142.1	138.6	136.8	136.	136.8
5	153	175.0	175.7	176.1	172.9	168.8	165.6	159.3	154.2	151.0	149.7	149.8
6	143	192.7	193.7	194.3	191.9	187.2	183.1	175.4	168.7	164.4	161.5	161.0
7	133	207.9	209.4	210.9	209.0	204.1	199.3	190.2	181.8	176.2	171.9	170.5
8	123	221.0	222.8	225.4	224.6	220.3	215.0	203.9	193.8	186.5	181.2	178.8
9	113	231.8	233.8	238.1	239.2	235.7	230.3	216.5	204.4	195.7	189.5	186.9
10	103	241.5	243.6	248.7	252.6	250.3	244.7	228.3	214.4	203.7	196.8	194.1
11	93	249.6	252.0	258.5	264.4	263.9	258.2	239.1	223.2	211.0	203.3	200.9
12	83	255.9	258.7	266.2	274.9	276.3	271.0	249.0	230.6	217.1	208.8	206.5
13	73	260.7	263.7	272.3	284.4	287.6	282.8	257.7	236.3	221.7	213.2	210.7
14	63	264.0	267.1	276.6	292.0	297.2	292.7	264.4	240.3	224.8	216.3	213.7
15	53	265.9	269.1	279.0	296.2	302.3	297.7	267.7	242.8	226.7	218.0	215.2
16	47.8	266.25	269.45	279.37	297.01	303.0	298.64	268.44	243.25	227.23	218.35	215.5

NOTES TO OUTLINE DRAWING

1. Small cavity contact. I. E. C. -67-III-2.
2. The metal rimband must be earthed. The hole of 3 mm dia in each lug is provided for this purpose.
3. The screen radius of 700 mm applies also to the diagonal.
4. End of guaranteed contour. The maximum contour from reference line towards screen is given by the reference line gauge C (18.13 mm).
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing.
The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of 9.5 mm diameter drawn around the true geometrical positions, i.e. at the corners of a rectangle of $522 \times 370.5 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. Max. curvatures of the outside tension band are nominal bulbradius +4 mm .
11. Area for clip on tension band. Max. thickness with respect to bulb 8 mm .
12. Distance from reference point Z to any hardware.

CAPACITANCES

Final accelerator to external conductive coating

Final accelerator to metal band
Cathode to all
Grid No. 1 to all

$\mathrm{C}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}}$	$<$	2500	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}^{\prime}}$		4500	pF
C_{k}		5	pF
C_{g}		7	pF
pF_{1}			

FOCUSING electrostatic
DEFLECTION magnetic
Diagonal deflection angle 110°
Horizontal deflection angle 990
Vertical deflection angle 82°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm

TYPICAL OPERATING CONDITIONS

Grid drive service
Final accelerator voltage
Focusing electrode voltage
Grid No. 2 voltage

$\mathrm{V}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5}$	20	kV
V_{4}	0 to	400
$\left.\mathrm{~V}^{\mathrm{l}}\right)$		
V_{2}	400	V

Grid No. 1 voltage for visual extinction of focused raster
V_{g}
-40 to -77 V
Cathode drive service
Voltages are specified with respect to grid No. 1

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{3}, g_{5}}$	20	kV
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	0 to 400	V
Grid No. 2 voltage	$\mathrm{V}_{\mathrm{g}_{2}}$	400	V
Cathode voltage for visual extinction of focused raster	V_{k}	36 to	66

$\overline{1) \text { Individual tubes will have optimum focus within this range. In general an acceptable }}$ picture will be obtained with a fixed focus voltage.

LIMITING VALUES (Design centre rating system, unless otherwise stated)

Grid No. 4 voltage.
positive
negative
Grid No. 2 voltage
Grid No. 2 to grid No. 1 voltage
Grid No. 1 voltage
positive
positive peak
negative
negative peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak
positive during equipment warm-up
period not exceeding 15 s
V_{4}
$-\mathrm{V}_{4}$
V_{g}
$\mathrm{V}_{2} / \mathrm{g}_{1}$
$\max .1000$ V
max. 500 V
$\max .700 \mathrm{~V}^{3}$)
min. 350 V
$\max .850 \mathrm{~V}$
$V_{g_{1}}$
$V_{g_{1 p}}$
$-V_{g_{1}}$
$-V_{g_{1 p}}$
max. 0 V
$\max .2 \mathrm{~V}$
$\max .150 \mathrm{~V}$
$\max .400 \mathrm{~V}^{2}$)
$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$
$\mathrm{V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$
$-V_{k / f} \quad \max .135 \mathrm{~V}$
$-V_{k / f}$
$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$
$\max .180 \mathrm{~V}$
max. 250 V
$\max .300 \mathrm{~V}$
$\max .410 \mathrm{~V}^{4}$)
${ }^{1}$) Absolute maximum rating system.
2) Maximum pulse duration 22% of a cycle but maximum 1.5 ms .
3) At $V_{g_{1}} / k=0 V$.
4) Between 15 s and 45 s after switching on a decrease in k / f voltage, linear proportional with time, from 410 V to 250 V is permissible.

CIRCUIT DESIGN VALUES

Grid No. 4 current,

positive	$\mathrm{I}_{g_{4}}$	\max.	25
negative	$-\mathrm{I}_{\mathrm{g}_{4}}$	\max.	25
A			

Grid No. 2 current

positive	I_{2}	\max.	5
negative	$-\mathrm{I}_{2}$		
$\mathrm{~g}_{2}$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
Resistance between external conductive coating and rimband

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	$\max .0 .1$	$\mathrm{M} \Omega$	
R_{g}	$\max .1 .5$	$\mathrm{M} \Omega$	
$\mathrm{Z}_{\mathrm{g} 1}(50 \mathrm{~Hz})$	$\max .0 .5$	$\mathrm{M} \Omega$	
$\mathrm{R}_{\mathrm{m} / \mathrm{m}}$,	\min.	2	$\mathrm{M} \Omega$

In order to avoid excessive hum, the A.C. component of the heater to chassis voltage should be as low as possible and must not exceed $20 \mathrm{~V}_{\mathrm{rms}}$.

Final accelerator current as a function of grid No. 1 voltage

Final accelerator current as a function of cathode voltage

Limits of grid No. 1 cut-off voltage as a function of grid No. 2 voltage

Limits of cathode cut-off voltage as a function of grid No. 2 voltage

T.V. PICTURE TUBE

$61 \mathrm{~cm}(24 \mathrm{in}), 110^{\circ}$, rectangular direct vision picture tube with integral protection for black - and white T.V. The rimband leaves the edge of the faceplate free.

QUICK REFERENCE DATA

Face diagonal	$61 \mathrm{~cm}(24 \mathrm{in})$
Deflection angle	110°
Overall length	362 mm
Neck length	110 mm
Neck diameter	28.6 mm
Light transmission of face glass	42%
Focusing	electrostatic
Bulb	reinforced
Heating	$6.3 \mathrm{~V}, 300 \mathrm{~mA}$

SCREEN

Metal backed phosphor

Luminescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height
white

	42	$\%$
min.	577.5	mm
\min.	481	mm
min.	375	mrn

MECHANICAL DATA
Dimensions in mm

MECHANICAL DATA (continued)
Dimensions in mm

For notes see page 4

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H, IEC-67-I-31a
Net weight : approx. 13.5 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted: it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWING

1. Small cavity contact. I. E. C. -67-III-2
2. The metal rimband must beearthed. The holes of 3 mm dia in each lug are provided for this purpose.
3. Spherical faceplate.
4. End of guaranteed contour. The maximum contour from reference line towards screen is given by the reference line gauge $C(18.13 \mathrm{~mm})$.
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing. The external conductive coating must be earthed.
6. This area must be kept clean
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of 8 mm diameter drawn around the true geometrical position; i.e. at the corners of a rectangle of $496 \times 392 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. The max. outer contour of the tube with the rimband is determined by adding 5 mm to the nominal bulb dimensions.
11. Distance from reference point Z to any hardware.

MAXIMUM CONE CONTOUR DRAWING
Dimensions in mm

		Distance from centre (max. values)												
$\begin{aligned} & \text { E } \\ & \tilde{U} \\ & \tilde{y} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \overrightarrow{0} 0 \\ & \text { E } \\ & \text { E } \\ & \text { z } \end{aligned}$	$\begin{gathered} \text { Long } \\ \text { axis } \\ 0^{\circ} \end{gathered}$	10°	200	25°	30°	$\begin{aligned} & 36^{\circ} 34^{\prime} \\ & \text { Diag. } \end{aligned}$	40°	45°	500	60°	70°	800	Short axis 90°
1	194.4	74.6	72.5	71.1	70.8	70.3	70.6	70.9	71.4	72.1	73.3	72.3	73.0	72.8
2	187.7	100.0	95.6	93.1	92.0	91.3	91.2	91.0	91.0	90.8	90.7	91.8	93.2	95.5
3	177.7	130.4	126.5	121.3	119.0	118.2	117.1	110.4	115.1	114.1	114.3	114.7	115.8	118.0
4	167.7	152.8	149.8	145.0	143.1	141.8	140.0	138.8	137.0	135.3	133.4	131.9	132.4	133.7
5	157.7	172.1	169.2	165.6	164.3	163.1	160.4	158.8	156.2	153.8	150.3	146.9	145.0	146.0
6	147.7	188.1	186.4	184.8	183.9	182.7	179.4	177.3	173.8	170.7	163.9	158.6	150.0	155.8
7	137.7	202.1	201.2	201.8	201.8	201.3	197.0	194.1	190.1	185.2	176.2	168.7	104.9	164.2
8	127.7	214.0	214.5	217.0	217.9	217.8	213.3	210.0	205.0	148.6	187.3	177.6	172.8	171.5
9	117.7	223.7	225.1	229.0	231.3	233.0	229.1	225.3	219.2	211.2	197.6	185.8	180.2	178.2
10	107.7	231.9	233.0	239.0	242.9	240.4	243.9	240.2	232.8	223.6	206.7	193.6	180.8	184.3
11	97.7	238.6	240.2	247.6	253.0	258.7	258.6	255.1	24.5 .7	234.8	215.2	200.5	193.1	190.1
12	87.7	244.6	246.9	256.4	262.4	209.4	272.0	208.9	257.7	244.5	222.3	200.7	198.6	195.5
13	77.7	250.6	253.4	263.4	270.8	279.2	280.0	282.0	208.5	253.0	228.5	212.2	20.3 .4	200.2
14	67.7	255.0	259.1	209.6	278.0	288.4	298.6	294.9	277.2	254.3	233.3	216.3	207.2	204.2

CAPACITANCES

Final accelerator to external conductive coating

Final accelerator to metal band
Cathode to all
Grid No. 1 to all

	$<$	2500
$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{gF}_{5} / \mathrm{m}$	$>$	1600 pF
$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}^{\prime}$		500 pF
C_{k}		5 pF
$\mathrm{C}_{\mathrm{g}_{1}}$	7 pF	

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle 110°
Horizontal deflection angle 98°
Vertical deflection angle 81°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage	V a, $\mathrm{g}_{3}, \mathrm{~g}_{5}$		20	kV
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	0 t	400	V1)
Grid No. 2 voltage	V_{g}		400	V
Grid No.i voltage for visual extinction of focused raster	Vg_{1}	-40 to		V

Cathode drive service
Voltages are specified with respect to grid No. 1
Final accelerator voltage
Focusing electrode voltage
Grid No. 2 voltage

$\mathrm{V}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5}$	20	kV
V_{4}	0 to 400	V
$\mathrm{~V}_{2}$	400	$\left.\mathrm{~V}^{\mathrm{l}}\right)$

Cathode voltage for visual extinction of focused raster
$\mathrm{V}_{\mathrm{k}} \quad 36$ to 66 V

[^12]LIMITING VALUES (Design centre rating system, unless otherwise stated)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a}, g_{3}, g_{5}}=0 \quad \quad \mathrm{~V}_{\mathrm{a},}, g_{3}, \mathrm{~g}_{5} \begin{aligned} & \left.\max . \quad \begin{array}{ll}20 & \mathrm{kV} \\ \min . & 12 \\ \mathrm{kV} \mathrm{l}\end{array}\right)\end{aligned}$
Grid No. 4 voltage,
positive
negative
Grid No. 2 voltage
Grid No. 2 to grid No. 1 voltage

V_{4}	\max.	1000	V
$-\mathrm{V}_{4}$			

$\mathrm{V}_{\mathrm{g}_{2}}$
$\mathrm{V}_{\mathrm{g}_{2} / \mathrm{g}_{1}}$
$\max .700 \mathrm{~V}^{3}$)
min. 350 V
$\max .850 \mathrm{~V}$
Grid No. 1 voltage
positive
positive peak
negative
negative peak
Cathode to heater voltage,

positive	$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	250	V
positive peak	$\mathrm{V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	\max.	300	V
negative	$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	135	V
negative peak	$-\mathrm{V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	\max.	180	V
positive during equipment warm-up period not exceeding 15 s	$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	\max.	410	$\mathrm{~V} 4)$

1) Absolute maximum rating system.
2) Maximum pulse duration 22% of a cycle but maximum 1.5 ms .
3) At $V_{g_{1} / k}=0 \mathrm{~V}$.
${ }^{4}$) Between 15 s and 45 s after switching on a decrease in k / f voltage, linear proportional with time, from 410 V to 250 V is permissible.

CIRCUIT DESIGN VALUES

Grid No. 4 current,

positive	$\mathrm{I}_{g_{4}}$	\max.	25
negative	$-\mathrm{I}_{g_{4}}$	\max.	25
A			

Grid No. 2 current

positive	I_{2}	\max.	5	$\mu \mathrm{~A}$
negative	$-\mathrm{I}_{g_{2}}$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
Resistance between external conductive coating and rimband

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0.1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}_{1}}$	\max.	1.5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}_{1}}(50 \mathrm{~Hz})$	\max.	0.5	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{m} / \mathrm{m}}$.	\min.	2	$\mathrm{M} \Omega$

In order to avoid excessive hum, the A.C.component of the heater to chassis voltage should be as low as possible and must not exceed $20 \mathrm{~V}_{\mathrm{rms}}$.

Final accelerator current as a function of grid No. 1 voltage

Final accelerator current as a function of cathode voltage

Limits of grid No. 1 cut-off voltage as a function of grid No. 2 voltage

Limits of cathode cut-off voltage as a function of grid No. 2 voltage

90° RECTANGULAR COLOUR TELEVISION PICTURE TUBE WITH INTEGRAL PROTECTION

Three-gun temperature-compensated shadow-mask rectangular colour television tube with electrostatic focus, magnetic deflection and convergence, metal-backed three-colour phosphor dot screen. A high white brightness is obtained by the use of improved red, green and blue phosphors at near unity current ratio. Temperature compensating the shadow-mask has led to optimum field purity and good uniformity during warm-up. Minimum occurrence of the moiré effect is ensured by optimizing the mask for the reproduction of 625 -line pictures. The tube has a reinforced envelope and therefore no separate safety screen is necessary.

QUICK REFERENCE DATA	
TEMPERATURE -COMPENSATED SHADOW -MASK	
SHADOW-MASK OPTIMIZ ED FOR 625-LINE SYSTEM	
HIGH WHITE BRIGHTNESS AT UNITY CURRENT RATIO	
Face diagonal	63 cm
Deflection angle	90 o
Neck length	164.2 mm
Envelope	reinforced
Focusing	electrostatic
Deflection	magnetic
Convergence	magnetic
Heating	$6.3 \mathrm{~V}, 900 \mathrm{~mA}$
Light transmission of face glass	52.5 m

SCREEN

Metal-backed tricolour phosphor dots
Phosphor type
Dot arrangement
Spacing between centres of adjacent dot trios
$\left\{\begin{array}{l}\text { Red: Europium activated rare earth } \\ \text { Green and blue: sulphide type }\end{array}\right.$
Triangular

Light transmission at centre of face glass
0.81 mm

HEATING

Indirect by A.C. or D.C.; parallel or series supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	900	mA

For maximum cathode life it is recommended that the heater supply be regulated at 6.3 V . If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

CAPACITANCES

Final accelerator to external conductive coating

Final accelerator to metal rimband
Grid No. 1 of any gun to all other electrodes

Cathodes of all guns (connected in parallel) to all other electrodes
Cathode of any gun to all other electrodes

Grid No. 3 (focusing electrode) to all other electrodes

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle 90°
Horizontal deflection angle 79°
Vertical deflection angle 62°
$\begin{array}{llll}\mathrm{C}_{\mathrm{ag}_{5} \mathrm{~g}_{4}} / \mathrm{m} & \begin{array}{l}\max . \\ \min .\end{array} & 2500 & \mathrm{pF} \\ 2000 & \mathrm{pF}\end{array}$
$\mathrm{C}_{\mathrm{ag}_{5} \mathrm{~g}_{4} / \mathrm{m}}$, $\quad 500 \mathrm{pF}$

7 pF
$\begin{array}{lrl}\mathrm{C}_{\mathrm{k}} & 15 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{k}_{\mathrm{R}}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{k}_{\mathrm{G}}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{k}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{g}_{3}} & 7 & \mathrm{pF}\end{array}$
$\begin{array}{lrl}\mathrm{C}_{\mathrm{k}} & 15 \mathrm{pF} \\ \mathrm{C}_{\mathrm{k}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{k}_{\mathrm{G}}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{kB}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{g}_{3}} & 7 & \mathrm{pF}\end{array}$
$\begin{array}{lrl}\mathrm{C}_{\mathrm{k}} & 15 \mathrm{pF} \\ \mathrm{C}_{\mathrm{k}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{k}_{\mathrm{G}}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{kB}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{g}_{3}} & 7 & \mathrm{pF}\end{array}$
$\begin{array}{lrl}\mathrm{C}_{\mathrm{k}} & 15 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{k}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{k}_{\mathrm{G}}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{kB}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{g}_{3}} & 7 & \mathrm{pF}\end{array}$
$\begin{array}{lrl}\mathrm{C}_{\mathrm{k}} & 15 \mathrm{pF} \\ \mathrm{C}_{\mathrm{kR}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{k}_{\mathrm{G}}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{kB}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{g}_{3}} & 7 & \mathrm{pF}\end{array}$
$\begin{array}{lrl}\mathrm{C}_{\mathrm{k}} & 15 \mathrm{pF} \\ \mathrm{C}_{\mathrm{kR}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{k}_{\mathrm{G}}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{kB}} & 5 & \mathrm{pF} \\ \mathrm{C}_{\mathrm{g}_{3}} & 7 & \mathrm{pF}\end{array}$
$\mathrm{C}_{\mathrm{g}_{1}}$

MECHANICAL DATA (continued)

Mounting position: any
Net weight: approx. $188 \mathrm{~N}(18.8 \mathrm{~kg})$
Base: 12 pin base JEDEC B12-244 but with a 5 mm shorter spigot.
Anode contact: Small cavity contact J1-21, IEC 67-III-2.
Magnetic shielding
Magnetic shielding should be provided by means of a metal shield extending 28 cm over the cone of the tube measured from the centre of the face plate. The metal shell is preferably constructed of min. 0.5 mm cold rolled steel properly annealed. The air gap between the shield and the metal rimband should be as small as possible and not exceed 10 mm . The magnetic shield should be connected to the outer conductive coating.

NOTES TO OUTLINE DRAWING (See pages 4 and 5)

1. Reference line, determined by the plane of the upper edge of the flange of the reference line gauge, when the gauge is resting on the cone. Gauge see page 10 .
2. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base will fall within a circle concentric with bulb axis and having a diameter of 55 mm .
3. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
4. To clean this area, whipe only with a soft dry lintless cloth.
5. Opening of metal rimband. Eccentricity with respect to the centre of the inner glass contour max. 1.5 mm .
6. Meniscus of resin filler on screen.
7. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
8. Minimum space to be reserved for mounting lug.
9. The position of the mounting screw in the cabinet must be within a circle of 9.5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $517 \mathrm{~mm} \times 411 \mathrm{~mm}$.
10. Coördinates for radius $R=30 \mathrm{~mm}: x=213.66 \mathrm{~mm}, \mathrm{y}=151.63 \mathrm{~mm}$.

Notes see page 3

Notes see page 3

$\begin{aligned} & \stackrel{5}{0} \\ & \tilde{U} \\ & \dot{\sim} \end{aligned}$		Distance from centre (max. values)														
		Long axis 0°	10°	20°	25°	30°	$32.30{ }^{\prime}$	$\begin{gathered} 35^{\circ} 21^{\prime} 38^{\prime \prime} \\ \text { Diag. } \end{gathered}$	37030^{\prime}	40°	45°	50°	60°	70°	80°	Short axis 900
1	265.5	82.5	82.6	83.0	83.0	83.0	83.0	83.0	83.0	83.0	83.3	83.5	83.5	83.0	82.8	82.8
2	255.5	107.6	107.4	106.7	106.1	105.7	105.5	105.2	105.1	105.0	104.7	104.5	106.3	111.0	115.0	115.5
3	245.5	129.3	129.5	128.0	127.3	126.6	125.8	124.8	124.0	123.2	122.2	121.4	122.5	126.9	129.9	130.2
4	235.5	147.4	147.2	146.0	145.0	144.8	144.2	142.6	141.2	139.6	137.2	135.4	134.7	138.0	140.0	140.0
5	225.5	162.8	162.8	161.6	160.7	160.3	159.4	157.7	156.2	154.3	150.4	147.7	145.0	146.4	148.2	148.0
6	215.5	176.3	176.3	175.4	175.0	174.3	173.5	171.6	169.9	167.9	163.1	159.0	154.4	154.0	155.4	155.3
7	205.5	188.2	188.2	187.8	187.6	187.2	186.6	185.2	183.4	181.1	175.4	169.9	163.5	161.2	161.6	161.5
8	195.5	198.8	199.0	199.2	199.4	199.6	199.1	197.8	196.1	193.4	186.9	180.3	171.9	170.0	167.4	167.2
9	185.5	208.2	208.8	209.6	210.3	211.1	210.9	209.7	207.8	205.3	197.9	190.3	179.7	174.4	172.9	172.7
10	175.5	216.9	217.9	219.2	220.5	222.2	222.2	221.3	218.9	216.1	208.0	199.4	187.2	180.8	178.2	178.1
11	165.5	224.7	225.6	227.7	229.7	231.9	232.2	231.6	229.6	226.4	217.5	208.0	194.4	186.9	183.5	182.9
12	155.5	231.9	232.9	235.9	238.5	241.4	242.1	241.9	240.1	237.0	226.9	216.4	201.5	191.5	188.6	187.7
13	145.5	238.2	239.7	243.6	246.8	250.5	251.7	251.9	250.4	247.0	236.0	224.5	208.3	198.0	193.4	192.3
14	135.5	244.4	246.3	251.0	254.9	259.5	261.3	261.8	260.5	257.1	245.3	232.6	214.8	203.4	198.2	196.8
15	125.5	250.3	252.2	258.0	262.3	268.1	270.5	271.3	270.1	266.3	254.0	240.4	220.9	208.5	202.4	200.3
16	115.5	256.1	258.2	264.9	270.0	276.6	279.6	280.7	279.3	275.4	262.4	247.8	226.8	213.7	206.6	204.1
17	105.5	260.0	263.4	270.8	276.8	284.7	287.9	289.3	287.9	283.9	270.0	254.7	232.3	218.5	210.5	207.7
18	95.5	265.6	268.3	276.4	283.3	292.4	295.7	297.6	296.3	292.1	277.0	261.0	237.6	223.1	214.3	211.2
19	85.5	269.4	272.4	281.5	289.4	299.4	302.9	305.2	304.2	299.6	283.8	267.1	242.6	227.2	217.9	214.7
20	75.5	272.3	275.5	286.0	294.0	304.6	309.4	311.1	310.5	305.9	289.8	272.5	247.0	230.6	221.2	218.0
21	67.1	273.3	276.79	287.64	296.17	307.1	311.8	313.6	312.6	308.79	292.55	275.38	248.85	232.15	222.91	219.95

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage for a spot cut-off voltage $\mathrm{Vg}_{1}=-105 \mathrm{~V}$

$\mathrm{V}_{\mathrm{a}, \mathrm{g}}, \mathrm{g}_{4}$		25	kV
V_{3}	4.2 to	5	kV
Vg_{2}	210 to	495	$\left.\mathrm{~V}^{1}\right)$
V_{1}	-70 to -140	$\left.\mathrm{~V}^{2}\right)$	

Grid No. 1 voltage for spot cut-off
at $\mathrm{V}_{2}=300 \mathrm{~V}$
V_{g}
See page 21
Brightness at the centre of the screen
EQUIPMENT DESIGN VALUES (each gun if applicable)
Valid for final accelerator voltages between 20 kV and 27.5 kV .

Grid No. 3 (focusing electrode) voltage	V_{g}	16.8 to 20% of final accelerator voltage			
Grid No. 2 voltage ${ }^{1}$)	$\mathrm{V}_{\mathrm{g}_{2}}$	See cut-off design chart page 22			
Grid No. 1 voltage for visual extinction of focused spot (cut-off voltage) 2)	V_{g}	See cut-off design char page 22			
Difference in cut-off voltages between guns in any tube	$\Delta \mathrm{V}_{1}$	lowest value is min. 65% of highest value			
Grid No. 3 (focusing electrode) current	Ig_{3}	-15 to $+15 \mu \mathrm{~A}$			
Grid No. 2 current	Ig_{2}	-5 to $+5 \mu \mathrm{~A}$			
Grid No. 1 current at $\mathrm{Vg}_{1}=-150 \mathrm{~V}$	I_{g}	-5 to $+5 \mu \mathrm{~A}$			
To produce white of the following CIE coördinates		$\begin{gathered} 3) \\ 0.310 \\ 0.316 \end{gathered}$	4)	$\begin{gathered} 5 \text {) } \\ 0.281 \\ 0.311 \end{gathered}$	
	x		0.265		
	y		0:290		
Percentage of total anode current supplied by each gun (typical)					
red gun		43.5	27.9	32.2	\%
green gun		30.0	34.9	35.6	\%
blue gun		26.5	37.2	32.2	\%
Ratio of anode currents red gun to green gun	min.	1.05	0.60	0.65	
	av.	1.45	0.80	0.90	
	max.	2.00	1.10	1.25	
Ratio of anode currents red gun to blue gun	min.	1.20	0.55	0.75	
	av.	1.65	0.75	1.00	
	max.	2.25	1.05	1.35	

[^13]
EQUIPMENT DESIGN VALUES (continued)

Required centring, measured at the centre of the screen in any direction

$$
\max . \quad 15 \mathrm{~mm}
$$

Correction which must be supplied by purifying magnet to compensate for misregister (including that caused by earth's magnetic field) when using recommended components. Measured at the centre of the screen in any direction

Lateral distance between the blue spot and
the converged red and green spots

Radial convergence displacement excluding effects of dynamic convergence (each beam)
$\max . \quad 130 \mu \mathrm{~m}$
max. 6.5 mm (in both directions)
max. $\quad 9.5 \mathrm{~mm}{ }^{6}$) (in both directions)

1) This range of V_{2} has to be used when in circuit design fixed values for cut-off of the three guns are used.
${ }^{2}$) This range of $V_{g_{1}}$ has to be used when in circuit design fixed values for $V_{g_{2}}$ of the three guns are used.
2) To produce colour pictures with the best possible quality, this white point should be used as the transmission systems are based on this point. (Point C).
3) To produce black/white pictures a more bluish white point would be preferable. This white point corresponds virtually with the white point of current black/white picture tubes.
4) This point is a compromise between the white point C and the white point $x=0.265$ and $y=0.290$, given in order to enable good rendition of colour and black-andwhite pictures with one white point.
5) Dynamic convergence to be effected by currents of approximately parabolic waveshape synchronized with scanning.

LIMITING VALUES (Each gun if applicable) (Design centre rating system unless otherwise specified)

Final accelerator voltage
Average current for 3 guns
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage, peak, including video signal voltage
Grid No. 1 voltage, negative
negative, operating cut-off
positive
positive peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak

$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{5}, \mathrm{~g}_{4}}$	$\begin{aligned} & \max \\ & \min . \end{aligned}$	$\begin{array}{r} 27.5 \\ 20 \end{array}$	$\left.\left.\begin{array}{l} \mathrm{kV} \\ \left.\left.\mathrm{k})^{2}\right)^{3}\right) \\ \mathrm{kV} \\ \hline \end{array}\right)^{4}\right)$
I_{a}	max.	1000	$\mu \mathrm{A} 5)$
V_{g}	max.	6000	V
$\mathrm{v}_{\mathrm{g} 2 \mathrm{p}}$	max.	1000	V
$-\mathrm{V}_{\mathrm{g}_{1}}$	max.	400	V
$-\mathrm{V}_{\mathrm{g}}$	max.	200	V
V_{g}	max.	0	V
$\mathrm{V}_{\mathrm{g}} \mathrm{p}$	max.	2	V

V_{kf}	\max.	250	$\left.\left.\mathrm{~V}{ }^{6}\right)^{7}\right)$
$\mathrm{V}_{\mathrm{kf}} \mathrm{p}$	\max.	300	V
$-\mathrm{V}_{\mathrm{kf}}$	\max.	135	V
$-\mathrm{V}_{\mathrm{kf}}$	\max.	180	V

1) Absolute maximum rating system.
${ }^{2}$) The X-ray dose rate remains below the acceptable value of $0.5 \mathrm{mr} / \mathrm{h}$, measured with ionisation chambre when the tube is used within its limiting values.
2) For optimal operating conditions the final accelerator voltage has to be stabilized. Therefore its absolute maximum value can be approached in actual operation and for this reason this value is given instead of the design centre value. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs brightness and resolution and may have a detrimental effect on colour purity.
3) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
${ }^{6}$) In order to avoid excessive hum the a.c. component of the heater to chassis voltage should be as low as possible and must not exceed $20 \mathrm{~V}_{\mathrm{RMS}}$.
${ }^{7}$) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{k} / \mathrm{f}}$ is allowed to rise to 410 V . Between 15 s and 45 s after switching on a decrease in $\mathrm{V}_{\mathrm{k} / \mathrm{f}}$ proportional with time from 410 V to 250 V is permissible.

REMARK

With the high voltage used with this tube (max. 27.5 kV) internal flash-overs may occur. These may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.
Additional information available on request.

REFERENCE LINE GAUGE
Dimensions in mm

DESCRIPTION OF THE TUBE

The A63-11X is a rectangular temperature compensated shadow-mask colour picture tube for use in colour television receivers. The tube can display a picture, either in full colour or in black and white measuring $504 \mathrm{~mm} \times 396 \mathrm{~mm}$ minimum (projected area of $1905 \mathrm{~cm}^{2}$).
The A63-11X has

- a deflection angle of 90°
- a neck diameter of 36.5 mm
- a three-colour phosphor dot screen, composed of closely spaced dots in a regular pattern of tri-angular groups, each containing a red, a green and a blue light emitting dot.
- Three electron guns with axes tilted towards the screen centre, with electrostatic focusing systems and mounted side by side in the neck of the tube 120° apart.
Colour selection is effected by a metal graded-hole shadow mask positioned in front of the tricolour phosphor-dot screen. This mask is aligned with the dot pattern so that the electron beam from each gun lands only on phosphor dots of the associated colour.
The shadow mask has graded holes that increase gradually in diameter from the edge of the mask towards the centre. Grading enables correct purity to be achieved over the whole screen with minimum adjustment.
Although the three guns are tilted towards the screen centre so that their axes intersect at the shadow mask, lateral and radial convergence are necessary to ensure correct convergence over the entire screen. Each of the three guns is therefore provided with a pair of radial converging pole pieces.
Radial convergence can be achieved by means of magnets and coils mounted externally on the neck of the tube. The magnetic flux provided is coupled through the glass neck of the tube to associated internal pole pieces. The shape of the pole pieces, together with the internal magnetic shielding, is shown in Fig.1. Internal shielding prevents interaction of the various magnetic fields.

Fig. 1

Fig. 2 shows the position of the components on the neck of the tube.
Lateral convergence is achieved by a separate assembly mounted on the neck of the tube. This assembly causes horizontal movement of the blue beam, and simultaneously, movements of the red and green beams in the opposite direction.
Facilities for dynamic blue lateral convergence are also provided in this convergence assembly.

APPLICATION NOTES

1. Magnetic shielding

The tube should be fitted with a magnetic shield around the cone, to minimize the effects of external magnetic fields, including the horizontal, vertical and axial components of the earth's magnetic field. The latter so influences the colour purity that compensation by means of the purifying magnets is not possible.
The metal shield should preferably be constructed of coldrolled steel, at least 0.5 mm thick and properly annealed at $850^{\circ} \mathrm{C}$. Since the tube re-inforcing band is an essential part of the magnetic circuit used for degaussing, the air gap between the band and the shield should be as small as possible and certainly not more than 10 mm . To be effective, the shield must be degaussed as described under "Adjustment procedures". Building-in of an automatic degaussing system is advised.
2. Centring of raster on the screen.

Raster centring in a shadow-mask colour picture tube is achieved by passing direct current of the required value through each pair of deflection coils. The values for raster displacement given in the data apply when all components are properly adjusted.
3. Component considerations.

The necessary components are the deflection coil, the radial convergence assembly, the purifying magnets and the blue lateral convergence magnet.
Basically the functions of the components are:

- deflection of the three beams over the entire screen: deflection coil.
- good convergence of the three beams over the screen: radial convergence assembly and blue lateral convergence magnet.
- landing adjustment: purifying magnets and deflection coil

The mounting positions of the components are as follows:
The deflection coil: in such a way that its deflection centre coincides with the one used in the screen-laying process during manufacturing. The coil must therefore be designed so that sufficient movement in the axial direction is possible.
The radial convergence assembly: with its pole pieces centred above the convergence pole pieces inside the tube. Initially, the assembly should be mounted upright. Small rotations of the whole assembly influence the convergence and can be used during adjustment of the blue lateral correction to obtain optimum lateral convergence.

APPLICATION NOTES (continued)

The purifying magnets: over the gap between the electrode g 3 and g 4 of the gun, or still closer to the deflection coil. Placing the purifying magnets closer to the base results in poorer performance as the spot quality is adversely affected.
The blue lateral convergence magnet: as near as possible to the rear side of the purifying magnets but not shifted backwards more than halfway along electrode g3 of the gun.

3.1 Convergence

Static convergence, i.e. convergence of the three beams onto the centre of the screen, is usually accomplished with permanent magnets which are part of the radial convergence assembly, or with D.C. currents through the convergence coils in combinations with the lateral converging magnet.
The strength of the magnetic field that is adjustably coupled to the radial convergence pole pieces of the gun should be such that each beam can be moved 9.5 mm in both directions towards the centre of the screen excluding effects of dynamic convergence. The static blue lateral convergence magnet should provide a magnetic field adjustable in magnitude and polarity.
This field exerts a directive force on the blue beam and simultaneously a force in the opposite direction on the green and the red beams.
The displacement of the blue beam opposite to the movement of the red and green beams should be 6.5 mm in both directions .
With these four adjustable magnetic fields static convergence of the three beams can be attained.
For good convergence over the entire screen dynamic radial convergence is required together with a small amount of dynamic lateral convergence in line direction.
The radial convergence assembly consists fundamentally of three cores with associated windings. Through the windings are passed the necessary currents for maintaining convergence when the beams are deflected over the screen.
The required form of the currents can be obtained by adding a current with a sawtooth wave form to one with a parabolic wave form. Two separate windings are required for correction in the horizontal and the vertical direction. The parabolic and sawtooth currents should be adjustable in amplitude and the sawtooth currents and the vertical blue parabola should, in addition be adjustable in polarity.
The blue lateral convergence magnet consists of a core and associated windings to obtain dynamic lateral convergence in line direction.

3.2 Landing

Landing is defined as the relative position of each beam with respect to its associated phosphor dot.
Good landing is achieved when each beam excites only its associated colour phosphor dot.
Optimum landing is achieved by adjusting both the purifying magnets and the deflection coil.

APPLICATION NOTES (continued)

3.2.1 Purifying magnets

Purifying magnets are required to compensate for the effects of outside magnetic fields, (including the earth's magnetic field), and manufacturing variations, which could cause mislanding.
Such purifying magnets, designed to provide a magnetic field adjustable in magnitude and direction, effect good landing over the entire screen when the deflection coil position is properly adjusted.

3.2.2 Deflection coil

The position of the deflection centre must be adjustable to make sure that proper landing can be attained in any set. To achieve this the deflection coil should be free to move along the neck over a minimum distance of 12 mm from its most forward position when the purity adjustment is made with the aid of a microscope, or about 20 mm if purity is adjusted by means of the socalled "red ball" method. (See 6.1.2.1.)
4. Drive requirements

To calculate the drive voltages which should be supplied to the tube the following points should be taken into account.
4.1 In presently known systems the luminance signal is composed as follows:
$\mathrm{Y}=0.30 \mathrm{R}+0.59 \mathrm{G}+0.11 \mathrm{~B}$.
The colour information is carried by two chrominance signals which in the receiver after subcarrier detection, deliver the so-call colour difference signals $\mathrm{R}-\mathrm{Y}, \mathrm{G}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$.
These have to be combined with the Y -signal in a matrix circuit to recover the original red, green and blue signals. With the aid of the luminance signal equation it is possible to calculate the maximum voltage ranges for the colour difference signals. The maximum values are reached when the primary colours and their complementaries are produced at maximum brightness.
These values are tabulated below. All values are referred to the maximum value $\mathrm{Y}=\mathrm{R}=\mathrm{G}=\mathrm{B}=1$ for peak white and are considered positive if they cause an increase in beam current.

Colour	R	G	B	Y	$\mathrm{R}-\mathrm{Y}$	$\mathrm{G}-\mathrm{Y}$	$\mathrm{B}-\mathrm{Y}$
Red	1	0	0	0.3	0.7	-0.3	-0.3
Green	0	1	0	0.59	-0.59	0.41	-0.59
Blue	0	0	1	0.11	-0.11	-0.11	0.89
Cyan	0	1	1	0.7	-0.7	0.3	0.3
Magenta	1	0	1	0.41	0.59	-0.41	0.59
Yellow	1	1	0	0.89	0.11	0.11	-0.89

APPLICATION NOTES (continued)

Signal	Minimum	Maximum	Total range
R-Y	-0.7	0.7	1.4
G-Y	-0.41	0.41	0.82
B-Y	-0.89	0.89	1.78

In practice the saturation of the colours is lower than that of the primary colours as considered above, so that the demands on the colour difference signals can be lower than those indicated.
4.2 The combining of the Y-signal with the R-Y, G-Y and B-Y signals can be performed by two methods:
Method 1. Letting the picture tube perform the matrix function by driving the cathodes with the luminance signal while putting the colour difference signals onto the three first grids of the picture tube. (colour difference drive)
Method 2. By means of a separate matrix circuit that delivers red, green and blue signals to the picture tube. (R.G.B. drive). If fed to the three cathodes these signals attain the same maximum amplitudes as the Y-signal in the first method, and it should be remembered that each channel requires full video bandwidth.
In both methods it should be recognized that with cathode drive a higher slope is obtained than with grid drive and to compensate for this higher drive voltages are required for grid drive in each case. For grid drive the relation between grid drive voltage $\left(V_{d r g}\right)$ and beam current $\left(I_{a}\right)$ is approximately:

$$
\mathrm{I}_{\mathrm{a}}=\mathrm{k} \frac{\mathrm{~V}_{\mathrm{drg}}{ }^{3}}{\mathrm{~V}_{\operatorname{cog} 3 / 2}^{3 / 2}} \quad \begin{aligned}
& \text { (} \left.\mathrm{I}_{\mathrm{a}} \text { in } \mu \mathrm{A}\right) \\
& \left(\mathrm{V}_{\operatorname{cog}}\right. \text { is cut-off voltage for grid drive) } \\
& (\mathrm{k}=\mathrm{k} \text { factor })
\end{aligned}
$$

For cathode drive this function reads:

$$
I_{a}=\frac{k(1+D)^{3}}{\left(1+D \frac{V_{\text {drk }}}{V_{\text {cok }}}\right)^{3 / 2} \quad . \quad V_{\text {drk }}{ }^{3}}\left(\begin{array}{l}
\left(V_{\text {cok }}\right)^{3 / 2}
\end{array} \begin{array}{l}
\left(\mathrm{V}_{\text {drk }}=\text { cathode drive voltage }\right) \\
\left(\mathrm{V}_{\text {cok }}=\begin{array}{c}
\text { cut off voltage for cathode } \\
\text { drive })
\end{array}\right.
\end{array}\right.
$$

$$
(\mathrm{D} \quad=\text { penetration factor })
$$

This shows that there is a difference in sensivity between the two drive techniques, and that the relationship between them is not strictly linear. In practice the best result is obtained if the gridsignal amplitudes are made 20% larger than the corresponding cathode signal amplitudes.
4.3 Unequal currents are required for the red, green and blue signals to produce white as the efficiencies of the red, green and blue phosphors are different. (See Equipment Design Values)
4.4 Spread occuring in picture tube properties:
(1) \mathbf{k} factor, (2) penetration of $g 2$
(D) and (3) phosphor efficiencies.

APPLICATION NOTES (continued)

(1) The k factor, having a nominal value of 3.0 , spreads between 2.6 and 3.1 but it can be derived from the $I_{a}=f\left(V_{d r}\right)$ graph for cathode drive that compensation for this spread is attainable when the luminance drive stage is capable of producing approx. 6 volts more than the nominal peak drive needed for the red gun.
(2) The penetration D may spread from 0.18 to 0.40 with a nominal value of 0.29 and is experienced as a spread in V_{Co}. It can be offset - if required - by ad justment of $\mathrm{V}_{\mathrm{g}_{2}}$ (See page 22).
(3) Phosphor efficiencies: the ratios of cathode currents for white having, for example, CIE x and y coordinates:
$x=0.281$ and $y=0.311$, may spread as follows:
$\frac{\mathrm{I}_{\mathrm{R}}}{\mathrm{I}_{\mathrm{G}}}=0.90$ with a min. value of 0.65 and a max. value of 1.25
$\frac{I_{R}}{I_{B}}=1.00$ with a min. value of 0.75 and a max. value of 1.35
In calculations, for the worst case the values $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{G}}=1.25$ and $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{B}}=1.35$ should be used if the compromise white point is chosen ($x=0.281 y=0.311$). If the white point C is chosen for reproduction of colours then for the worst case the current ratio values, $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{G}}=2.00$ and $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{B}}=2.25$ should be used.
5. Raster shape correction

It appears that for 90° deflection the combination of picture tube and deflection coil can give good convergence and landing, but it is not practical to design the combination such that a perfectly rectangular raster is obtained. To avoid the pin cushion raster which results it is necessary to provide raster correction electrically by modulating the deflecting current.
6. Adjustment procedures

The following procedures are suggested to ensure good landing, optimum convergence of the three beams over the entire area of the screen and good grey scale tracking.

Exact focusing is the final operation in the sequence of adjustments, see 6.3. When starting the sequence it is sufficient to adjust the convergence test pattern for optimum sharpness.

Prior to the adjustment procedure the picture tube has to be degaussed. This treatment will correct for localized areas of colour impurity resulting from any magnetization of the shield and internal tube parts and minimize the effect of the earth's magnetic field. Degaussing can be obtained by a coil that consists of 800 turns of 0.7 mm dia. enamelled copper wire (for $220 \mathrm{~V}_{\mathrm{rms}}$) and has an outer diameter of approx. 300 mm .
The coil should be moved such that the entire screen is subjected to its field. After about 10 seconds, the coil is moved away from the face plate to a distance of at least 2 m and disconnected from the A.C. power supply.

APPLICATION NOTES (continued)

During manufacture the receiver chassis should be degaussed in a similar manner, with the receiver switched on and care should be taken that the assembly line is properly degaussed. An automatic degaussing system built into the receiver serves for degaussing during normal operation.
It is recommended that the receiver has some adjustments made before the picture tube is built in. These adjustments should include EHT and deflection, and the dynamic convergence in order to facilitate the adjustment of purity and static convergence. Before deflection power and high voltage are applied to the tube, the bias control should be adjusted for maximum bias. After deflection power and high voltage are applied, the beam currents should be increased gradually to minimize the possibility of tube damage in the event of circuit faults. With the application of a test signal, initial adjustment of focus, raster size, linearity and centring should be made.

6.1 Colour purity and convergence procedures

The normal sequence involves, first, static convergence adjustment next the purifying magnet and adjustment of the axial position of the deflection coil, and lastly final adjustment of dynamic convergence.

6.1.1 Static convergence adjustment

A crosshatch pattern is the most suitable signal for convergence adjustments. The pattern should be displayed at moderate brightness to improve the accuracy. It is advisable to converge red and green first, with the blue gun cut off, and then to converge blue into the yellow pattern formed by the coinciding of red and green lines.
The red and green beams are made to converge statically by adjusting the permanent magnets of the radial convergence assembly, or the corresponding D.C. currents. Correct convergence is obtained when the lines in the centre converge to give yellow.
Before the blue lateral convergence magnet is used, the blue lines are brought horizontally adjacent to the yellow lines by means of the radial blue static convergence adjustment (permanent magnet or D.C. current).
Hereafter the blue lines are made to converge with the yellow lines in the centre with the aid of the blue lateral convergence magnet, resulting in white lines in the centre. If necessary this procedure is repeated.

6.1.2 Adjustment for colour purity

Adjustment for colour purity involves two steps:
Adjustment of the purifying magnets. (6.1.2.1)
Adjustment of the position of the deflection coil. (6.1.2.2)
To obtain optimum adjustment, the static and dynamic convergence should be adjusted previously and the picture tube degaussed and well warmed up to normal operating temperature (approx. 30 min , total beam current $600 \mu \mathrm{~A}$). Purity assessments are best made on a plain raster.

APPLICATION NOTES (continued)

Adjustment of the purifying magnets influences purity all over the screen. The deflection coil adjustment influences purity mainly at the screen edges. Therefore, the magnets have to be adjusted before the coil.
6.1.2.1 The purifying magnets are adjusted, judging by the landing in the screen centre. There are two ways of doing this.
The first method makes use of a microscope (magnification about 50x). With this method, the deflection coil need not possess more axial adjustment margin than that needed to cope with the spreads of the deflection centres. (12 mm total).
With the microscope, the position of the spot trio's is compared with the position of the phosphor dot trio's at the screen centre. To do this, the three colour rasters are displayed simultaneously, and the phosphor dots are illuminated by means of a light source, shining onto the screen at a small angle. The spot trio's should be made to land on the phosphor dot trio's as shown in Fig.1, with their centre points coinciding.
Due to the beam grouping used in this tube (which improves the overall landing) the spots will then be approx. $25 \mu \mathrm{~m}$ eccentric with respect to their corresponding phosphor dots.

Fig.1. Correct landing in the screen centre.
The second method ("Red ball" method) is applicable if the mounting of the deflection coil is such that it can be drawn away approx. 20 mm backwards from its foremost position when it touches the funnel.
The coil is moved backwards as far as possible, and only the red raster is turned on. (The red gun needs relatively the highest current, thus mislanding on blue and green phosphor dots is seen more clearly so that a sharp indication is obtained).
Now a red area of approx. 10 cm diameter is visible on the screen, surrounded by discoloured and blue and green areas. With the aid of the purifying magnets, the red area is positioned near the screen centre. In order that the above mentioned beam grouping shows to full adventage, the red area should be positioned 20 mm down to the left of the screen centre, see Fig. 2.

APPLICATION NOTES (continued)

Fig. 2
6.1.2.2 After adjustment of the purifying magnets, the deflection coil is adjusted by shifting it axially until optimum landing over the entire screen is reached. This can be done in two stages:

1. Only the red raster turned on, and the coil position giving an overall pure red raster sought.
2. For the final adjustment, a white raster is displayed and, if necessary, very slight adjustment of the deflection coil position made to obtain the best white uniformity.
After having completed 1 and 2, the red, green and blue rasters are checked separately for their purity, and if necessary the procedure repeated.

6.1.3 Adjustment of dynamic convergence

Just as for the static convergence a crosshatch pattern is recommended, displayed at low brightness.
It is advisable to adjust first the convergence in the vertical direction (with frame frequency) and then the horizontal convergence (with currents of line frequency). During the dynamic convergence adjustments, the static convergence (6.1.1) may need readjustment depending on the efficiency of any clamping circuits used.

A favourable sequence is to adjust the red and green convergence controls first so that both rasters coincide to display yellow lines while the blue gun is kept cut-off. Thereafter the blue pattern is added and adjusted to coincide with the yellow to give a white pattern. However, as the blue horizontal convergence system usually has a significant power consumption which influences the line time base to some degree, it is often advisable to start the whole convergence procedure by adjusting the blue horizontal convergence controls coarsely to give a straight blue horizontal centre line.

During the vertical dynamic convergence adjustment, the vertical axis of the screen should be taken as reference, while the horizontal adjustments șhould be referred to the horizontal axis. During the latter sequence the lateral blue dynamic convergence is also adjusted.

APPLICATION NOTES (continued)

The currents for dynamic convergence (except blue lateral) consist of two components, viz. one of parabolic and one of sawtooth wave form. Usually both have their own controls which have to be adjusted in combination to obtain convergence. The parabolic ("amplitude") controls are used to make the configurations at the extremities of the picture axis equal to that at the centre. With the sawtooth ("phase" or "tilt") control the two extremities of the picture axis are made equal to each other as far as possible.
In addition, the blue horizontal convergence needs an extra waveform correction to correct for the tilting of the outer edges.
The blue lateral waveform needed is basically a sawtooth. Left-to-right asymmetry can be adjusted by slight rotation of the radial convergence assembly.

By repeated adjustments of the controls the line patterns in the various colours ultimately coincide and become parallel to each other. Thereafter these are made to coincide with the aid of the static convergence magnets to white lines.

After convergence onto the axes is obtained, usually some errors in the corners of the picture remain. Slight readjustment may be needed to minimize these errors.

At the end of the procedure purity is checked, and readjusted if needed, with the aid of the purifying magnets.

6.2 Adjustment of grey scale

This adjustment is carried out last of all and the sequence of the manipulations depends on receiver circuitry.

To obtain a constant hue of white over the whole grey scale when displaying a monochrome signal, the three guns must track accurately. This can be achieved by adjusting two points of each gun characteristic, one near cut-off and one near the highlights. To this end the following variables are available, and in a receiver two of them must be made adjustable for each gun:

1. cut-off point $\left(\mathrm{V}_{\mathrm{g}}\right)$
2. slope $\left(\mathrm{Vg}_{2}\right)$
3. drive

The proper adjustment procedure depends on receiver circuitry. After adjustment, the brightness and contrast controls should not cause any change in hue, and the chosen white point should be displayed.

6.3 Focusing

The focusing voltage for all three guns can be adjusted via the common focus base pin No.9. In order to obtain optimum focus it is recommended to use a black-and-white picture with a low peak to mean brightness ratio, such as the RMA test picture, running at a total mean current of about 1 mA (peak currents in the three guns in the order of 2.5 mA), and to focus at the highlights. This procedure will give best overall focus.

Brightness at the centre of the screen as a function
of $I_{\text {total }}$ for white CIE coordinates

Brightness at the centre of the screen as a function
of $I_{\text {total }}$ for white CIE coordinates
$x=0.281, y=0.3115$)

[^14]

Colour coordinates

	x	y
red	0.630	0.340
green	0.315	0.600
blue	0.150	0.060

HANDBOOK ELECTRON TUBES. Part 8, August 1969

ERRATUM

A63-120X October 1968, page 1
Delete the clause:
These data, based on the specifications..... etc.

90° RECTANGULAR COLOUR TELEVISION PICTURE TUBE WITH INTEGRAL PROTECTION

Three-gun temperature-compensated shadow-mask rectangular colour television tube with electrostatic focus, magnetic deflection and convergence, metal-backed three-colour phosphor dot screen. A high white brightness is obtained by the use of improved red, green and blue phosphors at near unity current ratio. Temperature compensating the shadow-mask has led to optimum field purity and good uniformity during warm-up. Minimum occurrence of the moire effect is ensured by optimizing the mask for the reproduction of 625 -line pictures. The tube has a reinforced envelope and therefore no separate safety screen is necessary. The rimband leaves the edge of the faceplate free.

QUICK REFERENCE DATA	
TEMPERATURE-COMPENSATED SHADOW-MASK	
SHADOW -MASK OPTIMIZED FOR 625-LINE SYSTEM	
HIGH WHITE BRIGHTNESS AT UNITY CURRENT RATIO	
Face diagonal	63 cm
Deflection angle	90
Neck length	164.2 mm
Envelope	reinforced
Focusing	electrostatic
Defiection	magnetic
Convergence	magnetic
Heating	$6.3 \mathrm{~V}, 900$
Light transmission of face glass	52.5

These data, based on the specifications and measured performance of development samples, afford a preliminary indication of the characteristics to be expected of the described product. Distribution of development samples implies no guarantee as to the subsequent availability of the product

SCREEN

Metal-backed tricolour phosphor dots
Phosphor type
Dot arrangement
$\{$ Red: Europium activated rare earth Green and blue: sulphide type
Triangular
Spacing between centres of adjacent dot trios
0.81 mm

Light transmission at centre of face glass 52.5 \%

HEATING

Indirect by A.C. or D.C.; parallel or series supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	900	mA

For maximum cathode life it is recommended that the heater supply be regulated at 6.3 V. If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

CAPACITANCES

Final accelerator to external conductive coating

Final accelerator to metal rimband
Grid No. 1 of any gun to all other electrodes

Cathodes of all guns (connected in parallel) to all other electrodes

$\mathrm{Cag}_{5} \mathrm{~g}_{4} / \mathrm{m}$	\max. \min.	$\begin{aligned} & 2500 \\ & 2000 \end{aligned}$	pF
$\mathrm{C}_{\mathrm{ag}_{5} \mathrm{~g}_{4} / \mathrm{m}}{ }^{\prime}$		500	pF
$\mathrm{C}_{\mathrm{g}_{1}}$		7	pF
C_{k}		15	pF
$\mathrm{C}_{\mathrm{k} R}$		5	pF
$\mathrm{C}_{\mathrm{k}_{\mathrm{G}}}$		5	pF
C_{kB}		5	pF
$\mathrm{C}_{\mathrm{g}_{3}}$		7	pF

FOCUSING electrostatic

DEFLECTION magnetic
Diagonal deflection angle 90°
Horizontal deflection angle 799°
Vertical deflection angle 62°

CONVERGENCE magnetic

MECHANICAL DATA

Overall length
Neck length
$\left.\begin{array}{l}\text { Diagonal } \\ \text { Horizontal axis } \\ \text { Vertical axis }\end{array}\right\}$ of bulb

Useful screen diagonal min. 584 mm
horizontal axis
vertical axis
$521 \pm 9.5 \mathrm{~mm}$
$164.2 \pm 4.5 \mathrm{~mm}$ $\max .626 \mathrm{~mm}$ \max. 548.1 mm $\max .440 .5 \mathrm{~mm}$
min. 504 mm
min. 396 mm

Mounting position: any

Net weight: approx. $188 \mathrm{~N}(18.8 \mathrm{~kg})$
Base: 12 pin base JEDEC B12-246
Anode contact: Small cavity contact J1-21, IEC 67-III-2.

Magnetic shielding

Magnetic shielding should be provided by means of a metal shield extending 28 cm over the cone of the tube measured from the centre of the face plate. The metal shell is preferably constructed of min. 0.5 mm cold rolled steel properly annealed. The air gap between the shield and the metal rimband should be as small as possible and not exceed 10 mm . The magnetic shield should be connected to the outer conductive coating.

NOTES TO OUTLINE DRAWING (See pages 4 and 5)

1. Reference line, determined by the plane of the upper edge of the flange of the reference line gauge, when the gauge is resting on the cone. Gauge see page 10 .
2. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base will fall within a circle concentric with bulb axis and having a diameter of 55 mm .
3. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
4. To clean this area, whipe only with a soft dry lintless cloth.

5 . The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
6. Minimum space to be reserved for mounting lug.
7. The position of the mounting screw in the cabinet must be within a circle of 9.5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $517 \mathrm{~mm} \times 411 \mathrm{~mm}$.
8. Coördinates for radius $\mathrm{R}=30 \mathrm{~mm}: \mathrm{x}=213.66 \mathrm{~mm}, \mathrm{y}=151.63 \mathrm{~mm}$.

Notes see page 3

MECHANICAL DATA (continued)
Dimensions in mm

screen and bulb dimensions

Notes see page 3

	菦 N	Distance from centre (max, values)														
$\begin{aligned} & \tilde{o} \\ & \stackrel{U}{U} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \text { 亏 \& } \\ & \text { E E } \\ & \text { O } \end{aligned}$	$\begin{gathered} \text { Long } \\ \text { axis } \\ 0^{\circ} \end{gathered}$	10°	20°	250	30°	$3^{\circ}{ }^{\circ} 0^{\prime}$	$\begin{gathered} 35^{\circ} 21^{\prime} 38^{\prime \prime} \\ \text { Diag. } . \end{gathered}$	37030°	40°	45°	50°	600	70°	80°	Short axis 90°
1	265.5	82.5	82.6	83.0	83.0	83.0	83.0	83.0	83.0	83.0	83.3	83.5	83.5	83.0	82.8	82.8
2	255.5	107.6	107.4	106.7	106.1	105.7	105.5	105.2	105.1	105.0	104.7	104.5	106.3	111.0	115.0	115.5
3	245.5	129.3	129.5	128.0	127.3	126.6	125.8	124.8	124.0	123.2	122.2	121.4	122.5	126.9	129.9	130.2
4	235.5	147.4	147.2	146.0	145.0	144.8	144.2	142.6	141.2	139.6	137.2	135.4	134.7	138.0	140.0	140.0
5	225.5	162.8	162.8	161.6	160.7	160.3	159.4	157.7	156.2	154.3	150.4	147.7	145.0	146.4	148.2	148.0
6	215.5	176.3	176.3	175.4	175.0	174.3	173.5	171.6	169.9	167.9	163.1	159.0	154.4	154.0	155.4	155.3
7	205.5	188.2	188.2	187.8	187.6	187.2	186.6	185.2	183.4	181.1	175.4	169.9	163.5	161.2	161.6	161.5
8	195.5	198.8	199.0	199.2	199.4	199.6	199.1	197.8	196.1	193.4	186.9	180.3	171.9	170.0	167.4	167.2
9	185.5	208.2	208.8	209.6	210.3	211.1	210.9	209.7	207.8	205.3	197.9	190.3	179.7	174.4	172.9	172.7
10	175.5	216.9	217.9	219.2	220.5	222.2	222.2	221.3	218.9	216.1	208.0	199.4	187.2	180.8	178.2	178.1
11	165.5	224.7	225.6	227.7	229.7	231.9	232.2	231.6	229.6	226.4	217.5	208.0	194.4	186.9	183.5	182.9
12	155.5	231.9	232.9	235.9	238.5	241.4	242.1	241.9	240.1	237.0	226.9	216.4	201.5	191.5	188.6	187.7
13	145.5	238.2	239.7	243.6	246.8	250.5	251.7	251.9	250.4	247.0	236.0	224.5	208.3	198.0	193.4	192.3
14	135.5	244.4	246.3	251.0	254.9	259.5	261.3	261.8	260.5	257.1	245.3	232.6	214.8	203.4	198.2	196.8
15	125.5	250.3	252.2	258.0	262.3	268.1	270.5	271.3	270.1	266.3	254.0	240.4	220.9	208.5	202.4	200.3
16	115.5	256.1	258.2	264.9	270.0	276.6	279.6	280.7	279.3	275.4	262.4	247.8	226.8	213.7	206.6	204.1
17	105.5	260.0	263.4	270.8	276.8	284.7	287.9	289.3	287.9	283.9	270.0	254.7	232.3	218.5	210.5	207.7
18	95.5	265.6	268.3	276.4	283.3	292.4	295.7	297.6	296.3	292.1	277.0	261.0	237.6	223.1	214.3	211.2
19	85.5	269.4	272.4	281.5	289.4	299.4	302.9	305.2	304.2	299.6	283.8	267.1	242.6	227.2	217.9	214.7
20	75.5	272.3	275.5	286.0	294.0	304.6	309.4	311.1	310.5	305.9	289.8	272.5	247.0	230.6	221.2	218.0
21	67.1	273.3	276.79	287.64	296.17	307.1	311.8	313.6	312.6	308.79	292.55	275.38	248.85	232.15	222.91	219.95

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage for a spot cut-off voltage $\mathrm{Vg}_{1}=-105 \mathrm{~V}$
Grid No. 1 voltage for spot cut-off at $\mathrm{V}_{\mathrm{g}_{2}}=300 \mathrm{~V}$

$$
\begin{array}{llrl}
\mathrm{V}_{\mathrm{a}, \mathrm{~g}_{5}, \mathrm{~g}_{4}} & & 25 & \mathrm{kV} \\
\mathrm{~V}_{3} & 4.2 \text { to } & 5 & \mathrm{kV} \\
\mathrm{Vg}_{2} & 210 \text { to } & 495 & \left.\mathrm{~V}^{\mathrm{l}}\right)
\end{array}
$$

$$
\text { at } \mathrm{V}_{\mathrm{g}_{2}}=300 \mathrm{~V}
$$

Brightness at the centre of the screen

EQUIPMENT DESIGN VALUES (each gun if applicable)

Valid for final accelerator voltages between 20 kV and 27.5 kV .
Grid No. 3 (focusing electrode) voltage $\quad \mathrm{V}_{g_{3}} \quad \begin{gathered}16.8 \text { to } 20 \% \text { of } \\ \text { final accelerator voltage }\end{gathered}$
Grid No. 2 voltage ${ }^{1}$)
Grid No. 1 voltage for visual extinction of focused spot (cut-off voltage) 2)
Difference in cut-off voltages between guns in any tube

[^15] See cut-off design chart page 22

Grid No. 3 (focusing electrode) current
Grid No. 2 current
Grid No. 1 current at $V_{g_{1}}=-150 \mathrm{~V}$
To produce white of the following
CIE coördinates
Percentage of total anode current supplied by each gun (typical) red gun green gun blue gun
Ratio of anode currents
red gun to green gun
Ratio of anode currents
red gun to blue gun

$\overline{\text { Notes see page } 8}$

EQUIPMENT DESIGN VALUES (continued)
Required centring, measured at the centre of the screen in any direction

$$
\max . \quad 15 \mathrm{~mm}
$$

Correction which must be supplied by purifying magnet to compensate for mis register (including that caused by earth's magnetic field) when using recommended components. Measured at the centre of the screen in any direction

Lateral distance between the blue spot and the converged red and green spots

Radial convergence displacement excluding effects of dynamic convergence (each beam) (in both directions)

1) This range of V_{2} has to be used when in circuit design fixed values for cut-off of the three guns are used.
${ }^{2}$) This range of $V_{g_{1}}$ has to be used when in circuit design fixed values for $V_{g_{2}}$ of the three guns are used.
${ }^{3}$) To produce colour pictures with the best possible quality, this white point should be used as the transmission systems are based on this point. (Point C).
2) To produce black/white pictures a more bluish white point would be preferable. This white point corresponds virtually with the white point of current black/white picture tubes.
${ }^{5}$) This point is a compromise between the white point C and the white point $x=0.265$ and $y=0.290$, given in order to enable good rendition of colour and black-andwhite pictures with one white point.
3) Dynamic convergence to be effected by currents of approximately parabolic waveshape synchronized with scanning.

LIMTTING VALUES (Each gun if applicable) (Design centre rating system unless otherwise specified)

Final accelerator voltage
Average current for 3 guns
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage, peak, including video signal voltage
Grid No. 1 voltage, negative
negative, operating cut-off
positive
positive peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak

$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{5}, \mathrm{~g}_{4}}$	\max min.	$\begin{array}{r} 27.5 \\ 20 \end{array}$	$\left.\left.\begin{array}{l} k V \\ \left.\left.k)^{2}\right)^{3}\right) \\ k V \\ \hline \end{array}\right)^{4}\right)$
I_{a}	max.	1000	$\mu \mathrm{A}{ }^{5}$)
$\mathrm{V}_{\mathrm{g}}{ }$	max.	6000	V
$\mathrm{V}_{\mathrm{g} 2 \mathrm{p}}$	max.	1000	V

$-\mathrm{V}_{\mathrm{g}}$	\max.	400	V
$-\mathrm{V}_{\mathrm{g}_{1}}$	\max.	200	V
$\mathrm{~V}_{\mathrm{g}}$	\max.	0	V
$\mathrm{~V}_{1 \mathrm{p}}$	\max.	2	V

V_{kf}	\max.	250	V
$\left.\left.6^{6}\right)^{7}\right)$			
$\mathrm{V}_{\mathrm{kf}} \mathrm{p}$	\max.	300	V
$-\mathrm{V}_{\mathrm{kf}}$	\max.	135	V
$-\mathrm{V}_{\mathrm{kf}}$	\max.	180	V

1) Absolute maximum rating system.
${ }^{2}$) The X-ray dose rate remains below the acceptable value of $0.5 \mathrm{mr} / \mathrm{h}$, measured with ionisation chambre when the tube is used within its limiting values.
2) For optimal operating conditions the final accelerator voltage has to be stabilized. Therefore its absolute maximum value can be approached in actual operation and for this reason this value is given instead of the design centre value. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs brightness and resolution and may have a detrimental effect on colour purity.
3) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
${ }^{6}$) In order to avoid excessive hum the a.c. component of the heater to chassis voltage should be as low as possible and must not exceed $20 \mathrm{~V}_{\mathrm{RMS}}$.
${ }^{7}$) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{k} / \mathrm{f}}$ is allowed to rise to 410 V . Between 15 s and 45 s after switching on a decrease in $\mathrm{V}_{\mathrm{k} / \mathrm{f}}$ proportional with time from 410 V to 250 V is permissible.

REMARK

With the high voltage used with this tube (max. 27.5 kV) internal flash-overs may occur. These may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

- No other connections between the outer conductive coating and the chassis are permissible.
Additional information available on request.

REFERENCE LINE GAUGE
Dimensions in mm

DESCRIPTION OF THE TUBE

The A63-120X is a rectangular temperature compensated shadow-mask colour picture tube for use in colour television receivers. The tube can display a picture, either in full colour or in black and white measuring $504 \mathrm{~mm} \times 396 \mathrm{~mm}$ minimum (projected area of $1905 \mathrm{~cm}^{2}$).
The A63-120X has

- a deflection angle of 90°
- a neck diameter of 36.5 mm
- a three-colour phosphor dot screen, composed of closely spaced dots in a regular pattern of tri-angular groups, each containing a red, a green and a blue light emitting dot.
- Three electron guns with axes tilted towards the screen centre, with electrostatic focusing systems and mounted side by side in the neck of the tube 120° apart.

Colour selection is effected by a metal graded-hole shadow mask positioned in front of the tricolour phosphor-dot screen. This mask is aligned with the dot pattern so that the electron beam from each gun lands only on phosphor dots of the associated colour.
The shadow mask has graded holes that increase gradually in diameter from the edge of the mask towards the centre. Grading enables correct purity to be achieved over the whole screen with minimum adjustment.
Although the three guns are tilted towards the screen centre so that their axes intersect at the shadow mask, lateral and radial convergence are necessary to ensure correct convergence over the entire screen. Each of the three guns is therefore provided with a pair of radial converging pole pieces.
Radial convergence can be achieved by means of magnets and coils mounted externally on the neck of the tube. The magnetic flux provided is coupled through the glass neck of the tube to associated internal pole pieces. The shape of the pole pieces, together with the internal magnetic shielding, is shown in Fig.l. Internal shielding prewents interaction of the various magnetic fields.

Fig. 1
Fig. 2

Fig. 2 shows the position of the components on the neck of the tube.
Lateral convergence is achieved by a separate assembly mounted on the neck of the tube. This assembly causes horizontal movement of the blue beam, and simultaneously, movements of the red and green beams in the opposite direction.
Facilities for dynamic blue lateral convergence are also provided in this convergence assembly.

APPLICATION NOTES

1. Magnetic shielding

The tube should be fitted with a magnetic shield around the cone, to minimize the effects of external magnetic fields, including the horizontal, vertical and axial components of the earth's magnetic field. The latter so influences the colour purity that compensation by means of the purifying magnets is not possible.
The metal shield should preferably be constructed of coldrolled steel, at least 0.5 mm thick and properly annealed at $850^{\circ} \mathrm{C}$. Since the tube re-inforcing band is an essential part of the magnetic circuit used for degaussing, the air gap between the band and the shield should be as small as possible and certainly not more than 10 mm . To be effective, the shield must be degaussed as described under "Adjustment procedures". Building-in of an automatic degaussing system is advised.
2. Centring of raster on the screen.

Raster centring in a shadow-mask colour picture tube is achieved by passing direct current of the required value through each pair of deflection coils. The values for raster displacement given in the data apply when all components are properly adjusted.
3. Component considerations.

The necessary components are the deflection coil, the radial convergence assembly, the purifying magnets and the blue lateral convergence magnet.
Basically the functions of the components are:

- deflection of the three beams over the entire screen: deflection coil.
- good convergence of the three beams over the screen: radial convergence assembly and blue lateral convergence magnet.
- landing adjustment: purifying magnets and deflection coil

The mounting positions of the components are as follows:
The deflection coil: in such a way that its deflection centre coincides with the one used in the screen-laying process during manufacturing. The coil must therefore be designed so that sufficient movement in the axial direction is possible.

The radial convergence assembly: with its pole pieces centred above the convergence pole pieces inside the tube. Initially, the assembly should be mounted upright. Small rotations of the whole assembly influence the convergence and can be used during adjustment of the blue lateral correction to obtain optimum lateral convergence.

APPLICATION NOTES (continued)

The purifying magnets: over the gap between the electrode g3 and g4 of the gun, or still closer to the deflection coil. Placing the purifying magnets closer to the base results in poorer performance as the spot quality is adversely affected.
The blue lateral convergence magnet: as near as possible to the rear side of the purifying magnets but not shifted backwards more than halfway along electrode g3 of the gun.

3.1 Convergence

Static convergence, i.e. convergence of the three beams onto the centre of the screen, is usually accomplished with permanent magnets which are part of the radial convergence assembly, or with D.C. currents through the convergence coils in combinations with the lateral converging magnet.
The strength of the magnetic field that is adjustably coupled to the radial convergence pole pieces of the gun should be such that each beam can be moved 9.5 mm in both directions towards the centre of the screen excluding effects of dynamic convergence. The static blue lateral convergence magnet should provide a magnetic field adjustable in magnitude and polarity.
This field exerts a directive force on the blue beam and simultaneously a force in the opposite direction on the green and the red beams.
The displacement of the blue beam opposite to the movement of the red and green beams should be 6.5 mm in both directions.
With these four adjustable magnetic fields static convergence of the three beams can be attained.
For good convergence over the entire screen dynamic radial convergence is required together with a small amount of dynamic lateral convergence in line direction.
The radial convergence assembly consists fundamentally of three cores with associated windings. Through the windings are passed the necessary currents for maintaining convergence when the beams are deflected over the screen.
The required form of the currents can be obtained by adding a current with a sawtooth wave form to one with a parabolic wave form. Two separate windings are required for correction in the horizontal and the vertical direction. The parabolic and sawtooth currents should be adjustable in amplitude and the sawtooth currents and the vertical blue parabola should, in addition be adjustable in polarity.
The blue lateral convergence magnet consists of a core and associated windings to obtain dynamic lateral convergence in line direction.
3.2 Landing

Landing is defined as the relative position of each beam with respect to its as sociated phosphor dot.
Good landing is achieved when each beam excites only its associated colour phosphor dot.
Optimum landing is achieved by adjusting both the purifying magnets and the deflection coil.

APPLICATION NOTES (continued)

3.2.1 Purifying magnets

Purifying magnets are required to compensate for the effects of outside magnetic fields, (including the earth's magnetic field), and manufacturing variations, which could cause mislanding.
Such purifying magnets, designed to provide a magnetic field adjustable in magnitude and direction, effect good landing over the entire screen when the deflection coil position is properly adjusted.

3.2.2 Deflection coil

The position of the deflection centre must be adjustable to make sure that proper landing can be attained in any set. To achieve this the deflection coil should be free to move along the neck over a minimum distance of 12 mm from its most forward position when the purity adjustment is made with the aid of a microscope, or about 20 mm if purity is adjusted by means of the socalled "red ball" method. (See 6.1.2.1.)

4. Drive requirements

To calculate the drive voltages which should be supplied to the tube the following points should be taken into account.
4.1 In presently known systems the luminance signal is composed as follows:
$\mathrm{Y}=0.30 \mathrm{R}+0.59 \mathrm{G}+0.11 \mathrm{~B}$.
The colour information is carried by two chrominance signals which in the receiver after subcarrier detection, deliver the so-call colour difference signals $R-Y, G-Y$ and $B-Y$.
These have to be combined with the Y -signal in a matrix circuit to recover the original red, green and blue signals. With the aid of the luminance signal equation it is possible to calculate the maximum voltage ranges for the colour difference signals. The maximum values are reached when the primary colours and their complementaries are produced at maximum brightness.
These values are tabulated below. All values are referred to the maximum value $\mathrm{Y}=\mathrm{R}=\mathrm{G}=\mathrm{B}=1$ for peak white and are considered positive if they cause an increase in beam current.

Colour	R	G	B	Y	R-Y	G-Y	B-Y -
Red	1	0	0	0.3	0.7	-0.3	-0.3
Green	0	1	0	0.59	-0.59	0.41	-0.59
Blue	0	0	1	0.11	-0.11	-0.11	0.89
Cyan	0	1	1	0.7	-0.7	0.3	0.3
Magenta	1	0	1	0.41	0.59	-0.41	0.59
Yellow	1	1	0	0.89	0.11	0.11	-0.89

APPLICATION NOTES (continued)

Signal	Minimum	Maximum	Total range
R-Y	-0.7	0.7	1.4
G-Y	-0.41	0.41	0.82
B-Y	-0.89	0.89	1.78

In practice the saturation of the colours is lower than that of the primary colours as considered above, so that the demands on the colour difference signals can be lower than those indicated.
4.2 The combining of the Y-signal with the R-Y, G-Y and B-Y signals can be performed by two methods:

Method l. Letting the picture tube perform the matrix function by driving the cathodes with the luminance signal while putting the colour difference signals onto the three first grids of the picture tube. (colour difference drive)

Method 2. By means of a separate matrix circuit that delivers red, green and blue signals to the picture tube. (R.G.B. drive). If fed to the three cathodes these signals attain the same maximum amplitudes as the Y -signal in the first method, and it should be remembered that each channel requires full video bandwidth.
In both methods it should be recognized that with cathode drive a higher slope is obtained than with grid drive and to compensate for this higher drive voltages are required for grid drive in each case. For grid drive the relation between grid drive voltage $\left(V_{d r g}\right)$ and beam current $\left(I_{a}\right)$ is approximately:

$$
\mathrm{I}_{\mathrm{a}}=\mathrm{k} \frac{\mathrm{~V}_{\mathrm{drg}}{ }^{3}}{\mathrm{~V}_{\operatorname{cog}}^{3 / 2}} \quad \begin{aligned}
& \left(\mathrm{I}_{\mathrm{a}} \text { in } \mu \mathrm{A}\right) \\
& \left(\mathrm{V}_{\operatorname{cog}}\right. \text { is cut-off voltage for grid drive) } \\
& (\mathrm{k}=\mathrm{k} \text { factor })
\end{aligned}
$$

For cathode drive this function reads:

$$
\mathrm{I}_{\mathrm{a}}=\frac{\mathrm{k}(1+\mathrm{D})^{3}}{\left(1+\mathrm{D} \frac{\mathrm{~V}_{\mathrm{drk}}}{\mathrm{~V}_{\text {cok }}}\right)^{3 / 2} \cdot\left(\mathrm{~V}_{\text {drk }}{ }^{3}\right.} \begin{array}{ll}
\left(\mathrm{V}_{\text {cok }}\right)^{3 / 2}
\end{array} \begin{aligned}
& \left(\mathrm{V}_{\mathrm{drk}}=\text { cathode drive voltage }\right) \\
& \left(\mathrm{V}_{\mathrm{cok}}=\begin{array}{l}
\text { cut }- \text { off voltage for cathode } \\
\text { drive })
\end{array}\right. \\
& \\
& \text { (D }=\text { penetration factor })
\end{aligned}
$$

This shows that there is a difference in sensivity between the two drive techniques, and that the relationship between them is not strictly linear. In practice the best result is obtained if the gridsignal amplitudes are made 20% larger than the corresponding cathode signal amplitudes.
4.3 Unequal currents are required for the red, green and blue signals to produce white as the efficiencies of the red, green and blue phosphors are different. (See Equipment Design Values)
4.4 Spread occuring in picture tube properties:
(1) k factor, (2) penetration of $g 2$ (D) and (3) phosphor efficiencies.

APPLICATION NOTES (continued)

(1) The k factor, having a nominal value of 3.0 , spreads between 2.6 and 3.1 but it can be derived from the $I_{d}=f\left(V_{d r}\right)$ graph for cathode drive that compensation for this spread is attainable when the luminance drive stage is capable of producing approx. 6 volts more than the nominal peak drive needed for the red gun.
(2) The penetration D may spread from 0.18 to 0.40 with a nominal value of 0.29 and is experienced as a spread in V_{CO}. It can be offset - if required - by ad justment of V_{g} (See page 22).
(3) Phosphor efficiencies: the ratios of cathode currents for white having, for example, CIE x and y coordinates:
$x=0.281$ and $y=0.311$, may spread as follows:
$\frac{I_{R}}{I_{G}}=0.90$ with a min. value of 0.65 and a max. value of 1.25
$\frac{\mathrm{I}_{\mathrm{R}}}{\mathrm{I}_{\mathrm{B}}}=1.00$ with a min. value of 0.75 and a max. value of 1.35
In calculations, for the worst case the values $I_{R} / I_{G}=1.25$ and $I_{R} / I_{B}=1.35$ should be used if the compromise white point is chosen ($x=0.281 y=0.311$). If the white point C is chosen for reproduction of colours then for the worst case the current ratio values, $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{G}}=2.00$ and $\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{\mathrm{B}}=2.25$ should be used.
5. Raster shape correction

It appears that for 90° deflection the combination of picture tube and deflection coil can give good convergence and landing, but it is not practical to design the combination such that a perfectly rectangular raster is obtained. To avoid the pin cushion raster which results it is necessary to provide raster correction electrically by modulating the deflecting current.
6. Adjustment procedures

The following procedures are suggested to ensure good landing, optimum convergence of the three beams over the entire area of the screen and good grey scale tracking.
Exact focusing is the final operation in the sequence of adjustments, see 6.3. When starting the sequence it is sufficient to adjust the convergence test pattern for optimum sharpness.

Prior to the adjustment procedure the picture tube has to be degaussed. This treatment will correct for localized areas of colour impurity resulting from any magnetization of the shield and internal tube parts and minimize the effect of the earth's magnetic field. Degaussing can be obtained by a coil that consists of 800 turns of 0.7 mm dia. enamelled copper wire (for $220 \mathrm{~V}_{\mathrm{rms}}$) and has an outer diameter of approx. 300 mm .
The coil should be moved such that the entire screen is subjected to its field. After about 10 seconds, the coil is moved away from the face plate to a distance of at least 2 m and disconnected from the A.C. power supply.

APPLICATION NOTES (continued)

During manufacture the receiver chassis should te degaussed in a similar manner, with the receiver switched on and care should be taken that the assembly line is properly degaussed. An automatic degaussing system built into the receiver serves for degaussing during normal operation.
It is recommended that the receiver has some adjustments made before the picture tube is built in. These adjustments should include EHT and deflection, and the dynamic convergence in order to facilitate the adjustment of purity and static convergence. Before deflection power and high voltage are applied to the tube, the bias control should be adjusted for maximum bias. After deflection power and high voltage are applied, the beam currents should be increased gradually to minimize the possibility of tube damage in the event of circuit faults. With the application of a test signal, initial adjustment of focus, raster size, linearity and centring should be made.

6.1 Colour purity and convergence procedures

The normal sequence involves, first, static convergence adjustment next the purifying magnet and adjustment of the axial position of the deflection coil, and lastly final adjustment of dynamic convergence.

6.1.1 Static convergence adjustment

A crosshatch pattern is the most suitable signal for convergence adjustments. The pattern should be displayed at moderate brightness to improve the accuracy. It is advisable to converge red and green first, with the blue gun cut off, and then to converge blue into the yellow pattern formed by the coinciding of red and green lines.
The red and green beams are made to converge statically by adjusting the permanent magnets of the radial convergence assembly, or the corresponding D.C. currents. Correct convergence is obtained when the lines in the centre converge to give yellow.
Before the blue lateral convergence magnet is used, the blue lines are brought horizontally adjacent to the yellow lines by means of the radial blue static convergence adjustment (permanent magnet or D.C. current).
Hereafter the blue lines are made to converge with the yellow lines in the centre with the aid of the blue lateral convergence magnet, resulting in white lines in the centre. If necessary this procedure is repeated.

6.1.2 Adjustment for colour purity

Adjustment for colour purity involves two steps:
Adjustment of the purifying magnets. (6.1.2.1)
Adjustment of the position of the deflection coil. (6.1.2.2)
To obtain optimum adjustment, the static and dynamic convergence should be adjusted previously and the picture tube degaussed and well warmed up to normal operating temperature (approx. 30 min , total beam current $600 \mu \mathrm{~A}$). Purity assessments are best made on a plain raster.

APPLICATION NOTES (continued)

Adjustment of the purifying magnets influences purity all over the screen. The deflection coil adjustment influences purity mainly at the screen edges. Therefore, the magnets have to be adjusted before the coil.
6.1.2.1 The purifying magnets are adjusted, judging by the landing in the screen centre. There are two ways of doing this.
The first method makes use of a microscope (magnification about 50x).
With this method, the deflection coil need not possess more axial adjustment margin than that needed to cope with the spreads of the deflection centres. (12 mm total).
With the microscope, the position of the spot trio's is compared with the position of the phosphor dot trio's at the screen centre. To do this, the three colour rasters are displayed simultaneously, and the phosphor dots are illuminated by means of a light source, shining onto the screen at a small angle. The spot trio's should be made to land on the phosphor dot trio's as shown in Fig.1, with their centre points coinciding.
Due to the beam grouping used in this tube (which improves the overall landing) the spots will then be approx. $25 \mu \mathrm{~m}$ eccentric with respect to their corresponding phosphor dots.

Fig.1. Correct landing in the screen centre.
The second method ("Red ball" method) is applicable if the mounting of the deflection coil is such that it can be drawn away approx. 20 mm backwards from its foremost position when it touches the funnel.
The coil is moved backwards as far as possible, and only the red raster is turned on. (The red gun needs relatively the highest current, thus mislanding on blue and green phosphor dots is seen more clearly so that a sharp indication is obtained).
Now a red area of approx. 10 cm diameter is visible on the screen, surrounded by discoloured and blue and green areas. With the aid of the purifying magnets, the red area is positioned near the screen centre. In or der that the above mentioned beam grouping shows to full adventage, the red area should be positioned 20 mm down to the left of the screen centre, see Fig. 2.

APPLICATION NOTES (continued)

Fig. 2
6.1.2.2 After adjustment of the purifying magnets, the deflectioncoil is adjusted by shifting it axially until optimum landing over the entire screen is reached. This can be done in two stages:

1. Only the red raster turned on, and the coil position giving an overall pure red raster sought.
2. For the final adjustment, a white raster is displayed and, if necessary, very slight adjustment of the deflection coil position made to obtain the best white uniformity.
After having completed 1 and 2, the red, green and blue rasters are checked separately for their purity, and if necessary the procedure repeated.

6.1.3 Adjustment of dynamic convergence

Just as for the static convergence a crosshatch pattern is recommended, dis played at low brightness.
It is advisable to adjust first the convergence in the vertical direction (with frame frequency) and then the horizontal convergence (with currents of line frequency). During the dynamic convergence adjustments, the static convergence (6.1.1) may need readjustment depending on the efficiency of any clamping circuits used.

A favourable sequence is to adjust the red and green convergence controls first so that both rasters coincide to display yellow lines while the blue gun is kept cut-off. Thereafter the blue pattern is added and adjusted to coincide with the yellow to give a white pattern. However, as the blue horizontal convergence system usually has a significant power consumption which influences the line time base to some degree, it is often advisable to start the whole convergence procedure by adjusting the blue horizontal convergence controls coarsely to give a straight blue horizontal centre line.

During the vertical dynamic convergence adjustment, the vertical axis of the screen should be taken as reference, while the horizontal adjustments should be referred to the horizontal axis. During the latter sequence the lateral blue dynamic convergence is also adjusted.

APPLICATION NOTES (continued)

The currents for dynamic convergence (except blue lateral) consist of two components, viz. one of parabolic and one of sawtooth wave form Usually both have their own controls which have to be adjusted in combination to obtain convergence. The parabolic ("amplitude") controls are used to make the configurations at the extremities of the picture axis equal to that at the centre. With the sawtooth ("phase" or "tilt") control the two extremities of the picture axis are made equal to each other as far as possible.
In addition, the blue horizontal convergence needs an extra waveform correction to correct for the tilting of the outer edges.
The blue lateral waveform needed is basically a sawtooth. Left-to-right asymmetry can be adjusted by slight rotation of the radial convergence assembly.
By repeated adjustments of the controls the line patterns in the various colours ultimately coincide and become parallel to each other. Thereafter these are made to coincide with the aid of the static convergence magnets to white lines.

After convergence onto the axes is obtained, usually some errors in the corners of the picture remain. Slight readjustment may be needed to minimize these errors.

At the end of the procedure purity is checked, and readjusted if needed, with the aid of the purifying magnets.

6.2 Adjustment of grey scale

This adjustment is carried out last of all and the sequence of the manipulations depends on receiver circuitry.

To obtain a constant hue of white over the whole grey scale when displaying a monochrome signal, the three guns must track accurately. This can be achieved by adjusting two points of each gun characteristic, one near cut-off and one near the highlights. To this end the following variables are available, and in a receiver two of them must be made adjustable for each gun:

1. cut-off point ($\mathrm{V}_{\mathrm{g}_{1}}$)
2. slope ($\mathrm{V}_{\mathrm{g}_{2}}$)
3. drive

The proper adjustment procedure depends on receiver circuitry. After adjustment, the brightness and contrast controls should not cause any change in hue, and the chosen white point should be displayed.

6.3 Focusing

The focusing voltage for all three guns can be adjusted via the common focus base pin No.9. In order to obtain optimum focus it is recommended to use a black-and-white picture with a low peak to mean brightness ratio, such as the RMA test picture, running at a total mean current of about 1 mA (peak currents in the three guns in-the order of 2.5 mA), and to focus at the highlights. This procedure will give best overall focus.

Brightness at the centre of the screen as a function
of Itotal for white CIE coordinates
$x=0.310, y=0.316 \quad 3$)

Brightness at the centre of the screen as a function of $I_{\text {total }}$ for white CIE coordinates
$x=0.265, y=0.2904$)

Brightness at the centre of the screen as a function
of $I_{\text {total }}$ for white CIE coordinates
$x=0.281, y=0.3115$)

Scanned area $504 \mathrm{~mm} \times 396 \mathrm{~mm}$
$\left.3)^{4}\right)^{5}$) See page 8

Colour coordinates

	x	y
	0.630	0.340
red	0.315	0.600
green	0.150	0.060

T.V. PICTURE TUBE

65 cm (25 inch), 110°, rectangular direct vision picture tube for black- and white T.V. with integral protection.

QUICK REFERENCE DATA			
Face diagonal			cm (25 inch)
Deflection angle		110°	
Overall length		383	mm
Neck length		110	mm
Neck diameter		28.6	mm
Light transmission of face glass		43	\%
Focusing			electrostatic
Bulb			reinforced
Heating	6.3	V, 300	mA

SCREEN

Metal backed phosphor

Luminescence

Light transmission of face glass
Useful diagonal
Useful width
Useful height
white
43 \%
min. 616.5 mm
min. $\quad 530 \mathrm{~mm}$
min. 416 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply

Heater current	I_{f}	300	mA
Heater voltage	V_{f}	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed 9.5 $\mathrm{V}_{\mathrm{rms}}$ when the supply is switched on.

MECHANICAL DATA

Mounting position: any
Base : B8H. JEDEC B7-208
Net weight : approx. 18 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

For notes see page 5.

		Distance from centre (max. values)												
ㄷ.		$\begin{aligned} & \text { short } \\ & 90^{\circ} \end{aligned}$	80°	70°	60°	50°	45°	40°	$\begin{aligned} & \dot{0} \\ & \stackrel{0}{g} \\ & \frac{0}{6} \\ & \text { is } \end{aligned}$	30°	25°	20°	10°	$\begin{aligned} & \text { long } \\ & 0^{\circ} \end{aligned}$
1	212.3	92.24	92.24	92.24	92.24	92.24	92.24	92.24	92.24	92.53	93.35	94.72	100.37	104.74
2	202.3	119.93	119.93	119.93	119.93	119.93	119.93	119.93	119.93	120.40	121.77	124.07	132.29	137.75
3	192.3	143.52	143.57	143.69	143.91	144.20	144.35	144.48	144.51	145.13	146.89	149.84	159.18	164.63
4	182.3	160.98	161.20	161.86	163.07	164.79	165.69	166.53	166.78	167.51	169.56	172.98	182.71	187.71
5	172.3	174.77	175.19	176.54	179.02	182.69	184.69	186.60	187.21	188.02	190.28	194.10	203.78	208.10
6	162.3	186.16	186.81	188.87	192.72	198.58	201.86	205.09	206.12	207.00	209.44	213.56	222.18	225.17
7	152.3	195.79	196.66	199.46	204.74	212.90	217.57	222.24	223.77	224.70	227.27	230.93	236.60	238.51
8	142.3	204.02	205.13	208.68	215.40	225.93	232.05	238.27	240.31	241.16	243.07	245.22	248.37	249.42
9	132.3	211.10	212.44	216.75	224.93	237.87	245.49	253.31	255.91	256.17	256.72	257.31	258.24	258.56
10	122.3	217.19	218.77	223.84	233.51	248.89	258.02	267.49	270.66	269.93	268.73	267.75	266.62	266.30
11	112.3	222.40	224.22	230.08	241.24	259.08	269.75	280.90	284.65	282.62	279.42	276.87	273.79	272.88
12	102.3	226.82	228.89	235.55	248.22	268.54	280.76	293.62	297.96	294.38	289.01	284.89	279.94	278.45
13	92.3	230.52	232.84	240.31	254.52	277.34	291.13	305.71	310.64	305.34	297.66	291.95	285.17	283.13
14	82.3	233.54	236.12	244.43	260.21	285.55	300.91	317.12	322.55	315.57	305.48	298.18	289.59	287.02
15	72.3	235.91	238.77	247.94	265.31	292.19	307.83	324.05	329.49	322.52	311.93	303.61	293.27	290.15
16	62.3	237.66	240.78	250.53	268.22	295.09	310.74	326.96	332.39	325.43	314.83	306.51	295.89	292.46

7225123

NOTES TO OUTLINE DRAWING

1. Opening of metal rimband. The eccentricity of this opening with respect to the centre of the screen is max. 1.5 mm (see detail).
2. Meniscus of resin filler screen.
3. Reference line is determined by the plane of the upper edge of the flange of the reference line gauge, when the gauge is resting on the cone. Reference line gauge C (JEDEC 126).
4. The maximum neck and cone contour given by reference line gauge C.
5. This area must be kept clean.
6. Recessed cavity contact.
7. The configuration of outer conductive coating is optional, but contains the contact area as shown on drawing.
The external conductive coating must be earthed.
8. The deviation of any lug with respect to the plane through the other three lugs is maximum 2 mm .
9. Minimum space to be reserved for mounting lugs.
10. The mounting screws in the cabinet must be situated inside a circle of 9.5 mm diameter drawn around the true geometrical position i.e. corners of a rectangle of $537 \mathrm{~mm} \times 431 \mathrm{~mm}$.
11. The metal rimband must be earthed.

Electrical contact between the band and the mounting lugs is guaranteed.
12. End of guaranteed zone
13. Applies also to diagonal.

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal band
Cathode to all other elements
Grid No. 1 to all other elements

$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}$	max.	2500	pF
min^{2}.	1700	pF	
$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}^{\prime}$	\max.	450	pF
C_{k}		4	pF
$\mathrm{C}_{\mathrm{g}_{1}}$		6	pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle
Horizontal deflection angle 99°
Vertical deflection angle 82°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service
$\left.\begin{array}{llrl}\text { Final accelerator voltage } & \mathrm{V}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5}} & 20 & \mathrm{kV} \\ \text { Focusing electrode } & \mathrm{V}_{\mathrm{g}_{4}} & 0 \text { to } 400 & \mathrm{~V} \\ \\ \text { l) }\end{array}\right)$

Cathode drive service

Voltages are specified with respect to grid No. 1
Final accelerator voltage
Focusing electrode voltage
Grid No. 2 voltage
Cathode voltage for visual extinction of focused raster
l) Voltage range to obtain optimum overall focus at $100 \mu \mathrm{~A}$ beam current.

$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5}}$	20	kV
V_{4}	0 to 400	$\mathrm{~V}^{1}$
$\mathrm{~V}_{2}$	500	V
$\mathrm{~V}_{\mathrm{k}}$	45 to	80

LIMITING VALUES (Design centre rating system, unless otherwise stated)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5}=0$

$$
\mathrm{V}_{\mathrm{a}, \mathrm{~g}_{3}, \mathrm{~g}_{5}} \begin{array}{llll}
\max . & 20 & \mathrm{kV} \\
\min . & 11 & \mathrm{kV}
\end{array}
$$

Grid No. 4 voltage,
positive
positive peak
negative
Grid No. 2 voltage
Grid No. 2 to grid No. 1 voltage
Grid No. 1 voltage,
positive
positive peak
negative
negative peak
Cathode grid No. 1 voltage,
positive
positive peak
negative
negative peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak
positive during equipment warm-up period not exceeding 15 s
${ }^{1}$) Absolute maximum rating system.
2) Maximum pulse duration 22% of a cycle but maximum 1.5 ms .
${ }^{3}$) At $\mathrm{V}_{1} / \mathrm{k}=0 \mathrm{~V}$.
4) Between 15 s and 45 s after switching on a decrease in k / f voltage, linear proportional with time, from 410 V to 250 V is permissible.

CIRCUIT DESIGN VALUES

Grid No 4 current, positive negative

Grid No 2 current
positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
Resistance between external conductive coating and rimband
$R_{k / f} \quad \max . \quad 1 \quad M \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz}) \quad \max .0 .1 \mathrm{M} \Omega$
$\mathrm{R}_{1} \max .1 .5 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}_{1}}(50 \mathrm{~Hz}) \quad \max .0 .5 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{m} / \mathrm{m}^{\prime}} \quad \min . \quad 2 \mathrm{M} \Omega$

T.V. PICTURE TUBE

36 cm (14 inch), 90°, rectangular direct vision picture tube for black-and white T.V.

SCREEN

Metal backed phosphor
Luminescene white
Light transmission of face glass
Useful diagonal
Useful width
Useful height

HEATING

Indirect by A.C. or D.C.; series or parallel supply

Heater current	If_{f}	300	mA
	$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed 9.5 V rms when the supply is switched on.

MECHANICAL DATA
Dimensions in mm

MECHANICAL DATA (continued) Dimensions in mm

${ }^{1}$) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone. Reference line gauge B.
2) Allowable contact area.
3) Space for deflection coils and centering magnet.
${ }^{4}$) Space for the ion trap magnet.
5) Distance from reference line to top centre of grid.
${ }^{6}$) Recessed cavity contact. AW36-80Z without ion trap.
${ }^{7}$) Ion trap magnet.
8) This area must be kept clean.

MECHANICAL DATA (continued)

Mounting position: any
Base : Duodecal 7 pin

Net weight : approx. 3.8 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

CAPACITANCES

Final accelerator to external conductive coating	$\mathrm{C}_{\mathrm{a}, \mathrm{g}_{4}, \mathrm{~g}_{6}, / \mathrm{m}}$	$\begin{aligned} & <1200 \mathrm{pF} \\ & >500 \mathrm{pF} \end{aligned}$
Cathode to all	C_{k}	4 pF
Grid No. 1 to all	$\mathrm{C}_{\mathrm{g}_{1}}$	7 pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle	90°
Horizontal deflection angle	85°
Vertical deflection angle	68°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 70 mm .

ION TRAP MAGNET

Single magnet, field intensity approx. $4000 \mathrm{~A} / \mathrm{m}$ (50 Oerstedt)

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage
Focusing electrodes voltage
Grid No. 2 voltage
Grid No. 1 voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a},} \mathrm{g}_{4}, \mathrm{~g}_{6}$	12	kV
$\mathrm{V}_{\mathrm{g}}, \mathrm{g}_{5}$	-70 to	230
$\left.\mathrm{~V}^{\mathrm{l}}\right)$		
V_{2}	300	V

$\mathrm{V}_{1} \quad-40$ to -80 V

LIMITING VALUES (Design centre rating system, unless otherwise stated)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g}_{4}, \mathrm{~g}_{6}=0 \quad \quad \mathrm{~V}, \mathrm{~g}_{4}, \mathrm{~g}_{6} \quad \begin{aligned} & \max .\end{aligned} \begin{array}{rl}14 & \mathrm{kV} \\ \min . & 9 \\ \mathrm{kV}\end{array}$
Grids No. 3 and 5 voltage,
positive
negative
Grid No. 2 voltage
Grid No. 1 voltage,
positive
positive peak
negative
Cathode to heater voltage,
positive
negative
positive during equipment warm-up period not exceeding 45 s
positive
$\begin{array}{clll}\mathrm{V}_{3}, \mathrm{~g}_{5} & \max . & 500 & \mathrm{~V} \\ -\mathrm{Vg}_{3}, \mathrm{~g}_{5} & \max . & 500 & \mathrm{~V} \\ \mathrm{Vg}_{2} & \max . & 500 & \mathrm{~V} \\ & \text { min. } & 200 & \mathrm{~V}\end{array}$

V_{1}	\max.	0	V
$\mathrm{~V}_{\mathrm{g}_{1 p}}$	\max.	2	V
$-\mathrm{V}_{\mathrm{g}}$	\max.	150	V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	200	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	125	V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$
$\max .410 \mathrm{~V}$

CIRCUIT DESIGN VALUES

Grids No. 3 and 5 current,

positive	$\mathrm{I}_{\mathrm{g}_{3}}, \mathrm{~g}_{5}$	\max.	10	$\mu \mathrm{~A}$
negative	$-\mathrm{I}_{g_{3}}, \mathrm{~g}_{5}$	\max.	10	$\mu \mathrm{~A}$

1) Voltage range to obtain optimum overall focus at $100 \mu \mathrm{~A}$ beam current.

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater	$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
Impedance between cathode and heater	$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0.1	$\mathrm{M} \Omega$
Grid No. 1 circuit resistance	R_{g}	\max.	1.5	$\mathrm{M} \Omega$
Grid No. 1 circuit impedance	$\mathrm{Z}_{g_{1}}(50 \mathrm{~Hz})$	\max.	0.5	$\mathrm{M} \Omega$

T.V. PICTURE TUBE

43 cm (17 inch), 90°, rectangular direct vision picture tube for black- and white T.V.

QUICK REFERENCE DATA		
Face diagonal	43 cm (17 inch)	
Deflection angle	90°	
Overall length	397	mm
Neck length	165 mm	
Neck diameter	36.5 mm	
Light transmission of face glass	75	$\%$
Focusing		electrostatic
Bulb		
Heating	6.3	$\mathrm{~V}, 300$
		mA

SCREEN

Metal backed phosphor
Luminescence white
Light transmission of face glass
75 \%
Useful diagonal min. 390 mm
Useful width min. 362 mm

Useful height
min. 273 mm

HEATING

Indirect by A.C. or D. C.; series or parallel supply

Heater current	I_{f}	300	mA
	Heater voltage	V_{f}	6.3
		V	

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

AW43-80
AW43-80Z

MECHANICAL DATA
Dimensions in mm

${ }^{1}$) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone. Reference line gauge B.
${ }^{2}$) Allowable contact area.
${ }^{3}$) Space for deflection coils and centering magnet.
4) Space for the ion trap magnet.
${ }^{5}$) Distance from reference line to top centre of grid.
6) Recessed cavity contact.
7) Ion trap magnet. AW43-80Z without ion trap.
8) This area must be kept clean.

MECHANICAL DATA (continued)
Mounting position: any
Base : Duodecal 7 pin
Net weight : approx. 6 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

CAPACITANCES

Final accelerator to external conductive coating	$\mathrm{C}_{\mathrm{a}, \mathrm{g}_{4}, \mathrm{~g}_{6}, / \mathrm{m}}$	$\begin{array}{r}<1400 \\ >900 \\ \\ \hline\end{array}$
Cathode to all	C_{k}	4 pF
Grid No. 1 to all	C_{1}	7 pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle	90°
Horizontal deflection angle	85°
Vertical deflection angle	68°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 70 mm .

ION TRAP MAGNET

Single magnet, field intensity approx. $4000 \mathrm{~A} / \mathrm{m}$ (50 Oerstedt).

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage
Focusing electrodes voltage
Grid No. 2 voltage
Grid No. 1 voltage for visual extinction of focused raster
$\left.\begin{array}{lrl}\mathrm{V}_{\mathrm{a}, \mathrm{g}_{4}, \mathrm{~g}_{6}} & 16 & \mathrm{kV} \\ \mathrm{V}_{\mathrm{g}_{3}, \mathrm{~g}_{5}} & -75 \text { to } & 235 \\ \mathrm{~V}_{\mathrm{g}} & \mathrm{V} \mathrm{l}\end{array}\right)$
$\mathrm{Vg}_{1} \quad-40$ to $-80 \quad \mathrm{~V}$

LIMITING VALUES (Design centre rating system, unless otherwise stated)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a}, \mathrm{g}_{4}, \mathrm{~g}_{6}=0} \quad \mathrm{~V}, \mathrm{~g}_{4}, \mathrm{~g}_{6} \quad \begin{aligned} & \max .\end{aligned} \mathrm{m}_{\mathrm{min}} \quad 18 \mathrm{kV}$
Grids No. 3 and 5 voltage,

positive	$\mathrm{V}_{\mathrm{g}_{3}}, \mathrm{~g}_{5}$	\max.	500	V
negative	$-\mathrm{V}_{\mathrm{g}}, \mathrm{g}_{5}$	\max.	500	V
		\max.	500	V
No.2 voltage	V_{g}	\min.	200	V

Grid No. 1 voltage,

positive	$\mathrm{V}_{g_{1}}$	\max.	0	V
positive peak	$\mathrm{V}_{g_{1 p}}$	\max.	2	V
negative	$-\mathrm{V}_{g_{1}}$	\max.	150	V

Cathode to heater voltage,
positive
negative
positive during equipment warm-up period not exceeding 45 s

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	200	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	125	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	\max.	410	V

CIRCUIT DESIGN VALUES

Grids No. 3 and 5 current,
positive
negative

$$
\begin{array}{rlll}
\mathrm{I}_{3}, \mathrm{~g}_{5} & \max . & 10 & \mu \mathrm{~A} \\
-\mathrm{I}_{3}, \mathrm{~g}_{5} & \max . & 10 & \mu \mathrm{~A}
\end{array}
$$

[^16]
MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0.1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}_{1}}$	\max.	1.5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}_{1}}(50 \mathrm{~Hz})$	\max.	0.5	$\mathrm{M} \Omega$

T.V. PICTURE TUBE

43 cm (17 inch), 110°, rectangular direct vision picture tube for black- and white T.V.

QUICK REFERENCE DATA			
Face diagonal		43	cm (17 inch)
Deflection angle		110°	
Overall length		319	mm
Neck length		138	mm
Neck diameter		28.6	mm
Light transmission of face glass		75	\%
Focusing			electrostatic
Bulb			mono-panel
Heating	6.3	V, 300	mA

SCREEN

Metal backed phosphor
Luminescence white

Light transmission of face glass
Useful diagonal
Useful width
Useful height

HEATING

Indirect by A. C. or D. C.; series or parallel supply
Heater current
Heater voltage

I_{f}	300	mA
$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

MECHANICAL DATA

${ }^{1}$) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when, the gauge is resting on the cone. Reference line gauge C .
${ }^{2}$) Allowable contact area. The external conductive coating must be earthed.
3) This area must be kept clean.
${ }^{4}$) Recessed cavity contact.
5) The indicated dimensions for envelope width, height and diagonal are measured at the splice line seal but do not include the bulge which may be present at the seal. At any point around the seal the bulge will not protrude more than 3.2 mm beyond the envelope surface.
${ }^{6}$) The tube should be supported on both sides of the bulge. The mechanism used should provide clearance for the maximum dimensions of the bulge.

MECHANICAL DATA (continued)

Mounting position: any
Base : B7-183 Eightar 7 pins
Net weight : approx. 5 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 45 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

CAPACITANCES

Final accelerator to external
conductive coating
Cathode to all
Grid No. 1 to all
$\mathrm{C}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}} \quad \begin{array}{r}<7500 \\ \end{array}$
C_{k}
4 pF
$\mathrm{C}_{\mathrm{g}_{1}}$
6 pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle	110°
Horizontal deflection angle	105°
Vertical deflection angle	87°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage
Grid No. 2 voltage
Focusing electrode voltage
Grid No. 1 voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5}}$	16	kV
V_{2}	300	V
Vg_{4}	0 to 400	$\left.\mathrm{~V}^{\mathrm{l}}\right)$
Vg_{1}	-30 to -72	V

Cathode drive service

Voltages are specified with respect to grid No. 1

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5}}$	16 kV	
Grid No. 2 voltage	$\mathrm{V}_{\mathrm{g}_{2}}$	300	V
Grid No.4 voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	0 to 400	V

LIMITING VALUES (Design centre rating system, unless otherwise stated)

Final accelerator voltage at $I_{a, g_{3}, g_{5}}=0 \quad \quad V_{a}, g_{3}, g_{5} \quad$| max. |
| :--- |
| min. | 16 kV

Grid No. 4 voltage,
positive
negative
Grid No. 2 voltage

$\mathrm{V}_{\mathrm{g}_{4}}$	\max.	1000	V
$-\mathrm{V}_{4}$	\max.	500	V
$\mathrm{~V}_{\mathrm{g}_{2}}$	\max.	500	V
	\min.	200	V

Grid No. 1 voltage, positive
positive peak
negative
negative peak

V_{l}	max.	0	V
$\mathrm{~V}_{\mathrm{g}}$	max.	2	V
$-\mathrm{V}_{\mathrm{g}_{1}}$	\max.	150	V
$-\mathrm{V}_{\mathrm{lp}}$	\max.	400	V

[^17]
LIMITING VALUES (continued)

Cathode to grid No. 1 voltage,
positive
positive peak
negative
negative peak
Cathode to heater voltage,
positive
negative
positive during equipment warm-up period not exceeding 45 s

$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}}$	max.	150	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{g}_{\mathrm{lp}}}$	max.	400	$\left.\mathrm{~V}{ }^{\mathrm{l}}\right)$
$-\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{1}$	\max.	0	V
$-\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{1 \mathrm{p}}$	\max.	2	V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	$\max .200$
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.

$\mathrm{V}_{\mathrm{k} / \mathrm{f}} \quad \max .410 \mathrm{~V}$

CIRCUIT DESIGN VALUES

Grid No. 4 current, positive
negative
Grid No. 2 current,
positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
$\mathrm{R}_{\mathrm{k} / \mathrm{f}} \quad \max . \quad 1 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz}) \max$. $0.1 \mathrm{M} \Omega$

$\mathrm{Zg}_{1}(50 \mathrm{~Hz}) \quad \max .0 .5 \mathrm{M} \Omega$

[^18]
T.V. PICTURE TUBE

43 cm (21 inch), 110°, rectangular direct vision picture tube for black- and white T.V.

QUICK REFERENCE DATA		
Face diagonal	43 cm (21 inch)	
Deflection angle	110°	
Overall length	274 mm	
Neck length	93 mm	
Neck diameter	28.6 mm	
Light transmission of face glass	75	$\%$
Focusing		electrostatic
Bulb		mono-panel
Heating	6.3	$\mathrm{~V}, 300$

SCREEN

Metal backed phosphor
Luminescene white
Light transmission of face glass
75 \%
Useful diagonal
min. 400 mm
Useful width
min. 374.5 mm
Useful height
min. 295 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply
Heater current
Heater voltage

If_{f}	300	mA
$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

${ }^{1}$) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone. Reference line gauge C .
${ }^{2}$) Measured $12 \pm 1 \mathrm{~mm}$ from the centre line of the screen to cone seal.
${ }^{3}$) External conductive coating must be grounded.
4) This area must be kept clean.
${ }^{5}$) Recessed cavity contact.
${ }^{6}$) At any point around the seal the bulge will not protrude more than 3.2 mm beyond the surface at the location specified for dimensioning the envelope width, height and diagonal.
${ }^{7}$) The tube should be supported on both sides of the bulge.
The mechanism used should provide clearance for the maximum dimensions of the bulge.

MECHANICAL DATA (continued)
Mounting position: any
Base : JEDEC B7-208 Neo-Eightar 7 pin
Net weight \quad : approx. 5 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

CAPACITANCES

Final accelerator to external
conductive coating
Cathode to all
$\mathrm{C}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}} \quad<1500 \mathrm{pF}$

Grid No. 1 to all
C_{k}
5 pF
C_{g}
7 pF
FOCUSING efectrostatic
DEFLECTION magnetic
Diagonal deflection angle 110°
Horizontal deflection angle 105°
Vertical deflection angle 87°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service
Final accelerator voltage
Grid No. 2 voltage
Focusing electrode
Grid No. 1 voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	16	kV
V_{2}	500	V
$\mathrm{~V}_{3}$	0 to 400	$\mathrm{~V}^{\mathrm{l}}$)
Vg_{1}	-35 to -75	V

TYPICAL OPERATING CONDITIONS (continued)

Cathode drive service
Voltages are specified with respect to grid No. 1
Final accelerator voltage
Grid No. 2 voltage
Focusing electrode
Cathode voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g}}$	16	V
Vg_{2}	540	V
Vg_{3}	40 to 440	$\mathrm{~V}^{1}$)
V_{k}	35 to	69
	V	

LIMITING VALUES (Design centre rating system, unless otherwise stated)

Final accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g}_{4}=0 \quad \mathrm{~V}_{\mathrm{a}, \mathrm{g}_{4}}$| \max. |
| :--- |
| \min. | $\mathrm{l}_{\mathrm{m}} \mathrm{kV}$

Grid No. 3 voltage positive
negative

V_{3}	\max.	750	V
$-\mathrm{V}_{3}$	\max.	500	V

Grid No. 2 voltage, positive
negative peak
Grid No. 1 voltage, positive
positive peak
negative
negative peak

	\max.	700	V
$\mathrm{~V}_{2}$	\min.	500	V
$-\mathrm{V}_{\mathrm{g}_{2 \mathrm{p}}}$	\max.	200	V

V_{g}	max.	0	V
$\mathrm{~V}_{\mathrm{lp}}$	max.	2	V
$-\mathrm{V}_{\mathrm{g}_{1}}$	\max.	150	V
$-\mathrm{V}_{\mathrm{g}_{\mathrm{lp}}}$	max.	400	$\left.\mathrm{~V}^{2}\right)$

[^19]LIMITING VALUES (continued)
Cathode to grid No. 1 voltage,
positive
positive peak
negative
negative peak
Cathode to heater voltage,
positive
negative
positive during equipment warm-up period not exceeding 45 s

CIRCUIT DESIGN VALUES

Grid No. 3 current,
positive
negative
Grid No. 2 current,
positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	$\max .200$	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	$\max .125$	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	$\max .410$	V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$
$\max .410 \mathrm{~V}$
$\left.\begin{array}{clrl}\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{1} & \text { max. } & 150 & \mathrm{~V} \\ \mathrm{~V}_{\mathrm{k}} / \mathrm{g}_{1 \mathrm{p}} & \max . & 400 & \mathrm{~V} \\ -1\end{array}\right)$
$\max .15 \mu \mathrm{~A}$
$\max . \quad 15 \mu \mathrm{~A}$
$\max . \quad 5 \mu \mathrm{~A}$
$\max . \quad 5 \mu \mathrm{~A}$
${ }^{1}$) Maximum pulse duration 22% of a cycle but max. 1.5 ms .

T.V. PICTURE TUBE

Replacement to type A47-14W

T.V. PICTURE TUBE

53 cm (21 inch), 90°, rectangular direct vision picture tube for black- and white T.V.

QUICK REFERENCE DATA		
Face diagonal	53 cm (21 inch)	
Deflection angle	90°	
Overall length	482 mm	
Neck length	165 mm	
Neck diameter	36.5 mm	
Light transmission of face glass	70%	
Focusing		electrostatic
Bulb	$6.3 \quad \mathrm{~V}, 300$	mA
Heating		mono-panel

SCREEN

Metal backed phosphor
Luminescence white
Light transmission of face glass
70 \%

Useful diagonal
min. 511 mm
Useful width min. 482 mm

Useful height
min. 378 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply

Heater current	I_{f}	300	mA
	$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

${ }^{1}$) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone. Reference line gauge B .
${ }^{2}$) Allowable contact area.
${ }^{3}$) Space for deflection coils and centering magnet.
${ }^{4}$) Space for the ion trap magnet.
5) Distance from reference line to top centre of grid.
${ }^{6}$) Recessed cavity contact.
7) Ion trap magnet. AW53-80Z without ion trap.
${ }^{8}$) This area must be kept clean.

MECHANICAL DATA (continued)

Mounting position: any
Base : Duodecal 7 pins
Net weight : approx. 10 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

CAPACITANCES

Final accelerator to external conductive coating		$\begin{array}{ll} <1750 & \mathrm{pF} \\ >1250 & \mathrm{pF} \end{array}$
Cathode to all	C_{k}	4 pF
Grid No. 1 to all	C_{g}	7 pF

FOCUSING electrostatic

DEFLECTION magnetic
Diagonal deflection angle 90°
Horizontal deflection angle 85°
Vertical deflection angle 68°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 70 mm .

ION TRAP MAGNET

Single magnet, field intensity approx. $4000 \mathrm{~A} / \mathrm{m}$ (50 Oerstedt)

For:
TYPICAL OPERATING CONDITIONS
LIMITING VALUES
CIRCUIT DESIGN VALUES
MAXIMUM CIRCUIT VALUES
please refer to type AW 43-80

T.V. PICTURE TUBE

53 cm (21 inch), 110°, rectangular direct vision picture tube for black-and white T.V.

QUICK REFERENCE DATA		
Face diagonal	$53 \mathrm{~cm} \mathrm{(21} \mathrm{inch)}$	
Deflection angle	110°	
Overall length	373 mm	
Neck length	138 mm	
Neck diameter	28.6 mm	
Light transmission of face glass	75	$\%$
Focusing		electrostatic
Bulb		mono-panel
Heating	6.3	$\mathrm{~V}, 300$

SCREEN

Metal backed phosphor
Luminescence white
Light transmission of face glass
75 \%
Useful diagonal
min. 514.5 mm
Useful width
min. 484 mm
Useful height min. 382.5 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply

Heater current	I_{f}	300	mA
	$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

MECHANICAL DATA (continued)

${ }^{1}$) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone. Reference line gauge C .
${ }^{2}$) Allowable contact area. The external conductive coating must be earthed.
3) This area must be kept clean.
4) Recessed cavity contact.
5) The face-plate dimensions are measured at the mould-match line.
6) Splice-line of face-plate. At any point around the splice-line seal the bulge at this seal will not protrude more than 1.6 mm beyond the tube circumference at mould-match line so that the indicated max. face-plate dimensions will not exceeded by more than 3.2 mm .
${ }^{7}$) Minimum undisturbed area between mould-match line and splice line available for mounting a tube support band. No excessive pressure should be exerted by the support band on the splice line seal.

MECHANICAL DATA (continued)

Mounting position: any
Base :B7-183 Eightar 7 pins
Net weight : approx. 10 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 45 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

CAPACITANCES

Final accelerator to external
conductive coating
Cathode to all
Grid No. 1 to all

FOCUSING electrostatic

DEFLECTION magnetic
Diagonal deflection angle 110°
Horizontal deflection angle 105°
Vertical deflection angle 87°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

For;
TYPICAL OPERATING CONDITIONS
LIMITING VALUES
CIRCUIT DESIGN VALUES
MAXIMUM CIRCUIT VALUES
please refer to type AW 43-88

T.V. PICTURE TUBE

Replacement type A59-15W

T.V. PICTURE TUBE

Replacement to type A59-15W

T.V. PICTURE TUBE

61 cm (24 inch), 110° rectangular direct vision picture tube for black- and white T.V.

SCREEN

Metal backed phosphor
Luminescence white

Light transmission of face glass
Useful diagonal
Useful width
Useful height

	75	$\%$
min.	579.5	mm
min.	544.5	mm
min.	428.5	mm

HEATING
Indirect by A.C. or D.C.; series or parallel supply
Heater current
Heater voltage

I_{f}	300	mA
$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

${ }^{1}$) Reference line, determined by the plane of the upper edge on the flange of the reference line gauge when the gauge is resting on the cone. Reference line gauge C.
${ }^{2}$) Allowable contact area. The external conductive coating must be earthed.
${ }^{3}$) This area must be kept clean.
${ }^{4}$) Recessed cavity contact.
${ }^{5}$) Mould match line.
6) Splice-line of face-plate. At any point around the splice-line seal the bulge at this seal will not protrude more than 1.6 mm beyond the tube circumference at mould-match line so that the indicated max. faceplate dimensions will not be exceeded by more than 3.2 mm .
${ }^{7}$) Minimum undisturbed area between mould-match line and splice line available for mounting a tube support band. No excessive pressure should be exerted by the support band on the splice line seal.

MECHANICAL DATA (continued)
Mounting position: any
Base : B7-183. Eightar 7 pins
Net weight : approx. 13 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 45 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

CAPACITANCES

Final accelerator to external conductive coating
$\mathrm{C}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}} \quad<2500 \mathrm{pF}$
$>1700 \mathrm{pF}$

Cathode to all
Grid No. 1 to all
C_{k}
Cg_{1}
4 pF
6 pF

FOCUSING electrostatic

DEFLECTION magnetic
Diagonal deflection angle 110°

Horizontal deflection angle 105°
Vertical deflection angle 87°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

LIMITING VALUES

CIRCUIT DESIGN VALUES
MAXIMUM CIRCUIT VALUES

Refer to type AW 43-88

T.V. PICTURE TUBE

43 cm (17 inch), 70°, rectangular direct vision picture tube for black- and white T.V.

QUICK REFERENCE DATA		
Face diagonal	43 cm (17 inch)	
Deflection angle	70°	
Overall length	485 mm	
Neck length	187 mm	
Neck diameter	36.5 mm	
Light transmission of face glass	66	$\%$
Focusing		
Bulb		
Heating	6.3	$\mathrm{~V}, 300$
		magnetic

SCREEN

Metal backed phosphor
Luminescence white

Light transmission of face glass		66	$\%$
Useful diagonal	min. 390	mm	
Useful width	min. 362	mm	
Useful height	min. 272	mm	

HEATING

Indirect by A.C. or D. C.; series or parallel supply

Heater current	I_{f}	300
	mA	
Heater voltage	V_{f}	6.3
V		

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

${ }^{1}$) Reference line, determined by the plane of the upper edge of the reference line gauge when the gauge is resting on the cone. Reference line gauge A.
${ }^{2}$) The distance from deflection centre to reference line should not exceed 29 mm .
${ }^{3}$) Space for deflection and focusing coils.
${ }^{4}$) Space for the ion trap magnet.
${ }^{5}$) Ion trap magnet.

MECHANICAL DATA (continued)

Mounting position: any
Base : Duodecal 7 pin
Net weight : approx. 8.2 kg
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

CAPACITANCES

Final accelerator to external conductive coating

$\mathrm{C}_{\mathrm{a}, \mathrm{g}_{4} / \mathrm{m}}$	1100	pF
C_{k}	5	pF
C_{g}	7	pF

FOCUSING magnetic

DEFLECTION magnetic

Diagonal deflection angle 70°
Horizontal deflection angle 65°
Vertical deflection angle 52°

ION TRAP MAGNET

Single magnet, field intensity approx. 4000 A/m (50 Oerstedt)

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}}, \mathrm{g}_{4}$	14	kV
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{3}}$	0 to 250	V
Grid No. 2 voltage	$\mathrm{V}_{\mathrm{g}_{2}}$	300	V
Grid No.1 voltage for visual extinction of focused raster	$\mathrm{V}_{\mathrm{g}_{1}}$	-40 to -86	V

LIMITING VALUES (Design centre rating system, unless otherwise stated)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a},} \mathrm{g}_{4}=0$
Grid No. 3 voltage,

positive	Vg_{3}	\max.	410	V
negative	$-\mathrm{Vg}_{3}$	\max.	100	V
		Vg_{2}	\max.	410
\min.	V			
No. 2 voltage	200	V		

Grid No. 1 voltage,

positive	Vg_{1}	\max.	0	V
positive peak	$\mathrm{Vg}_{1 \mathrm{p}}$	\max.	2	V
negative	$-\mathrm{Vg}_{1}$	\max.	150	V

Cathode to heater voltage,
positive
negative
positive during equipment warm-up period not exceeding 45 s

$V_{k / f}$	\max.	200	V
$-V_{k / f}$	\max.	125	V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}} \quad \max .410 \mathrm{~V}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}_{1}}$	\max.	1.5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}_{1}}(50 \mathrm{~Hz})$	\max.	0.5	$\mathrm{M} \Omega$

The power supply should be of the limited-energy type with inherent regulation to limit the continuous short-circuit current to 5 mA . If the supply permits the instantaneous short-circuit current to exceed 1 A , or is capable of storing more than 250μ coulombs, the effective resistance in the circuit between the indicated electrode and the output capacitor should be as follows:
$\mathrm{Rg}_{1}=\min . \quad 150 \Omega$
$\mathrm{R}_{\mathrm{g}_{2}}=\min . \quad 470 \Omega$
$\mathrm{Rg}_{3}=\min . \quad 470 \Omega$
$\mathrm{R}_{\mathrm{g}_{4}}=\min .16000 \Omega$

T.V. PICTURE TUBE

53 cm (21 inch), 70°, rectangular direct vision picture tube for black- and white T.V.

QUICK REFERENCE DATA			
Face diagonal		53	cm (21 inch)
Deflection angle		70°	
Overall length		581	mm
Neck length		186.5	mm
Neck diameter		36.5	mm
Light transmission of face glass		70	\%
Focusing			magnetic
Bulb			mono-panel
Heating	6.3	V, 300	

SCREEN

Metal backed phosphor
Luminescene
white

Light transmission of face glass
70 \%
Useful diagonal
min. 506 mm
Useful width
Useful height
min. 485 mm
min. 360 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply

Heater current	I_{f}	300	mA
	$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed 9.5 V rms when the supply is switched on.

${ }^{1}$) Reference line, determined by the plane of the upper edge of the reference line gauge when the gauge is resting on the cone. Reference line gauge A.
${ }^{2}$) The distance from deflection centre to reference line does not exceed 29 mm . ${ }^{3}$) Space for deflection coils and focusing device.
4) Space for the ion trap magnet.
5) Recessed cavity contact.
${ }^{6}$) Ion trap magnet.

MECHANICAL DATA (continued)

Mounting position: any
Base : duodecal 7 pin
Net weight : approx. 11 kg
The bottom circumference of the base wafer will fall withina circle concentric with the tube axis and having a diameter of 55 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

CAPACITANCES

Final accelerator to external
conductive coating
Cathode to all
Grid No. 1 to all
$\mathrm{C}_{\mathrm{a}, \mathrm{g}_{4} / \mathrm{m}} \quad \begin{array}{r}<1100 \mathrm{pF} \\ >700 \mathrm{pF}\end{array}$
C_{k}
5 pF
C_{1}
7 pF

FOCUSING

 magneticDEFLECTION magnetic
Diagonal deflection angle 70°
Horizontal deflection angle 65°
Vertical deflection angle 50°

ION TRAP MAGNET

Single magnet field intensity approx. $4000 \mathrm{~A} / \mathrm{m}$ (50 Oerstedt)

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage
Focusing electrode voltage
Grid No. 2 voltage
Grid No. 1 voltage for visual extinction of focused raster

$\mathrm{V}, \mathrm{g}_{4}$	16	kV
V_{3}	0 to	300
V		
$\mathrm{~V}_{2}$	300	V

$\mathrm{V}_{1} \quad-40$ to -80 V
7Z2 6596

LIMITING VALUES (Desing centre rating system, unless otherwise stated)

Final accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g}_{4}=0$
Grid No. 3 voltage, positive negative

Grid No. 2 voltage
Grid No. 1 voltage, positive
positive peak negative
Cathode to heater,
positive
negative
positive during equipment warm-up period not exceeding 45 s

$$
\begin{array}{llll}
& \mathrm{V}_{\mathrm{a}, \mathrm{~g}_{4}} & \text { max. } & 18 \\
\text { min. } & \mathrm{kV} \\
& 12 & \mathrm{kV}
\end{array}
$$

$\mathrm{V}_{\mathrm{g}_{3}}$	max.	500	V
$-\mathrm{V}_{\mathrm{g}_{3}}$	\max.	300	V
$\mathrm{~V}_{\mathrm{g}}$	max.	500	V
\min.	200	V	

V_{1}	max.	0	V
$\mathrm{~V}_{1 p}$	\max.	2	V
$-\mathrm{Vg}_{1}$	\max.	150	V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	$\max .200$	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	$\max .125$	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	$\max .410$	V

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}_{1}}$	\max.	1.5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}}(50 \mathrm{~Hz})$	\max.	0.5	$\mathrm{M} \Omega$

The power supply should be of the limited-energy type with inherent regulation to limit the continuous short-circuit current to 5 mA . If the supply permits the instantaneous short-circuit current to exceed 1 A , or is capable of storing more than 250μ coulombs, the effective resistance in the circuit between the indicated electrode and the output capacitor should be as follows:
$R_{g_{1}}=\min . \quad 150 \Omega$
$\mathrm{R}_{\mathrm{g}_{2}}=\min . \quad 500 \Omega$
$\mathrm{R}_{\mathrm{g}_{3}}=\min . \quad 500 \Omega$
$\mathrm{R}_{\mathrm{a}}=\min .18000 \Omega$

T.V. PICTURE TUBE

53 cm (21 inch), 90°, rectangular direct vision picture tube for black- and white T.V.

QUICK REFERENCE DATA		
Face diagonal	53	cm (21 inch)
Deflection angle	90°	
Overall length	504	mm
Neck length	187	mm
Neck diameter	36.5	mm
Light transmission of face glass	75	\%
Focusing		magnetic
Bulb		mono-panel
Heating	$6.3 \mathrm{~V}, 300$	

SCREEN

Metal backed phosphor
Luminescence white

| Light transmission of face glass | 75 | $\%$ |
| :--- | :--- | :--- | :--- |
| Useful diagonal | min. 511 | mm |
| Useful width | min. 482 | mm |
| Useful height | min. 378 | mm |

HEATING

Indirect by A.C. or D.C.; series or parallel supply

Heater current	I_{f}	300	mA
	$\mathrm{~V}_{\mathrm{f}}$	6.3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

[^20]MECHANICAL DATA (continued)
Mounting position: any
Base : Duodecal 7 pin
Net weight : approx. 13 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

CAPACITANCES

Final accelerator to external
conductive coating
Cathode to all
Grid No. 1 to all

FOCUSING

DEFLECTION magnetic
Diagonal deflection angle
Horizontal deflection angle
Vertical deflection angle
magnetic

$$
90^{\circ}
$$

85°
65°

ION TRAP MAGNET

Single magnet, field intensity approx. $4000 \mathrm{~A} / \mathrm{m}$ (50 Oerstedt).

TYPICAL OPERATING CONDITIONS

Grid drive service
Final accelerator voltage

$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{4}}$	16	kV
V_{3}	0 to 300	V
$\mathrm{~V}_{2}$	300	V

Grid No. 1 voltage for visual extinction of focused raster
$\mathrm{V}_{1} \quad-40$ to -80 V

LIMITING VALUES (Design centre rating system, unless otherwise stated)

Final accelerator voltage at $I_{a, g_{4}}=0$
Grid No. 3 voltage, positive
negative
Grid No. 2 voltage
Grid No. 1 voltage,
positive
positive peak
negative
Cathode to heater voltage,
positive
negative
positive during equipment warm-up period not exceeding 15 s
$\begin{array}{llll} & & \max . & 18 \\ \mathrm{mV} \\ 4 & \min . & 12 & \mathrm{kV}\end{array}$
$\mathrm{Vg}_{3} \quad \max .500 \mathrm{~V}$ $-\mathrm{V}_{3} \quad \max .100$. V
$\max .500 \mathrm{~V}$
min. 200 V

V_{1}	\max.	0	V
$\mathrm{Vg}_{l_{p}}$	\max.	2	V
$-\mathrm{V}_{1}$	\max.	150	V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}} \quad \max .200 \mathrm{~V}$
$\mathrm{V}_{\mathrm{k} / \mathrm{f}} \max .125 \mathrm{~V}$
$\mathrm{V}_{\mathrm{k} / \mathrm{f}} \quad \max .410 \mathrm{~V}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
R_{g}	\max.	1.5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}}(50 \mathrm{~Hz})$	\max.	0.5	$\mathrm{M} \Omega$

T.V. PICTURE TUBE

61 cm (24 inch), 90°, rectangular direct vision picture tube for black- and white T.V.

QUICK REFERENCE DATA		
Face diagonal	61	cm (24 inch)
Deflection angle	90°	
Overall length	532.5	mm
Neck length	186.5	mm
Neck diameter	36.5	mm
Light transmission of face glass	75	$\%$
Focusing		
Bulb		magnetic
Heating	$6.3 \mathrm{~V}, 300$	mA

SCREEN

Metal backed phosphor
Luminescence white
Light transmission of face glass
Useful diagonal min. 576.5 mm
Useful width
min .544 .5 mm
Useful height min .428 .5 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply
Heater current
Heater voltage
$\mathrm{If}_{\mathrm{f}} \quad 300 \mathrm{~mA}$
V_{f}
6.3 V

If the tube is connected in a series heater chain the surge heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

MECHANICAL DATA

Dimensions in mm

1) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone. Reference line gauge B.
2) Allowable contact area.
3) Space for deflection coils and focusing device.
4) Space for the ion trap magnet.
5) Distance from reference line to top centre of grid.
${ }^{6}$) Recessed cavity contact.
6) Ion trap magnet
7) This area must be kept clean.

MECHANICAL DATA (continued)
Mounting position: any
Base : Duodecal 7 pin
Net weight : approx. 15 kg
The bottom circumference of the basewafer will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

CAPACITANCES

Final accelerator to external		
conductive coating		$<1750 \mathrm{pF}$
Cathode to all	$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{4} / \mathrm{m}$	$>1250 \mathrm{pF}$
Grid No. 1 to all	C_{k}	4 pF
	$\mathrm{C}_{\mathrm{g}_{1}}$	7 pF

FOCUSING magnetic

DEFLECTION magnetic

Diagonal deflection angle 90°
Horizontal deflection angle 85°
Vertical deflection angle 65°

ION TRAP MAGNET

Single magnet, field intensity approx. $4000 \mathrm{~A} / \mathrm{m}$ (50 Oerstedt).

TYPICAL OPERATING CONDITIONS

Grid drive service

LIMITING VALUES (Design centre rating system, unless otherwise stated)
Final accelerator voltage at $I_{a,} g_{4}=0$
$\mathrm{V}_{\mathrm{a}}, \mathrm{g}_{4}$
$\max .18 \mathrm{kV}$
$\min .12 \mathrm{kV}$
Grid No. 3 voltage
positive
negative
Grid No. 2 voltage
Grid No. 1 voltage, positive positive peak negative

Cathode to heater voltage,
positive
negative
positive during equipment warm-up period not exceeding 45 s

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater Impedance between cathode and heater

Grid No. 1 circuit resistance
Grid No. 1 circuit impedance

$\mathrm{V}_{\mathrm{g}_{3}}$	$\max .500$	V
$-\mathrm{V}_{\mathrm{g}_{3}}$	$\max .100$	V
$\mathrm{~V}_{\mathrm{g}_{2}}$	$\max .500$	V
	$\min .200$	V

$$
\begin{gathered}
\mathrm{V}_{\mathrm{g}_{1}} \\
\mathrm{~V}_{\mathrm{g}_{1 p}} \\
-\mathrm{V}_{\mathrm{g}_{1}}
\end{gathered}
$$

$$
\begin{array}{rll}
\mathrm{V}_{\mathrm{k} / \mathrm{f}} & \max .200 & \mathrm{~V} \\
-\mathrm{V}_{\mathrm{k} / \mathrm{f}} & \max .125 & \mathrm{~V}
\end{array}
$$

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$
$\max .410 \mathrm{~V}$

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	$\max . \quad 1$	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	$\max \cdot 0.1$	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}_{1}}$	$\max \cdot 1.5$	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}_{1}}(50 \mathrm{~Hz})$	$\max \cdot 0.5$	$\mathrm{M} \Omega$

INDEX OF TYPENUMBERS

Type No.	Type No.
A28-13W	AW36-80
A28-14W	AW36-80Z
A31-20W	AW43-80
A44-120W	AW43-80Z
A47-11W	AW43-88
A47-14W	AW43-89
A47-26W	AW47-91
A50-120W	AW53-80
A56-120X	AW53-80Z
A59-11W	AW53-88
A59-15W	AW59-90
A59-16W	AW59-91
A59-23W	AW61-88
A61-120W	MW43-69
A63-11X	MW53-20
A65-120X	MW53-80
	MW61-80

23DGP4A See A59-16W

General section

T.V. Picture tubes

[^0]: 1) As from June, 1969, this subsection forms part of Part 5, section Electro-mechanical components.
 2) See also Part 5, section Electro-mechanical components 7Z2 9296
[^1]: ${ }^{1}$) Base-pin and pumping stem positions are held to tolerances such that entire length of pins and stem will without undue force pay into and disengage from a flat-plate gauge having a thickness of 6.35 mm and eight holes with diameters of $1.27 \pm$ 0.013 mm so located on a $9.525 \pm 0.013 \mathrm{~mm}$ diameter circle that the distance along the chord between any two adjacent hole centres is $3.645 \pm 0.013 \mathrm{~mm}$ and a centre hole of $5.97+0.025 \mathrm{~mm}$ being chamfered at the top over 1.52 mm with an angle of 45 degrees.
 ${ }^{2}$) This dimensions around the periphery of any individual pin may vary within the limits shown.

[^2]: 1) Voltage range to obtain optimum overall focus at $100 \mu \mathrm{~A}$ beam current.
 2) Absolute maximum rating system.
 3) Maximum pulse duration 22% of a cycle but max. 1.5 ms .
[^3]: 1) Maximum pulse duration 22% of a cycle but max. 1.5 ms .
[^4]: 1) Individual tubes will have optimum focus at some value between 0 V and 350 V .
[^5]: ${ }^{1}$) Absolute maximum rating system.
 2) Maximum pulse duration 22% of a cycle but max. 1.5 ms .

[^6]: Final accelerator current as a function of cathode voltage

[^7]: 1) Individual tubes will have optimum focus within this range. In general an acceptable picture will be obtained with a fixed focus voltage.
[^8]: ${ }^{1}$) Voltage range to obtain optimum overall focus at $100 \mu \mathrm{~A}$ beam current.
 ${ }^{2}$) Maximum pulse duration 22% of a cycle but maximum 1.5 ms .
 ${ }^{3}$) At $\mathrm{Vg}_{1} / \mathrm{k}=0 \mathrm{~V}$.

[^9]: ${ }^{1}$) Maximum pulse duration 22% of a cycle but max. 1.5 ms .

[^10]: 1) Individual tubes will have optimum focus within this range. In general acceptable pictures will be obtained with a fixed focus voltage.
[^11]: $\left.3)^{4}\right)^{5}$) See page 8 .

[^12]: 1) Individual tubes will have optimum focus within this range. In general an acceptable picture will be obtained with a fixed focus voltage.
[^13]: Notes see page 8

[^14]: $\left.\left.{ }^{3}\right)^{4}\right)^{5}$) See page 8 .

[^15]: V_{g}

[^16]: 1) Voltage range to obtain optimum overall focus at $100 \mu \mathrm{~A}$ beam current.
[^17]:
 ${ }^{2}$) Maximum pulse duration 22% of a cycle but max. 1.5 ms .

[^18]: ${ }^{1}$) Maximum pulse duration 22% of a cycle but max. 1.5 ms .

[^19]: ${ }^{1}$) Voltage range to obtain optimum overall focus at $100 \mu \mathrm{~A}$ beam current.
 At the specified value of Vg_{3}, the focusing of the tube is optimum in the centre of the screen.
 If a uniform focusing over the entire screen is preferred, Vg_{3}, has to be raised with 100-200 Volt.
 ${ }^{2}$) Maximum pulse duration 22% of a cycle but max. 1.5 ms .

[^20]: ${ }^{1}$) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone. Reference line gauge B.
 ${ }^{2}$) Allowable contact area.
 ${ }^{3}$) Space for deflection coils and focusing device.
 ${ }^{4}$) Space for the ion trap magnet.
 ${ }^{5}$) Distance from reference line to top centre of grid.
 6) Recessed cavity contact.
 ${ }^{7}$) Ion trap manget.
 ${ }^{8}$) This area must be kept clean.

