Electron tubes

Part 7b March 1977

Segment indicator tubes

Indicator tubes

Switching diodes

Dry reed contact units

ELECTRON TUBES

Segment indicator tubes

Indicator tubes

Switching diodes
Dry reed contact units
Associated accessories

Index

RATING SYSTEM

(in accordance with IEC Publication 134)

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

Some devices are labelled "MAINTENANCE TYPE" or "OBSOLESCENT TYPE"

Maintenance type - Available for equipment maintenance. No longer recommended for equipment production.
Obsolescent type - Available until present stocks are exhausted.

DATA HANDBOOK SYSTEM

Our Data Handbook Syster is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of three series of handbooks each comprising several parts.
ELECTRON TUBES BLUE
SEMICONDUCTORS AND INTEGRATED CIRCUITS RED
COMPONENTS AND MATERIALS GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

Where ratings or specifications differ from those published in the preceding edition they are pointed out by arrows. Where application information is given it is advisory and does not form part of the product specification.

If you need confirmation that the published data about any of our products are the latest available, please contact our representative. He is at your service and will be glad to answer your inquiries.

[^0]
ELECTRON TUBES (BLUE SERIES)

This series consists of the following parts, issued on the dates indicated.

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1a	Rectifier diodes, thyristors, triacs	March 1976
	Rectifier diodes	Rectifier stacks
	Voltage regulator diodes ($>1,5 \mathrm{~W}$)	Thyristors
	Transient suppressor diodes	Triacs
Part 1b	Diodes	October 1975
	Small signal germanium diodes	Voltage regulator diodes (<1,5 W)
	Small signal silicon diodes	Voltage reference diodes
	Special diodes	Tuner diodes
Part 2	Low-frequency transistors	December 1975
Part 3	High-frequency and switching transistors	April 1976
Part 4a	Special semiconductors	June 1976
	Transmitting transistors	Dual transistors
	Microwave devices	Microminiature devices for
	Field-effect transistors	thick- and thin-film circuits
Part 4b	Devices for optoelectronics	July 1976
	Photosensitive diodes and transistors	Photocouplers
	Light emitting diodes	Infrared sensitive devices
	Displays	Photoconductive devices

Part 5a Professional analogue integrated circuits
November 1976
N.B. Consumer circuits will be issued in part 5b

Part 6 Digital integrated circuits
May 1976
LOCMOS HE family
GZ family

COMPONENTS AND MATERIALS (GREEN SERIES)

This series consists of the following parts, issued on the dates indicated.
Part 1 Functional units, Input/output devices,
Peripheral devices
November 1975
High noise immunity logic FZ/30-Series Circuit blocks 40 -Series and CSA 70
Counter modules 50 -Series
NORbits 60-Series, 61-Series
Part 2a Resistors
Fixed resistors
Variable resistors
Voltage dependent resistors (VDR)
Light dependent resistors (LDR)

Part 2b Capacitors
Circuit blocks 90-Series
Input/output devices
Hybrid integrated circuits
Peripheral devices
February 1976
Negative temperature coefficient thermistors (NTC)
Positive temperature coefficient thermistors (PTC)
Test switches
April 1976
Electrolytic and solid capacitors
Paper capacitors and film capacitors
Ceramic capacitors
Variable capacitors
Part 3 Radio, Audio, Television
FM! tuners
Loudspeakers
Television tuners and aerial input assemblies

Part 4a Soft ferrites
October 1976
Ferrites for radio, audio and television Beads and chokes

January 1977
Components for black and white television
Components for colour television

Ferroxcube potcores and square cores Ferroxcube transformer cores

Part 4b Piezoelectric ceramics, Permanent magnet materials
December 1976
Part 5 Ferrite core memory products
July 1975
Ferroxcube memory cores
Matrix planes and stacks
Part 6 Electric motors and accessories
September 1975
Small synchronous motors
Stepper motors

Part 7 Circuit blocks

September 1971
Circuit blocks 100 kHz -Series
Circuit blocks 1-Series
Circuit blocks 10 -Series
Part 8 Variable mains transformers
July 1975
Part 9 Piezoelectric quartz devices
March 1976
Part 10 Connectors
November 1975

Segment indicator tubes

DUAL 7-SEGMENT INDICATOR TUBE suitable for direct drive with 30 V ICs

Long-life segmented dual cold-cathode gas-filled indicator tube in a flat envelope for in-line numeric display applications, such as in digital measuring equipment, clocks, cash registers, weighing machines etc. The tube is suitable for soldering into the circuit. Two or more tubes may be stacked horizontally.

QUICK REFERENCE DATA	
Character height	
Characters	formed by 7 segments
Number of decades	2
Decimal point	to the lower right of
the characters	
Decade pitch (also for stacked tubes)	$17,78 \mathrm{~mm}(0,7 \mathrm{in})$

MECHANICAL DATA

Mounting position : any
The tube is provided with dual in-line tinned dip-solder pins for insertion in a printedwiring board. $(\mathrm{e}=2,54 \mathrm{~mm})$. It may also be plugged into a socket.

Soldering

The dip-solder pins may be soldered for 5 s in solder of max. $260{ }^{\circ} \mathrm{C}$.

CHARACTERISTICS

Ignition voltage, first ignition, 25 lx
Ignition delay, first ignition, $\mathrm{V}_{\text {ba }}=165 \mathrm{~V}, 25 \mathrm{~lx}$
Ignition voltage, subsequent ignitions within 10 ms
Primed ignition voltage
Maintaining voltage
Extinction voltage

| $\mathrm{V}_{\text {ign }}$ | $<165 \mathrm{~V}$ | |
| ---: | :--- | ---: | :--- |
| $\mathrm{~T}_{\mathrm{d}}$ | $<$ | 2 s |
| $\mathrm{~V}_{\text {ign }}$ | $<150 \mathrm{~V}$ | |
| $\mathrm{~V}_{\text {ign pr }}$ | $\leq 143 \mathrm{~V} \quad 1$) | |
| | see graph | |
| $\mathrm{V}_{\text {ext }}$ | $\geq 125 \mathrm{~V}$ | |

Luminous intensity per segment
$10 \mathrm{mCd} / \mathrm{mA}$

[^1]LIMITING VALUES (Absolute max. rating system)
segments
max. 0.7 min. 0,25
max. 0,5
$\max \quad 3$
min. 0, 35

Voltage between screen and any other electrode (tube ignited)

Ambient temperature
dec. points max. $0,25 \mathrm{~mA}$ $\min . \quad 0,1 \mathrm{~mA}$ max. $0,2 \mathrm{~mA}$ $\max .1,1 \mathrm{~mA}$ min. $0,1 \mathrm{~mA}$

125 V

max.	125	V
max.	100	${ }^{\circ} \mathrm{C}{ }^{1}$)
min.	-50	${ }^{0} \mathrm{C}^{2}$)

RECOMMENDED OPERATING CONDITIONS

If the tube is used within its limiting values and according to the conditions below, a high-quality display is ohtained and interdigit discharges are prevented. even with the worst combination of parameters.
For many applications the worst parameter combination will not oecur. In those cases the conditions recommended below may be changed which may result in a cheaper drive circuit. These changes should. however. only be made after consulting the tube manufacturer.

Static operation see Fig. 1
$\begin{array}{lll}\text { Anode supply voltage } & \begin{array}{l}\text { Vax. } \\ \text { ba }\end{array} & \begin{array}{l}\text { max. } \\ \min \end{array} \\ 165 & \text { V }\end{array}$

Fig. 1

[^2]Dynamic operation see Fig. 2
Anode supply

Screen supply voltage $\left(\mathrm{R}_{\text {Screen }}=1 \mathrm{M} \Omega\right)$

	max.	185	V
$\mathrm{~V}_{\text {ba }}$	min.	165	V
	max.	60	V
$\mathrm{~V}_{\text {bs }}$	min.	50	V
	max.	125	V
$\mathrm{~V}_{\mathrm{a}_{\text {off }}}$	min.	115	V

Fig. 2

[^3]

Maintaining voltage as a function of segment current.

Luminous sensitivity as a function of d.c. segment current.

Relative luminous intensity as a function of the direction of viewing.

7-SEGMENT 1,5 DIGIT INDICATOR TUBE

Long-life segmented cold-cathode gas-filled indicator tube in a flat envelope for in-line display applications, such as in digital measuring equipment.
The tube can be stacked with the ZM1550.

QUICK REFERENCE DATA		
Character height		15 mm
Characters,	left compartment right compartment	$\begin{aligned} & +-1 \\ & \text { formed by } 7 \text { segments } \end{aligned}$
Numbers of decades		1,5
Decimal point		to the lower right of the character
Decade pitch (also for stacked tubes)		$17.78 \mathrm{~mm}(0.7 \mathrm{in})$

Further information on request.

Indicator tubes

COLD CATHODE INDICATOR TUBES

TERMS AND DEFINITIONS

1. Indicator tube.

An indicator tube is a glow discharge :ube designed to give a visual indication of the presence of an electrical signal.

A numerical indicator tube is one in which the indication is given in the form ofi numerals.

In a point indicator tube the indication is given by the position of the glow.
2. Ignition.
2.1 Ignition voltage (symbol $\mathrm{V}_{\text {ign }}$)

The ignition voltage is the lowest direct potential, which when applied to a particular anode-cathode gap in the presence of some primary ionisation, will cause a self sustaining discharge to start in that anode-cathode gap.
2.2 Ignition delay.

The ignition delay is the time interval between the application of a direct potential (equal to or exceeding the ignition voltage) to a particular anodecathode gap and the establishment of a self sustaining discharge in that gap. The figure quoted applies to a tube which has been inoperative for a time long in comparision with the deionisation time.
3. Maintaining voltage (symbol V_{m})

The maintaining voltage is the voltage between an anode and that cathode carrying the main discharge.
4. Extinguishing voltage (symbol $V_{\text {ext }}$)

The extinguishing voltage is the voltage between anode and cathode below which the glow discharge extinguishes and is equal to the lowest possible value of the maintaining voltage.
5. "On" cathode.

The "on" cathode is the cathode (numeral) which is required to be displaid and thus carries the main discharge.
6. "Off" cathode.
thus act as probes in the main discharge.
7. Cathode selecting voltage (symbol V_{kk})

The cathode selecting voltage is the cathode voltage difference which is used for discrimination between the "off" cathodes and the "on" cathode.
8. Anode selecting voltage (symbol V_{aa})

The anode selecting voltage is the anode voltage difference which is used to select the "on" cathode out of a group of cathodes.
9. Anode to cathode bias voltage (bias voltage) (symbol Vbias)

The anode to cathode bias voltage is the anode to cathode voltage before any cathode has been ignited. This voltage serves to reduce the required selecting voltage.
10. Shield voltage (symbol V_{S})

The shield voltage is the voltage difference between the shield electrode and the "on" cathode and is usedto prevent the penetration of the discharge from one compartment into another which is separated from the former by said shield.
11. Cathode current (symbol I_{k})

The cathode current is the current flowing to the "on" cathode.
11.1 Minimum cathode current for coverage (symbol $\mathrm{I}_{\mathrm{k} \text { min.) }}$

The minimum cathode current is the current necessary to ensure full coverage of the "on" cathode by the glow.
11.2 Maximum cathode current (symbol $\mathrm{I}_{\mathrm{k} \text { max. }}$)

The maximum cathode current is the current at which the glow is still restricted to the "on" cathode.
If this current is exceeded the glow may spread to connecting leads or other elements.
12. Probe current (symbol Ikk)

A probe current is the current flowing to or from an electrode which does not form part of the main discharge gap.
(The magnitude and direction of this current will be dependent on the position of this electrode with respect to the main discharge and on the external circuit conditions).
13. Anode current (symbol I_{a})

The anode current is the algebraic sum of cathode current and all probe currents.
14. Life expectancy.

End of life is reached when the characteristics of any one numeral surpass the stated limits.

7Z2 5233

SHOCK AND VIBRATION

An indication for the ruggedness of the tube is the fact that 95% of the items sampled from normal production pass the shock and vibration tests specified below without perceplible damage.
These tests are carried out on non operating tubes.
Shock: 25 gpeak, 1000 shocks in one of the three positions of the tube.
Vibration: 2.5 gpeak, 50 Hz , during 32 hours in each of the three positions of the tube.

INDICATOR TUBE

Long-life cold.cathode ten-digit indicator tube for side viewing.

	QUICK REFERENCE DATA				
Numeral height		approx.	14	mm	
Numerals		0123456789			
Decimal point		to the left of the numerals			
Supply voltage	$V_{\text {ba }}$	min.	170	V	
Anode current, average	I_{a}		2,5	mA	
	peak	$\mathrm{I}_{\text {ap }}$	max.	12	mA

GENERAL

The numerals are 14 mm high and appear on the same base line allowing in-line read out.

PRINCIPLE OF OPERATION

The tube contains ten cathodes in the form of ten numerals and one in the form of a decimal point, a primer, and one common anode. By applying a suitable voltage between the anode and one of the cathodes the corresponding numeral or the decimal point will be covered by a red neon glow.
The primer allows ionization without delay in strobe type or blanking applications.

DIMENSIONS AND CONNECTIONS

Dimensions in mm

[^4]The deviations of the axis of the pins with respect to the true geometrical position cover an area of max. 0.3 mm diameter. The pin configuration is compatible with the reference grid for printed wiring according to IEC Publication 97 (0.1 in).

Mounting position: Any
Soldering
The pins may be dip-soldered at a solder temperature of max. $240{ }^{\circ} \mathrm{C}$ for maximum 10 seconds up to a point 5 mm from the seals.

Natural frequency
The natural frequencies of the numeral cathodes lie within the range from 300 Hz to 800 Hz .

ACCESSORIES

55701 Printed wiring mounting board ($19 \times 100 \mathrm{~mm}$) on which the ZM1000 can be soldered; afterwards the combination can be mounted on a vertical printed wiring board carrying, e.g., the drive circuit. Can also be used with the snap-fit tube holder 55703.

55702 Tube socket (for 0.1 in grid). Phenolic. Tinned contacts.
55703 Snap-fit tube holder.
55704 Set of one left-hand and one right-hand end piece to complete the snap-fit indicator tube assembly.

CHARACTERISTICS AND OPERATING CONDITIONS

Ignition voltage	$\mathrm{V}_{\text {ign }}$	$\max .170$	V
Maintaining voltage	V_{m}	see page 4	
Anode current for coverage	$\mathrm{I}_{\text {a }}$	min. 1.5	mA
(with or without decimal point and	I_{a}	$\max .4 .5$	mA
$\mathrm{V}_{\mathrm{kk}}=\mathrm{V}_{\mathrm{kk}}^{\mathrm{min}}$ - V_{fl}, see page 5)			
Cathode selecting voltage	Vkk	see page 5	
Cathode resistor, decimal point	R_{dp}	100	$\left.\mathrm{k} \Omega \pm 10 \%^{1}\right)$
Primer resistor	R_{pr}	10	$\mathrm{M} \Omega \pm 10 \%$
Extinction voltage	Vext	min. 118	V

[^5]
ZM1000

Typical operation over full temperature range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
D.C. operation see pages $4,5,6$ and 7 .

Pulse operation
Peak currents up to 12 mA can be allowed provided the average current value does not exceed 2.5 mA .
To avoid excessive glow on "off" cathodes, the cathode selecting voltage should exceed 65 V . Minimum pulse duration $100 \mu \mathrm{~s}$.
For further information consult the manufacturer.
LIFE EXPECTANCY at $\mathrm{I}_{\mathrm{a}}=2.5 \mathrm{~mA}$
This tube is manufactured on the same physical principles as other tubes in this category and it is expected that the life will be comparable, viz:
sequentially changing the display from one digit
to the others every 1000 h or less
100000 h
Mean time between failures
min. 200000 h
LIMITING VALUES (Absolute max. rating system)
Anode voltage necessary for ignition
$\mathrm{V}_{\mathrm{a}} \quad \min . \quad 170 \mathrm{~V}$
Anode current,

average during any conduction period	I_{a}	\min.	1.5 mA	
average $\left(\mathrm{T}_{\mathrm{av}}=20 \mathrm{~ms}\right)$	I_{a}	\max.	4.5	mA
peaí	I_{a}	\max.	12 mA	
athode selecting voltage	V_{kk}	see page 5		

Bias voltage between anode and
"off" cathodes
Ambient temperature

SHOCK AND VIBRATION

An indication for the ruggedness of the tube is the fact that 95% of the items sampled from the normal production line pass the shock and vibration tests specified below without perceptible damage.

Shock: 25 gpeak, 1000 shocks in one of the three positions of the tube.
Vibration: 2.5 gpeak, 50 Hz , during 32 hours in each of the three positions of the tube.

[^6]

I_{kk} individual and $\boldsymbol{\Sigma} \mathrm{I}_{\mathrm{kk}}$ versus cathode selecting voltage V_{kk} at $\mathrm{I}_{\mathrm{a}}=2.5 \mathrm{~mA}$.
$I_{k k}$ and $\boldsymbol{\Sigma} I_{k k}$ are proportional to the anode current within the operating range of I_{a} and with $\mathrm{V}_{\mathrm{kk}}=0 \mathrm{~V}$ to 100 V .

The curves are valid for instantaneous values and for average values of anode current.

Graph denoting the relationships of D.C. anode supply voltage and required anode resistor to remain within the recommended operating region.

INDICATOR TUBE

Long-life cold-cathode character indicator tube for side viewing.

QUICK REFERENCE DATA				
Character height		approx.	10 to 14	mm
Characters	+, -	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$		
Supply voltage	$\mathrm{V}_{\text {ba }}$	min.	170	V
Anode current	$\mathrm{I}_{\text {a }}$		2,5	mA

GENERAL

Character indicator tube to be used in conjunction with ZM1000 numerical indicator tube for in-line read-out in e.g. digital instruments or numerical control applications.

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Mounting and Accessories: see ZM1000

CHARACTERISTICS, OPERATING CONDITIONS AVD LIMITING VALUES

These are essential the same as of type ZM1000.

[^7]
INDICATOR TUBE

Long-life cold-cathode character indicator tube for side viewing.

QUICK REFERENCE DATA				
Character height		appro	13	mm
Characters	ns, $\mathrm{ss}, \mathrm{ms}, \mathrm{s}, \mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz}$			
Supply voltage	$\mathrm{V}_{\text {ba }}$	min.	170	V
Anode current	I_{a}		4	mA

GENERAL

Character indicator tube to be used in conjunction with ZM1000 numerical indicator tube for in-line read-out in e.g. digital instruments such as frequency and time interval measuring apparatus.

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Mounting and Accessories: see ZM1000

[^8]
INDICATOR TUBE

Long-life cold-cathode character indicator tube for side-viewing.

QUICK REFERENCE DATA				
Character height		approx.	9 to 14	mm
Characters		@ 1-~		
Supply voltage	$\mathrm{V}_{\text {ba }}$	min.	170	V
Anode current	I_{a}		2,5	mA

PRINCIPLE OF OPERATION

By applying a suitable voltage between the anode and one of the cathodes the corresponding character will be covered by a red neon glow.

CHARACTERISTICS, OPERATING CONDITIONS AND LIMITING VALUES

These are essentially the same as of type ZM10.0.

DIMENSIONS AND CONNECTIONS

Dimensions in mm

[^9]
INDICATOR TUBE

Long-life cold-cathode ten-digit indicator tube for side viewing. The tube is designed for time-sharing (pulse) applications.

QUICK REFERENCE DATA				
Numeral height		appro	14	mm
Numerals	0123456789			
Decimal point	to the left of the numerals			
Supply voltage	$\mathrm{V}_{\text {ba(pulse }}$	min .	170	V
Anode current, peak	$\mathrm{I}_{\text {ap }}$	min.	6	mA
	$\mathrm{I}_{\text {ap }}$	max.	20	mA
average	I_{a}	max.	2,5	mA

GENERAL

The numerals are 14 mm high and appear on the same base line allowing in-line readout.

PRINCIPLE OF OPERATION

The tube contains ten cathodes in the form of ten numerals and one in the form of a decimal point; a primer, and one common anode. By applying a suitable voltage between the anode and one of the cathodes the corresponding numeral or the decimal point will be covered by a red neon glow.
The primer allows ionization without delay in strobe type or blanking applications.

SHOCK AND VIBRATION

An indication for the ruggedness of the tube is the fact that 95% of the items sampled from the normal production line pass the shock and vibration tests specified below without perceptible damage.

Shock: 25 gpeak, 1000 shocks on one of the three positions of the tube.
Vibration : 2,5 geak, 50 Hz , during 32 hours in each of the three positions of the tube.

DIMENSIONS AND CONNECTIONS

Dimensions in mm

The deviation of the axes of the pins with respect to the true geometrical position cover an area of 0.3 mm diameter. The pin configuration is compatible with the reference grid for printed wiring according to IEC Publication 97 (0.1 in).

Mounting position: any

Soldering

The pins may be dip-soldered at a solder temperature of max. $240^{\circ} \mathrm{C}$ for maximum 10 seconds up to a point 3 mm from the seals.

Natural frequency
The natural frequencies of the numeral cathodes lie within the range from 300 Hz to 800 Hz .

ACCESSORIES

55702 Tube socket (for 0.1 in grid). Phenolic. Tinned contacts.
55703 Snap-fit tube holder.
55704 Set of one left-hand and one right-hand end piece to complete the snap-fit indicator tube assembly.

1) i.c. pin's max. length 2.8 mm
2) Not tinned
3) Standard deviation 0.13 mm

CHARACTERISTICS AND OPERATING CONIDITIONS

Ignition voltage	$\mathrm{V}_{\text {ign }}$	max. 170	V
Maintaining voltage	V_{m}	see page 4	
Anode current, average ($\mathrm{T}_{\mathrm{av}}=\max .20 \mathrm{~ms}$)	I_{a}	$\max .2 .5$	mA
peak	I_{ap}	min. 6	mA
(with or without decimal point)	Iap	max. 20	mA
Pulse duration	Timp	min. 50	$\mu \mathrm{S}{ }^{1}$)
Cathode selecting voltage (see also page 4)	V_{kk}	min. 70	V^{2})
	V_{kk}	max. 115	V
Cathode resistor, decimal point	R_{dp}	10	$\left.k \Omega \pm 10 \%{ }^{3}\right)$
Primer resistor (anode to primer supply voltage min. 170 V)	Rpr	10	$\mathrm{M} \Omega \pm 10 \%$
Extinguishing voltage	Vext	min. 118.	V

LIFE EXPECTANCY at $I_{a}=2 \mathrm{~mA}$
The life expectancy is dependent on the instantaneous and average values of anode current:
sequentially changing the display from one digit
to the others every 100 h or less, $\begin{aligned} \mathrm{I}_{\mathrm{a}_{\mathrm{p}}} & =10 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{ap}} & =20 \mathrm{~mA}\end{aligned}$
Mean time between failures
LIMITING VALUES (Absolute max. rating system)
Anode voltage necessary for ignition, pulse
Anode current, average ($\mathrm{T}_{\mathrm{av}}=20 \mathrm{~ms}$) peak

Pulse duration

Cathode selecting voltage
"Off" anode voltage
Ambient temperature

V_{ap}	\min.	170	V
I_{a}	\max.	2.5	mA
$\mathrm{I}_{\mathrm{a}_{\mathrm{p}}}$	\min.	6	mA
I_{a}	\max.	20	mA
$\mathrm{~T}_{\mathrm{imp}}$	\min.	10	$\mu \mathrm{~s}$
$\mathrm{~V}_{\mathrm{kk}}$	\min.	70	V
$\mathrm{~V}_{\mathrm{kk}}$	\max.	115	V
$\mathrm{~V}_{\mathrm{a}^{\prime \prime}}$ off"	\max.	115	V
$\mathrm{t}_{\text {amb }}$	\min.	-50	$\mathrm{o}^{\circ}{ }^{4}$)
$\mathrm{t}_{\text {amb }}$	\max.	+70	${ }^{\circ} \mathrm{C}$

${ }^{1}$) Pulse durations down to $10 \mu \mathrm{~s}$ are allowed provided the minimum peak anode current is not less than 10 mA .
2) Lower values of V_{kk} result in increasing background glow impairing readability.
3) The decimal point cathode may not be operated without extra current limiting resistor unless a numeral cathode is operated simultaneously.
4) Bulb temperatures below $10^{\circ} \mathrm{C}$ result in a reduced life expectancy and changes in characteristics.
For equipment to be used over a wide temperature range, ' constant current operation' is recommended.

INDICATOR TUBE

Long-life cold-cathode ten-digit indicator tube for side-viewing.

	QUICK REFERENCE DATA				
Numeral height		approx.	14	mm	
Numerals		0123456789			
Decimal point		to the left of the numerals			
Supply voltage	V_{ba}	min.	170	V	
Anode current	I_{a}		2,5	mA	

GENERAL

The numerals are 14 mm high and appear on the same base line allowing in-line read out.

PRINCIPLE OF OPERATION

By applying a suitable voltage between the anode and one of the cathodes the corresponding numeral or the decimal point will be covered by a red neon glow.

DIMENSIONS AND CONNECTIONS
Dimensions in mm

[^10]The deviations of the axis of the pins with respect to the true geometrical position cover an area of max. $0,3 \mathrm{~mm}$ diameter. The pin configuration is compatible with the reference grid for printed wiring according to IEC Publication 97 ($0,1 \mathrm{in}$).
Mounting position: Any

Soldering:

The pins may be dip-soldered at a solder temperature of $\max .240^{\circ} \mathrm{C}$ for maximum 10 s up to a point 5 mm from the seals.

ACCESSORIES

55701 Printed wiring mounting board ($19 \times 100 \mathrm{~mm}$) on which the tube can be soldered; afterwards the combination can be mounted on a vertical printed wiring board carrying, e.g., the drive circuit.

55702 Tube socket compatible with IEC reference grid for printed wiring ($0,1 \mathrm{in}$). Phenolic. Tinned pins.

CHARACTERISTICS AND OPERATING CONDITIONS

Ignition voltage
Maintaining voltage
Anode current for coverage
Cathode selecting voltage
Extinction voltage

$\mathrm{V}_{\text {ign }}$	max.	170	V
$\mathrm{~V}_{\mathrm{m}}$	see page	4	
	\max.	3,5	mA
I_{a}	\min.	1,5	mA
$\mathrm{~V}_{\text {kk }}$	see page	4	
$\mathrm{~V}_{\text {ext }}$	min.	118	V

LIFE EXPECTANCY at $\mathrm{I}_{\mathrm{a}}=2,5 \mathrm{~mA}$

The tube is manufactured on the same physical principles as other tubes in this category and it is expected that the life will be comparable, viz:
Sequentially changing the display from one digit to the others every 1000 h or less

Mean time between failures

$\min .$| 100000 | h |
| :--- | :--- |
| 200000 | h |

LIMITING VALUES (Absolute max. rating system)

Anode voltage necessary for ignition	V_{a}	min.	170	V
Anode current	I_{a}	max. min.	$\begin{array}{r} 3,5 \\ 1.5 \end{array}$	mA mA
Cathode selecting voltage	$\mathrm{V}_{\text {kk }}$	max. min.	$\begin{array}{r} 100 \\ 60 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Ambient temperature	${ }^{\text {tamb }}$	max. min.	$\begin{aligned} & +70 \\ & -50 \end{aligned}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$

Bulb temperatures below $10{ }^{\circ} \mathrm{C}$ result in a reduced life expectancy and changes in characteristics.

SHOCK AND VIBRATION

An indication for the ruggedness of the tube is the fact that 95% of the items sampled from the normal production line pass the shock and vibration test specified below without perceptible damage.

Shock $25 g_{\text {peak }}, 1000$ shocks in one of the three positions of the tube.
Vibration $2,5 g_{\text {peak }}, 50 \mathrm{~Hz}$, during 32 hours in each of the three positions of the tube.

INDICATOR TUBE

Long-life cold-cathode nine-digit indicator tube for side-viewing.

QUICK REFERENCE DATA				
Numeral height		approx	14	mm
Numerals		012	678	
Supply voltage	$\mathrm{V}_{\text {ba }}$	min.	170	V
Anode current	I_{a}		2,5	mA

GENERAL

The numerals are 14 mm high and appear on the same base line allowing in-line read out.

PRINCIPLE OF OPERATION

By applying a suitable voltage between the anode and one of the cathodes the corresponding numeral will be covered by a red neon glow.

CHARACTERISTICS, OPERATING CONDITIONS AND LIMITING VALUES

These are essentially the same as of type ZM1010.
DIMENSIONS AND CONNECTIONS
Dimensions in mm

[^11]
INDICATOR TUBE

Long life cold-cathode eight-digit indicator tube for side-viewing.

QUICK REFERENCE DATA				
Numeral height		appro	14	mm
Numerals		123	678	
Supply voltage	$\mathrm{V}_{\text {ba }}$	min.	170	V
Anode current	I_{a}		2,5	mA

GENERAL

The numerals are 14 mm high and appear on the same base line allowing in-line read out.

PRINCIPLE OF OPERATION

By applying a suitable voltage between the anode and one of the cathodes the corresponding numeral will be covered by a red neon glow.

CHARACTERISTICS, OPERATING CONDITIONS AND LIMITING VALUES

These are essentially the same as of type ZM1010.
DIMENSIONS AND CONNECTIONS
Dimensions in mm

[^12]
INDICATOR TUBE

Long-life cold-cathode seven-digit indicator tube for side-viewing.

QUICK REFERENCE DATA				
Numeral height		appro		mm
Numerals		012	56	
Supply voltage	$\mathrm{V}_{\text {ba }}$	min.	170	V
Anode current	I_{a}		2,5	mA

GENERAL

The numerals are 14 mm high and appear on the same base line allowing in-line read out.

PRINCIPLE OF OPERATION

By applying a suitable voltage between the anode and one of the cathodes the corresponding numeral will be covered by a red neon glow.

CHARACTERISTICS, OPERATING CONDITIONS AND LIMITING VALUES

These are essentially the same as of type ZM1010.
DIMENSIONS AND CONNECTIONS Dimensions in mm

[^13]
INDICATOR TUBE

Long life cold-cathode six-digit indicator tube for side-viewing

QUICK REFERENCE DATA				
Numeral height		appro	14	mm
Numerals		123		
Supply voltage	$\mathrm{V}_{\text {ba }}$	min.	170	V
Anode current	I_{a}		2,5	mA

GENERAL

The numerals are 14 mm high and appear on the same base line allowing in-line read out.

PRINCIPLE OF OPERATION

By applying a suitable voltage between the anode and one of the cathodes the corresponding numeral will be covered by a red neon glow.

CHARACTERISTICS, OPERATING CONDITIONS AND LIMITING VALUES
These are essentially the same as of type ZM1010.
DIMENSIONS AND CONNECTIONS

[^14]
INDICATOR TUBE

Long-life cold-cathode eight-digit indicator tube for side-viewing.

	QUICK REFERENCE DATA				
Numeral height		approx.	14	mm	
Numerals		12345	678		
Supply voltage	V_{ba}	min.	170	V	
Anode current	I_{a}			2,5	mA

GENERAL

The numerals are 14 mm high and appear on the same base line allowing in-line read out.

PRINCIPLE OF OPERATION

By applying a suitable voltage between the anode and one of the cathodes the corresponding numeral will be covered by a red neon glow.

CHARACTERISTICS, OPERATING CONDITIONS AND LIMITING VALUES

These are essentially the same as of type ZM1010.
DIMENSIONS AND CONNECTIONS
Dimensions in mm

[^15]
INDICATOR TUBE

Long life cold cathode ten digit numeral indicator tube for top viewing.

	QUICK REFERENCE DATA		
Numeral height		15	mm
Numerals	1234567890		
Supply voltage	min.	170	V
Anode current		2	mA

GENERAL

The numerals are 15 mm high and appear on the same base line allowing in-line read out. The ZM1020 is provided with a red contrast filter.
The ZM1020/01 is identical with the ZM1020 but has tinned pins.

PRINCIPLE OF OPERATION

The tube contains ten cathodes in the form of ten figures and one common anode. By applying a suitable voltage between the anode and one of the ten cathodes the corresponding numeral will be covered by a red neon glow.

DIMENSIONS AND CONNECTIONS
 Dimensions in mm

Base: B13B

Mounting position: any
The numerals are viewed through the dome of the envelope. The numerals will appear upright (within 1.5°) when the tube is mounted with the line through pins 1 and 8 vertical, pin 8 being uppermost.

Accessories

Socket

type | 242250500001 |
| :---: |
| or |
| 242250500002 |

CHARACTERISTICS AND OPERATING CONDITIONS

(Valid over life and full temperature range)

Ignition voltage	Vign	$\max .170 \mathrm{~V}$
Maintaining voltage	V_{m}	see sheet 4
Anode current for coverage, averaged during any conduction period	Ia	min. 1 mA
Anode current, average ($\mathrm{T}_{\mathrm{av}}=\max .20 \mathrm{~ms}$)	I_{a}	max. 3 mA
peak	$\mathrm{I}_{\text {ap }}$	\max. 6 mA
Cathode selecting voltage	V_{kk}	see sheet 5
Extinguishing voltage	$\mathrm{V}_{\text {ext }}$	min. 118 V
Typical operation ${ }^{1}$)		
D.C. operation See sheets 5 and 6		

A.C. operation

See sheets 5 and 7

[^16]LIFE EXPECTANCY AND RELIABILITY (at $\mathrm{I}_{\mathrm{a}}=2 \mathrm{~mA}$)

Sequentially changing the display from one digit to the others every 1000 h . or less 100.000 h

The reliability has been assessed in a life test programme totalling 4.5×10^{6} tube hours. The longest test period was 50.000 hrs on 47 tubes. No failures. have been found. The Mean Time between Failures is better than $10^{6} \mathrm{hrs}$ which corresponds with a failure rate of less than 0.1% per 1000 hrs at a confidence level of 95%.

LIMITING VALUES (Absolute max. rating system)

Anode voltage necessary for ignition	V_{a}	min. 170	V
Anode current, D.C.	I_{a}	min. 1	mA
rectified A.C. and pulse	I_{ap}	min. 2	mA
average ($\mathrm{T}_{\mathrm{av}}=\max .20 \mathrm{~ms}$)	I_{a}	\max. 3	mA
peak	$\mathrm{I}_{\mathrm{a}_{\mathrm{p}}}$	max. 10	mA^{1})
Cathode selecting voltage	V_{kk}	see lines on sheet	N and W
Bias voltage between anode and			
"off" cathodes (see sheet 5)	Vbias	max.	floating
Ambient temperature	$t_{\text {amb }}$	$\begin{array}{ll} \min . & -50 \\ \max . & +70 \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

SHOCK AND VIBRATION

An indication for the ruggedness of the tube is the fact that 95% of the items sampled from the normal production line pass the shock and vibration tests specified below without perceptible damage.
Shock: 25 gpeak, 1000 shocks in one of the three positions of the tube.
Vibration: 2.5 geak, 50 Hz , during 32 hours in each of the three positions of the tube.

[^17]
$I_{k k}$ individual and $\Sigma I_{k k}$ versus cathode selecting voltage $V_{k k}$ at $I_{a}=2 \mathrm{~mA}$. I_{kk} and $\Sigma \mathrm{I}_{\mathrm{kk}}$ are proportional to anode current in the range $\mathrm{V}_{\mathrm{kk}}=0$ to 100 V . The range of $\mathrm{V}_{\mathrm{fl}}\left(\mathrm{I}_{\mathrm{kk}}=0\right)$ shifts to the right/left at increasing/decreasing anode current ($8 \mathrm{~V} / \mathrm{mA}$).
Thecurves are valid for instantaneous and for average values of anode current.

For low cathode selecting voltages the current $I_{k k}$ to the "off" cathodes will increase and the readability of the "on" cathode will be affected. It is therefore recommended to use a nominal operating point to the right of line N . Under the worst operating conditions the operating point should never reach the area left of line W.

Graph denoting the relationship of D.C. anode supply voltage and required anode resistor to remain within the recommended operating region.

Graph denoting the relationship of the peak value of full-wave unsmoothed rectified A.C. anode supply voltage and the required anode resistor to remain within the recommended operating area.

INDICATOR TUBE

Cold cathode character indicator tube for top viewing.

QUICK REFERENCE DATA	
Character height	15 mm
Characters	A, $\mathrm{V}, \Omega, \%, \quad+,-, \sim$
Supply voltage	min. 170 V
Anode current	2 mA

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: B13B

CHARACTERISTICS, OPERATING CONDITIONS AND LIMITING VALUES
These are essentially the same as those of type ZM1020.

INDICATOR TUBE

The type ZM1022 is electrically identical with type ZM1020 but has no filter coating. The use of a separate a mber filter (i.e. blue absorbing) is recommended.

DIMENSIONS AND CONNECTIONS

Base: B13B

INDICATOR TUBE

Cold cathode numerical indicator tube for top viewing, electrically identical to type ZM1022 but provided with a decimal point to the left of the numerals.
The use of a separate amber filter (i.e. blue absorbing) is recommended.

QUICK REFERENCE DATA			
Numeral height		15	mm
Numerals	1234567890		
Decimal point	to the left of the numerals		
Supply voltage	min.	170	V
Anode current, numerals decimal point		$\begin{array}{r} 2 \\ 0,25 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: B13B

CHARACTERISTICS, OPERATING CONDITIONS, AND LIMITING VALUES

For the numerals, are essentially the same as those of type ZM1020.

LIMITING VALUES decimal point (Absolute max. rating system)

Anode current, decimal point
\max. 0,5
mA
min. 0,1
mA

INDICATOR TUBE

The type Ziv1023 is electrically identical with type ZM102. but has no filter coating. The use of a separate amber filter (i.e. blue absorbing) is recommended.

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: B13B

INDICATOR TUBE

Cold cathode sign indicator tube.
The use of a separate amber filter (i. e. blue absorbing) is recommended.

	QUICK REFERENCE DATA		
Sign height		15	mm
Signs	$\Varangle \%+\cdots$		
Supply voltage	min. 170	V	
Anode current	2	mA	

DIMENSIONS AND CONNECTIONS
 Dimensions in mm

Base: B13B

CHARACTERISTICS, OPERATING CONDITIONS, AND LIMITING VALUES

These are essentially the same as those of type ZM1020.

INDICATOR TUBE

Cold cathode ten digit numeral indicator tube for side viewing.

	QUICK REFERENCE DATA			
Numeral height		30	mm	
Numerals	1234567890			
Supply voltage	V_{ba}	min.	170	V
Cathode current	I_{k}		4.5	mA

GENERAL

The numerals are 30 mm high and appear on the same base line allowing in-line read out. The ZM1040 is provided with a red contrast filter.

PRINCIPLE OF OPERATION

The tube contains ten cathodies in the form of ten figures and one common anode. By applying a suitable voltage between the anode and one of the ten cathodes the corresponding numeral will be covered by a red neon glow.

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: Bl3B

${ }^{1}$) Pins 1 and 2 to be interconnected externally.

Mounting position: any
The numerals are viewed through the side of the envelope. The numerals will appear upright (within 1.5°) when the tube is mounted vertically.

Accessories
Socket

CHARACTERISTICS AND OPERATING CONDITIONS

Ignition voltage
Maintaining voltage
Cathode current for coverage, average, during any conduction period

Cathode current,
average ($\mathrm{T}_{\mathrm{av}}=20 \mathrm{~ms}$)
peak
Cathode selecting voltage
Extinguishing voltage

Vign max. 170 V
V_{m} see sheet 5
$\mathrm{I}_{\mathrm{k}} \quad \mathrm{min}$. 3 mA

I_{k}	max.	6	mA
I_{k}	max.	20	mA
$\mathrm{~V}_{\mathrm{kk}}$	see sheet 6		
$\mathrm{~V}_{\text {ext }}$	min.	120	V

Typical operation at temperatures $t_{\text {amb }}=10$ to $50^{\circ} \mathrm{C}$
D. C. operation with or without Vkk
(See fig. 1 and 3 and sheets 5 and 6)

Anode supply voltage	V_{ba}	200	250	300	350	V
Maintaining voltage	V_{m}	140 ± 10	140 ± 10	140 ± 10	140 ± 10	V
Anode series resistor	R_{a}	15	27	39	47	$\mathrm{k} \Omega$
Cathode selecting voltage	V_{kk}			min	60	V
	$\left.l_{\text {l }}\right)$					

A.C. half-wave rectified operation with or without Vkk
(See fig. 2 and 4 and sheet 5)

Secondary transformer voltage	V_{tr}	170	220	250	300	V
Anode series resistor	R_{a}	5.6	12	18	27	$\mathrm{k} \Omega$
Cathode selecting voltage	V_{kk}			min.	60	$\mathrm{~V}^{1}$)

1) With low cathode selecting voltages the current I_{kk} to the "off" cathodes will increase and the readability of the "on" cathode will be affected. It is therefore recommended to use a voltage V_{kk} in excess off the stated minimum value.

ZM1040

LIFE EXPECTANCY at $\mathrm{I}_{\mathrm{k}}=4.5 \mathrm{~mA}$
Sequentially changing the display from one digit to the others every 1000 hours or less 100000 h

LIMITING VALUES (Absolute max. rating system)
Anode voltage necessary for ignition
Cathode current,
average during any conduction period $\quad I_{k} \quad \min . \quad 3 \mathrm{~mA}$
average $\left(\mathrm{T}_{\mathrm{av}}=20 \mathrm{~ms}\right)$
peak
Cathode selection voltage
Bias voltage between anode and "off" cathodes
Bulb temperature
$\mathrm{V}_{\mathrm{a}} \quad \min .170 \mathrm{~V}$
$\mathrm{I}_{\mathrm{k}} \max .6 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{k}_{\mathrm{p}}} \max .20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{kk}} \min$. 60 V
Vbias max. 120 V
toulb $\begin{array}{lrl}\text { min. } & 0 & { }^{\circ} \mathrm{C}_{1} \\ \max . & +70 & \left.{ }^{\circ} \mathrm{C}\right)^{\prime}\end{array}$

SHOCK AND VIBRATION

An indication for the ruggedness of the tube is the fact that 95% of the items sampled from the normal production line pass the shock and vibration tests specified below without perceptible damage.

Shock: 25 gpeak, 1000 shocks in one of the three positions of the tube.
Vibration: $2.5 \mathrm{~g}_{\text {peak }}, 50 \mathrm{~Hz}$, during 32 hours in each of the three positions of the tube.

[^18]Fig. 1

Fig. 2

Fig. 3

Fig. 4

INDICATOR TUBE

Cold cathode sign indicator tube for side viewing.

	QUICK REFERENCE DATA	
Sign height	20	mm
Signs	+	
Supply voltage	170	V
Cathode current	4.5	mA

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: B13B

GENERAL

The tube has the same physical dimensions as the ZM1040 numeral indicator tube. The ZM1041 is provided with a red contrast filter.
${ }^{1}$) Pins 1 and 2 to be interconnected externally.

CHARACTERISTICS

Ignition voltage
Maintaining voltage
Extinguishing voltage
"Off" cathode probe current characteristic

| $\mathrm{V}_{\text {ign }}$ | max. $\quad 170 \mathrm{~V}$ |
| :--- | :--- | ---: |
| $\mathrm{~V}_{\mathrm{m}}$ | see sheets 3 and 4 |
| $\mathrm{~V}_{\text {ext }}$ | min. $\quad 120$

 see sheet 4 |

PRINCIPLE OF OPERATION

The tube contains two cathodes, in the form of the signs + and - , and a common anode. By applying a suitable voltage between the anode and one of the cathodes the corresponding sign will be covered by a red neon glow.

ACCESSORIES

Socket
242250500001 or 242250500002

MOUNTING POSITION

Any
The signs are vieuwed through the side of the envelope.
LIMITING VALUES (Absolute max. rating system)
Anode voltage necessary for ignition

V_{a}	min.	170	V
I_{k}	min.	3	mA
I_{k}	\max.	6	mA
I_{k}	\max.	20	mA
$\mathrm{~T}_{\mathrm{imp}}$	min.	80	$\mu \mathrm{~s}$
$\mathrm{~V}_{\mathrm{kk}}$	min.	60	V
$\mathrm{~V}_{\text {bias }}$	max.	120	V
	\max.	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {bulb }}$	min.	-50	${ }^{\mathrm{O}} \mathrm{C}$

Impulse duration
Cathode selecting voltage
Bias voltage between anode and "off" cathode
Bulb teniperature

$$
\begin{aligned}
& \text { average }\left(\mathrm{T}_{\mathrm{av}}=20 \mathrm{~ms}\right) \\
& \text { peak }
\end{aligned}
$$

Cathode current,
average during any conduction period

SHOCK AND VIBRATION

An indication for the ruggedness of the tube is the fact that 95% of the items sam pled from the normal production line pass the shock and vibration tests specified below without perceptible damage.
Shock: 25 gpeak, 1000 shocks in one of the three positions of the tube.
Vibration: 2.5 g peak, 50 Hz , -during 32 hours in each of the three positions of the tube.

[^19]

INDICATOR TUBE

Cold cathode ten digit numeral indicator tube for: side viewing.
The types ZM1042 and ZM1042/01 are identical with type ZM1040 but have no filter
coating. ; the ZM1042/01 has tinned pins.
The use of a separate blue absorbing, e.g. circular polarized, amber filter is recommended.

DIMENSIONS AND CONNECTIONS

ZM1042/01

[^20]
INDICATOR TUBE

Cold cathode sign indicator tube for side viewing.
The types ZM1043 and ZM1043/01 are identical with type ZM1041 but have no filter coating; the ZM1043/01 has tinned pins.
The use of a separate blue absorbing, e.g. circular polarized, amber filter is recommended.

DIMENSIONS AND CONNECTIONS

[^21]Switching diodes
||IIIIII

SWITCHING AND LIGHT DIODE

Cold cathode neon filled subminiature switching and light diode with a large and stable difference between ignition and maintaining voltage intended for low speed switching and counting e.g. in combination with CdS photo sensitive devices'. The tube is shock and vibration resistant.

	QUICK REFERENCE DATA			
Ignition voltage		$\mathrm{V}_{\mathrm{ign}}$	170	V
Maintaining voltage	V_{m}	109	V	
Cathode current	I_{k}	3.5	mA	

OPERATING PRINCIPLE

The diode contains a rod shaped molybdenum cathode and a concentric gauze anode. By applying a suitable voltage between the electrodes, a glow discharge occurs and its red light is available outside the tube.

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Colour type indication on pinch: red dot.

MOUNTING

The tube may be soldered directly into the circuit but heat conducted to the glass to metal seals should be kept to a minimum by the use of a thermal shunt. The leads may be dip-soldered to a minimum of 5 mm from the seals at a solder temperature of $240^{\circ} \mathrm{C}$ during max. 10 s . Care should be taken not to bend the leads nearer than 1.5 mm from the seals.
${ }^{1}$) This part of the leads is not tinned.

CHARACTERISTIC RANGE VALUES FOR EQUIPMENT DESIGN

(Valid over the first 15000 hours operation within the preferred current range and at $t_{a m b}=$ room. The electrical characteristics are independent of ambient illumination).

Non conduction

Anode voltage below which ignition will not occur in any tube

Insulation resistance

$V_{\text {ign min }}$	163 V	
$r_{\text {isol }}$	>300	$\mathrm{M} \Omega$

Ignition

Anode voltage to ensure ignition
Ignition delay
Typical max. individual variation of ignition voltage during life
Typical temperature coefficient of ignition voltage, averaged over the range $-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$V_{\text {ign max }} 178 \mathrm{~V}$
See page A and B

$$
\Delta \mathrm{V}_{\text {ign }}<5 \mathrm{~V}
$$

$$
\frac{\Delta \mathrm{V}_{\mathrm{ign}}}{\Delta \mathrm{t}_{\text {bulb }}} \quad< \pm 15 \mathrm{mV} /{ }^{\circ} \mathrm{C}
$$

Conduction
Cathode current, average during any conduction period average ($\mathrm{T}_{\mathrm{av}}=\max .1 \mathrm{~s}$) peak (See "Reliability and life expectancy)

Typical rise in bulb temperature
Maintaining voltage

Typical max. temperature coefficient of maintaining voltage, averaged over the range $-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Light intensity ${ }^{1}{ }^{2}$)
Typical variation of light intensity

See page A

$$
\Delta \mathrm{V}_{\mathrm{m}} \quad<\begin{aligned}
& +2 \\
& -4
\end{aligned} \mathrm{~V}
$$

I_{k}	$>2.2 \mathrm{~mA}$
I_{k}	$<4.5 \mathrm{~mA}$

I_{kp}	$<$	50 mA
$\frac{\Delta \text { thulb }^{\Delta \mathrm{I}_{\mathrm{k}}}}{}$	10	${ }^{\circ} \mathrm{C} / \mathrm{mA}$

$\frac{\Delta \mathrm{V}_{\mathrm{m}}}{\Delta \mathrm{t}_{\text {bulb }}}$	$< \pm 15 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
E	$>20 \quad 1 \mathrm{ux} / \mathrm{mA}$
$\Delta \mathrm{E}$	$<-3 \% / 1000 \mathrm{~h}$

$\overline{\left.1^{2}\right) \text { See page } 3}$

Extinction

Typical min. RC components to ensure self extinction at $\mathrm{V}_{\mathrm{b}}=250 \mathrm{~V}$ for different values of current limiting resistance R_{d}.

R_{d}	0	1	10	47	100	$\mathrm{k} \Omega$
R_{a}	1	1	1.5	2	3	$\mathrm{M} \Omega$
C	5	22	22	22	22	nF

RELIABILITY AND LIFE EXPECTANCY

Reliability has been assessed in a life test programme totalling 5.10^{6} tube hours on 400 tubes. The longest test periode being 15000 hours on 100 tubes. A total of 7 failures result in a failure rate of better than 0.15% per 1000 h . This failure rate is not expected to increase over the next period of 15000 h . Life expectancy: 30000 operating hours within the preferred current range or
2.4×10^{6} ignitions discharging a capacitor of max. $16 \mu \mathrm{~F}$ with suitable series impedance to limit the peak current to max. 50 mA .

[^22]LIMITING VALUES (Absolute max. rating system)

SHOCK AND VIBRATION RESISTANCE

These conditions are solely used to assess the mechanical quality of the tube. The tube must not be continuously operated under these conditions.

Shock resistance 500 g
Forces as applied by the NRL impact machine for electronic devices caused by 5 blows of the hammer lifted over an angle of 30° in each of 4 positions of the tube.

Vibration resistance 2.5 g (peak)
Vibrational forces for a period of 32 hours at a frequency of 50 Hz in each of 3 directions.

[^23]

ZA1004

GAS FILLED INDICATOR DIODE

Shock and vibration resistant cold-cathode gas-filled subminiature diode with visible glow-discharge for read-out purposes.
The tube contains two electrodes, a rod shaped molybdenum cathode and a concentric gauze anode.

APPLICATION

Indicator in low voltage transistor circuits. The diode can be used in combination with CdS photoconductive cells and it can be controlled by voltage signals down to 3 V .

QUICK REFERENCE DATA				
Ignition voltage	Vign	$=$	90	V
Extinction voltage	Vext	$>$	83.5	V
Cathode current	I_{k}	=	1	mA
Light intensity at $\mathrm{I}_{\mathrm{k}}=1 \mathrm{~mA}$	E	$=$	60	lux

MECHANICAL DATA

Dimensions in mm
Type indication on pinch: yellow dot.

MOUNTING

The tube may be soldered directly into the circuit, but heat conducted to the glass-to-metall seals should be kept to a minimum by the use of a thermal shunt. The leads may be dip-soldered to a minimum of 5 mm from the glass-to-metal seals at a solder temperature of $240^{\circ} \mathrm{C}$ during max. 10 seconds.
If the tube is held in its position by the leads only, the connection of both anode leads is recommended.
Care should be taken not to bend the leads nearer than 1.5 mm from the seals.

[^24]
SHOCK AND VIBRATION RESISTANCE

These conditions are solely used to assess the mechanical quality of the tube. The tube must not be continuously operated under these conditions.

Shock resistance 500 g

Forces as applied by the NRL impact machine for electronic devices caused by 5 blows of the hammer lifted over an angle of 30° in each of 4 positions of the tube.

Vibration resistance 2.5 g (peak)

Vibrational forces for a period of 32 hours at a frequency of 50 Hz in each of 3 directions.

CHARACTERISTICS

Valid over 15000 operating hours within the preferred current range and at room temperature unless otherwise stated.
The electrical characteristics are independent of ambient illumination.
Non conduction

Anode voltage below which ignition will not occur in any tube	$\mathrm{V}_{\text {ign min. }}$	$=$	88 V
Insulation resistance	$\mathrm{r}_{\text {isol }}$	$>$	$300 \mathrm{M} \Omega$

Ignition

Ignition voltage,

upper limit	$\mathrm{V}_{\text {ign max }}$.	$=$	93	V	${ }^{1}$)
individual variation during life	$\Delta \mathrm{V}_{\text {ign }}$	$<$	2.5	V	
Ignition delay at $\mathrm{V}_{\mathrm{ba}}=93 \mathrm{~V}$	$\mathrm{T}_{\text {delay }}$	\leq	0.05	s)
Temperature coefficient of ignition voltage	$\frac{\Delta \mathrm{V}_{\text {ign }}}{\Delta \mathrm{t}_{\text {bulb }}}$	$<$	-15		
Reignition voltage in case of full wave rectified a.c. supply	Vreign	<	$\begin{array}{r} 101 \\ 96.5 \end{array}$	V	4 4)

[^25]CHARACTERISTICS (continued)

Conduction

Cathode current,
preferred range
peak
Maintaining voltage

$$
\begin{array}{lrrr}
\mathrm{I}_{\mathrm{k}} & = & 0.4 \text { to } 2 \mathrm{~mA} & 5 \\
\mathrm{I}_{\mathrm{p}} & = & 3 \mathrm{~mA} \\
& < & 86 \mathrm{~V}+4.25 \mathrm{~V} / \mathrm{mA} & 6 \\
\mathrm{~V}_{\mathrm{m}} & > & 83 \mathrm{~V}+2.5 \mathrm{~V} / \mathrm{mA} & 7) \\
\mathrm{V}_{\mathrm{m}} & < & 1.5 \mathrm{~V} &
\end{array}
$$

Individual variation during life
Temperature coefficient of maintaining voltage
$\frac{\Delta V_{m}}{\Delta \text { tbulb }}<\quad-15 \mathrm{mV} /{ }^{\circ} \mathrm{C}^{3}$)
Rise in bulb temperature

$$
\begin{array}{llll}
\frac{\Delta \mathrm{t}_{\mathrm{bulb}}}{\Delta \mathrm{I}_{\mathrm{k}}} & = & 10 & { }^{\circ} \mathrm{C} / \mathrm{mA} \\
\mathrm{E} & > & 30 & \text { lux } \left./ \mathrm{mA}^{\text {\& }}{ }^{9}\right)
\end{array}
$$

Light intensity,
individual minimum, measured over an angle of 70° averaged over the full circumference of the tube
$\mathrm{Eav}_{\text {av }}>$ 60 lux $\left./ \mathrm{mA}^{8}\right)^{9}$) Extinction
Extinction voltage
$\mathrm{V}_{\text {ext }}>83.5 \mathrm{~V}$
1)

See note ${ }^{1}$) page 2
5) Current excursions during ignition and extinction are not taken into account.
${ }^{6}$) Valid within the range 0.1 mA to 3 mA .
7) Valid within the range 0.2 mA to 3 mA . Between 0.05 mA and 0.2 mA $\mathrm{V}_{\mathrm{m} \text { min. }}=\mathrm{V}_{\text {ext }}=83.5 \mathrm{~V}$.
8) Light intensity at a distance of 3.6 mm from the tube axis opposite the anode cylinder, measured with a standard Weston cell adopted to eye sensitivity. Because the emission of the neon discharge is mainly contained in the red region the illumination resistance of a CdS cell will be 1.5 to 2 times lower than in case of irradiation by a $2700{ }^{\circ} \mathrm{K}$ incandescent light source. The exact conversion factor depends on the type of CdS cell used.
${ }^{9}$) At least 90% of the tubes will meet the figure stated.

RELIABILITY AND LIFE EXPECTANCY

The electrical characteristics have been assessed in a life test programme, totalling 3.0×10^{6} tube hours with no failures, denoting a failure rate of better than 0.1% per 1000 hours. The maximum test period was 19000 hours on 22 tubes. This failure rate is not expected to increase over the first 25000 hours of continuous operation within the preferred current range.

LIMITING VALUES (Absolute maximum rating system)

Cathode current, averaging time $=5 \mathrm{~s}$	I_{k}	$=\max$.	2.5	mA
Cathode current during conduction	I_{k}	$=\mathrm{min}$.	0.1	$\mathrm{mA}^{\text {l }}$)
Cathode current, peak	I_{kp}	$=\max$.	3	mA
Anode voltage, negative peak	$-\mathrm{V}_{\text {ap }}$	$=\max$.	70	V
Bulb temperature	${ }^{\text {tbulb }}$	$\begin{aligned} & =\min \\ & =\max \end{aligned}$	$\begin{array}{r} -55 \\ 70^{\circ} \mathrm{C}+10 \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} / \mathrm{mA} \end{aligned}$
Altitude	h	$=\max$.	24	km

READ-OUT CIRCUIT BISTABLE MULTIVIBRATORS

Principle of operation

The figures 1 and 2 show equivalent circuits for bistable multivibrators, equipped with $p-n-p-$ and $n-p-n$ transistors respectively, to which a read-out circuit has been added. The transistors are replaced by ideal switches, the voltage source VT represents the available voltage that controls the diodes 2) and R_{T} is the output resistance as measured at the collector of the cut-off transistor.

Fig. 2

[^26]
READ-OUT CIRCUIT BISTABLE MULTIVIBRATORS (continued)

Correct read-out is obtained when only the diode corresponding to the bottomed transistor conducts. For this the following conditions must be met: ${ }^{1}$)
(I) Ignition of the correct diode, corresponding to the bottomed transistor, when the other diode is conducting.
Thus: $\quad V_{\mathrm{mmin}}+\mathrm{I}_{\mathrm{k}} \mathrm{R}_{\mathrm{T}}+\mathrm{V}_{\mathrm{T}}>\mathrm{V}_{\text {ignmax }}$,
resulting in $\mathrm{I}_{\mathrm{k}}>\frac{10-\mathrm{V}_{\mathrm{T}}}{\mathrm{R}_{\mathrm{T}}+2.5} \frac{(\mathrm{~V})}{(\mathrm{k} \Omega)}$ for $\mathrm{I}_{\mathrm{k}}>0.2 \mathrm{~mA}$
(II) Extinction of the diode corresponding to the cut-off transistor, when the correct diode is conducting.

Thus: $\quad V_{m \max } .-\mathrm{V}_{\mathrm{T}}<\mathrm{V}_{\text {ext min }}$, resulting in $I_{k}<\frac{V_{T}-2.5}{5} \quad \frac{(V)}{(k \Omega)}$ for $I_{k}>0.1 \mathrm{~mA}$
(III) Non-ignition of the diode corresponding to the cut-off transistor when the correct diode is conducting.
Thus: $\quad \mathrm{V}_{\mathrm{m} \max } .-\mathrm{V}_{\mathrm{T}}<\mathrm{V}_{\mathrm{ignm}}$ min,
resulting in $\mathrm{I}_{\mathrm{k}}<\frac{\mathrm{V}_{\mathrm{T}}+2}{5} \frac{(\mathrm{~V})}{(\mathrm{k} \Omega)}$ for $\mathrm{I}_{\mathrm{k}}>0.1 \mathrm{~mA}$
These conditions are shown graphically on page A below.
Condensed instructions for designing the read-out circuit. ${ }^{2}$)
The following directives are based on the requirement that correct read-out shall be ensured under worst case conditions, after the instant that the bistable circuit has reached its final stationary state. It is irrelevant whether the readout diodes follow the changes of state of the multivibrator during its dynamic operation or not.

A choice can be made between the following modes of operating the diodes, namely by means of:
(A) a constant direct current
(B) a constant direct current on which a pulse is superimposed prior to readingout. Three kinds of pulses are possible:
a) a positive going pulse;
b) a negative going pulse;
c) a positive going pulse followed by a negative going one
(C) an unsmoothed current supplied by a full wave rectifier.
${ }^{1}$) It is assumed that the supply voltage V_{S} exceeds the ignition voltage of the gas diodes, so that ignition of at least one diode is ensured; the most adverse situation being that only the wrong diode conducts.
2) For a detailed analysis of the design procedure please apply to the manufacturer.

In fig. 3, schematically representing these waveforms, the required minimum duration of the superimposed pulses is indicated;
t_{S} denotes the instant at which the bistable circuit reaches its final state.

Fig. 3
The conditions to be obeyed by the current I_{k} are specified in the table below:

Mode of operation	Values of I_{k}		V_{T}
	lower limit	upper limit	
(A) constant direct current (B) direct current with superimposed: (a) positive going pulses $\left\{\begin{array}{l}\text { steady state current } \\ \text { pulse current }\end{array}\right.$ (b) negative going $\underset{\text { pulses }}{ }\left\{\begin{array}{l}\text { steady state current } \\ \text { pulse current }\end{array}\right.$ (c) positive and $\underset{\text { negative going }}{\text { pulses }}\left\{\begin{array}{l}\text { steady state current } \\ \text { positive going pulse } \\ \text { negative going pulse }\end{array}\right.$	(I) (I) (I) - (I)	(II) (II) - (III) (II) (III) (II)	$\begin{aligned} & >5 \mathrm{~V} \\ & \}>4.5 \mathrm{~V} \\ & \}>3 \mathrm{~V} \\ & \}>3 \mathrm{~V} \end{aligned}$
(C) rectified alternating current, peak value of I_{k}	(I)	(III)	> $4.5 \mathrm{~V}^{\mathrm{l}}$)
This table should be read in conjunction with the specified recommended operating conditions and limiting values.			

1) Since both diodes are extinguished at the end of each half cycle of the supply voltage, condition (II) is not required, and is replaced by the condition that only the correct diode will reignite. The lower limit is thus given by the spread of the reignition voltage (e.i. 4.5 V).

READ-OUT CIRCUIT BISTABLE MULTIVIBRATORS (continued)

The minimum available value of V_{T} being known, the points of intersection with the curves I, II and III on page 8, and hence the limits of I_{k} ($I_{k I}, I_{k I I}$ and $I_{k I I I}$) can be determined. This having been done, the required values of $\mathrm{V}_{\mathrm{Sm}} \min$ and R_{S} can be evaluated from the following expressions: ${ }^{1}$)

$$
\begin{align*}
& \frac{V_{S \text { min }}-V_{\text {ign max }}}{R_{S \text { max }}}=I_{k I} \tag{1}\\
& \frac{V_{S \text { max }}-V_{\text {ext min }}-V_{T}}{R_{S \text { min }}}=I_{k I I} \tag{2}\\
& \frac{V_{S \text { max }}-V_{\text {ign min }}-V_{T}}{R_{S \min }}=I_{k I I I} \tag{3}
\end{align*}
$$

In these expressions the suffices min and max denote the worst case limits of the quantities concerned.
For mode of operation (C) the peak value of the supply voltage must be substituted for V_{S} in the above expressions.

[^27]

SWITCHING AND LIGHT DIODE

Long-life cold-cathode neon-filled subminiature switching and light diode with a large and stable difference between ignition and maintaining voltage intended for touch control applications e.g. in variable capacitance diode controlled radio or television tuners. The tube is shock and vibration resistant.

| | QUICK REFERENCE DATA | | |
| :--- | :--- | :--- | :--- | :--- |
| Ignition voltage | $\mathrm{V}_{\mathrm{ign}}$ | 172 | V |
| Maintaining voltage | V_{m} | 107 | V |
| Cathode current | I_{k} | 3 | mA |

DIMENSIONS AND CONNECTIONS

Dimensions in mm

MOUNTING

The tube may be soldered directly into the circuir, sut heat conducted on the glass to metal seals should be kept to a minimum by using a thermal shunt. The leads may be dip-soldered to a minimum of 5 mm from the seals at a solder temperature of $240{ }^{\circ} \mathrm{C}$ during max. 10 s . Care should be taken not to bend the leads closer than $1,5 \mathrm{~mm}$ to the seals.

[^28]
CHARACTERISTICS AND OPERATING CONDITIONS

Valid over life and full temperature range unless otherwise stated.
The electrical characteristics are independent of ambient illumination.

Non conduction
Anode voltage below which ignition
will not occur

Insulation resistance

| $\mathrm{V}_{\text {ign min }}$ |
| :--- | :--- | :--- |
| $\mathrm{r}_{\text {ins }}$ |$>$| 161 | V |
| :--- | :--- |
| | |
| 300 | $\mathrm{M} \Omega$ |

Ignition

Anode voltage to ensure isnition
Ignition delay at $\mathrm{V}_{\mathrm{ign}}+10 \mathrm{~V}$

$$
\text { at } \mathrm{V}_{\mathrm{ign}}+20 \mathrm{~V}
$$

Typical max. individual variation of ignition voltage during life, within the $\mathrm{V}_{\text {ign }}$ limits given above

$\mathrm{V}_{\text {ign }}$ max		183	V
$\mathrm{~T}_{\text {delay }}$	$<$	50	ms
$\mathrm{~T}_{\text {delay }}$	$<$	20	ms

Conduction

Cathode current, average during any conduction period average ($\mathrm{T}_{\mathrm{av}}=\max .1 \mathrm{~s}$)

Maintaining voltage at $\mathrm{I}_{\mathrm{k}}=3 \mathrm{~mA}$
Typical max. individual variation of maintaining voltage during life, within the V_{m} limits given above

Extinction

Extinction voltage $\quad \mathrm{V}_{\text {ext }} \gg 100 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)
Cathode current, average for
continuous conduction
average ($\mathrm{T}_{\mathrm{av}}=\max .1 \mathrm{~s}$)
Anode voltage, negative peak
Bulb temperature

I_{k}	\min.	2,2	mA
I_{k}	\max.	4,5	mA
$-\mathrm{V}_{\mathrm{a}_{\mathrm{p}}}$	\max.	200	V
	min.	-55	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {bulb }}$	\max.	+70	${ }^{\circ} \mathrm{C}$

SHOCK AND VIBRATION RESISTANCE

These conditions are solely used to assess the mechanical quality of the tube. The tube must not be continuously operated under these conditions.

Shock resistance 500 g
Forces as applied by NRL impact machine for eleztronic devices caused by 5 blows of the hammer lifted over an angle of 30° in each of 4 positions of the tube.

Vibration resistance $2,5 \mathrm{~g}_{\text {(peak) }}$
Vibrational forces for a period of 32 hours at a frequency of 50 Hz in each of 3 directions.

Dry reed contact units

GENERAL

REED CONTACT UNITS

Definitions

Reed contact unit

A reed contact unit is an assembly containing contact blades, some or all of magnetic material, sealed in an envelope.

Must-not-operate value
The must-not-operate value is the stated limit of the magnetic field at which the reed contact unit shall not physically operate.

Must-operate value
The must-operate value is the stated limit of the magnetic field at which the reed contact unit shall physically operate.

Operate time
The operate time is the time between the instant of the application of a specified magnetic field to a specific contact circuit and the instant of the first physical closing (or opening) of this specific contact circuit. The operate time does not include bounce time (unless otherwise indicated).

Bounce

Bounce is a momentary reopening of a contact after initial physical closing, or a mornentary reclosing after initial physical opening.

Bounce time

The bounce time is the interval of time between the instant of first physical closing (or opening) and the instant of the final physical closing (or opening) of a specific contact circuit).

Contact circuit
A contact circuit is the whole of the electrically conductive parts of a reed contact unit which are intended to be connected in an external circuit.

Characteristic non-release value
The characteristic non-release value is the stated value of the magnetic field above which the operated reed contact unit fulfills specified qualities, e.g. contact resistance, noise characteristics etc.

Contact circuit resistance (also contact resistance)
The contact circuit resistance is the resistance of the contact circuit under specified conditions of measurement.

Must-not-release value

The must-not-release value is the stated limit of the applied magnetic field at which the operated reed contact unit shall remain physically operated.

Must-release value

The must-release value is the stated limit of the magnetic field at which the operated reed contact unit shall physically release.

Release time

The release time is the time between the instant of the disconnection of a specific magnetic applied field to a specific contact circuit and the instant of the first opening (or closing) of this specific contact circuit. The release time does not include bounce time.

Saturation

The saturation is the magnetic condition, arbitrarily defined, at which the performance of the reed contact unit is unaffected by further increase of the applied magnetic field.

Saturate value
The saturate value is the arbitrarily defined value of the magnetic field at which the reed contact unit reaches saturation.

DRY REED SWITCH

Miniature dry reed switch hermetically sealed in a gas-filled glass capsule.
Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The switch is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The switch is intended for use in telephone equipment and other applications where exceptional reliability is required.

	QUICK REFERENCE DATA	
Contact	S.P.S.T. normally open	
Switched power	max. 5	W
Switched voltage	$\max .65$	V
Switched current	$\max .100$	mA
Failure rate	$<5 \times 10^{-8}$	

MECHANICAL DATA

Contact material
Contact arrangement
Terminal finish
Resonant frequency of single reed
Net weigth
Mounting position

Dimensions in mm
gold
normally open
tinned
approx. 1650 Hz
approx. 0.6 g any

Mounting
The leads should not be bent nearer than 2 mm to the glass-to-metal seals. Stress on the glass-to-metal seals should be avoided.
The robustness of terminations is tested according to IEC Publication 68-2-21. test Ua (load 2.75 kg), Ub (load $1 \mathrm{~kg}, 2$ bends), and Uc.
Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions.

Soldering

The switch may be soldered direct into the circuit but heat conducted to the glass-tometal seals should be kept to a minimum by the use of a thermal shunt.
Dip-soldering is permitted to a minimum of 4 mm from the seals at a solder temperature of $240^{\circ} \mathrm{C}$ during maximum 10 s .

Solderability
Solderability is tested according to IEC Publication 68-2-20, test T, solder globule method.

CHARACTERISTICS

Non-operative

Breakdown voltage
Insulation resistance, initial ($\mathrm{V}=100 \mathrm{~V}$)
Capacitance without test coil
with earthed test coil
Non-operative ampere turns
Operative
Operating ampere turns
Operating time, including bounce
Switched current
Hold
Hold ampere turns
Current through closed contacts
Contact resistance, initial
min. 27 A.T. ${ }^{1}$)
$\max \quad 1 \mathrm{~A}, 1,3$,
min. $\left.\left.\quad 60 \mathrm{~m} \Omega^{1}\right)^{3}\right)$
$\left.\left.\max .150 \mathrm{~m} \Omega^{1}\right)^{3}\right)$

$\underline{\text { Release }}$

Release ampere turns
Release time
Switched current
Switched power

min.	1000	V
min.	10^{5}	$\mathrm{M} \Omega$
	0.70	pF
	0.35	pF
\max.	30	$\left.\mathrm{~A} . \mathrm{T}^{1}{ }^{1}\right)$

max. 58 A.T. 1) av. $\left.\quad 0.6 \mathrm{~ms}^{1}\right)^{2}$) $\left.\max \quad 1.0 \mathrm{~ms}^{\mathrm{l}}\right)^{2}$) max. 100 mA

LIMITING VALUES (Absolute max. rating system)
See also "Life expectancy and reliability"
Switched power
Switched voltage
Switched current

$$
\text { surge }(T=\max .100 \mathrm{~ns})
$$

Temperature, operating

\max.	5	W
\max.	65	V
\max.	100	mA
\max.	1.5	A
\min.	-55	${ }^{\circ} \mathrm{C}$
\max.	+80	${ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY AND RELIABILITY

End of life is assumed to be reached when:
a) the contact resistance exceeds 1Ω for no load conditions or 2.5Ω for loaded conditions
b) the release time exceeds 2.5 ms (latching or contact sticking)

No load conditions

Life expectancy min. 10^{7} operations with a failure rate of less than 5.5×10^{-9} with 90% confidence level.

Loaded conditions

Life expectancy min. 5×10^{6} operations with a failure rate of less than 10^{-8} with 90% confidence level.

If inductive loads are to be interrupted, contact protection is recommended (diode or RC network).

Reliability - testing conditions

Capacitive loading resulting in a peak current of $0.8 \mathrm{~A} \mathrm{i}_{1} / \mathrm{i}_{2}=1.4, \mathrm{~T}=80 \mathrm{~ns}$ to 100 ns. see Fig. 1. Nominal switched voltage 50 V , nominal switched current 100 mA . Under these conditions a life of more than 5×10^{6} operations can be reached with a failure rate of less than 8.5×10^{-9}.

Remark

Higher loads may be switched if a reduced life expectancy and reliability are acceptable. The manufacturer should be consulted before doing so.

Fig. 1

SHOCK AND VIBRATION

Impact : Acceleration 50 g during 11 ms , due to a force perpendicular to the flat sides of the reeds.
Such an impact will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 A . T. coil to open.

Vibration: Frequency range 50 Hz to 1500 Hz , acceleration 20 g due to a force perpendicular to the flat side of the reed.
Such a vibration will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 A . T. coil to open.

DRY REED CONTACT UNIT

Micro dry reed contact unit hermetically sealed in a gas-filled glass capsule.
Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The contact unit is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in push buttons, relays or in similar devices, in conjunction with semicorductor devices.

QUICK REFERENCE DATA

Contact

Switched power
Switched voltage, d.c.
a.c. (r.m.s.)

Switched current, d.c. or a.c. (r.m.s.)
Contact resistance (initial)

MECHANICAL DATA.

Contact arrangement
Lead finish
Resonant frequency of single reed
Net mass
Mounting position

Dimensions in mm
normally open
tinned
approx. 2900 Hz
approx. $0,16 \mathrm{~g}$
any

7261219

Mechanical strength

The robustness of terminations is tested according to IEC Publication 68-2-21, tesi Tha (load 2 kg), Ub (load 0,5 kg, 2 bends), and Uc ($3 \times 360^{\circ}$).

Mounting

The leads should not be bent nearer than 1 mm to the glass-to-metal seals.
Stress on the seals should be avoided.
Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions.

Soldering

The contact unit may be soldered direct into the circuit but heat conducted to the glass-to-metal seals should be kept to a minimum by the use of a thermal shunt.
Dip-soldering is permitted to a minimum of 3 mm from the seals at a solder temperature of $240^{\circ} \mathrm{C}$ during maximum 10 s .

Solderability

Solderability is tested according to IEC Publication 68-2-20, test T, solder globule method.

Weldability

The leads are weldable.
The RI-20 SERIES comprises three types: RI-20/3A, RI-20/3B, and RI-20/3C,

CHARACTERISTICS RI-20/3A

Not-operate

Breakdown voitage	min.	400			V
Insulation resistance, initial	min.	10^{3}			$\mathrm{M} \Omega$
Capacitance, without test coil	max.	0,25			pF
		coil I	coil 11	coil 111	${ }^{1}$)
Must-not-operate value	max.	20	13	18	At
Operate					
Must-operate value	max.	32	18	26	At
Operate time, including bounce	typ. max.	$\left.\begin{array}{ll} 0,5 & 2 \\ 1,0 & 2 \end{array}\right)$			ms ms
Bounce time	typ. max.	$\left.\begin{array}{lll} 0,4 & 2 \\ 0,7 & 2 \end{array}\right)$			ms ms
Contact resistance, initial	typ. max.	$\left.\begin{array}{ll} 140 & 3 \\ 300 & 3 \end{array}\right)$			$\begin{aligned} & \mathrm{m} \Omega \\ & \mathrm{~m} \Omega \end{aligned}$
Not-release					
Must-not-release value	min.	22	13	18	At
Release					
Must-release value	max.	8	6	8	At
Release time	max.	$50{ }^{2}$)			

[^29]
CHARACTERISTICS RI-20/3B

Not-operate

Breakdown voltage	min.	400			V
Insulation resistance	min.	10^{3}			M 12
Capacitance, without test coil	max.	0,25			pF
		coil I	coil II	coil III	${ }^{1}$)
Must-not-operate value	max.	28	16	23	At
Operate					
Must-operate value	max.	52	25	40	At
Operate time, including bounce	$\begin{aligned} & \text { typ. } \\ & \text { max. } \end{aligned}$	$\left.\begin{array}{lll} 0,5 & 2 \\ 1,0 & 2 \end{array}\right)$			ms ms
Bounce time	typ. max.	$\left.\begin{array}{ll} 0,4 & 2 \\ 0,7 & 2 \end{array}\right)$			ms ms
Contact resistance, initial	typ. max.	$\left.\begin{array}{ll} 140 & 3 \\ 300 & 3 \end{array}\right)$			
Not-release					
Must-not-release value	min.	32	18	26	At
$\underline{\text { Release }}$					
Must-release value	\max.	12	8	11	At
Release time	\max.	$50{ }^{2}$)			$\mu \mathrm{s}$

[^30]Coil II : Recommended coil.
Coil III: Miniature coil A according to MIL-S-55433B.
2) Measured with 100 At .
${ }^{3}$) Measured with 70 At , distance between measuring points: 41 mm . Wire resistance typ. $2,5 \mathrm{~m} \Omega / \mathrm{mm}$.

CHARACTERISTICS RI-20/3C

Not-operate

Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not-operate value

Operate

Must-operate value
Operate time, including bounce

Bounce time

Contact resistance, initial

Not-release
Must-not-release value
Release
Must-release value
Release time

min.	400			V
min.	10^{3}			M
max.	0,25			pF
	coil I	coil II	coil III	
max.	46	23	36	At
\max.	70	31	53	At
typ.	0, $5 \quad 2$)			ms
max.	1, $0{ }^{2}$)			ms
typ.	$(0,4 \quad 2)$			ms
max.	$0,7{ }^{2}$)			ms
typ.	$140{ }^{3}$)			$\mathrm{m} \Omega$
max.	$300{ }^{3}$)			$\mathrm{m} \Omega$
min.	32	18	26	At
max.	12	8	11	At
max.	$50{ }^{2}$)			$\mu \mathrm{s}$

LIMITING VALUES (Absolute max. rating system)

Switched power	\max.	10	W
Switched voltage , d.c.	\max.	150	V
a.c. (r.m.s.)	max.	110	V
Switched current, d.c. or a.c. (r.m.s.)	\max.	500	mA
Current through closed contacts, d.c. or a.c. (r.m.s.)	max.	1	A
Temperature, storage and operating	max.	125	${ }^{\circ} \mathrm{C}{ }^{1}$)
	min.	-55	${ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY AND RELIABILITY

For life expectancy data end of life is defined as being reached when:
either a) the contact resistance once exceeds 1Ω for no-load conditions or 10Ω for loaded conditions, measured 5 ms after energizing coil;
or b) the release time once exceeds 5 ms after de-energizing the coil (latching or contact sticking).

No-load conditions (operating frequency 50 Hz).
Life expectancy min. 10^{8} operations with a failure rate of less than 10^{-8} with a confidence level of 90%.
After each operation a) and b) are tested.
Loaded conditions (Resistive load: $12 \mathrm{~V}, 2 \mathrm{~mA}$, operating frequency 50 Hz),
Life expectancy min. 10^{7} operations with a failure rate of less than 10^{-8} with a confidence level of 90%.
After each operation points a) and b) are tested.
Note
Switching other loais involves different life expectancy and reliability. Consult us beforehand.

SHOCK AND VIBRATION

Impact: Acceleration 50 g during 11 ms , due to a force perpendicular to the flat sides of the reeds .
Such an impact will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.

Vibration: Frequency range 50 Hz to 2000 Hz , acceleration 10 g due to a force perpendicular to the flat sides of the reeds.
Such a vibration will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 85 At coil to open.
I) Excursions up to $150^{\circ} \mathrm{C}$ may be permissible. Consult us.

COILS

Coil I: Standard coil
5000 turns of 42 SWG single enamelled copper wire on a coil former of $25,4 \mathrm{~mm}$ winding length and a core diameter of $8,75 \mathrm{~mm}$.

Coil II; Recommended coil

5000 turns of 46 SWG single enamelled copper wire on a coil former of $7,1 \mathrm{~mm}$ winding. length, a core diameter of $3,7 \mathrm{~mm}$ and an outer diameter of $8,3 \mathrm{~mm}$.
Coil III: Miniature coil A according to MIL-S-55433B
10000 turns of 48 SWG single enamelled copper wire on a coil former of $19,05 \mathrm{~mm}$ winding length and a core diameter of $4,32 \mathrm{~mm}$.

DRY REED CONTACT UNIT

Micro dry reed contact unit hermetically sealed in a gas-filled capsule. Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The contact unit is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in push buttons, relays or in similar devices, in conjunction with semiconductor circuits.

QUICK REFERENCE DATA					
Contact			S.P.S.T. normally open		
Switched power			max.	10	W
Switched voltage, d.c.			max.	$\begin{aligned} & 150 \\ & 110 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Switched current, d.c. or a.c. (r.m.s.)			\max.	500	mA
Contact resistance (initial)				140	$\mathrm{m} \Omega$
The RI-21 series comprises the types RI-21/3A, RJ-21/3B, and RI-21/3C with the following basic magnetic characteristics, measured in the Standard coil.					
	RI-21/3A	RI-21/3B		RI-21/3C	
Operate range (At)	20 to 32	28 to 52		46 to 70	
Release range (At)	8 to 22	12 to 32		12 to 32	

MECHANICAL DATA

Contact arrangement
normally open
Lead finish
Resonant frequency of single reed
Net mass
Mounting position
tinned
approx. 2900 Hz
approx. $0,16 \mathrm{~g}$
any

Mechanical strength
The robustness of terminations is tesied according to IEC Publication 68-2-21, test Ua (load 1 kg), and Uc ($3 \times 360^{\circ}$).

For all further data please refer to the RI-20 SERIES

DRY REED CONTACT UNIT

Mini dry reed contact unit hermetically sealed in a gas-filled glass capsule.
Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The contact unit is of the double-ended type and may be actuated by means of either an electromagnet or a permanert magnet or combinations of both. The device is intended for use in relays, push buttons or similar devices in conjunction with semiconductor circuits.

QUICK REFERENCE DATA				
Contact	S.P.S.T. normally open			
Switched power	max.		10	W
Switched voltage, d.c. a.c. (r.m.s.)	max. \max.		$\begin{aligned} & 350 \\ & 220 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Switched current	max.		500	mA
Contact resistance, initial	max.		100	$\mathrm{m} \Omega$
Basic magnetic characteristics, m	d coi			
Operate range	30	to	70	At
Release range	9,5	to	21	At

MECHANICAL DATA

Contact arrangement
Lead finish
Resonant frequency of single reed
Net mass
Mounting position

Dimensions in mm normally open tinned approx. 2000 Hz approx. $0,3 \mathrm{~g}$ any

7Z61219

Mechanical strength
The robustness of terminations is tested according to IEC Publication 68-2-21, test Ua (load $3,5 \mathrm{~kg}$), Ub (load 0, $5 \mathrm{~kg}, 2$ bends), and Uc ($3 \times 360^{\circ}$).

Mounting

The leads should not be bent nearer than 2 mm to the glass-to-metal seals. Stress on the seals should be avoided.
Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions.

Soldering
The contact unit may be soldered direct into the circuit but heat conducted to the glass-to-metal seals should be kept to a minimum by the use of a thermal shunt.
Dip-soldering is permitted to a minimum of 6 mm from the seals at a solder temperature of $240^{\circ} \mathrm{C}$ during maximum 10 s .

Solderability
Solderability is tested according to IEC Publication 68-2-20, test T, solder globule method.
Weldability
The leads are weldable.
CHARACTERISTICS See also "General Reed contact units"
Not-operate

Breakdown voltage

Insulation resistance, initial
Capacitance, without test coil

Must-not-operate value

Operate

Must-operate value
Operate time, including bounce

Bounce time

Contact resistance, initial

min.	$\begin{array}{r} 750 \\ 1000 \end{array}$		V ${ }^{5}$
min.			V ${ }^{6}$
min.	10^{3}		M 2
max.	1		pF
	coil I	coil II	
max.	30	31	At
max.	70	75	At
typ.	$0,6{ }^{2}$)		ms
max.	1,0 ${ }^{2}$)		ms
typ.	0, $3{ }^{2}$)		ms
max.	$0,5{ }^{2}$)		ms
typ.	$70{ }^{3}$)		$\mathrm{m} \Omega$
max.	$100{ }^{3}$)		$\mathrm{m} \Omega$

[^31]
Not-release

Must-not-release value	\min	21	22	At
Release				
Must-release value	\max.	9,5	9,5	At
Release time	\max.	50	$2)$	μs

LIMITING VALUES (Absolute max. rating system)

Switched power	max.	10	W
Switched voltage, d.c.	max.	350	V
a.c. (r.m.s.)		220	V
Switched current, d.c. or a.c. (r.m.s.)	max.	500	mA
Switched current, surge ($T=\max , 100 \mathrm{~ns}$)	max.	1	A
Current through closed contact, d.c. or a.c. (r.m.s.)	\max.	1,5	A
Temperature, storage and operation	max.	125	${ }^{\circ} \mathrm{C}$
	min.	-55	${ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY AND RELIABILITY

For life expectancy data end of life is defined as being reached when:
either a) the contact resistance exceeds 1Ω for no load conditions or 5Ω for loaded conditions, measured 5 ms after energizing coil I to 100 At.
or b) the release time once exceeds 5 ms (latciing or contact sticking), after deenergizing coil I to 4 At.

No-load conditions

Operating frequency 50 Hz .
Life expectancy min. 10^{8} operations with a failure rate of less than 10^{-8} with a confidence level of 90%.
After each operation a) and b) are tested.
Loaded conditions
Resistive load: $12 \mathrm{~V}, 100 \mathrm{~mA}$, operating frequency 50 Hz .
Life expectancy min. 10^{7} operations with a failure rate of less than 10^{-8} with a confidence level of 90%.
After each operation ${ }^{\text {a }}$) and b) are tested.

Notes: see page 4.

SHOCK AND VIBRATION

Mechanical shock is tested according to IEC Publication 68-2-27, test Ea (peak acceleration 500 g , half sine-wave).
Such a mechanical shock will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.
Vibration is tested according to IEC Publication 68-2-6, test Fe, procedure B4 (acceleration 10 g , below cross-over frequency amplitude $0,75 \mathrm{~mm}$, frequency range $10-500 \mathrm{~Hz}$, duration 90 min .). Such a vibration will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.

COILS

Coil I: Standard coil

5000 turns of 42 SWG single enamelied copper wire on a coil former of $25,4 \mathrm{~mm}$ winding length and a core diameter of $8,75 \mathrm{~mm}$.

Coil II : Intermediate coil C according to MIL-S-55433B
10000 turns of 41 SWG single enamelled copper wire on a coil former of $25,4 \mathrm{~mm}$ winding length and a core diameter of $7,62 \mathrm{~mm}$.

[^32]
DRY REED CONTACT UNIT

Miniature dry reed contact unit hermetically sealed in a gas-filled glass capsule. Single-pole, single-throw type, having normally ofen contacts, and containing two magnetically actuated reeds. The contact unit is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in telephone exchange relays.

QUICK REFERENCE DATA				
Contact	S.P.S.T. normally open			
Switched power	max.		10	W
Switched voltage	max.		200	V
Switched current	max.		500	mA
Contact resistance (initial)	max.		100	$\mathrm{m} \Omega$
Basic magnetic characteris	coil			
Operate range	30	to	70	At
Release range	9, 5	to	21	At

MECHANICAL DATA

Contact arrangement
Lead finish
Resonant frequency of single reed
Net mass
Mounting position
Dimensions in mm
normally open
tinned
approx. 2000 Hz
approx. $0,3 \mathrm{~g}$
any

Mechanical strength
The robustness of terminations is tested according to IEC Publication 68-2-21, test Ua (load $3,5 \mathrm{~kg}$), Ub (load 0,5 kg, 2 bends) and Uc ($3 \times 360^{\circ}$).

Mounting

The leads should not be bent nearer than 2 mm to the glass-to-metal seals. Stress on the seals should be avoided.
Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions.

Soldering

The contact unit may be soldered direct into the circuit but heat conducted to the glass-to-metal seals should be kept to a minimum by the use of a thermal shunt.
Dip-soldering is permitted to a minimum of 6 mm from the seals at a solder temperature of $240^{\circ} \mathrm{C}$ during maximum 10 s .

Solderability

Solderability is tested according to IEC Publication 68-2-20, test T, solder globule method.

Weldability

The leads are weldable.

CHARACTERISTICS

Not-operate

Breakdown voltage	\min. min.	$\begin{array}{r} 750 \\ 1000 \end{array}$			$\begin{array}{lll}\mathrm{V} & 5 \\ \mathrm{~V} & 6\end{array}$
Insulation resistance, initial	min.	10^{3}			M 2
		coil I	coil II	coil III	
Must-not-operate value	max.	30	21	31	At
Operate					
Must-operate value	max.	70	37	75	At
Operate time, including bounce	max.		$1,1{ }^{2}$)		ms
Bounce time	typ. max.		$\left.\begin{array}{ll} 0,3 & 2 \\ 0,4 & 2 \end{array}\right)$		ms ms
Hold					
Hold value	min.	32	20, 5	33	At
Contact resistance, initial	max.		$100{ }^{3}$)		$\mathrm{m} \Omega$
Not-release					
Must-not-release value	min.	21	13	22	At
Release					
Must-release value Release time	max. max.	9,5	5 0,1	9, 5	At ms

[^33]LIMITING VALUES (Absolute max. rating system)

Switched power	\max.	10	W
Switched voltage	\max.	200	V
Switched current	\max.	500	mA
4)			
Current through closed contact	\max.	1,5	A
Temperature, storage and operating	\max.	125	${ }^{\circ} \mathrm{C}$
	\min.	-55	${ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY

For life expectancy data end of life is defined as being reached when within $0,1 \mathrm{x}$ the typical number of operations:
either a) the contact resistance more than once exceeds 1Ω for no load conditions and 10Ω for loaded conditions, measured 5 ms after energizing the coil;
or b) the release time more than once exceeds 2 ms after de-energizing the coil (contact sticking).
No load conditions
Typical number of operations: 10^{8} Operating frequency 50 Hz .
Loaded conditions
p) Resistance load: $50 \mathrm{~V}, 100 \mathrm{~mA}$ Operating frequency 20 Hz .

Minimum number of operations: 2×10^{6}
q) Resistive load: $50 \mathrm{~V}, 50 \mathrm{~mA}$ connected to the contacts by means of the following cables:

Surge impedance (Ω)	Cable length (m)
45	$20 ; 100$
75	$20 ; 100$
140	$20 ; 100$

Minimum number of operations: $0,5 \times 10^{6}$ Operating frequency 20 Hz .
r) Discharge of the following floating cables, previously charged to 50 V :
Surge impedance (Ω)
45
75
140

Cable length (m)
1; 10; 100
1; 10; 100
1; 10; 100
Minimum number of operations: 3×10^{6} Opera:ing frequency 20 Hz .
General: After each operation points ${ }^{\text {a }}$) and ${ }^{\text {b }}$) are tested.

[^34]
SHOCK AND VIBRATION

Mechanical shock is tested according to IEC Publication 68-2-27, test Ea (peak acceleration 500 g , half sine-wave).
Such a mechanical shock will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil II to open.
Vibration is tested according to IEC Publication 68-2-6, test Fc, procedure B4 (acceleration 10 g , below cross-over frequency amplitude $0,75 \mathrm{~mm}$, frequency range $10-500 \mathrm{~Hz}$, duration 90 minutes).
Such a vibration will not cause an open contact by an 80 At coil II to open.

COILS

Coil I: Standard coil
5000 turns of 42 SWG single enamelled copper wire on a coil former of $25,4 \mathrm{~mm}$ winding length and a core diameter of $8,75 \mathrm{~mm}$.

Coil II: Recommended coil

2000 turns of 42 SWG single enamelled copper wire on a coil former of $12,5 \mathrm{~mm}$ winding length and a core diameter of $4,2 \mathrm{~mm}$ with a return circuit of annealed soft iron $\left(80 \mathrm{~A} / \mathrm{m}<\mathrm{H}_{\mathrm{C}}<96 \mathrm{~A} / \mathrm{m}\right)$.

Coil III: Intermediate coil C according to MIL-S55433B
10000 turns of 41 SWG single enamelled copper wire on a coil former of $25,4 \mathrm{~mm}$ winding length and a core diameter of $7,62 \mathrm{~mm}$.

1) Coil I : Standard coil.

Coil II : Recommended coil.
Coil III: Intermediate cuil C according to MIL-S-55433B.
2) Measured with 50 At
3) Measured with 20 At , distance between measuring points: 38 mm .
${ }^{4}$) Surges (e.g. due to stray capacitances of cables) up to 1,5 A are permissible provided these surges decay to values within the limiting values in less than $0,8 \mu_{\mathrm{s}}$. Submicrosecond surges may shorten contact life significantly.
5) Measured after pre-ionization.
${ }^{6}$) Measured without pre-ionization.

Associated accessories

14 PIN TUBE SOCKET

Socket for over-chassis mounting and mounting on a printed-wiring board with reference grid according to IEC publication 97.
The socket is compatible with 14 pin base (e.g. ZM1000).

MECHANICAL DATA

Dimensions in mm

Hole pattern in printed wiring board
(for bottom view of socket)

Material: Phenolic
Contacts : Fork shaped, silver plated
6

SNAP-FIT INDICATOR-TUBE ASSEMBLY

A snap-fit indicator-tube assembly consists of a leit-hand end piece (1), a number of snap-fit tube holders (2), as many as there are indicator tubes to be fitted side by side, a right-hand end piece (3), and a filter plate (4), which forms the front panel.
The filter plate is preferably to the blue-light absorbing type made of, for instance, circular-polarized material.

The various items can be fitted easily into a rectangular window cut in the frontplate of a piece of equipment; no tools are needed for mounting and this can take place from the front. A snap-fit indicator-tube assembly can be used with front plates $1,6 \pm 0,2 \mathrm{~mm}$ thick.

DIMENSIONS in mm
Material: grey plastic.
Left-hand end piece

These two items are supplied together under type number 55704
Snap-fit tube holder Type number 55703
holes e.g for mounting
a printed wiring board

Window to be cut in the front plate

$\mathrm{n}=$ number of tube holders type 55703 .
plate thickness $1.6 \pm 0.2 \mathrm{~mm}$
Filter plate (not included in the delivery)

n = number of tube holders 55703

MOUNTING INSTRUCTIONS

1. Slide one of the end pieces into position in the window cut in the front plate; Figs. la and lb show this for the left-hand end piece.

Fig.la

Fig.1b
2. Slide the snap-fit tube holders into position one by one, see Fig. 2a and 2b.

Fig. 2b

> Fig. 2a
3. After the last tube holder has been moved to its place, slide the filter plate into the grooves provided for the purpose, see Fig.3. Slide the other end piece into position in the manner explained for the first end piece.

Removal of the various items takes place in the reversed order.

Fig. 3

14-PIN TUBE SOCKET

14-pin socket, intended for use with close mounted rectangular envelope indicator tubes.

MECHANICAL DATA
Dimensions in mm

SOCKET FOR 17-PIN BASE

Socket (laminated) with scraping contacts, compatible with 17 -pin base as used with "Pandicon" * tubes, e.g. ZM1200.
55708
55709 \quad For chassis mounting. Soldering tags with eyelets.

The contacts are silver plated.

[^35]

INDEX OF TYPE NUMBERS

Type no.	Section	Type no.	Section
RI-12	D.R.	ZM1020/01	I.T.
RI-20	D.R.	ZM1021	I.T.
RI-21	D.R.	ZM1022	I.T.
RI-42	D.R.	ZM1022p	I.T.
RI-43	D.R.	ZM1023	I.T.
ZA1002	S.D.	ZM1028	I.T.
ZA1004	S.D.	ZM1040	I.T.
ZA1006	S.D.	ZM1041	I.T.
ZM1000	I.T.	ZM1042	I.T.
ZM1001	I.T.	ZM1042/01	I.T.
ZM1002	I.T.	ZM1043	I.T.
ZM1003	I.T.	ZM1043/01	I.T.
ZM1005	I.T.	ZM1550	S.I.T.
ZM1010	I.T.	ZM1551	S.I.T.
ZM1011	I.T.	55702	Acc.
ZM1012	I.T.	55703	Acc.
ZM1013	I.T.	55704	Acc.
ZM1014	I.T.	55705	Acc.
ZM1015	I.T.	55708	Acc.
ZM1020	I.T.	55709	Acc.

D.R. = Dry reed contact units
S.D. = Switching diodes
I. T. = Indicator tubes
S.I.T. = Segment indicator tubes

Acc. = Accessories

Segment indicator tubes

Indicator tubes

Switching diodes

Dry reed contact units

Associated accessories

Index

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: FAPESA I.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 421261.
Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.
Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel 5230000.
Brazil: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP, Tel. 287-7144.
Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01.
Colombia: SADAPE S.A., P.O. Box 9805 Calle 13, No. $51+39$, BOGOTA D.E. 1., Tel. 600600.
Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KOBENHAVN NV., Tel. (01) 691622.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915311.
Hong Kong: PHILIPS HONG KONG LTD., Comp. Dept., Philips Ind. BIdg., Kung Yip St., K.C.T.L. 289, KWAI SHUNG, N.T. Tel. 12-24 5121.
India: PHILIPS INDIA LTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, JI. Jen. Gatot Subroto, JAKARTA, Tel. 44163.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.P.A., Sezione EIcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6994.
Japan; NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611. (IG Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 44-4202.
Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 5-33-11-80.
Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, NL-4510 EINDHOVEN, Tel. (040) 793333.
New Zealand: Philips Electrical Ind. Ltd., Elcoma Division, 70-72 Kingsford Smith Street, WELLINGTON, Tel. 873156.
Norway: ELECTRONICA A/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 150590.
Peru: CADESA, Jr. Ilo, No. 216, Apartado 10132, LIMA, Tel. 277317.
Philippines: ELDAC, Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL, Tel. 86-89-51 to 59.
Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 683121.
Singapore: PHILIPS SINGAPORE PTE LTD., Elcoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 538811.
South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG 2001, Tel. 24/6701.
Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 3016312.
Sweden: A.B. ELCOMA, Lidingövägen 50, S-10 250 STOCKHOLM 27, Tel. 08/67 9780.
Switzerland: PHILIPS A.G., Elcoma Dept., Edenstrasse 20, CH-8027 ZÜRICH, Tel. 01/44 2211.
Taiwan: PHILIPS TAIWAN LTD., 3rd FI., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.
Turkey: TÜRK PHILIPS TICARET A.S., EMET Department, Gümüssuyu Cad. 78-80, Beyoglü, ISTANBUL, Tel. 453250.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.
United States: (Active devices \& Materials) AMPEREX SALES CORP., 230, Duffy Avenue, HICKSVILLE, N.Y. 11802, Tel. (516) 931-6200. (Passive devices) MEPCO /ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000. (IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.
Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 94321.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, GARAGAS, TeI. 360511.

[^0]: This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication convevs no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use: specifications and availability of goods mentioned in it are subject to change without notice: it is not to be reproduced in any way, in whole or in part without the written consent of the publisher.

[^1]: 1) Primed ignition voltage is the minimum anode to cathode voltage to ensure that the selected numeral (including decimal point) is completed after ignition of one segment.
 Data based on pre-production devices.
[^2]: Notes see page 3 .

[^3]: ${ }^{1}$) Bulb temperatures above $70{ }^{\circ} \mathrm{C}$ result in changes in colour.
 ${ }^{2}$) Bulb temperatures below $10{ }^{\circ} \mathrm{C}$ result in a feduced life expectancy and changes in characteristics.

[^4]: ${ }^{1}$) Length of i.c. pins max. $2,8 \mathrm{~mm}$.
 ${ }^{2}$) Not tinned.
 3) Standard deviation $0,13 \mathrm{~mm}$.

[^5]: ${ }^{1}$) Lower values of this resistor are permitted. The anode current should be increased by the increase of decimal point current resulting from the decrease of this resistor.

[^6]: ${ }^{1}$) Bulb temperatures below $10^{\circ} \mathrm{C}$ result in a reduced life expectancy and changes in characteristics (see page 4).
 For equipment to be used over a wide temperature range, "constant current operation" (high supply voltage with a high anode series resistor) is recommended.

[^7]: ${ }^{1}$) Length of these i.c. pins max. $2,8 \mathrm{~mm}$.
 2) Not tinned.
 3) Standard deviation $0,13 \mathrm{~mm}$.

[^8]: ${ }^{1}$) Length of these i.c. pins max. $2,8 \mathrm{~mm}$.
 ${ }^{2}$) Not tinned.
 3) Standard deviation $0,13 \mathrm{~mm}$.

[^9]: 1) Standard deviation $0,13 \mathrm{~mm}$.
 2) Length of i.c. pins max. $2,8 \mathrm{~mm}$.
[^10]: ${ }^{1}$) Standard deviation $0,13 \mathrm{~mm}$.

[^11]: ${ }^{1}$) Standard deviation $0,13 \mathrm{~mm}$.

[^12]: ${ }^{1}$) Standard deviation $0,13 \mathrm{~mm}$

[^13]: 1) Standard deviation $0,13 \mathrm{~mm}$.
[^14]: ${ }^{1}$) Standard deviation $0,13 \mathrm{~mm}$

[^15]: 1) Standard deviation $0,13 \mathrm{~mm}$.
[^16]: 1) Bulb temperatures below $10{ }^{\circ} \mathrm{C}$ result in a reduced life expectancy and changes in characteristics (see sheet 4).
 In designing equipment to be used over a wide temperature range the use of "constant current operation" (high supply voltage with a high anode series resistor) is recommended.
[^17]: 1) Above $I_{a}=6 \mathrm{~mA}$ the connecting wires and eyelets may be covered by the glow.
[^18]: ${ }^{1}$) Bulb temperatures below $0{ }^{\circ} \mathrm{C}$ result in a reduced life expectancy and changes in characteristics (see sheet 7)
 In designing equipment to be used over a wide temperature range the use of "constant current operation" (high supply voltage with a high anode series resistor) is recommended.

[^19]: ${ }^{1}$) Bulb temperatures below $10{ }^{\circ} \mathrm{C}$ result in a reduced life expectanxy and changes in characteristics (see sheet 4).
 In designing equipment to be used within a wide temperature range the use of "constant current operation" (high supply voltage with a high anode series resistor) is recommended.

[^20]: ${ }^{1}$) Pins 1 and 2 to be connected externally.

[^21]: ${ }^{1}$) Pins 1 and 2 to be connected externally.

[^22]: ${ }^{1}$) Light intensity measured over an angle of 70° at a distance of 3.6 mm from the tube axis opposite the anode cylinder.
 ${ }^{2}$) Measured with a Standard Weston Cell adopted to eye sensitivity. Because the light emission of the neon discharge is mainly contained in the red region, the illumination resistance of a CdS cell will be 1.5 to 2 times lower than in case of irradiation by a $2700^{\circ} \mathrm{K}$ incandescent light source. The exact conversion factor depends on the type of CdS cell used.

[^23]: 1) Current excursions down to 1 mA and up to 5 mA are permitted under conditions of e.g. extreme supply voltage variations. The excursion times should preferably be as short as possible but never exceed 24 hours.
[^24]: ${ }^{1}$) Not tinned

[^25]: ${ }^{1}$) The ignition and extinction voltage depression (hysteresis) is max. 0.75 V per mA prior current measured 50 ms after cessation of conduction.
 ${ }^{2}$) Due to the statistical nature of ignition delay values of delay time $>1 \mathrm{~s}$ may occasionally occur.
 ${ }^{3}$) Characteristic range value for equipment design.
 4) These values apply to $220 \mathrm{~V}(+10 \%,-15 \%), 50 \mathrm{~Hz}$ to 60 Hz full-wave rectified unsmoothed supply and assume conduction in the course of the preceeding half cycle, so that residual ionization eliminates delay of the following ignition.

[^26]: ${ }^{\text {l }}$) Current excursions down to $50 \mu \mathrm{~A}$ with a duration <1 s are permitted.
 2) $V_{T}=V_{\text {c.o. }}-V_{\text {sat }}(V)$ in which
 $\mathrm{V}_{\mathrm{c} .0} .=$ voltage between collector of the cut-off transistor and the common terminal (absolute value).
 $\mathrm{V}_{\text {sat }}=$ voltage across the bottomed transistor (absolute value).

[^27]: ${ }^{1}$) The use of equivalent circuits for establishing the exact conditions I, II, and III leads to a negligible error in the expressions (1), (2) and (3).

[^28]: 1) This part of the leads is not tinned.
[^29]: Notes: see page 3 .

[^30]: 1) Coil I : Standard coil.
[^31]: Notes: see page 4.

[^32]: 1) Coil I : Standard coil.

 Coil II: Intermediate coil C according to MIL-S-55433B,
 2) Measured with 100 At.
 ${ }^{3}$) Measured with 32 At , distance between measuring points 41 mm .
 ${ }^{4}$) Surges (e.g. due to stray capacitances of cables) up to $1,5 \mathrm{~A}$ are permissible provided these surges decay to values within the limiting values in less than $0,8 \mu \mathrm{~s}$.
 Submicrosecond surges may shorten contact life significantly.
 5) Measured after pre-ionization,
 ${ }^{6}$) Measured without pre-ionization.

[^33]: Notes: see page 4.

[^34]: Note: Switching other loads involves different life expectancy and reliability. Consult us beforehand.

[^35]: *Registered Trade Mark for multiple indicator tubes.

