PHILIPS

Data handbook

Pnurus Electronic components and materials

Electron tubes

Part 5 July 1972

Instrument tubes

Monitor and display tubes
C-R tubes for special applications
Camera tubes
Image intensifier tubes

Photo tubes

ELECTRON TUBES

Part 5

CATHODE-RAY TUBES

General and screen types
Instrument tubes
Monitor and display tubes
C-R tubes for special applications
CAMERA TUBES

IMAGE INTENSIFIER TUBES
PHOTO TUBES
ASSOCIATED ACCESSORIES

DATA HANDBOOK SYSTEM

To provide you with a comprehensive source of information on electronic components, subassemblies and materials, our. Data Handbook System is made up of three series of handbooks, each comprising several parts.

The three series, identified by the colours noted, are:

ELECTRON TUBES (9 parts) BLUE
 SEMICONDUCTORS AND INTEGRATED CIRCUITS (6 parts) RED

COMPONENTS AND MATERIALS (7 parts)
Green

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically; the contents of each series are summarized on the following pages.
We have made every effort to ensure that each series is as accurate, comprehensive and up-to-date as possible, and we hope you will find it to be a valuable source of reference.
Where ratings or specifications quoted differ from those published in the preceding edition they will be pointed out by arrows.

You will understand that we can not guarantee that all products listed in any one edition of the handbook will remain available, or that their specifications will not be changed, before the next edition is published.
If you need confirmation that the published data about any of our products are the latest available, may we ask that you contact our representative. He is at your service and will be glad to answer your inquiries.

ELECTRON TUBES (BLUE SERIES)

This series consists of the following parts, issued on the dates indicated.
Part 1 Transmitting tubes (Tetrodes, Pentodes); January 1972
Amplifier circuit assemblies
Part 2 Tubes for microwave equipment February 1972
Part 3 Special Quality tubes;
Miscellaneous devicesMarch 1972
Part 4 Receiving tubes June 1972
Part 5 Cathode-ray tubes; Photo tubes; Camera fubes July 1972
Part 6 Devices for nuclear equipment June 1971
Photomultiplier tubes
Channel electron multipliers
Scintillators
Photoscintillators

Radiation counter tubes

Semicinductor radiation detectors

Neutron generator tubes

Photo diodes
Part 7 Gas-filled fubesVoltage stabilizing and reference tubesCounter, selector, and indicator tubesTrigger tubesSwitching diodes

Part 8 T.V.Picture tubes
August 1971

Part 9 Transmitting tubes (Triodes) ; Tubes for r.f. heating (Triodes)

December 1971

July 1971
Thyratrons Ignitrons
Industrial rectifying tubes
High-voltage rectifying tubes

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Diodes; Thyristors; Stacks
Signal diodes
Variable capacitance diodes
Voltage regulator diodes

September 1971

Rectifier diodes
Thyristors, diacs, triacs
Rectifier stacks

Part 2 Low frequency and Deflection transistors

Part 3 High frequency and Switching transistors
November 1971

Part 4 Special types

Transmitting transistors
Microwave devices
Field effect transistors
Dual transistors
Microminiature devices for thick- and thin-film circuits

December 1971
Photoconductive devices
Photodiodes
Phototransistors
Light emitting diodes
Infra-red sensitive devices

Part 6 Digital Integrated Circuits
DTL (FC family)
DTL/HNIL (FZ family)
TTL (FJ family)

February 1972

March 1972
TTL (GJ family)
CML (GH family)
MOS (FD family)

COMPONENTS AND MATERIALS (GREEN SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Circuit Blocks, Input/Output Devices,
 Electro-mechanical Components, Peripheral Devices

October 1971

Circuit blocks 40 -Series
Counter modules 50-Series Norbits 60-Series, 61-Series
Circuit blocks 90-Series

Part 2 Resistors, Capacitors

Fixed resistors
Variable resistors
Non-linear resistors
Ceramic capacitors

Input/output devices
Electro-mechanical components
Peripheral devices

December 1971
Paper capacitors and film capacitors
Electrolytic capacitors
Variable capacitors

Part 3 Radio, Audio, Television
FM tuners
Coil assemblies
Piezoelectric ceramic resonators and filters
Loudspeakers

February 1972
Audio and mains transformers
Television tuners, aerial input assemblies
Components for black and white television Components for colour television Deflection assemblies for camera tubes

Part 4 Magnetic Materials, Piezoelectric Ceramics, Ni Cd cells
May 1972

Ferrites for radio, audio and television
Small coils and assembling parts
Ferroxcube potcores and square cores

Ferroxcube transformer cores
Piezoelectric ceramics
Permanent magnet materials
Cylindrical nickel cadmium cells
Part 5 Memory Products, Magnetic Heads, Quartz Crystals,

August 1972 Microwave Devices, Variable Transformers

Ferrite memory cores Matrix planes, matrix stacks Complete memories Magnetic heads

Part 6 Electric Motors and Accessories, Timing and Confrol Devices
Stepper motors
Small synchronous motors
Asynchronous motors

Part 7 Circuif Blocks
Circuit blocks 100 kHz Series
Circuit blocks 1 -Series
Circuit blocks 10 -Series

Quartz crystal units, crystal filters
Isolators, circulators
Variable mains transformers

August 1971

Small d.c. motors
Tachogenerators and servomotors Indicators for built-in test equipment

September 1971

Circuit blocks for ferrite core memory drive

Argentina

FAPESA I.y.C.
Melincue 2594
Tel. 50-9941/8155
BUENOS AIRES

Australia

Philips Industries Ltd.
Elcoma Division
95-99 York Street
Tel. 20223
SYDNEY, N.S.W. 2000

Austria

Osterreichische Philips
Bauelemente Industrie G.m.b.H.
Zieglergasse 6
Tel. 932622
A 1072 VIENNA

Belgium

M.B.L.E.

80, rue des Deux Gares
Tel. 230000
1070 BRUSSELS

Brazil

IBRAPE S.A.
Av. Paulista 2073-S/Loja
Tel. 278-1111
SAO PAULO, SP

Canada

Philips Electron Devices
116, Vanderhoof Ave.
Tel. 425-5161
TORONTO 17, Ontario

Chile

Philips Chilena S.A.
Av. Santa Maria 0760
Tel. 39-40 01
SANTIAGO
Colombia
SADAPE S.A.
Calle 19. No. 5-51
Tel. 422-175
BOGOTA D.E. 1

Denmark

Miniwatt A/S
Emdrupvej 115A
Tel. (01) 691622
DK-2400 K \emptyset BENHAVN NV

Finland

Oy Philips Ab
Elcoma Division
Kaivokatu 8
Tel. 658033
SF-00100 HELSINKI 10

France

R.T.C.

La Radiotechnique-Compelec
Avenue Ledru Rollin 130
Tel. 357-69-30
PARIS 11

Germany

Valvo G.m.b.H.
Valvo Haus
Burchardstrasse 19,
Tel. (0411) 3296-1
2 HAMBURG 1

Greece

Philips S.A. Hellénique
Elcoma Division
52 , Av. Syngrou
Tel. 915311
ATHENS

Hong Kong

Philips Hong Kong Ltd
Components Dept. (Kowloon Branch)
7/F. Wai Yip Industrial Building
41 Tsun Yip St., Kwuntong
Tel. K-42 82 05-8
HONG KONG

India

IMBELEC Div. of
Philips India Ltd.
Band Box House
254-D, Dr. Annie Besant Road
Tel. 475311 to 15
Worli, BOMBAY 18 (WB)

Indonesia

P.T. Philips-Ralin Electronics

Elcoma Division
Djalan Gadjah Mada 18
Tel. 44163
DJAKARTA
Ireland
Philips Electrical (Ireland) Ltd.
Newstead, Clonskeagh
Tel. 693355
DUBLIN 14

Italy

Philips S.p.A.
Sezione Elcoma
Piazza IV Novembre 3
Tel. 6994
MILANO

Japan

NIHON PHILIPS
32nd Fl. World Trade Center Bldg.
5, 3-chome, Shiba Hamamatsu-cho
Minato-ku
Tel. (435) 5204-5
TOKYO

Mexico

Electrónica S.A. de C.V
Varsovia No. 36
Tel. 5-33-11-80
MEXICO 6, D.F.

Netherlands

Philips Nederland N.V.
Afd. Elonco
Boschdijk, VB
Tel. (040) 433333
EINDHOVEN
New Zealand
EDAC Ltd.
70-72 Kingsford Smith Street
Tel. 873159
WELLINGTON

Norway

Electronica A/S
Middelthunsgate 27
Tel. 463970
OSLO 3

Peru

CADESA
Jr. Ilo, No. 216
Appartado 10132
Tel. 277317
LIMA

Philippines

EDAC
Philips Industrial Dev. Inc.
2246 Pasong Tamo
Tel. 88-94-53 (to 56)
MAKATI-RIZAL

Portuga!

Philips Portuguesa S.A.R.L.
Av. Eng. Duharte Pacheco 6
Tel. 683121
LISBOA 1

Singapore

Philips Singapore Private Ltd.
8th Floor, International Building
360 Orchard Road
Tel. 372211 (10 lines)
SINGAPORE-9

South Africa

EDAC (Pty.) Ltd.
South Park Lane
New Doornfontein
Tel. 24/6701-2
JOHANNESBURG

Spain

COPRESA S.A.
Balmes 22
Tel. 2326680
BARCELONA 7

Sweden

ELCOMA A.B.
Lidingovägen 50
Tel. 08/67 9780
10250 STOCKHOLM 27

Switzerland

Philips A.G.
Edenstrasse 20
Tel. 051/44 2211
CH-8027 ZUERICH

Taiwan

Philips Taiwan Ltd.
San Min Building, 3rd F1.
57-1, Chung Shan N. Road
Section 2
Tel. 553101-5
TAIPEI

Turkey

Turk Philips Ticaret A.S.
EMET Department
Gumussuyu Cad. 78-80
Tel. 45.32 .50
Beyoglü, ISTANBUL
United Kingdom
Mullard Ltd.
Mullard House
Torrington Place
Tel. 01-580 6633
LONDON WC1E 7HD

United States

North American Philips
Electronic Component Corp.
230, Duffy Avenue
Tel. (516) 931-6200
HICKSVILLE, N.Y. 11802

Uruguay

Luzilectron S.A.
Rondeau 1567, piso 5
Tel. 94321
MONTEVIDEO

Venezuela

C.A. Philips Venezolana

Elcoma Department Colinas de Bello Monte
Tel. 72.01.51
CARACAS

CATHODE-RAY TUBES

General and screen types

LIST OF SYMBOLS

Symbols denoting electrodes and electrode connections
Heater or filament
Cathode
k
Grid g
Grids are distinguished by means of an additional numeral; the electrode nearest to the cathode having the lowest number.

Deflection plates intended for deflection in horizontal direction.

Deflection plates intended for deflection in vertical direction.
Sectioned deflection plates are indicated by an additional decimal e.g. $\mathrm{y}_{1.1} \mathrm{y}_{1.2}$ and $\mathrm{y}_{2} .1 \mathrm{y}_{2} .2$

External conductive coating m
Fluorescent screen ℓ
Tube pin which must not be connected externally i.c.
Tube pin which may be connected externally n.c.

Symbols denoting voltages

Symbol for voltage, followed by an index denoting
the relevant electrode.
Heater or filament voltage V_{f}
Peak value of a voltage
Peak to peak value of a voltage

Symbols denoting currents

$$
\begin{array}{ll}
\text { Remark I } & \begin{array}{l}
\text { The positive electrical current is di- } \\
\text { rected opposite to the direction of the } \\
\text { electron current. }
\end{array} \\
\text { Remark II } & \begin{array}{l}
\text { The symbols quoted represent the av- } \\
\text { erage values of the concerning cur- } \\
\text { rents unless otherwise stated. }
\end{array}
\end{array}
$$

Symbol for current followed by an index denoting the relevant electrode.

Heater or filament current
Symbols denoting powers
Dissipation of the fluorescent screen
Grid dissipation

Symbols denoting capacitances

See I.E.C. Publication 100.
Symbols denoting resistances
Symbol for resistance followed by an index for the relevant electrode pair. When only one index is given the second electrode is the cathode.
When R is replaced by Z the "resistance should read "impedance"

Symbols denoting various quantities

Brightness B
Frequency f
Magnetic field strength H
Deflection coefficient M

GENERAL OPERATIONAL RECOMMENDATIONS CATHODE-RAY TUBES

GENERAL

Unless otherwise stated the data are given for a nominal tube.

LIMITING VALUES

Unless otherwise stated the tubes are rated according to the absolute maximum rating system.

HEATER

Parallel operation

The heater voltage must be within $\pm 7 \%$ of the nominal value when the supply voltage is at its nominal value, and when a tube having the published heater characteristics is employed.
This figure is permissible only if the voltage variation is dependent upon more than one factor. In these circumstances the total tolerance may be taken as the square root of the sum of the squares of the individual deviations arising from the effect of the tolerances of the separate factors, providing no one of these deviations exceeds $\pm 5 \%$. Should the voltage variation depend on one factor only, the voltage variation must not exceed $\pm 5 \%$.

Series operation

The heater current must be within $\pm 5 \%$ of the nominal value when the supply voltage is at its nominal value and a tube having the published heater characteristics is employed. This figure is permissible only if the current variation is dependent upon more than one factor. In these circumstances the total tolerance may be taken as the square root of the sum of the squares of the individual deviations arising from the effects of the tolerances of the separate factors, providing no one of these deviations exceeds $\pm 3.5 \%$. Should the total current variation depend upon one factor only, the current variation must not exceed $\pm 3.5 \%$. When calculating the tolerances of associated components, the ratio of the change of heater voltage to the change of heater current in a typical series chain including a cathode ray tube is taken as 1.8 , both deviations being expressed as percentages.

HEATER (continued)

With certain combinations of valves and tube, differences in the thermal inertia may result in particular heaters being run at exceedingly high temperature dur ing the warming up period. During this period unless otherwise stated in the published data, it is permissible for the heater voltage of the tube to rise to a maximum value of 50% in excess of the nominal rated value when using a tube with the published heater characteristics. A surge limiting device may be necessary in order to meet this requirement. When measuring the surge value of heater voltage, it is important to employ a peak reading device, such as an oscilloscope.
In addition to the quoted above, fluctuations in the mains supply voltage not exceeding $\pm 10 \%$ are permissible. These conditions are, however, the worst which are acceptable and it is better practise to maintain the heater as close to its published ratings as possible. Furthermore in all types of equipment closer adjustment of heater voltage or current will react favourably upon tube life and performance.

CATHODE

The potential difference between cathode and heater should be as low as possible and in any case must not exceed the limiting value given on the data sheets for individual tubes. Operation with the heater positive with respect to cathode is not recommended. In order to avoid excessive hum the A.C. component of the heater-to-cathode voltage should be as low as possible e.g. less than $20 \mathrm{~V}_{\mathrm{rms}}$. When the heater is in a series chain or earthed, the $50 \mathrm{c} / \mathrm{s}$ impedance between heater and cathode should not exceed $100 \mathrm{k} \Omega$. If the heater is supplied from separate transformer windings the resistance between heater and cathode must not exceed $1 \mathrm{M} \Omega$.

ELECTRODES

In no circumstances should the tube be operated without a D.C. connection between each electrode and the cathode. The total effective impedance between any electrode and the cathode should be as low as possible and must never be allowed to exceed the published maximum value.

ELECTRODE VOLTAGES

Reference point for electrode voltages is the cathode. For cathode drive service the reference point is grid No. 1.

Grid cut-off voltages
Values are given for the limits of grid cut-off voltage per unit of the first accelerator voltage. The brightness control voltage should be arranged so that it can handle any tube within the limits shown, at the appropriate first accelerator voltage.

First accelerator voltage

The first accelerator electrode of a so called unipotential lens provides by applying a fixed voltage independent focus and brightness controls. Care should be taken not to exceed the maximum and minimum limits for reasons of reliability and performance.

Deflection blanking electrode voltage

The mean potential of the deflection blanking electrode should be equal to that of the first accelerator.
If applicable the voltage difference ($\Delta \mathrm{V}_{\mathrm{g}_{3}}$) given in the data should be applied to the beam blanking electrode to obtain beam blanking of a stated beam current for all tubes of the relevant type.

Focusing voltage

The focusing electrode voltage limits are given in the data. The focus voltage supply should be arranged such that it can handle these limits, so that in any tube the cross-sectional area of the electron-beam on the screen can be optimally displayed. As the focus current is very limited a high resistance series chain may be used.

Astigmatism control electrode voltage

To achieve optimum performance under all conditions it is desirable to apply a voltage for control of astigmatism (a difference in potential of this electrode and the y plates). The required range to cover any tube is given in the relevant data.

Beam centring electrode voltage

The beam centring electrode facilitates the possibility to centre the scan in x direction with respect to the geometric centre of the faceplate by applying a voltage, the limits of which are given in the relevant data, to this electrode. Optimum condition is obtained when the brightness at both left and right edges of the scan are equal.

Deflection plate shield voltage

It is essential that the deflection plate shield voltage equals the mean y plates voltage.

Geometry control electrode voltage
By varying the potential of this electrode the necessary range of which is given in the relevant data the possible occurrence of pin-cushion and barrel-pattern distortion can be contralled.

Deflection voltages

For optimum performance it is essential that true symmetrical voltages are applied. It should further be noted that the mean x and y plate potentials must be equal. Moreover the deflection plate shield voltage, the mean astigmatism control voltage, if applicable the mean beam centring electrode voltage and the geometry electrode voltage should also be equal to the mean x and y plate potentials. If use is made of the full deflection capabilities of the tube, the deflection plates will intercept part of the electron beam near the edge of the scan. Therefore a low impedance deflection plate drive is necessary.

Raster distortion and its determination

Limits of raster distortion are given for most tubes.
A graticule, consisting of concentric rectangles is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.

Measuring procedure:
a) Shift the x-trace to the centre of the graticule.
b) Align horizontal centre line of graticule with the centre line of the x-trace.
c) Shift x-trace vertically between resp. upper and lower two horizontal lines of graticule.
The centre of the x-trace now will not fall outside the area bounded by the horizontal graticule lines.
d) Without moving the graticule, switch to a vertical trace and shift this trace horizontally (resp. left and right) between the pairs of vertical lines of the graticule, and also now the centre of the y-trace will not fall outside the area bounded by the vertical graticule lines.
e) Focus and astigmatism will be adjusted for optimum performance.
f) Pattern geometry correction will be adjusted for optimum performance in the sense of minimizing simultaneously the deviation of the centre of x-respectively y-trace.

Linearity

The linearity is defined as the sensitivity at a deflection of 75% of the useful scan with respect to differ from the sensitivity at a deflection of 25% of the useful scan. These sensitivities will not differ by more than the indicated value.

Post deflection shield voltage

In order to optimize contrast in mesh tubes a fixed negative voltage with respect to the geometry control electrode voltage should be applied. The range is given in the data.

Helix resistance

In order to calculate the high tension supply a minimum resistance is given in the data.

Final accelerator voltage

Tubes with PDA are designed for a given final accelerator voltage to astigmatism control electrode voltage ratio. Operation at higher ratio may result in changes in deflection uniformity and pattern distortion.

High tension supply

In order to avoid damage of the screen it is important that prior to the high tension a deflection voltage e.g. the time base voltage is applied.

LINE WIDTH

Shrinking raster method. Conditions as given in the relevant data.
Focus and astigmatism potentials should be adjusted for optimum performance. Optimum performance is that adjustment which will simultaneously minimize the horizontal and vertical trace widths at the centre of the useful scan.
The raster shall be compressed until the line structure first disappears or begins to overlap or show reverse line structure.
The line width is equal to the quotient of the width of the compressed pattern transverse to the line structure divided by the number of lines which are being scanned.
In older types the line width is measured on a circle with the aid of a microscope.

CAPACITANCES

Unless otherwise stated the values given are nominal values measured on a cold tube on the tube contacts. The contacts and measuring leads or sockets being screened.

MOUNTING

Unless otherwise stated the mounting position is any. However, the tube should not be supported by the base alone and under no circumstances should the socket. be allowed to support the tube.
To avoid dangerous glass strain care should be taken when installing the tube.

Shielding

The tubes must be shielded against electrical and magnetic fields.
Special attention should be paid to the mounting of transformers, coils etc.

SCREEN

To prevent screen burn stationary or slow moving spots together with high screen currents should be avoided.
If measurements are to be made under high ambient light conditions it is advisable to use a contrast improving filter and or a light hood.

TRACKING ERROR

Tracking is the ability of a multigun tube to superimpose simultaneously information from each gun.
Tracking error is the maximum allowable distance between the displays of any two guns.

RATING SYSTEMS (in accordance with I.E.C. publication 134)

Absolute maximum rating system

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute-maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

Design-maximum rating system

Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consider ation.

The equipment manufacturer should design so that, initially and throughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

Design-centre rating system

Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in aver age applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply-voltage.

TYPE DESIGNATION

Two type designation systems are currently in use for our C.R. tubes. All future tubes will have numbers in the "new system", earlier tubes will retain numbers in the "old system".

NEW CODE SYSTEM (PRO-ELECTRON TYPE DESIGNATION CODE)

The type number consists of a single letter followed by two sets of figures, and ends with one or two letters.

The first letter indicates the prime appplication of the tube:
A - Television display tube for domestic application
D - Oscilloscope tube - single trace
E - Oscilloscope tube - multiple trace
F - Radar display tube - direct view
L - Display storage tube
M - T.V. display tube for professional application - direct view
P - Display tube for professional application - projection
Q - Flying spot scanner
The first group of figures indicates the diameter or diagonal of the luminescent screen in cm.

The second group of figures is a two-figure or three-figure serial number indicating a particular design or development.

The second group of letters indicates the properties if the phosphor screen.
The first letter denotes the colour of the fluorescence or phosphorescence in the case of long or very long afterglow screens.

The second letter of this group is a serial letter to denote other specific differences in screen properties.

For the standard television tube phosphors, the letters ' W ' and ' X ' are used without a second letter.

TYPE DESIGNATION

A - Purple - reddish purple - bluish purple
B - Blue - purplish blue - greenish blue
D - Blue green
G - Green - bluish green - yellowish green
K - Yellow - green
L - Orange - Orange pink
R - Red - reddish orange - red purple - purplish red - pink - purplish pink
Y - Yellow - greenish yellow - yellowish orange
W - White screen for T.V. display tubes
X - Three-colour screen for T.V. display tubes

OLD SYSTEM

The type number consists of two letters followed by two sets of figures. The first letter indicates the method of focusing and deflection:

A - Electrostatic focusing and electromagnetic deflection
D - Electrostatic focusing and electrostatic deflection
M - Electromagnetic focusing and electromagnetic deflection
The second letter indicates the properties of the phosphor screen.
See also section "Screen Phosphors"
The first group of figures:
for round tubes: screen diameter in cm
for rectangular tubes: screen diagonal in cm
The second group of figures denotes the serial number.

SCREEN TYPES

$\begin{gathered} \text { new } \\ \text { system } \end{gathered}$	old system	fluorescent colour	phosphorescent colour	persistance	equivalent Jedec designation
BA	C	purplish-blue	-	very short	-
-BC	V	purplish-blue		killed	-
BE	B	blue	blue	medium short	P11
BF	U	purplish-blue	-	medium short	-
GE	K,	green	green	short	P24
GH	H	green	green	medium short	P31
GJ	G	yellowish-green	yellowish-green	medium	P1
GK	$\left.\mathrm{G}^{1}\right)$	yellowish-green	yellowish-green	medium	-
GL	N	yellowish-green	yellowish-green	medium short	P2
GM	P	purplish-blue	yellowish-green	long	P7
GP	-	bluish-green	green	medium short	P2
GR	-	green	green	long	P39
GU	-	white	white	very short	-
LA	D	orange	orange	medium	-
LB	E	orange	orange	long	-
LC	F	orange	orange	very long	-
LD	L	orange	orange	very long	P33
W	W	white	-	-	P4
X	X	tri-colour screen	-	-	P22
YA	Y	yellowish-orange	yellowish-orange	medium	-

${ }^{1}$) used in projection tubes

SURVEY OF PERSISTENCE OF CATHODE-RAY TUBE SCREENS

Screen type		Application	Persistence		
New system	Old system		Relative level of brightness		
			10%	1%	0.1%
BA	C	Flying spot	$0.13 \mu \mathrm{~s}$	$0.4 \mu \mathrm{~s}$	-
GE	K	scanners	$1.2 \mu \mathrm{~s}$	$110 \mu \mathrm{~s}$	10 ms
GU	-		$0.16 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	-
BE	B	Oscilloscopes	20 ms	70 ms	120 ms
GH	H		$600 \mu \mathrm{~s}$	8 ms	90 ms
GJ	G		28 ms	75 ms	120 ms
GM	P		60 ms	1.5 s	13 s
GP	-		1.2 ms	140 ms	2 s
GR	-		100 ms	1.4 s	9 s
W	yellow	Monitors	0.6 ms	7 ms	17 ms
	blue		0.4 ms	4 ms	14.5 ms
LA	D		32 ms	110 ms	200 ms
LC	F	Radar	0.3 s	22 s	50 s
LD	L		0.5 s	45 s	100 s

OPERATING CONDITIONS

Final accelerator voltage Oscilloscope types Remaining types

Screen current
Focusing
Exitation

4 kV
10 to 15 kV
$5 \mu \mathrm{~A} / \mathrm{cm}^{2}$
defocused
sufficient for complete build-up

screen

\% ̊ㅜㄴ

GJ

 screen

2

3
5

 Current density ($\mu \mathrm{A} / \mathrm{cm}^{2}$)

IIIIIII

IIIIIII

screen

EsS?0ZL

screen

February 1971

CATHODE-RAY TUBES

Instrument tubes

INSTRUMENT TUBES

PREFERRED TYPES

(Recommended types for new designs)

	D7-190..
Mono-accelerator tubes	D10-160..
	D13-480..
	DG7-32.

D10-170..
D13-27..
D14-120. .
Post-deflection accelerator tubes
D14-121..
D14-160. . $/ 09$
D. 7-11

E10-12. .
E10-130. .
E14-100. .

	D10-200../07
Large bandwidth instrument tubes	D13-450../01
	D13-500../01

Storage tubes.
L14-110..

INSTRUMENT CATHODE-RAY TUBE

7 cm diameter flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and monitoring devices.

QUICK REFERENCE DATA						
Accelerator voltage		$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5, \ell}$	1000			
Display area		V				
Deflection coefficient, horizontal	M_{x}	60×50	$\mathrm{~mm}^{2}$			
	vertical	M_{y}	29			
		$\mathrm{~V} / \mathrm{cm}$				
		11.5	$\mathrm{~V} / \mathrm{cm}$			

SCREEN

	colour	persistence
D7-190GH	green	medium short
D7-190GM	yellowish green	long
D7-190GP	bluish green	medium short

Useful screen diameter
min.
64 mm
Useful scan

horizontal	min.	60	mm
vertical	min	50	mm

The useful scan may be shifted vertically to a maximum of 4 mm with respect to the geometric centre of the faceplate.

HEATING: Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

V_{f}	6.3	V
I_{f}	300	mA

MECHANICAL DATA (Dimensions in mm)

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

Overall length	\max	225	mm
Face diameter	\max	77	mm

Base 14 pin all glass

Net weight

Accessories

Socket (supplied with tube)	type	55566
Mu-metal shield	type	55534

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
yl to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x}} 1(\mathrm{x} 2)$	4	pF
$\mathrm{C}_{\mathrm{x} 2}(\mathrm{x} 1)$	4	pF
$\mathrm{C}_{\mathrm{y}} 1(\mathrm{y} 2)$	3.5	pF
$\mathrm{C}_{\mathrm{y} 2}(\mathrm{y} 1)$	3	pF
$\mathrm{C}_{\mathrm{x}} \mathrm{lx} 2$	1.6	pF
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	1.1	pF
$\mathrm{C}_{\mathrm{g} 1}$	5.5	pF
C_{k}	4.0	pF

FOCUSING

DEFLECTION 3) double electrostatic

x plates symmetrical
y plates symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam, hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

$$
90 \pm 1^{0}
$$

LINE WIDTH 3)

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A} .1$)
Line width
1.w.
0.28 mm

1) As the construction of this tube does not permit a direct measurement of the beam current, this current should be determined as follows:
a) under typical operating conditions, apply a small raster display (no overscan), adjust $\mathrm{V}_{\mathrm{g} 1}$ for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5, \ell}$ for optimum spot quality at the centre of the screen.
b) under these conditions, but no raster, the deflection plate voltages should be changed to
$\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=1000 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 1}=300 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 2}=700 \mathrm{~V}$, thus directing the total beam current to x 2 .
Measure the current on x_{2} and adjust $\mathrm{V}_{\mathrm{g} 1}$ for $\mathrm{I}_{\mathrm{X} 2}=10 \mu \mathrm{~A}$ (being the beam current I)
c) set again for the conditions under a), without touching the $\mathrm{V}_{\mathrm{g} 1}$ control. Now a raster display with a true $10 \mu \mathrm{~A}$ screen current is achieved.
d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
${ }^{3}$) See page 4

TYPICAL OPERATING CONDITIONS ${ }^{3}$)

Accelerator voltage
Astigmatism control voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection coefficient, horizontal vertical

Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal
vertical
LIMITING VALUES (Absolute max. rating system)
Accelerator voltage
Focusing electrode voltage
Control grid voltage, negative
Cathode to heater voltage
Grid drive, average
Screen dissipation

$\mathrm{V}_{\mathrm{g} 2}, g_{4}, g_{5}, \ell$	1000	V
$\Delta \mathrm{~V}_{\mathrm{g}_{2}, g_{4}, g_{5}, \ell}$	± 25	V
$\left.\mathrm{l}_{\mathrm{l}}\right)$		
g_{3}	100 to 180	V

\max. -35 V
approx. 10 V
$29 \mathrm{~V} / \mathrm{cm}$
\max. $31 \mathrm{~V} / \mathrm{cm}$
$11.5 \mathrm{~V} / \mathrm{cm}$
$\max .12 .5 \mathrm{~V} / \mathrm{cm}$
$\max . \quad 1 \%{ }^{2}$)
see note 4
min. 60 mm
min . 50 mm
$\max .2200 \mathrm{~V}$
min. 900 V
max. 2200 V
$\max .200 \mathrm{~V}$
min. $0 \quad \mathrm{~V}$
$\max .125 \mathrm{~V}$
$\max .125 \mathrm{~V}$
$\max .20 \mathrm{~V}$,
\max. $\quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$

1) All that will be necessary when putting the tube into operation is to adjust the astigmatism control voltage once for optimum spot shape in the screen centre. The control voltage will always be in the range stated, provided the mean x plate and certainly the mean y plate potential was made equal to $\mathrm{V}_{\mathrm{g} 2}, \mathrm{~g}_{4}, \mathrm{~g}_{5}, \ell$ with zero astigmatism correction.
2) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the in dicated value.
${ }^{3}$) The mean x and certainly the mean y plate potential should be equal to $\mathrm{V}_{\mathrm{g} 2}, \mathrm{~g}_{4}, \mathrm{~g}_{5}, \ell$ with astigmatism adjustment set to zero.
3) A graticule, consisting, of concentric rectangles of $40 \mathrm{~mm} \times 50 \mathrm{~mm}$ and 39.2 mm x 49 mm is aligned with the electrical x -axis of the tube. The edges of a raster will fall between these rectangles.

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with 10 cm diameter flat face-plate and post deflection acceleration by means of a helical electrode. The low heater consumption together with the high sensitivity and short overall length render this tube suitable for transistorised equipment.

SCREEN

	Colour	Persistence
D10-11GH	green	medium short
D10-11GM	yellowish green	long
D10-11GP	bluish green	medium short

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

MECHANICAL DATA

Dimensions in mm

MECHANICAL DATA (continued)

Base $\quad 14$ pin all glass

Accessories

Socket (supplied with the tube) type 55566

FOCUSING electrostatic

DEFLECTION

x plates
double electrostatic
symmetrical
y plates
symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual
extinction of focused spot
Deflection coefficient
horizontal
vertical
Deviation of linearity of deflection
Useful scan
horizontal
vertical

$$
90^{\circ} \pm 1^{\circ}
$$

$\mathrm{V}_{6(\ell)}$	$=4000 \mathrm{~V}$
$\mathrm{~V}_{5}$	$=1000 \pm 100 \mathrm{~V}$
$\mathrm{~V}_{4}$	$=1000 \pm 50 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{g}_{3}}$	$=50$ to 200 V
$\mathrm{~V}_{2}$	$=1000 \mathrm{~V}$

$-\mathrm{V}_{\mathrm{g}_{1}}=25$ to 67 V

$$
\begin{aligned}
\mathrm{M}_{\mathrm{x}} & =24 \text { to } 31 \mathrm{~V} / \mathrm{cm} \\
\mathrm{M}_{\mathrm{y}} & =8.6 \text { to } 11 \mathrm{~V} / \mathrm{cm} \\
& =\max . \quad 2 \%
\end{aligned}
$$

full scan
$=\min . \quad 60 \mathrm{~mm}$

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with 10 cm diameter flat faceplate and post deflection acceleration by means of a helical electrode. The tube is intended for small compact oscilloscopes.

SCREEN

	Colour	Persistence
D10-12GH	green	medium short
D10-12GP	bluish green	medium short D10-12GM
yellowish green	long	

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage	$\mathrm{V}_{f}=6.3 \mathrm{~V}$
Heater current	$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

MECHANICAL DATA (Dimensions in mm)


```
MECHANICAL DATA (continued)
Base
    14 pin all glass
Accessories
Socket (supplied with the tube) type 55566
```


FOCUSING electrostatic

DEFLECTION double electrostatic
x plates
y plates symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $\quad 90^{\circ} \pm 1^{\circ}$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient

horizontal	M_{x}	$=24$ to $31 \mathrm{~V} / \mathrm{cm}$	
vertical	M_{y}	$=8.6$ to $11 \mathrm{~V} / \mathrm{cm}$	
Deviation of linearity of deflection		$=\max$.	2%

Useful scan
horizontal $=$ full scan
vertical

$\mathrm{V}_{\mathrm{g}_{6}(\ell)}$	$=4000 \mathrm{~V}$	
$\mathrm{~V}_{\mathrm{g}_{5}}$	$=1000 \pm 100 \mathrm{~V}$	
$\mathrm{~V}_{\mathrm{g}_{4}}$	$=1000 \pm 50 \mathrm{~V}$	
$\mathrm{~V}_{\mathrm{g}_{3}}$	$=50$ to 200 V	
$\mathrm{~V}_{\mathrm{g}_{2}}$	$=1000 \mathrm{~V}$	
$-\mathrm{V}_{\mathrm{g}_{1}}$	$=25$ to 67 V	
M_{x}	$=24$ to $31 \mathrm{~V} / \mathrm{cm}$	
M_{y}	$=8.6$ to $11 \mathrm{~V} / \mathrm{cm}$	
	$=\max$.	2%

INSTRUMENT CATHODE-RAY TUBE

10 cm diameter flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

QUICK REFERENCE DATA					
Accelerator voltage		$\mathrm{V}_{\mathrm{g}_{2}}, \mathrm{~g}_{4}, \mathrm{~g}_{5}(\ell)$	1500		
Display area		V			
Deflection coefficient,	horizontal	M_{X}	80×60		
	$\mathrm{~mm}^{2}$				
	vertical	32	$\mathrm{~V} / \mathrm{cm}$		
		13.7	$\mathrm{~V} / \mathrm{cm}$		

SCREEN

	colour	persistence
D10-160GH	green	medium short
D10-160GM	yellowish green	long
D10-160GP	bluish green	medium short

Useful screen diameter
min. 85 mm
Useful scan

horizontal	\min.	80	mm
vertical	\min.	60	mm

The useful scan may be shifted vertically to a max. of 5 mm with respect to the geometric centre of the faceplate.

HEATING: Indirect by A.C. or D.C.; parallel supply

> Heater voltage
> Heater current

Vf_{f}	6.3	V
If_{f}	300	mA

MECHANICAL DATA (Dimensions in mm)

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing
Overall length $\max .260 \mathrm{~mm}$
Face diameter
$\max .102 \mathrm{~mm}$
Base
14 pin all glass

Net weight

approx. 400 g
Accessories

Socket (supplied with tube)	type	55566
Mu metal shield	type	55547

D10-160..

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x} 1}(\mathrm{x} 2)$	4	pF
$\mathrm{C}_{\mathrm{x} 2}(\mathrm{x} 1)$	4	pF
$\mathrm{C}_{\mathrm{y} 1}(\mathrm{y} 2)$	3.5	pF
C_{2} (yl)	3	pF
$\mathrm{C}_{\mathrm{xl} 1 \mathrm{x} 2}$	1.6	pF
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	1.1	pF
$\mathrm{C}_{\mathrm{g} 1}$	5.5	pF
C_{k}	4	pF

FOCUSING electrostatic

DEFLECTION 3) double electrostatic
x plates symmetrical
y plates symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam, hence a low impedance deflection plate drive is desirable.
Angle between x and y traces

$$
90 \pm 1^{0}
$$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\ell}=10 \mu \mathrm{~A} .1$)

$$
\text { Line width } \quad \text { l.w. } 0.27 \mathrm{~mm}
$$

1) As the construction of this tube does not permit a direct measurement of the beam current, this current should be determined as follows:
a) under typical operating conditions, apply a small raster display (no overscan), adjust V_{gl} for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5, \ell}$ for optimum spot quality at the centre of the screen.
b) under these conditions, but no raster, the deflection plate voltages should be changed to
$\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=1500 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 1}=800 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 2}=1200 \mathrm{~V}$, thus directing the total beam current to x 2 .
Measure the current on x_{2} and adjust $\mathrm{V}_{\mathrm{g} 1}$ for $\mathrm{I}_{\mathrm{X} 2}=10 \mu \mathrm{~A}$ (being the beam current I_{ℓ}) c) set again for the conditions under a), without touching the V_{gl} control. Now a raster display with a true $10 \mu \mathrm{~A}$ screen current is achieved.
d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
${ }^{3}$) See page 4

TYPICAL OPERATING CONDITIONS ${ }^{3}$)

Accelerator voltage
Astigmatism control voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot
Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection coefficient, horizontal
vertical
Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal
vertical
LIMITING VALUES (Absolute max. rating system)
Accelerator voltage
$V_{g 2, g 4, g 5, \ell}$
Focusing electrode voltage
Control grid voltage, negative
Cathode to heater voltage
Grid drive, average
Screen dissipation
W e

$\begin{aligned} \operatorname{rax.} & 1500 \\ & \pm 30 \end{aligned}$	$\left.V^{\mathrm{V}}\right)$
140 to 275	V
max. -50	V
approx. 10	V
32	V / cm
max. 34	V / cm
13.7	V / cm
max. 14.5	V / cm

$\max . \quad 1 \quad \%{ }^{2}$)
see note 4
min. 80 mm
min. 60 mm
$\max .2200 \mathrm{~V}$
min. 1350 V
max. 2200 V
$\max .200 \mathrm{~V}$
min. $\quad 0 \quad \mathrm{~V}$
max. 125 V
$\max .125 \mathrm{~V}$
$\max .20 \mathrm{~V}$
$\max . \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$

1) All that will be necessary when putting the tube into operation is to adjust the astigmatismcontrol voltage once for optimum spot shape in the screen centre. The control voltage will always be in the range stated, provided the mean x plate and centainly the mean y plate potential was made equal to $\mathrm{Vg}_{2}, \mathrm{~g}_{4}, \mathrm{~g}_{5}$, , with zero astigmatism correction.
${ }^{2}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
${ }^{3}$) The mean x and certainly the mean y plate potentials should be equal to $V_{g 2, g 4, g 5, \ell}$ with astigmatism adjustment set to zero.
${ }^{4}$) A graticule, consisting of concentric rectangles of $50 \mathrm{~mm} \times 60 \mathrm{~mm}$ and 49 mm x 58.6 mm is aligned with the electrical x -axis of the tube. The edges of a raster
$\rightarrow \quad$ will fall between these rectangles.

INSTRUMENT CATHODE-RAY TUBE

10 cm diameter flat faced monoaccelerator oscilloscopetube with low heater consumption.

QUICK REFERENCE DATA					
Accelerator voltage	$\mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}, \mathrm{~g}_{5}(\mathrm{l})}$	1500	V		
Display area		80×60	$\mathrm{~mm}^{2}$		
Deflection coefficient, horizontal	M_{x}	32	$\mathrm{~V} / \mathrm{cm}$		
	M_{y}	$13.7 \mathrm{~V} / \mathrm{cm}$			

The D10-161. . is equivalent to the type D10-160. . except for the following:
HEATING: Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

LIMITING VALUES (Absolute max. rating system)
Cathode to heater voltage

Cathode positive	$\mathrm{V}+\mathrm{k} / \mathrm{f}-$	\max.	100	V
Cathode negative	$\mathrm{V}-\mathrm{k} / \mathrm{f}+$	\max.	15	V

INSTRUMENT CATHODE-RAY TUBE

10 cm diameter flat faced oscilloscope tube with mesh, designed for compact, transistorized oscilloscopes of 10 MHz to 30 MHz bandwidth.

QUICK REFERENCE DATA					
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{7}(\ell)}$	6	kV		
Display area		80×60	$\mathrm{~mm}^{2}$		
Deflection coefficient, horizontal	M_{x}	13	$\mathrm{~V} / \mathrm{cm}$		
	M_{y}	3.5	$\mathrm{~V} / \mathrm{cm}$		

SCREEN

	colour	persistence
D10-170GH	green	medium short

Useful screen diameter

min. 85 mm
Useful scan at $\mathrm{V}_{7}(\ell) / \mathrm{V}_{\mathrm{g}_{2}}, \mathrm{~g}_{4}=6$ horizontal min. 80 mm vertical min. 60 mm

The useful scan may be found shifted vertically to a max. of 5 mm with respect to the geometric centre of the faceplate.

HEATING: Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

V_{f}	6.3	V
I_{f}	300	mA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

Overall length	cket included)	max.	335
Face diameter		max.	102
Net weight		approx.	500
Base	14 pin all glass		

Accessories

Socket (supplied with tube)	type	55566
Final accelerator contact connector	type	55563
Mu-metal shield	type	55548

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)$	7	pF
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$	7	pF
$\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}$	5	pF
$\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}$	5	pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	2.5	pF
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}$	1.5	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	6	pF
C_{k}	5	pF

FOCUSING electrostatic

DEFLECTION

x plates
double electrostatic
y plates
symmetrical
symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $\quad 90^{\circ} \pm 45^{\prime}$

LINE WIDTH

Measured with the shrinking raster method over the whole screen area under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\ell}=10 \mu \mathrm{~A}$.
Line width
1.w. 0.42 mm

TYPICAL OPERATING CONDITIONS

Final accelerator voltage Interplate shield voltage Geometry control voltage Deflection plate shield voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control voltage
Control grid voltage for visual extinction of focused spot
Deflection coefficient, horizontal

vertical

Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal
vertical

LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage
Interplate shield voltage and geometry control electrode voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator and astigmatism control electrode voltage

Control grid voltage, negative
Cathode to heater voltage
Voltage between astigmatism control electrode and any deflection plate
Grid drive, average
Screen dissipation
Ratio $\mathrm{V}_{\mathrm{g}}(\ell) / \mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}}$

$V_{g_{7}(\ell)}$	$\begin{array}{ll} \max . & 6600 \\ \min . & 4000 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
V_{g}	max. 2200	V
$\mathrm{V}_{\mathrm{g}}^{6}$	max. 2200	V
V_{g}	max. 2200	V
$\mathrm{V}_{\mathrm{g}}, \mathrm{g}_{4}$	max. 2200	V
	min. 900	V
$-\mathrm{V}_{\mathrm{g}_{1}}$	$\begin{array}{lr}\text { max. } & 200 \\ \text { min. } & 0\end{array}$	V
V_{kf}	max. 125	V
$-\mathrm{V}_{\mathrm{kf}}$	max. 125	V
$\mathrm{V}_{\mathrm{g}}^{4} / \mathrm{x}$	max. 500	V
$\mathrm{V}_{\mathrm{g}_{4} / \mathrm{y}}$	$\max .500$	V
W_{ℓ}	$\begin{array}{lr}\max . & 20 \\ \max . & 3\end{array}$	$\mathrm{mW} / \mathrm{cm}^{2}$
$\mathrm{V}_{\mathrm{g}_{7}}(\ell) / \mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}}$	max.	

Notes

${ }^{1}$) This tube is designed for optimum performance when operating at a ratio $\mathrm{V}_{7} / \mathrm{Vg}_{2}, \mathrm{~g}_{4}=6$
The geometry electrode voltage should be adjusted within the indicated range (values with respect to the mean x-plate potential). A negative control voltage will cause some pincushion distortion and less background light, a positive control voltage will give some barrel distortion and a slight increase of background light.
2) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x - and y-plate potentials should be equal for optimum spot quality.
${ }^{3}$) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessaryadjustment its potential will be within the stated range.
4) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5) A graticule, consisting of concentric rectangles of $60 \mathrm{~mm} \times 60 \mathrm{~mm}$ and $58.6 \mathrm{~mm} \times 58.6 \mathrm{~mm}$, is aligned with the electrical x -axis of the tube.
With optimum correction potentials applied the edges of a raster lie between these rectangles.

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with rectangular 10 cm diagonal flat face and metal-backed screen, provided with internal graticule. The high sensitivities of this mesh tube, together with the sectioned y-deflection plates, render the tube suitable for trans istorized oscilloscopes for frequencies up to 100 MHz to 250 MHz .

QUICK REFERENCE DATA				
Final accelerator	$\mathrm{V}_{\mathrm{g} 8(\ell)}$	15	kV	
Display area		50×80	$\mathrm{~mm}^{2}$	
Deflection coefficient, horizontal	M_{X}	12	$\mathrm{~V} / \mathrm{cm}$	
	vertical	M_{y}	3.5	$\mathrm{~V} / \mathrm{cm}$

SCREEN

	Colour	Persistence
D10-200GH/07	green	medium short

Useful screen dimensions	\min.	50×80	$\mathrm{~mm}^{2}$
Useful scan at $\mathrm{V}_{\mathrm{g} 8(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=10$ horizontal vertical	\min.	80	mm
Spot eccentricity in horizontal direction	\min.	50	mm
\quad in vertical direction	\max.	± 8	mm
	\max.	± 6	mm

The tube is supplied with a correction coil unit which ensures that the scanned area can be centred on and aligned with the internal graticule. See page 6

HEATING: Indirect. by A. C. or D. C. ; parallel supply
Heater voltage
Heater current

V_{f}	6.3	V
I_{f}	300	mA

MECHANICAL DATA

 around the true geometrical position

1) The edges of the faceplate will always be within a rectangle $95 \pm 1.5 \mathrm{~mm} \times 58.6 \pm 1.5 \mathrm{~mm}$

2) In each plane.
3) Recommended inside diameter of the mu-metal shield is min. 70 mm .
4) It is recommended to solder the supply wires on the tags before the tube is placed in the mu-metal shield. This shield is provided with a hole for these wires.
Dimensions in mm

$$
\begin{aligned}
& \text { 5) Clear area for light conductor. } \\
& \text { 6) Coil connections see page } 6 \text {. }
\end{aligned}
$$

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections
See also outline drawing

Overall length (socket included)
Faceplate dimensions
Net weight
Base

Accessories

Socket (supplied with tube)
Final accelerator contact connector
Side contact connector
Mu-metal shield

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
$y_{1.1}$ to all other elements except $y_{2.1}$
x_{1} to x_{2}
$y_{1.1}$ to $y_{2.1}$
Control grid to all other elements
Cathode to all other elements

\max.	404	mm
\max.	104×78	$\mathrm{~mm}^{2}$

approx. 900 g
14 pin all glass
type 55566
type 55563
type 55561

FOCUSING

DEFLECTION
x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces
90° (see page 6 "Correction coils")

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I = $10 \mu \mathrm{~A}$:
Line width
1.w. approx.
0.35 mm

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Post deflection (mesh) and interplate shield voltage

Background illumination control voltage

$\mathrm{V}_{8}(\ell)$	15000	V
$\mathrm{~V}_{7}$	1500 ± 70	$\left.\mathrm{~V}^{\mathrm{i}}\right)$

Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient, horizontal

> vertical

Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal vertical

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{88}(\ell)$	\max. min.	$\begin{array}{r} 16500 \\ 9000 \end{array}$
Geometry control electrode voltage	V_{7}	max.	2400
Post deflection and interplate shield voltage	V_{6}	\max. min.	$\begin{aligned} & 2400 \\ & 1300 \end{aligned}$
Deflection plate shield voltage	$\mathrm{V}_{\mathrm{g}_{5}}$	max.	2400
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	max. min.	$\begin{aligned} & 2400 \\ & 1350 \end{aligned}$
Focusing electrode voltage	V_{3}	max.	2400
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	\max. min.	$\begin{aligned} & 1800 \\ & 1350 \end{aligned}$
Control grid voltage, $\begin{array}{r}\text { positive } \\ \text { negative }\end{array}$	$\begin{array}{r} \mathrm{V}_{\mathrm{g}_{1}} \\ -\mathrm{V}_{\mathrm{g}_{1}} \end{array}$	max. \max.	0 200

Notes see page 5.

LIMITING VALUES (continued)

Cathode to heater voltage

Voltage between astigmatism control electrode and any deflection plate

Screen dissipation
Ratio $\mathrm{V}_{\mathrm{g}_{8}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}$
Cathode current, average
$\max .200 \mathrm{~V}$
$\max .125 \mathrm{~V}$
$\begin{array}{llll}V_{g_{4}-x} & \max & 500 & V \\ V_{g_{4}-y} & \max . & 500 & V\end{array}$
wl
$\mathrm{Vg}_{8}(\ell) / \mathrm{Vg}_{4}$
I_{k}
\max. $3 \mathrm{~mW} / \mathrm{cm}^{2}$
max. 10
$\max .300 \mu \mathrm{~A}$

NOTES

1) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g}}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}=10$. Operation at other ratios may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) This voltage should be equal to the mean y plate potential.
${ }^{3}$) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
${ }^{4}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan be more than the indicated value.
${ }^{5}$) The geometry distortion is such that, with optimum correction potentials applied, it will always be possible to have a scanned raster with the edges remaining between two rectangles, one measuring $80 \mathrm{~mm} \times 50 \mathrm{~mm}$, the other 78.4 mm x 48.5 mm and with:

- coinciding centres
- the longer sides aligned with the electrical x-axis of the tube.

CORRECTION COILS

The D10-200. ./07 is provided with a coil unit consisting of:

1. a pair of coils L_{1} and L_{2} for
a. correction of the orthogonality of the x and y traces enabling the angle between . the x and y traces at the centre of the screen to be made exactly 90°.
b. vertical shift of the scanned area.
2. a single coil L_{3} for image rotation enabling the alignment of the xtrace with the x lines of the graticule.

Ortogonality and shift (coils L_{1} and and L_{2})

The current required under typical operating conditions is max. 45 mA for complete correction of orthogonality and shift. This value applies to a tube operating without a mu-metal shield, and will be 30 to 50% lower with a shield, depending on the shield diameter.
The resistance of each coil is approx. 175Ω.

Image rotation (coil L3)

The image rotation coil is wound concentrically around the tube neck. Under typical operating conditions a current of max. 30 mA will be required for complete correction. The resistance of this coil is approx. 500Ω.
Connections of the coils
The coils are connected to the 6 soldering tags as follows:

With L_{1} and L_{2} connected in series according to Fig. 1, a current in the direction indicated will produce a clockwise rotation of the vertical trace and a anti-clockwise rotation of the horizontal trace.
With the connection according to Fig. 2 the current as indicated will produce an upward shift.

By controlling the current of each coil separately, see Fig. 3, a change in the angle of the traces and a vertical shift can be made simultaneously. The change in angle will be proportional to the algebraic sum of the two currents and the shift to the algebraic difference.

Fig. 3

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat faced oscilloscope tube with thin metal backing and post deflection acceleration by means of a helical electrode.

SCREEN

	Colour	Persistence
D13-15GH	green	medium short
D13-15GM	yellowish	
D13-15GP	bluish green	long
medium short		

HEATING

Indirect by A.C. or D. C.; parallel supply

Heater voltage	$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
	$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

MECHANICAL DATA

Dimensions in mm

1) Straight part of the bulb.
2) Location of the recessed cavity button contact with respect to the x -trace.

MECHANICAL DATA (continued)
Base
Diheptal medium shell

FOCUSING electrostatic

DEFLECTION double electrostatic
x plates
symmetrical
y plates
symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $\quad 90^{\circ} \pm 1^{\circ}$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual
extinction of focused spot
Deflection coefficient
horizontal
vertical
Deviation of linearity of deflection
Useful scan

| horizontal | $=\min$. | 100 mm |
| :--- | :--- | ---: | :--- |
| vertical | $=\min$. | 60 mm |

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with flat 13 cm diameter face, post deflection acceleration by means of a helical electrode, metal backed screen, deflection blanking and sectioned y deflector plates. The tube is designed to display high frequencies combined with a high writing speed.

SCREEN

	Colour	Persistence
D13-16GH	green	medium short D13-16GP
bluish green	medium short	

HEATING

Indirect by A.C. or D. C.; parallel supply

Heater voltage
Heater current

Dimensions in mm

MECHANICAL DATA(continued)

Base

Accessories
Socket (supplied with tube)

14 pin all glass
type
55566

FOCUSING
DEFLECTION
x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam near the edge of the scan, hence a low impedance deflection plate drive is desirable.
Angle between x and y traces
90° See "Correction Coils"

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Deflection plate shield voltage
Beam centring electrode voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Deflection blanking electrode voltage
Deflection blanking control voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot
Deflection coefficient

horizontal	M_{x}	$=\max .18 \mathrm{~V} / \mathrm{cm}$
vertical	M_{y}	$=5.6$ to $6.6 \mathrm{~V} / \mathrm{cm}$
iation of linearity of deflection		$=\max .2 \%$

Useful scan

horizontal	$=$	100 mm
verticai	$=$	60 mm

INSTRUMENT CATHODE-RAY TUBE

The D13-16../01 is equivalent to the D13-16.. but features an internal graticule. This graticule can be illuminated.

MECHANICAL DATA

Dimensions in mm

Maximum angle between x-trace and,
x-axis of the graticule
$\pm 5^{0}$

1) Clear area for light conductor.

ALIGNMENT

In order to align the x -trace and the x -axis of the graticule an image rotating coil may be used. This coil should be positioned at one third of the cone length, seen from the face end, and can be attached to the inner surface of the mumetal shield.
Under typical operating conditions maximum 50 ampere-turns are required for alignment.

ILLUMINATION

To illuminate the internal graticule the use of a light conductor (e.g. of Perspex) is obligatory. The following design considerations should be observed: In order to achieve the most efficient light conductance the holes for the light bulb as well as the contact area with the front plate should be polished. The contact with the edges of the front plate should be as close as possible and the edges of the front plate and the corresponding hole in the light conductor should be parallel to achieve light beams perpendicular to the edges. It is advised to apply reflective material to the outer circumference of the conductor and if possible also to both planes (see drawing).

[^0]2) Polished.
${ }^{3}$) Close and constant distance to front plate of tube.
It is essential that the light conductor and the front plate of the tube are in plane.
${ }^{4}$) If possible reflective material.

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with flat face post deflection acceleration by means of a helical electrode, side contacts, metal backed screen, 6 cm scan for high frequency and high writing speed applications.

SCREEN

	colour	persistence
D13-19GH	green	medium short
D13-19GM	yellowish green	long
D13-19GP	bluish green	medium short

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current

MECHANICAL DATA

$\frac{\mathrm{V}_{\mathrm{f}}}{}=6.3 \mathrm{~V}, \mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

Dimensions in mm

1) Straight part of the bulb
2) Location of the recessed cavity button contact with respect to the x -trace.

MECHANICAL DATA (continued)

Base: Diheptal

Accessories

Final accelerator contact connector
Side contact connector
Mu-metal shield
OCUSING

EFLECTION	electrostatic
x plates	symmetrical electrostatic
y plates	symmetrical

Angle between x and y traces.
TYPICAL OPERATING CONDITIONS
Final accelerator voltage
Geometry control electrode voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient, horizontal vertical

Deviation of linearity of deflection
Useful scan, horizontal
vertical
type
55563
type
55561
type 55551

$$
90^{\circ} \pm 1^{0}
$$

$\mathrm{V}_{77(\ell)}$	$=10 \mathrm{kV}$
V_{6}	$=1670 \pm 170 \mathrm{~V}$
$\mathrm{~V}_{5}$	$=1670 \pm 85 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{g}_{4}}$	$=1670 \pm 85 \mathrm{~V}$
$\mathrm{~V}_{3}$	$=320$ to 500 V
$\mathrm{~V}_{2}$	$=$
g_{2}	1670 V

$$
-\mathrm{V}_{\mathrm{g}_{1}}=53 \text { to } 82 \mathrm{~V}
$$

$$
\mathrm{M}_{\mathrm{x}}=27 \text { to } 33 \mathrm{~V} / \mathrm{cm}
$$

$$
\mathrm{M}_{\mathrm{y}}=9.5 \text { to } 12.4 \mathrm{~V} / \mathrm{cm}
$$

$=\max .2 \%$
$=\min . \quad 100 \mathrm{~mm}$
$=\min$. 60 mm

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with flat face post deflectionacceleration by means of a helical electrode, side contacts, metal backed screen, 4 cm scan for high frequency and high writing speed applications .

SCREEN

	colour	persistence
D13-21GH	green	medium short
D13-21GP	bluish green	medium short
D13-21GM	yellowish green	long

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage	$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
	$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

MECHANICAL DATA

Dimensions in mm

1) Straight part of the bulb.
2) Location of the recessed cavity button contact with respect to the x -trace.

MECHANICAL DATA (continued)

Base
Diheptal 12 pins

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.
Angle between x and y traces

$$
90^{\circ} \pm 1^{0}
$$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot
Deflection coefficient, horizontal vertical

Deviation of linearity deflection
horizontal $=\max .1 .5 \%$
vertical
Useful scan, horizontal
vertical

$\mathrm{V}_{7(\ell)}$	$=10 \mathrm{kV}$
V_{6}	$=1670 \pm 170 \mathrm{~V}$
$\mathrm{~V}_{g_{5}}$	$=1670 \pm 85 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{g}_{4}}$	$=1670 \pm 85 \mathrm{~V}$
$\mathrm{~V}_{3}$	$=320$ to 500 V
$\mathrm{~V}_{g_{2}}$	$=1670 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{g}_{1}}$	$=-50$ to -80 V
M_{x}	$=27$ to $33 \mathrm{~V} / \mathrm{cm}$
M_{y}	$=5.7$ to $7.1 \mathrm{~V} / \mathrm{cm}$

$=\max .1 .5 \%$
$=\max .1 .0 \%$
$=\min .100 \mathrm{~mm}$
$=\min .40 \mathrm{~mm}$

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat faced oscilloscope tube, with metal-backed screen, helical PDA and side connections to the x and y plates. The y plates are intended to be included in a resonant circuit tunable to frequencies from 300 MHz to 900 MHz by means of adapter units outside the tube. This tube incorporates deflection blanking and is intended for high frequency, narrow bandwidth displays.

SCREEN

	colour	persistence
D13-23GH	green	medium short

HEATING

Indirect by A C. or D.C.; parallel supply

Heater voltage
Heater current
$\underline{V_{f}}=6.3 \mathrm{~V}$
$I_{f}=300 \mathrm{~mA}$

MECHANICAL DATA

MECHANICAL DATA (continued)
Base

Accessories:
Socket (supplied with the tube)
type 55566
14 pins all glass

FOCUSING electrostatic

DEFLECTION double electrostatic
x plates symmetrical y plates symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y plates

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Deflection plate shield voltage
Beam centring electrode voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Deflection blanking electrode voltage
Deflection blanking control voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot
Deflection coefficient
horizontal
vertical
Useful scan

| horizontal | $=\min$. | 100 mm |
| :--- | :--- | ---: | :--- |
| vertical | $=\min$. | 50 mm |

$$
90^{\circ} \pm 1^{\circ}
$$

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with flat face, side connections to the deflector plates. The high sensitivities of this mesh tube render it suitable for transistorized equipment. The phosphor screen is metal backed.

QUICK REFERENCE DATA				
Final accelerator voltage	$\mathrm{V}_{9}(\ell)$	15	kV	
Display area		6×10	cm	
Deflection coefficient, horizontal	M_{X}	9.5	$\mathrm{~V} / \mathrm{cm}$	
	vertical	M_{y}	$=2.9$	
		$\mathrm{~V} / \mathrm{cm}$		

SCREEN

	Colour	Persistence
D13-26GH	green	medium short
D13-26GP	bluish green	medium short

Useful screen diameter
Useful scan at $\mathrm{V}_{9}(\ell) / \mathrm{V}_{4}=10$
horizontal
vertical
Spot eccentricity in horizontal direction Spot eccentricity in vertical direction

HEATING

Indirect by A. C. or D. C.; parallel supply
Heater voltage
Heater current
min. 114 mm
$\begin{array}{lrl}\min . & 100 & \mathrm{~mm} \\ \min . & 60 & \mathrm{~mm} \\ & \pm 8 & \mathrm{~mm} \\ & \pm 6 & \mathrm{~mm}\end{array}$
$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base

Dimensions and connections

Overall length
Face diameter
Net weight
Accessories

Socket	type	55566
Final accelerator contact connector	type	55563
Side contact connector	type	55561
Mu-metal shield	type	55555^{1})

[^1]
CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}=4.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{2}\left(\mathrm{x}_{1}\right)}=4.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}=3.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}=3.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=2.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=1.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=105 \mathrm{pF}$
$\mathrm{C}_{\mathrm{k}}=3=3.0 \mathrm{pF}$

FOCUSING electrostatic

DEFLECTION

x plates
y plates symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces 90° See "Correction coils"

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\mathrm{l})$		15000	15000	V
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g}}^{4}$		2400	1500	$\left.\mathrm{V}^{4}\right)$
First accelerator voltage	V_{g}		2400	1500	V
Beam current	I (ℓ)		10	10	$\mu \mathrm{A}$
Line width	l.w.		0.3	0.4	mm

[^2]
TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Post deflection shield voltage
(with respect to $\mathrm{V}_{\mathrm{g}_{7}}$)
Geometry control electrode voltage
Interplate shield voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient
$\rightarrow \quad$ horizontal
vertical
Deviation of linearity of deflection
Geometry distortion
Useful scan
horizontal $=\min .100 \mathrm{~mm}$
vertical

CIRCUIT DESIGN VALUES

Focusing voltage $\quad . \mathrm{V}_{\mathrm{g}_{3}}=250$ to 417 , V per kV of V_{4}
Control grid voltage for visual extinction of focused spot $-\mathrm{V}_{\mathrm{g}}=30$ to 56.7 V per kV of $\mathrm{V}_{\mathrm{g}_{2}}$
Deflection coefficient at $\mathrm{V}_{\mathrm{g}_{9}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=10$
horizontal
vertical
Control grid circuit resistance
Deflection plate circuit resistance

Focusing electrode current at a
beam current of max. $25 \mu \mathrm{~A} \quad \mathrm{I}_{3}=-25$ to $+25 \quad \mu \mathrm{~A}{ }^{7}$)
$\overline{\left.\left.\left.\left.2)^{3}\right)^{4}\right)^{5}\right)^{6}\right)^{7}}$ See page 6 .

LIMITING VALUES (Absolute max. rating system)

${ }^{1}$) To avoid damaging the side contacts the narrower end of the mu-metal shield should have an internal diameter of not less than 70 mm .
${ }^{2}$) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g} 9}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}=10$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
${ }^{3}$) This voltage should be equal to the mean x - and y plates potential.
4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
5) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
6) A graticule, consisting of concentric rectangles of $100 \mathrm{~mm} \times 60 \mathrm{~mm}$ and $98 \mathrm{~mm} \times 58.2 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
7) Values to be taken into account for the calculation of the focus potentiometer.

CORRECTION COILS

The D13-26.. is provided with a coil unit consisting of a pair of coils for:
a. Correction of the orthogonality of the x and y traces (which means that at the centre of the screen the angle between the x and y traces can be made exactly 90°).
b. Vertical shift of the scanned area.

DETAIL DRAWING OF COIL UNIT

Dimensions in mm

1-2 coil no. 1
3-4 coil no. 2

The currents required under typical operating conditions, the tube being screened by a mu-metal shield closely surrounding the coils (e.g. 55555), are max. 7 mA per degree of angle correction and max. 4 mA per mm of shift. If no such shield is used these values have to be multiplied by a factor k $(1<k<2)$, the value of which depends on the diameter of the shield and approaches 2 for the case no shield is present.
The D.C. resistance is approx. 180Ω per coil.
When designing the supply circuit for these coils it should be considered that the maximum current required in either coil can be 34 mA .

Circuit diagrams

A suitable circuit permitting independent controls of orthogonality correction and vertical shift is given in fig. 1 .

$\mathrm{P}_{1}, \mathrm{P}_{4}$	$:$ Potentiometers 220Ω,	3 Watt, ganged
$\mathrm{P}_{2}, \mathrm{P}_{3}$	$:$ Potentiometers 150Ω,	2 Watt, ganged
$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}:$ Resistors	33Ω,	0,5 Watt

Fig. 1
The dissipation in the potentiometers can be reduced considerably if the requirement of independent controls is dropped (see fig. 2).

$\mathrm{P}_{1}, \mathrm{P}_{2}$: Potentiometers, $220 \Omega, 1$ Watt, ganged P_{3}, P_{4} : Potentiometers, $220 \Omega, 1$ Watt, ganged

Fig. 2

A further reduction of the dissipation can be obtained by inserting a commutator for each coil (see fig. 3).
The procedure of adjustment will then become more complicated, but it should be kept in mind that a readjustment is necessary only when the tube has to be replaced.

$\mathrm{P}_{1}, \mathrm{P}_{2}$: Potentiometers, $500 \Omega, 0,5$ Watt
$\mathrm{S}_{1}, \mathrm{~S}_{2}$: Commutators
Fig. 3
For the adjustment of the currents the following procedure is recommended:
a. With the tube fully scanned in the vertical direction the scanned area must be shifted so that the useful vertical scan on either side of the geometric centre of the screen meets the published value of 30 mm min.
With the circuit according to fig. 1 this is done by means of the ganged potentiometers P_{1} and P_{4}.
b. Adjustment of orthogonality by means of the ganged potentiometers P_{2} and P_{3} in fig.1. A slight readjustment of P_{1} and P_{4} may be necessary afterwards.

With a circuit according to fig. 2 or 3 these corrections have to be performed by means of successive adjustments of the currents in the coils.
The most convenient deflection signal is a square waveform permitting an easy and fairly accurate check of orthogonality.

INSTRUMENT CATHODE-RAY TUBE

The D13-26../01 is equivalent to the D13-26. . but features an internal graticule. This graticule can be illuminated.

MECHANICAL DATA
Dimensions in mm

Maximum angle between x-trace and x-axis of the graticule

$$
\pm 5^{0}
$$

1) Clear area for light conductor.

ALIGNMENT

In order to align the x-trace and the x-axis of the graticule an image rotating coil may be used. This coil should be positioned at one third of the cone length, seen from the face end, and can be attached to the inner surface of the mu-metal shield. Under typical operating conditions maximum 90 ampere-turns are required for alignment.

ILLUMINATION OF THE GRATICULE

To illuminate the internal graticule a light conductor (e.g. of perspex) should be used. In order to achieve the most efficient light conductance, the holes for the lamps and the edge adjacent to the tube should be polished, and the distance between the perspex plate and the tube should be as small as possible. It is advisable to apply reflective material to the outer circumference and, if possible, also to the upper and lower faces of the light conductor. The thickness of the conductor should not exceed 3 mm , and its position relative to the frontplate of the tube should be adjusted for optimum illumination of the graticule lines.

1) Reflective material.
2) Polished.
3) Close and constant distance to front plate of tube.

It is essential that the light conductor and the front plate of the tube are in plane.
4) If possible reflective material.

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat faced short oscilloscope tube (max. 35 cm) with post-deflection acceleration by means of a helical electrode. The tube is provided with deflection blanking.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{7}(\ell)$	$=3000$	V
Display area	$8 \mathrm{~cm} \times$ full scan		
Deflection coefficient, horizontal	M_{X}	$=24$	V / cm
vertical	M_{y}	$=11.5$	V / cm

SCREEN

	Colour	Persistence
D13-27GH	green	medium short

Useful screen diameter
min.
114 mm
Useful scan at $V_{g_{7}}(\ell) / V_{g_{5}}=2$
horizontal
vertical
full scan
min. 80 mm

The useful scan may be shifted vertically to a max. of 4 mm with respect to the geometric centre of the faceplate.

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current
$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

\longrightarrow MECHANICAL DATA

Dimensions in mm

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
14 pin all glass

Dimensions and connections

Overall length (also with socket type 55566) max. 354 mm

Face diameter

Net weight

Accessories
Socket (supplied with tube)
Final accelerator contact connector
Mu metal shield
$\max .135 \mathrm{~mm}$
approx. 680
g
type 55563
type 55557

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Grid No. 1 to all other elements
Cathode to all other elements
Grid No. 3 to all other elements

FOCUSING

DEFLECTION
x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.
Angle between x and y traces

$$
90^{\circ} \pm 1^{0}
$$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.
Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width

$\mathrm{V}_{7}(\ell)$	$=3000 \mathrm{~V}$
$\mathrm{~V}_{5}$	$\left.=1500 \mathrm{~V}^{2}\right)$
V_{2}	$=1500 \mathrm{~V}$
$\mathrm{I}_{7}(\ell)$	$=10 \mu \mathrm{~A}$
1.w.	$=0.25 \mathrm{~mm}$

HELIX

Post deflection accelerator helix resistance
$\min .50 \mathrm{M} \Omega$
The helix is connected between $g_{7}(\ell)$ and g_{6}

[^3]
TYPICAL OPERATING CONDITIONS

Final accelerator voltage

$$
\begin{aligned}
& \mathrm{V}_{7}(\ell)=3000 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{g}}=1500 \pm 75 \mathrm{~V}^{1} \text {) } \\
& \mathrm{Vg}_{5}=1500 \pm 75 \mathrm{~V}^{2} \text {) } \\
& \mathrm{V}_{4}=300 \text { to } 550 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{g}_{3}}=1500 \mathrm{~V} \\
& \left.\Delta V_{g_{3}}=\max . \quad-60 \quad \mathrm{~V}^{3}\right) \\
& \mathrm{Vg}_{2}=1500 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{g}_{1}}=-38 \text { to }-135 \mathrm{~V} \text { 。 } \\
& \mathrm{M}_{\mathrm{X}}=21 \text { to } 27 \mathrm{~V} / \mathrm{cm} \\
& \mathrm{M}_{\mathrm{y}}=9.8 \text { to } 12.2 \mathrm{~V} / \mathrm{cm} \\
& =\max .2 \%^{4} \text {) } \\
& \text { See note } 5
\end{aligned}
$$

Deflection coefficient
horizontal
vertical
Deviation of linearity of deflection
Geometry distortion
Useful scan
horizontal
vertical
full scan
$=\min . \quad 80 \mathrm{~mm}$

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient at

$$
\begin{gathered}
\mathrm{V}_{\mathrm{g}_{7}(\ell)} / \mathrm{V}_{\mathrm{g}_{5}}=2 \\
\text { horizontal } \\
\text { vertical }
\end{gathered}
$$

Control grid circuit resistance
Deflection plate circuit
resistance
Focusing electrode current
$\mathrm{V}_{\mathrm{g}_{7}(\ell)} / \mathrm{V}_{\mathrm{g}_{5}}=2$
horizontal
vertical

$$
\begin{aligned}
\mathrm{V}_{4} & =200 \text { to } 370 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{5}} \\
-\mathrm{V}_{\mathrm{g}} & =25 \text { to } 90 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{x}}=14 \text { to } 18 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{5}} \\
& \mathrm{M}_{\mathrm{y}}=6.5 \text { to } 8.2 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{Vg}_{5} \\
& \mathrm{R}_{\mathrm{g}_{1}}=\max \cdot \quad 1.5 \mathrm{M} \Omega \\
& \mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}=\max \cdot \quad 50 \mathrm{k} \Omega \\
& \left.\mathrm{I}_{g_{4}}=-15 \text { to }+10 \quad \mu \mathrm{~A}{ }^{6}\right)
\end{aligned}
$$

LIMITING VALUES (Absolute max. rating system)
$\left.\begin{array}{llllllll}\text { Final accelerator voltage } & =\max .3300 & \mathrm{~V} \\ \text { Geometry control electrode voltage } & \mathrm{V}_{\mathrm{g}_{7}(\ell)} & =\min .1800 & \mathrm{~V}\end{array}\right)$

1) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g} 7}(\ell) / \mathrm{V}_{\mathrm{g} 5}=2$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
3) For beam blanking of a beam current of $10 \mu \mathrm{~A}$.
4) The sensitivity at a deflection of less than 75% of the usefull scanwill not dif fer from the sensitivityat a deflection of 25% of the useful scan by more than the indicated value.
5) A graticule, consisting of concentric rectangles of $100 \mathrm{~mm} \times 60 \mathrm{~mm}$ and $97 \mathrm{~mm} \times 58 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
6) Values to be taken into account for the calculation of the focus potentiometer.

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tybe with rectangular 13 cm diagonal flat face and metal-backed screen, provided with internal graticule. The high sensitivities of this mesh tube, together with the sectioned y-deflection plates, render the tube suitable for transistorized oscilloscopes for frequencies up to $100-250 \mathrm{MHz}$.

QUICK REFERENCE DATA					
Final accelerator voltage	$\mathrm{V}_{g_{9}}(\ell)$	15	kV		
Display area		100×60	$\mathrm{~mm}^{2}$		
Deflection coefficient, horizontal	M_{x}	9.9	$\mathrm{~V} / \mathrm{cm}$		
	M_{y}	3	$\mathrm{~V} / \mathrm{cm}$		

SCREEN

	colour	persistence
D13-450\%	green	medium short

Useful screen dimensions
Useful scan at $V_{g_{g(\ell)}} / V_{g_{4}}=10$
horizontal
vertical
\min. $100 \times 60 \mathrm{~mm}^{2}$

\min.	100	mm
\min.	60	mm

Spot eccentricity in horizontal direction $\pm 8 \mathrm{~mm}$
Spot eccentricity in vertical direction $\pm 6 \mathrm{~mm}$

The scanned raster can be shifted in vertical direction and aligned with the internal graticule by means of correction coils mounted on the tube (see page 6). For illumination of the internal graticule see page 8.

HEATING : Indirect by A. C. or D.C. ; parallel supply
Heater voltage
Heater current

V_{f}	6.3	V
I_{f}	300	mA

MECHANICAL DATA

Dimensions in mm

 around the true geometrical position.

MECHANICAL DATA (continued)
Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing
Overall length (socket and front glass plate inclusive)
Face dimensions

Net weight

Base

Accessories

Socket
Final accelerator contact connector
Side contact connector
Mu-metal screen
type 55566
type 55563
type 55561
type 55568

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
$\mathrm{y}_{1.1}$ to all other elements except $\mathrm{y}_{2} .1$
x_{1} to x_{2}
$\mathrm{y}_{1.1}$ to y 2.1
Control grid to all other elements
Cathode to all other elements

14 -pin all glass

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

| $\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)$ | 4.8 pF |
| :--- | ---: | :--- |
| $\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$ | 4.8 pF |
| $\mathrm{C}_{\mathrm{y}_{1.1}}\left(\mathrm{y}_{2.1}\right)$ | 1.2 pF |
| $\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$ | 2.5 pF |
| $\mathrm{C}_{\mathrm{y}_{1.1}} \mathrm{y}_{2.1}$ | 0.8 pF |
| C_{1} | 6 pF |
| C_{k} | 5 pF |

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.
Angle between x and y traces 90° (see page 6: "Correction Coils")

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.
Line width

Abstract

1.w. 0.40 mm

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Post deflection shield voltage (mesh) w.r.t. $V_{g_{7}}$

Geometry control electrode voltage
Interplate shield voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient, horizontal vertical

Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal vertical

$\mathrm{V}_{9}(\ell)$	15000	V	
$\mathrm{~V}_{8} / \mathrm{g}_{7}$	-12 to	-18	V
$\mathrm{~V}_{7}$	$1500 \pm$	70	$\left.\mathrm{~V}^{\mathrm{l}}\right)$
V_{6}		1500	$\left.\mathrm{~V}^{2}\right)$
V_{5}		1500	$\left.\mathrm{~V}^{2}\right)$
V_{5}	$1500 \pm$	50	$\left.\mathrm{~V}^{3}\right)$
V_{4}	400 to	550	V
$\mathrm{~V}_{3}$		1500	V

$\mathrm{V}_{\mathrm{g}_{1}}$	-40 to	-100	V
M_{X}		9.9	$\mathrm{~V} / \mathrm{cm}$
	max.	11	$\mathrm{~V} / \mathrm{cm}$
M_{y}		3	$\mathrm{~V} / \mathrm{cm}$
	max.	3.3	$\mathrm{~V} / \mathrm{cm}$
	\max.	2	$\left.\%^{4}\right)$

see note 5
100 mm
60 mm

1) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g}}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}=10$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance.
For any necessary adjustment its potential will be within the stated range.
${ }^{2}$) This voltage should be equal to the mean x - and y plates potential.
2) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
3) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
${ }^{5}$) A graticule, consisting of concentric rectangles of $100 \mathrm{~mm} \times 60 \mathrm{~mm}$ and $98 \mathrm{~mm} \times 58.2 \mathrm{~mm}$ is aligned with the electrical x axis of the tube.
With optimum corrections applied the edges of a raster will fall between these rectangles.

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\mathrm{l})$	\max. \min.	$\begin{array}{r} 16500 \\ 9000 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Post deflection shield voltage	V_{8}	max.	2400	V
Geometry control electrode voltage	Vg_{7}	\max.	2400	V
Interplate shield voltage	V_{g}	max. min.	$\begin{aligned} & 2400 \\ & 1350 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Deflection plate shield voltage	V_{5}	max.	2400	V
Astigmatism control electrode voltage	Vg_{4}	\max. \min.	$\begin{aligned} & 2400 \\ & 1350 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Focusing electrode voltage	V_{g}	max.	2400	V
First accelerator voltage	Vg_{2}	\max. \min.	$\begin{aligned} & 1800 \\ & 1350 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Control grid voltage,				
negative	$-\mathrm{V}_{1}$	max.	200	V
positive	$\mathrm{V}_{\mathrm{g}_{1}}$	max.	0	V
Cathode to heater voltage,				
cathode positive	V_{kf}	max.	200	V
cathode negative	$-\mathrm{V}_{\mathrm{kf}}$	max.	125	V
Voltage between astigmatism control electrode and any deflection plate	$\begin{gathered} \mathrm{v}_{\mathrm{g}_{4} / \mathrm{x}} \\ \mathrm{v}_{\mathrm{g}} / \mathrm{y} \end{gathered}$	$\max _{\max }$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Screen dissipation	W_{ℓ}	max.	8	$\mathrm{mW} / \mathrm{cm}^{2}$
Ratio $\mathrm{V}_{\mathrm{g}} \mathrm{l}$ ($) / \mathrm{V}_{\mathrm{g}_{4}}$	$\mathrm{V}_{\mathrm{g}_{9}}(\mathrm{l}) / \mathrm{V}_{\mathrm{g}_{4}}$	max.	10	
Average cathode current	I_{k}	\max.	300	$\mu \mathrm{A}$

CORRECTION COILS

The D13-450. ./01 is provided with a coil unit consisting of:

1. a pair of coils for
a. correction of the orthogonality of the x and y traces (which means that the angle between the x and y traces at the centre of the screen can be made exactly 90°).
b. vertical shift of the scanned area.
2. a single coil for image rotation (aligning the x trace with the x lines of the graticule).

Orthogonality and shift

The currents required under typical operating conditions are max. 4 mA per degree of angle correction and max. 2 mA per millimeter of shift; the maximum
\rightarrow current required for both purposes taken together does not exceed 18 mA .
These values apply to a tube operating with a mu metal shield closely surrounding the coils.
If no such shield is used they have to be multiplied by a factor $K(1<K<2)$ the value of which depends on the dimensions of the shield and approaches 2 for the case no shield is present.
The D.C. resistance of each coil is approx. 220Ω.

Image rotation

The image rotation coil is concentrically wound. Under typical operating conditions a current of max. 45 mA will be required for complete correction. The D.C. resistance of this coil is approx. 550Ω.

Circuit diagrams

Fig. 1
$\mathrm{P}_{1}, \mathrm{P}_{4}$ potentiometers $220 \Omega, 1$ Watt; ganged
P_{2}, P_{3} potentiometers $220 \Omega, 1$ Watt; ganged

With the above circuit almost independent control for shift and angle correction is achieved. This facilitates the correct adjustment to a great extent.
The dissipation in the potentiometers can be reduced considerably if the requirement of independent controls is dropped (see fig. 2)

Fig. 2
P_{1}, P_{2} potentiometers $220 \Omega, 1$ watt; ganged P_{3}, P_{4} potentiometers $220 \Omega, 1$ watt; ganged

A further reduction of the dissipation can be obtained by providing a commutator for each coil (see circuit fig. 3).
The procedure of adjustment will then become more complicated but it should be kept in mind that a readjustment is necessary only when the tube has to be replaced.

Fig. 3
$\mathrm{P}_{1}, \mathrm{P}_{2}$ potentiometers, $220 \Omega, 1$ Watt
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ commutators
A suitable circuit for the image rotating coil is given in fig. 4 .

Fig. 4
$\mathrm{P}_{5}, \mathrm{P}_{6}$ potentiometers $500 \Omega, 3$ Watt; ganged

The following procedure of adjustment is recommended
a. Align the x trace with the graticule by means of the image rotating coil.
b. With the tube fully scanned in the vertical direction, the image has to be shifted so that the graticule is fully covered. With the circuit according to fig. 1 this is done by means of the ganged potentiometers P_{1} and P_{4}.
c. Adjustment of orthogonality by means of the ganged potentiometers P_{2} and P_{3}. A slight readjustment of P_{1} and P_{4} may be necessary afterwards.
d. Readjustment of the image rotation if necessary.

With a circuit according to fig. 2 or 3 these corrections have to be performed by means of successive adjustments of the currents in the coils.

The most convenient deflection signal is a square wave form permitting an easy and fairly accurate visual check of orthogonality.

ILLUMINATION OF THE GRATICULE

To illuminate the internal graticule a light conductor (e.g. of perspex) should be used. In order to achieve the most efficient light conductance, the holes for the lamps and the edge adjacent to the tube should be polished, and the distance between the perspex plate and the tube should be as small as possible. It is advisable to apply reflective material to the outer circumference and, if possible, also to the upper and lower faces of the light conductor. The thickness of the conductor should not exceed 3 mm , and its position relative to the frontplate of the tube should be adjusted for optimum illumination of the graticule lines.
${ }^{1}$) Reflective material.
${ }^{2}$) Polished.

${ }^{3}$) Close and corstant distance to front plate of tube.
It is essential that/the light conductor and the front plate of the tube are in plane.
${ }^{4}$) If possible reflective material

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

QUICK REFERENCE DATA			
Accelerator voltage	$\mathrm{V}_{\mathrm{g}_{2}}, \mathrm{~g}_{4}, \mathrm{~g}_{5}(\ell)$	2000	V
Display area		100×80	$\mathrm{~mm}^{2}$
Deflection coefficient, horizontal	M_{x}	31.3	$\mathrm{~V} / \mathrm{cm}$
	vertical	M_{y}	14.4
		$\mathrm{~V} / \mathrm{cm}$	

SCREEN

	colour	persistence
D13-480GH	green	medium short
D13-480GM	yellowish green	long
D13-480GP	bluish green	medium short

Useful screen diameter min. 114 mm
Useful scan
horizontal
vertical

min.	100	mm
\min.	80	mm

The useful scan may be shifted vertically to a max. of 6 mm with respect to the geometric centre of the faceplate.

HEATING: Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

V_{f}	6.3	V
I_{f}	300	mA

MECHANICAL DATA (Dimensions in mm)

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections
See also outline drawing

Overall length	\max	310	mm
Face diameter	\max	135	mm

Base

14 pin all glass

Net weight
Accessories
Socket (supplied with tube)
Mu-metal shield
approx. 650
g
type 55580

D13-480. .

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x} 1}(\mathrm{x} 2)$	4	pF
$\mathrm{C}_{\mathrm{x} 2}(\mathrm{x} 1)$	4	pF
$\mathrm{C}_{\mathrm{y} 1} 1(\mathrm{y} 2)$	3.5	pF
$\mathrm{C}_{\mathrm{y} 2(\mathrm{y} 1)}$	3	pF
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	1.6	pF
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	1.1	pF
$\mathrm{C}_{\mathrm{g} 1}$	5.5	pF
C_{k}	4	pF

FOCUSING electrostatic
DEFLECTION double electrostatic
x plates symmetrical
y plates symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam, hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

$$
90 \pm 1^{0}
$$

LINE WIDTH 3)

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{l}=10 \mu \mathrm{~A} .1$)

Line width l.w. 0.30 mm
I) As the construction of this tube does not permit a direct measurement of the beam current, this current should be determined as follows:
a) under typical operating conditions, apply a small raster display (no overscan), adjust $\mathrm{V}_{\mathrm{g} 1}$ for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 2}, \mathrm{~g} 4, \mathrm{~g} 5, \ell$ for optimum spot quality at the centre of the screen.
b) under the se conditions, but no raster, the deflection plate voltages should be changed to
$\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=2000 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 1}=1300 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 2}=1700 \mathrm{~V}$, thus directing the total beam current to x 2 .
Measure the current on x_{2} and adjust $\mathrm{V}_{\mathrm{g} 1}$ for $\mathrm{I}_{\mathrm{x} 2}=10 \mu \mathrm{~A}$ (being the beam current Il)
c) set again for the conditions under a), without touching the V_{gl} control. Now a raster display with a true $10 \mu \mathrm{~A}$ screen current is achieved.
d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
${ }^{3}$) See page 4

TYPICAL OPERATING CONDITIONS ${ }^{3}$)

Accelerator voltage
Astigmatism control voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection coefficient, horizontal
vertical
Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal
vertical

$\mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}, \mathrm{~g}_{5}, \ell}$	2000	V
$\Delta \mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}, \mathrm{~g}_{5}, \ell}$	± 50	V^{1})
V_{g}	220 to 370	V
$\mathrm{V}_{\mathrm{g}_{1}}$	max. -65	V
	approx. 10	V
M_{X}	$\begin{array}{r} 31.3 \\ \max . \quad 33 \end{array}$	$\begin{aligned} & \mathrm{V} / \mathrm{cm} \\ & \mathrm{~V} / \mathrm{cm} \end{aligned}$
M_{y}	$\begin{array}{r} 14.4 \\ \max . \\ 15.5 \end{array}$	$\begin{aligned} & \mathrm{V} / \mathrm{cm} \\ & \mathrm{~V} / \mathrm{cm} \end{aligned}$
	max. 1	$\%{ }^{2}$)
	see note 4	
	min. 100	mm
	min. 80	mm

LIMITING VALUES (Absolute max, rating system)

Accelerator voltage
Focusing electrode voltage
Control grid voltage, negative
Cathode to heater voltage

Grid drive, average
Screen dissipation
$\mathrm{V}_{2}, \mathrm{~g}_{4}, \mathrm{~g}_{5}, \ell$
$\mathrm{~V}_{3}$
$-\mathrm{V}_{\mathrm{g}_{1}}$
$\mathrm{~V}_{\mathrm{kf}}$
$-\mathrm{V}_{\mathrm{kf}}$ W_{ℓ}

\max.	2200	V
\min.	1500	V
\max.	2200	V
\max.	200	V
\min.	0	V
\max.	125	V
\max.	125	V
\max.	20	V
\max.	3	$\mathrm{~mW} / \mathrm{cm}^{2}$

1) All that will be necessary when putting the tube into operation is to adjust the astigmatism control voltage once for optimum spot shape in the screen centre. The control voltage will always be in the range stated, provided the mean x and certainly the mean y plate potential was made equal to $\mathrm{V}_{\mathrm{g}_{2}}, \mathrm{~g}_{4}, \mathrm{~g}_{5}, \ell$ with zero astigmatism correction.
${ }^{2}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
2) The mean x and certainly the mean y plate potential should be equal to $V_{g 2}, g_{4}, g 5, \ell$ with astigmatism adjustment set to zero.
3) A graticule, consisting of concentric rectangles of $70 \mathrm{~mm} \times 85 \mathrm{~mm}$ and 68.8 mm x 83 mm as aligned with the electrical x -axis of the tube. The edges of a raster will fall between these ractangles.

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat faced monoaccelerator oscilloscope tubewith low heater consumption.

QUICK REFERENCE DATA			
Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}, \mathrm{~g}_{4}, \mathrm{~g}_{5}(\ell)$	2000	V
Display area		100×80	$\mathrm{~mm}^{2}$
Deflection coefficient, horizontal	M_{X}	31.3	$\mathrm{~V} / \mathrm{cm}$
	vertical	M_{y}	14.4

The D13-481. . is equivalent to the type D13-480. . except for the following:
HEATING: Indirect by A.C. or D.C.; parallel
Heater voltage
Heater current

LIMITING VALUES (Absolute max. rating system)
Cathode to heater voltage
Cathode positive
Cathode negative

$\mathrm{V}+\mathrm{k} / \mathrm{f}-$	\max.	100	V
$\mathrm{~V}-\mathrm{k} / \mathrm{f}+$	\max.	$15-\mathrm{V}$	

INSTRUMENT CATHODE-RAY TUBE

The D13-500../01 is a wide-band oscilloscope tube designed for observation and measurement of high frequency phenomena.
This tube has a rectangular 13 cm diagonal flat face with aluminized screen and internal graticule, post-deflection accelerator with mesh, vertical deflection by means of a symmetrical helix system, scan magnification in the vertical direction by means of an electrostatic quadrupole lens and correction coils for trace alignment, vertical shift of the display area and correction of the orthogonality of traces.

SCREEN

	colour	persistence
$\mathrm{D} 13-500 \mathrm{GH} / 01$	green	medium short

Useful screen dimensions
$\min .100 \times 60 \mathrm{~mm}^{2}$
Useful scan at $\mathrm{V}_{\mathrm{g}_{13}(\ell)} / \mathrm{V}_{\mathrm{g} 2}=6$

horizontal	\min.	100	mm
vertical	\min.	60	mm
al direction	\max.	7	mm
direction	\max.	6	mm

The scanned raster can be shifted in vertical direction and aligned with the internal graticule by means of correction coils mounted on the tube (see page 14).
For illumination of the internal graticule see page 16 .

DESCRIPTION

General

The D13-500. ./01 has been primarily designed for wide-band high-frequency applications. It combines high brightness, high deflection sensitivity and a large bandwidth of the vertical deflection system.
In order to obtain the high "sensitivity, the post-deflection acceleration system embodies a mesh. The sensitivity in the vertical direction has been further increased by means of an electrostatic quadrupole lens that has been inserted between the vertical deflection system and the horizontal deflection plates. The large bandwidth has been obtained by using, for the vertical deflection, a delay-line system instead of deflection plates. With the typical operating conditions, 2500 V first accelerator voltage and 15000 V final accelerator voltage, the vertical and the horizontal deflection factors are about $2 \mathrm{~V} / \mathrm{cm}$ and $15 \mathrm{~V} / \mathrm{cm}$ respectively, with a $10 \times 6 \mathrm{~cm}^{2}$ display area.

The bulb has a rectangular face and the screen is aluminized. To eliminate parallax errors, an internal graticule is incorporated. Correction coils have been provided to permit image rotation, correction of the orthogonality of traces and the adjustment of the vertical useful scan with respect to the graticule.

Fig. 1
Rise time of the display \boldsymbol{T} as a function of the rise time of the input signal $\boldsymbol{\tau}_{2}$

The vertical deflection system

For the vertical deflection, a delay-line system is used so that transit-time effects are practically eliminated. The system consists of two flattened helices to which a symmetrical deflection signal should be applied. Under these conditions, the characteristic impedance of each helix is 150Ω. The input and output terminals are brought out on opposite sides of the neck on the same plane. The input terminals are connected to the beginning of the helices by means of a matched, internal twowire transmission line. The output of the deflection system should be properly terminated in order to avoid signal reflections.
With the typical operating conditions, the band-width of the deflection system, i.e. the frequency at which the sensitivity is 3 dB below its value at D.C., is about 800 MHz . Even above this frequency, the response decreases only gradually so that, for narrow-band applications, the tube can be used with reduced vertical sensitivity up to about 2000 MHz .

The rise time $\boldsymbol{\tau}_{1}$, i.e. the time interval during which the display of an ideal stepfunction signal applied to the input goes from 10% to 90% of its final value, is about 0.45 ns . If the input signal has the rise-time \boldsymbol{T}_{2}, the rise-time $\boldsymbol{\tau}$ of the display is approximately given by

$$
\boldsymbol{T}=\sqrt{\tau_{1}^{2}+\tau_{2}^{2}}
$$

In Fig. 1, τ has been plotted as a function of τ_{2}, with $\tau_{1}=0.45$ ns. If, for example, the tube is used in combination with an amplifier and the rise-time of the display is to be 1.4 ns (corresponding with 250 MHz band-width), the rise-time of the amplifier should be 1.33 ns . It can be seen that in this region the rise-time of the display is almost equal to the amplifier rise-time, without a significant contribution of the cathode-ray tube.
If the tube is to be used without an amplifier in order to make use of its full bandwidth capabilities, care should be taken to ensure good symmetry of the input signal.
Fig. 2 shows how the tube can be connected to a 50Ω coaxial input. A matched power divider is used which delivers two identical output signals. One of these is inverted by means of a pulse inverter. An additional length of 50Ω cable should be inserted into the path of the non-inverted signal having the same delay time as the pulse inverter so that the two signals arrive at the input of the deflection system at the same time. The 75Ω shunt resistors serve to obtain a correct termination of the 50Ω lines. Since each branch of the power divider has 6 dB attenuation, the sensitivity, measured at the 50Ω input, is also $2 \mathrm{~V} / \mathrm{cm}$.

Fig. 2
Connection to an asymmetrical 50Ω input
A: Power divider $\quad \mathrm{R}_{1}, \mathrm{R}_{2}$: Resistors 75Ω
B : Inverter $\quad \mathrm{R}_{3}, \mathrm{R}_{4}$: Resistors 150Ω
C: Cable D, D': Deflection system
Note: Delay of inverter B and cable C are equal.

Scan magnifier and focusing system

As already mentioned, an electrostatic quadrupole lens, i.e. an electron lens which has two mutually perpendicular planes of symmetry, divergent in one plane and convergent in the other, is used for the magnification of the vertical deflection. This lens is inserted between the vertical deflection system and the horizontal deflection plates, with its plane of divergence in the direction of the vertical deflection. Therefore, it magnifies the vertical deflection without affecting the horizontal deflection.

Because of the astigmatic properties of this quadrupole lens, a conventional, rotationally symmetrical focusing lens cannot be used. Instead of this, two more electrostatic quadrupole lenses are incorporated so that focusing is accomplished by means of three quadrupole lenses, with alternating orientation of their planes of convergence and divergence. The focusing action is schematically shown in Fig. 3. The strength of the scan-magnifier lens is controlled by applying to the electrode g_{9} a negative voltage with respect to g_{2}. Within a certain range of this voltage, corresponding to a scan-magnification factor Msc, i.e. the ratio of the deviations on the screen with and without scan magnification respectively, between 1.8 and 2 the combined effect of the three lenses will yield an approximately circular spot at moderate beam currents. (At high beam currents, when space-charge repulsion causes an increase of spot size, the width of the vertical lines will be smaller than that of the horizontal lines).

Fig. 3
In this range, line-width at a fixed value of screen current, and screen current at a fixed value of grid No. 1 voltage, are increasing functions of the scan-magnification factor. Figs. 4 and 5 show the average relative change with respect to the values at Msc $=1.9$ which, generally, is the most suitable compromise.

For minimum defocusing of vertical lines near the upper and lower edge of the display area, the electrode g_{8} should be kept at a positive voltage with respect to g_{2} (about 200 V with 2500 V first accelerator voltage). As this voltage also has some effect on the scan-magnification factor, both g_{8} and g_{9} should be connected to g_{2} when the deviation without scan magnification is being measured.

Line-width as a function of the scan-magnification factor (approximately)
Line -width at $\mathrm{M}_{\mathbf{S C}}=1.9$ is $100 \%, \mathrm{I}_{\text {Screen }}=$ const.

Screen current as a function of the scan-magnification factor (approximately) Screen current at $\mathrm{M}_{\mathrm{Sc}}=1.9$ is $100 \%, \mathrm{~V}_{\mathrm{g}_{1}}=$ const.

For the adjustment of the scan-magnification factor the following procedure is recommended:
a. Set V_{8} and Vg_{9} to 0 with respect to g_{2}.
b. Display a time-base line and adjust $\mathrm{V}_{\mathrm{g}_{6}}$ so that the line appears sharply focused.
c. Apply a square wave signal to the vertical deflection system (the vertical parts of the trace will be out of focus but this is immaterial) and adjust the amplitude so that the height of the display has a convenient value, e.g. 30 mm .
d. Set $\mathrm{V}_{\mathrm{g} 8}$ and $\mathrm{V}_{\mathrm{g} 9}$ to the appropriate values and readjust $\mathrm{V}_{\mathrm{g}_{6}}$ so that the horizontal parts of the trace are again in focus.
e. Check the height of the display (e.g. for $M_{S C}=1.9$ this height should now be 57 mm).
f . If necessary, readjust V_{g}, until the desired value of M_{Sc} has been obtained.
Focusing is controlled by means of the electrode voltage V_{4} and V_{g}. The electrodes g_{5} and g_{7} can be used to centre the beam with respect to the vertical and horizontal deflection systems.

The voltages of the focusing and correction electrodes can be adjusted as follows:
a. Display a square-wave signal on the screen so that both horizontal and vertical traces are visible.
b. Adjust $\mathrm{V}_{\mathrm{g}}^{6}$ so that the horizontal parts of the display are in focus. The vertical parts will, in general, be out of focus.
c. Adjust V_{g} so that the vertical traces are brought into focus. Now the horizontal parts of the display will be out of focus again.
d. Repeat b) and c) successively until both vertical and horizontal traces are simultaneously in focus.
e. Adjust $\mathrm{V}_{\mathrm{g}_{3}}$ for minimum width of a horizontal line. If necessary, readjust focusing voltages V_{4} and V_{6}.
f. Adjust $\mathrm{V}_{\mathrm{g}_{7}}$ for equal brightness at the left-hand and right-hand edges of the display area. If necessary, readjust the focus by means of $\mathrm{V}_{\mathrm{g}_{6}}$.
g . Adjust $\mathrm{V}_{\mathrm{g}_{5}}$ so that the position of a horizontal trace not deflected in the vertical direction is at the centre of the vertical useful scan. If necessary, readjust the focus by means of $\mathrm{V}_{\mathrm{g}_{4}}$.
If the graticule is not fully covered by the scanned area the image should be shifted by adjusting the correction coil current (see page 16) before the adjustment of $\mathrm{V}_{\mathrm{g}_{5}}$ is made.

The procedure for the adjustment of the scan-magnification factor and for focusing, as described above, seams to be rather complicated.
However, in practice it will be sufficient to adjust V_{g} to its nominal value without determining the scan-magnification factor for each individual tube. As to focusing, the user can, with some experience, achieve the best setting with very few adjustmints.

Post-deflection acceleration

The use of a p.d.a. shield (mesh) ensures a high deflection sensitivity. A geometry control electrode, g_{11}, serves for the curiection of pin cushion or barrel distortion of the pattern. In order to suppress background illumination due to secondary electrons originating from the p.d.a. shield g_{12}, this shield should be kept 12 V nagative with respect to g_{11} whereas the voltage of the interplate shield, g_{10} should be equal to the mean x-plate potential.

HEATING: Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

| V_{f} | 6.3 V |
| :--- | :--- | :--- |
| I_{f} | 300 mA |

CAPACITANCE

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
x_{1} to x_{2}
Control grid to all other elements.
Cathode to all other elements external conductive crating

1) Clear area for light conductor.
2) These dimensions apply to the illumination plate which will always be within the limits $117 \pm 1.5 \times 79 \pm 1.5 \mathrm{~mm}$ of the tube face.
3) The soldering tags will be situated within a rectangle of $60 \mathrm{~mm} \times 40 \mathrm{~mm}$ on the nearside of the tube.

MECHANICAL DATA

Dimensions in. mm

2)
${ }^{1}$. The centre of the contact is located within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.
2)/he enternelconting

MECHANICAL DATA (continued)

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections
See also outline drawing

Overall length (socket and front glass plate inclusive)
Face dimensions

Net weight

Base

Accessories

Socket
Final accelerator contact connector
Side contact connector
Mu-metal screen
\max.
492
$\max .124 \times 92 \mathrm{~mm}^{2}$
approx. $\quad 1300 \mathrm{~g}$
14-pin all glass
type 55566
type 55563
type 55561
type 55582

In order to avoid damage to the side contacts the narrower end of the mu-metal screen should have an internal diameter of not less than 65 mm .
${ }^{1}$) see page 7

FOCUSING electrostatic ${ }^{1}$)

DEFLECTION double electrostatic

x plates
symmetrical
The y deflection system consists of a symmetrical delay line system.
Characteristic impedance
Bandwidth (-3 dB)
Rise time

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam: hence a low impedance deflection plate drive is desirable.

Angle between x and y traces
$90^{\circ} 4$) (see page 14 "Correction coils")

1) Because of the applications of a quadrupole lens for the magnification of the vertical deflection, two more. quadrupole lenses are used for focusing. Therefore, controls for two voltages have to be provided.
2) The band-width is defined as the frequency at which the vertical deflection sensitivity is 3 dB lower than at D.C.
${ }^{3}$) The rise-time is defined as the time interval between 10% and 90% of the final value of deflection when an ideal step-function signal is applied to the vertical deflection system. If the actual signal has an appreciable rise-time, τ_{2} the risetime of the tube can be determined from

$$
\boldsymbol{\tau}_{1}=\sqrt{\tau^{2}-\tau_{2}^{2}}
$$

where \boldsymbol{T} is the rise-time observed on the display.
This should be measured after the angle between the x-traces and y-traces has been corrected by means of the correction coils, otherwise two measurements have to be taken (using either a different polarity of the vertical deflection signal or different direction of the time-base sweep) and the true value of τ has to be calculated as the arithmetic mean of the two results.
4) Deviations from the orthogonality of traces can be eliminated by means of correction coils.

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{l}=10 \mu \mathrm{~A}$ and a screen magnification factor $\mathrm{M}_{\mathrm{sc}}=1.9$. See also ${ }^{3}$) page 13 .

Line width

TYPICAL OPERATING CONDITIONS

Final accelerator
Post deflection shield voltage (with respect to g_{11})
Geometry control electrode voltage Interplate shield voltage
Scan magnifier electrode voltage (with respect to g_{2})
Correction electrode voltage (with respect to g_{2})
Horizontal beam centering electrode voltage
Vertical beam centering electrode voltage
Focusing electrode voltages (with respect to g_{2})

Spot correction electrode voltage First accelerator voltage
Control grid voltage for visual extinction of a focused spot

Deflection coefficient, horizontal vertical

Deviation of linearity of deflection Geometry distortion

Useful scan, horizontal

vertical

$$
2
$$

1.w.
$\mathrm{V}_{\mathrm{g} 13(\ell)} \quad 15 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g}_{12}-\mathrm{g}_{11}}$
$\mathrm{~V}_{\mathrm{g}_{11}}$
$\mathrm{V}_{\mathrm{g}_{10}}$
$\mathrm{V}_{\mathrm{g} 9}-\mathrm{g}_{2}$
$\mathrm{V}_{\mathrm{g}_{8}-\mathrm{g}_{2}}$

V_{g}
$\begin{array}{lrcc}\mathrm{V}_{6}-\mathrm{g}_{2} & -500 \text { to }-700 & \mathrm{~V} & \text { 7) } \\ \mathrm{V}_{\mathrm{g}_{4}-\mathrm{g}_{2}} & -700 \text { to }-900 & \mathrm{~V} & 7 \text {) } \\ \mathrm{V}_{\mathrm{g}_{3}} & 2500 \pm 70 & \mathrm{~V} & 8 \text {) } \\ \mathrm{V}_{\mathrm{g}_{2}} & 2500 & \mathrm{~V} & \end{array}$
$\mathrm{V}_{\mathrm{g} 1}$
M_{x}
M_{y} approx. $0,35 \mathrm{~mm}$

LIMITING VALUES (absolute max. rating system)

Final accelerator voltage	$\mathrm{Vg}_{13}(\ell)$	max. \min.	$\begin{array}{r} 18000 \\ 9000 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Post-deflection shield voltage	$\mathrm{V}_{\mathrm{g}_{12}}$	max.	3100	V
Geometry control electrode voltage	$\mathrm{v}_{\mathrm{g}_{11}}$	max.	3100	V
Interplate shield voltage	$\mathrm{V}_{\mathrm{g} 10}$	max.	3100	V
Scan-magnifier electrode voltage	$\mathrm{V}_{\mathrm{g}} 9$	\max.	3000	V
Correction electrode voltage	$\mathrm{V}_{\mathrm{g} 8}$	max.	3200	V
Focusing electrode voltages	V_{g}	max.	3000	V
	$-\mathrm{V}_{66}-\mathrm{g}_{2}$	max.	1000	V
	$\mathrm{V}_{\mathrm{g}}^{4}$	max	3000	V
	$-\mathrm{V}_{\mathrm{g} 4}-\mathrm{g}_{2}$	max.	1000	V
Beam centering electrode voltages	V_{7}	max.	3100	V
	V_{5}	max.	3100	V
Spot correction electrode voltage	Vg_{3}	max.	3100	V
First accelerator voltage	V_{g}	\max. \min.	$\begin{aligned} & 3000 \\ & 2000 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Control grid voltage, negative	$-\mathrm{V}_{\mathrm{g}_{1}}$	max.	200	V
	V_{g}	max .	0	V
Cathode to heater voltage				
cathode positive	$\mathrm{V}_{+} \mathrm{kf}$	\max.	125	V
cathode negative	V -k f	\max.	125	V
Voltage between first accelerator and any deflection electrode	$\mathrm{Vg}_{2} \mathrm{x}$ $\mathrm{V} \mathrm{g}_{2} \mathrm{y}$	$\max _{\max }$.	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Screen dissipation	W_{ℓ}	max.	8	$\mathrm{mW} / \mathrm{cm}^{2}$
Average cathode current	I_{k}	\max.	300	$\mu \mathrm{A}$

Notes to page 11

1) This voltage should be adjusted for optimum pattern geometry.
2) This voltage should be equal to the mean x-plate potential.
3) The range indicated corresponds to a scan magnification factor $M_{S C}$, i.e. the ratio by which the vertical deviation on the screen is increased, in the approximate range $1.8<\mathrm{M}_{\mathrm{Sc}}<2.0$, and the tube should not be operated outside this range. Within this range, line-width and screen current at a fixed value of the control-grid voltage are increasing functions of M_{SC}. The best compromise between brightness and line width is usually found at $\mathrm{M}_{\mathrm{SC}} \approx 1.9$ which corresponds to $\mathrm{V}_{\mathrm{g} 9-\mathrm{g}_{2}} \approx 310 \mathrm{~V}$.
4) For minimum defocusing of vertical lines near the upper and lower edges of the scanned area this voltage should be approximately adjusted to the value indicated. Since the value of $\mathrm{V}_{\mathrm{g} 8}-\mathrm{g}_{2}$ has some effect on the scan-magnification factor both $\mathrm{V}_{\mathrm{g} 8}$ and $\mathrm{V}_{\mathrm{g} 9}$ should be connected to g_{2} when the deviation without scan magnification is to be measured.
5) This voltage should be adjusted for equal brightness in the x-direction with respect to the electrical centre of the tube.
${ }^{6}$) By adjusting this voltage a spot not deflected in the vertical direction may be centered with respect to the vertical useful scan.
6) These voltages should be stabilized to within 1 V .
${ }^{8}$) This voltage should be adjusted for minimum width of a horizontal line.
7) For a scan-magnification factor $\mathrm{M}_{\mathrm{SC}}=1.9$. In the above mentioned range of $\mathrm{V}_{\mathrm{g} 9-\mathrm{g}_{2}}$ the vertical deflection factor will vary approximately $\pm 5 \%$.
8) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
9) A rectangle of $98 \mathrm{~mm} \times 58.2 \mathrm{~mm}$ is concentrically aligned with the internal graticule of the tube. With optimum corrections applied, the edges of a raster will fall between this rectangle and the boundary lines of the internal graticule.

CORRECTIONS COILS

The tube is provided with a coil unit consisting of:

1. A pair of coils (No.1 and 2), with approx. 220Ω D.C. resistance per coil, for
a) correction of the orthogonality of the x-and y-traces so that the angle between these traces at the centre of the screen can be made exactly 90°.
b) vertical shift of the scanned area.
2. A single coil (No.3) with approx. 550Ω D.C. resistance, for image rotation (alignment of the x -trace with the x -lines of the graticule).

Orthogonality and shift

The change in the angle between the traces and the shift of the scanned area will be proportional to the algebraic sum and the algebraic difference of the currents in the coils No. 1 and 2.
Under typical operating conditions and with the coil unit closely surrounded by a mu-metal shield, the currents required are max. 5 mA per degree of angle correction and max. 2 mA per millimeter shift. The supply circuit for these coils should be so designed that in each coil a maximum current of 20 mA , with either polarity, can be produced.

If a wider mu-metal shield is used the above-mentioned values have to be multiplied by a factor $K(1<K<2)$ the value of which depends on the dimensions of the shield and approaches 2 for the case no shield is present.

Image rotation

Under typical operating conditions, a current of max. 45 mA will be required for the alignment.

Fig. 1
With the above circuit almost independent control for shift and angle correction is achieved. This facilitates the correct adjustment to a great extent.
The dissipation in the potentiometers can be reduced considerably if the requirement of independent controls is dropped.

Fig. 2
$\mathrm{P}_{1}, \mathrm{P}_{2}$ potentiometers 220Ω, 1 watt: ganged
P_{3}, P_{4} potentiometers 220Ω, 1 watt: ganged
A further reduction of the dissipation can be obtained by providing a commutator for each coil (see circuit fig.3).
The procedure of adjustment will then become more complicated but it should be kept in mind that a readjustment is necessary only when the tube has to be replaced.

Fig. 3
P_{1}, P_{2} potentiometers $220 \Omega, 1$ watt
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ commutators
A suitable circuit for the image rotating coil is given in fig.4.

Fig. 4
$\mathrm{P}_{5}, \mathrm{P}_{6}$ potentiometers 500Ω, 3 watt: ganged

The following procedure of adjustment is recommended
a. Align the x-trace with the graticule by means of the image rotating coil.
b. With the tube fully scanned in the vertical direction, the image has to be shifted so that the graticule is fully covered. With the circuit according to fig. 1 this is done by means of the ganged potentiometers P_{1} and P_{4}.
c. Adjustment of orthogonality by means of the ganged potentiometers P_{2} and P_{3}. A slight readjustment of P_{1} and P_{4} may be necessary afterwards.
d. Readjustment of the image rotation if necessary.

With a circuit according to fig. 2 or 3 these corrections have to be performed by means of successive adjustments of the currents in the coils.
The most convenient deflection signal is a square wave form permitting an easy and fairly accurate visual check of orthogonality.

ILLUMINATION OF THE GRATICULE

To illuminate the internal graticule a light conductor (e.g. of perspex) should be used. In order to achieve the most efficient light conductance, the holes for the lamps and the edge adjacent to the tube should be polished, and the distance between the perspex plate and the tube should be as small as possible. It is advisable to apply reflective material to the outer circumference and, if possible, also to the upper and lower faces of the light conductor. The thickness of the conductor should not exceed 3 mm , and its position relative to the frontplate of the tube should be adjusted for optimum illumination of the graticule lines.

1) Reflective material.
2) Polished.
3) Close and constant distance to front plate of tube .

It is essential that the light conductor and the front plate of the tube are in plane. 4) If possible reflective material.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat faced oscilloscope tube with mesh and metal backed screen.

QUICK REFERENCE DATA				
Final accelerator voltage	$\mathrm{Vg} 7(\ell)$	10	kV	
Display area		100×80	$\mathrm{~mm}^{2}$	
Deflection coefficient, horizontal	M_{X}	15.5	$\mathrm{~V} / \mathrm{cm}$	
	vertical	M_{y}	4.2	

SCREEN: Metal backed phosphor

	colour	persistence
D14-120GH	green	medium short
D14-120GM	purplish blue	long
D14-120GP	bluish green	medium short

Useful screen dimensions min. $100 \times 80 \mathrm{~mm}^{2}$

Useful scan at $V_{g 7}(\ell) / V_{g 2, g 4}=6.7$
horizontal

min.	100	mm
min.	80	mm

Spot eccentricity in horizontal and vertical directions
\max.
6 mm
HEATING: Indirect by A.C. or D.C.;parallel supply
Heater voltage
Heater current

V_{f}	6.3	V
I_{f}	300	mA

MECHANICAL DATA

Dimensions in mm

* The centre of the contact is located within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections
See also outline drawing

Overall length (socket included)
Face dimensions
$\underline{\text { Net weight }}$
Base
14 pin all glass
Accessories
Socket (supplied with tube)
Final accelerator contact connector
Mu-metal shield

\max.	385	mm
max.	100×120	$\mathrm{~mm}^{2}$
approx.	900	g

type 55566
type 55563
type 55581

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)$	6.5	pF
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$	6.5	pF
$\mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)$	5	pF
$\mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)$	5	pF
$\mathrm{C}_{\mathrm{x}_{1}} \mathrm{x}_{2}$	2.2	pF
$\mathrm{C}_{\mathrm{y}_{1}} \mathrm{y}_{2}$	1.7	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	5.5	pF
C_{k}	4.5	pF

FOCUSING electrostatic
DEFLECTION double electrostatic
x plates symmetrical
y plates symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.
Angle between x and y traces $\quad 90 \pm 1^{\circ}$
Angle between x trace and the horizontal axis of the face max. 501)

LINE WIDTH

Measured with the shrinking raster method under typical operating conditions, adjusted for optimum spot size at a beam current $I \ell=10 \mu \mathrm{~A}$.
Line width at screen centre
over the whole screen area
l.w.

av. $<$| 0.40 | mm |
| ---: | ---: |
| 0.45 mm | |

$\overline{1) \text { See page } 5}$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Interplate shield voltage
Geometry control voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control voltage
Control grid voltage for visual
extinction of focused spot
Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection coefficient, horizontal
$V_{g 7(l)}$
$V_{g 6}$
$\Delta V_{g 6}$
$V_{g 5}$
$V_{g 3}$
$V_{g 2, g}$
$\Delta V_{g 2, g}$
$V_{g 1}$
M_{X}
M_{y}

Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal vertical

LIMITING VALUES (Absolute max. rating system)
Final accelerator voltage

	max.	11000	V
$\mathrm{~V}_{\mathrm{g} 7(\ell)}$	min.	9000	V
	max.	2200	V
$\mathrm{~V}_{\mathrm{g} 6}$	max.	2200	V
$\mathrm{~V}_{\mathrm{g} 5}$	max.	2200	V
$\mathrm{~V}_{\mathrm{g} 3}$	max.	2200	V
	min.	1350	V
$\mathrm{~V}_{\mathrm{g} 2, \mathrm{~g} 4}$	max.	200	V
	min.	0	V
$-\mathrm{V}_{\mathrm{g} 1}$	\max.	125	V
$\mathrm{~V}_{\mathrm{kf}}$	\max.	125	V
$-\mathrm{V}_{\mathrm{kf}}$			
	\max.	500	V
$\mathrm{~V}_{\mathrm{g} 4 / \mathrm{x}}$	\max.	500	V
$\mathrm{~V}_{\mathrm{g} 4 / \mathrm{y}}$	\max.	20	V
$\mathrm{~W}_{\ell}$	8	$\mathrm{~mW} / \mathrm{cm}^{2}$	
$\mathrm{~V}_{\mathrm{g} 7(\ell)} \mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	\max.	6.7	

For notes see page 5

Notes

${ }^{1}$) In order to align the x-trace with the horizontal axis of the screen, the whole picture can be rotated by means of a rotation coil. This coil will have 50 amp . turns for the indicated max. rotation of 5° and should be positioned as indicated in the drawing.
2) This tube is designed for optimum performance when operating at a ratio

```
Vg7/V}\mp@subsup{\textrm{g}}{2}{},\mp@subsup{\textrm{g}}{4}{}=6.
```

The geometry electrode voltage should be adjusted within the indicated range (values with respect to the mean x-plate potential).
A negative control voltage will cause some pincushion distortion and less background light, a positive control voltage will give some barrel distortion and a slight increase of background light.
3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x - and y-plate potentials should be equal for optimum spot quality.
4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
${ }^{5}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
6) A graticule, consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and 93 mm x 73.6 mm is aligned with the electrical x-axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat-faced oscilloscope tube with mesh and metal backed screen. The tube has side connections to the x - and y-plates, and is intended for use in transistorized oscilloscopes up to a frequency of 50 MHz .

QUICK REFERENCE DATA				
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{8}(\ell)}$	10	kV	
Display area	100×80	$\mathrm{~mm}^{2}$		
Deflection coefficient, horizontal	M_{x}	15.5	$\mathrm{~V} / \mathrm{cm}$	
	vertical	M_{y}	4.2	$\mathrm{~V} / \mathrm{cm}$

SCREEN : Metal backed phosphor

	Colour	Persistence
D14-121GH	green	medium short
D14-121GM	purplish blue	long
D14-121GP	bluish green	medium short

Useful screen dimensions
Useful scan at $\mathrm{V}_{8}(\ell) / \mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}}=6.7$,
horizontal
vertical
Spot eccentricity in horizontal and vertical directions

HEATING : Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current
$\min .100 \times 80$
mm^{2}

\min.	100	mm
\min.	80	mm

$\max \quad 6 \mathrm{~mm}$

V_{f}	6.3	V
I_{f}	300	mA

* The centre of the contact is located within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.
Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections
See also outline drawing
Overall length (socket included)
Face dimensions
Net weight
Base
$\begin{array}{lrl}\max . & 385 & \mathrm{~mm} \\ \max . & 100 \times 120 & \mathrm{~mm}^{2}\end{array}$

Accessories

Socket (supplied with tube)	type 55566
Final-accelerator contact connector	type 55563
Mu-metal shield	type 55581 A

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}$	5.5 pF	
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$	5.5	pF
$\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}$	4	pF
$\mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)$	4	pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	2.2	pF
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}$	1.7	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	5.5 pF	
C_{k}	4.5	pF

FOCUSING Electrostatic

DEFLECTION Double electrostatic
x -plates symmetrical
y-plates symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.
Angle between x and y traces $\quad 90 \pm 1^{\circ}$
Angle between x trace and the horizontal axis of the face max. 5^{01})

LINE WIDTH

Measured with the shrinking raster method under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\ell}=10 \mu \mathrm{~A}$.
Line width at screen centre
1.w.
0.40 mm
over the whole screen area
l.w. av. $<0.45 \mathrm{~mm}$

[^4]
TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry-control electrode voltage
Post deflection and interplate shield voltage
Background illumination control voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control voltage
Control grid voltage for extinction of focused spot
Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection coefficient, horizontal vertical

Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal vertical

LIMITING VALUES (Absolute max. rating system)
Final accelerator voltage

$$
\mathrm{V}_{g_{8}(\ell)}
$$

Post deflection and interplate shield voltage and geometry control electrode voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator and astigmatism control electrode voltage

Control grid voltage
Cathode to heater voltage
Voltage between astigmatism control electrode and any deflection plate

Grid drive, average
Screen dissipation Ratio $\mathrm{V}_{8}(\ell) / \mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}}$
$\mathrm{V}_{\mathrm{g}_{7}}, \mathrm{~V}_{\mathrm{g}}$
$\mathrm{V}_{\mathrm{g}_{5}}$
$\mathrm{~V}_{\mathrm{g}_{3}}$
$\mathrm{~V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}}$
$-\mathrm{V}_{\mathrm{g}_{1}}$
$\mathrm{~V}_{\mathrm{kf}}$
$-\mathrm{V}_{\mathrm{kf}}$
$\mathrm{V}_{\mathrm{g}_{4} / \mathrm{x}}$
$\mathrm{V}_{4} / \mathrm{y}$
W_{l}
$\mathrm{V}_{\mathrm{g}_{8}(\ell)} \mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}}$

10	kV
1500 ± 100	$\left.\mathrm{~V}^{2}\right)$
1500	V
0 to -15	$\mathrm{~V}^{2}$)
1500	$\left.\mathrm{~V}^{3}\right)$
250 to 350	V
1500	V
± 50	$\left.\mathrm{~V}^{4}\right)$

-20 to -60 V approx. 12 V
av. $\quad 15.5 \mathrm{~V} / \mathrm{cm}$
$\max . \quad 16 \mathrm{~V} / \mathrm{cm}$
av. $\quad 4.2 \mathrm{~V} / \mathrm{cm}$
max. $4.6 \mathrm{~V} / \mathrm{cm}$
$\max . \quad 2 \%{ }^{5}$)
See note 6
min . $\quad 100 \mathrm{~mm}$
min . 80 mm
$\max \quad \quad l l \mathrm{kV}$

\max.	2200	V
\max.	2200	V
\max.	2200	V
\max.	2200	V
\min.	1350	V
\max.	200	V
\min.	0	V
\max.	125	V
\max.	125	V
\max.	500	V
\max.	500	V
\max.	20	V
\max.	8	$\mathrm{~mW} / \mathrm{cm}^{2}$
\max.	6.7	

For notes see page 5

NOTES

1) In order to align the x-trace with the horizontal axis of the screen, the whole picture can be rotated by means of a rotation coil. This coil will have 50 amp . turns for the indicated max. rotation of 5^{0} and should be positioned as indicated on the drawing.
2) This tube is designed for optimum performance when operating at a ratio
$\mathrm{V}_{\mathrm{g}_{8}(\ell)} / \mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}}=6.7$
The geometry control voltage V_{g} should be adjusted within the indicated range (values with respect to the mean x -plate potential).
A negative control voltage on g_{6} (with respect to the mean x -plate potential) will cause some pincushion distortion and less background light.
By the use of the two voltages, V_{6} and $\mathrm{V}_{\mathrm{g} 7}$, it is possible to find the best compromise between background light and raster distortion.
3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x - and y-plate potentials should be equal for optimum spot quality.
4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
5) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
${ }^{6}$) A graticule, consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and 93 mm x 73.6 mm is aligned with the electrical x axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.
6) To avoid damage to the side contacts the narrower end of the Mu-metal shield should have an internal diameter of not less than 64 mm .

D14-122..

INSTRUMENT CATHODE-RAY TUBE

This type is equivalent with type D14-120 but provided with a rotation coil as indicated in note 1 of D14-120. .

Number of turns

Resistance of coils

$$
\begin{aligned}
& 1-2 \\
& 1^{\prime}-2 \\
& 1-2 \\
& 1^{\prime}-2
\end{aligned}
$$

850 turns 850 turns
$360 \Omega(\pm 10 \%)$
$375 \Omega(\pm 10 \%)$

D14-123..

INSTRUMENT CATHODE-RAY TUBE

This type is equivalent with type D14-121 but provided with a rotation coil as indicated in note 1 of D14-121

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat-faced oscilloscope tube with mesh and metal backed screen. The tube has side connections to the x - and y-plates, internal graticule and a light-conducting glassplate set in front of the face.

QUICK REFERENCE DATA						
Final accelerator voltage	$\mathrm{Vg}_{8}(\ell)$	10	kV			
Display area		100×80	$\mathrm{~mm}^{2}$			
Deflection factor, horizontal	M_{X}	15.2	$\mathrm{~V} / \mathrm{cm}$			
	M_{y}	4.1	$\mathrm{~V} / \mathrm{cm}$			

SCREEN : Metal backed phosphor

	Colour	Persistence
D14-160GH/09	green	medium short
D14-160GM/09	yellowish-green	long

Useful screen dimensions

$$
\min .100 \times 80 \quad \mathrm{~mm}^{2}
$$

Useful scan at $V_{g}(\ell) / V_{g 2}, g_{4}=6.7$,

horizontal	min.	100	mm
vertical	min.	80	mm

Spot eccentricity in horizontal direction $\max .6 \mathrm{~mm}$

The scanned raster can be shifted in vertical direction and aligned with the internal graticule by means of correction coils fitted around the tube by the manufacturer (see page 5).

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	300	mA

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

MECHANICAL DATA (continued)
Dimensions and connections.
See also outline drawing
Overall length (socket included)
Face dimensions
Net weight
Base

Accessories

Socket (supplied with tube)
Final-accelerator contact connector
Mu-metal shield

FOCUSING
DEFLECTION

x-plates	symmetrical
y-plates	symmetrical

Dimensions in mm

$$
\begin{aligned}
& \max \text {. } 417.5 \mathrm{~mm} \\
& \max \text {. } 100 \times 120 \mathrm{~mm}^{2} \\
& \text { approx. } 1300 \mathrm{~g} \\
& 14 \text { pin, all glass }
\end{aligned}
$$

type 55566
type 55563
type 55585 1)

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.
Angle between x and y traces 90°
Angle between x trace and the horizontal axis of the face 0°.
See page 5 "Correction coils".

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\ell}=10 \mu \mathrm{~A}$.
Line width at the centre of the screen
l.w.
0.3 mm

CAPACITANCES
x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

| $\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)$ | 5.5 pF |
| :--- | ---: | :--- |
| $\mathrm{C}_{\mathrm{x}_{2}\left(\mathrm{x}_{1}\right)}$ | 5.5 pF |
| $\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}$ | 3.5 pF |
| $\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}$ | 3.5 pF |
| $\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$ | 2 pF |
| $\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}$ | 1.6 pF |
| $\mathrm{C}_{\mathrm{g}_{1}}$ | 5.5 pF |
| C_{k} | 4 pF |

1) See page 5

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry-control electrode voltage
Post deflection and interplate shield voltage
Background illumination control voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control voltage
$\mathrm{Vg}_{8}(\ell)$
V_{7}
$\mathrm{~V}_{\mathrm{g}}$
$\Delta \mathrm{V}_{6}$
$\mathrm{~V}_{\mathrm{g}_{5}}$
$\mathrm{~V}_{\mathrm{g}_{3}}$
$\mathrm{Vg}_{2}, \mathrm{~g}_{4}$
$\Delta \mathrm{Vg}_{2}, \mathrm{~g}_{4}$

Control grid voltage for extinction
of focused spot
Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection factor, horizontal

vertical

Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal vertical

LIMITING VALUES (Absolute max. rating system)
Final accelerator voltage
Post deflection and interplate shield voltage and geometry control electrode voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator and astigmatism control electrode voltage

Control grid voltage
Cathode to heater voltage
Voltage between astigmatism control electrode and any deflection plate

Grid drive, average
Screen dissipation
Ratio $\mathrm{Vg}_{8(\ell)} / \mathrm{Vg}_{2}, \mathrm{~g}_{4}$

$\overline{\text { For notes }}$ see page 5

Notes

${ }^{1}$) To avoid damage to the side contacts the narrower end of the Mu-metal shield should have an internal diameter of not less than 64 mm .
${ }^{2}$) This tube is designed for optimum performance when operating at a ratio $\mathrm{V}_{\mathrm{g} 8(\ell)} /$ $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}=6.7$
The geometry control voltage V_{g} should be adjusted within the indicated range (values with respect to the mean x -plate potential).
A negative control voltage on g_{6} (with respect to the mean x -plate potential) will cause some pincushion distortion and less background light.
By the use of the two voltages, V_{6} and $\mathrm{V}_{\mathrm{g} 7}$, it is possible to find the best compromise between background light and raster distortion.
If a fixed voltage on g_{6} is required this voltage should be 10 V lower than the mean x -plate potential.
3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x - and y-plate potentials should be equal for optimum spot quality.
4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
${ }^{5}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
6) A graticule, consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and 93 mm x 73.6 mm is aligned with the electrical x axis of the tube. With optimum corrections applied a raster will fall between these rectangles.

CORRECTION COILS

General

The D14-160. . / 09 is provided with a coil unit consisting of: (see Fig. 1)

1. a pair of coils L_{3} and L_{4} which enable
a. the angle between the x and y traces at the centre of the screen to be made exactly 90° (orthogonality correction);
b. the scanned area to be shifted up and down (vertical shift)
2. a pair of coils L_{1} and L_{2} for image rotation which enable the alignment of the x trace with the x lines of the graticule.

Fig. 1

Orthogonal ity and shift (coils L3 and L4)
The current required under typical operating conditions without the mu-metal shield being used is max. 45 mA for complete correction of orthogonality and shift. It will be 30% to 50% lower with shield, depending on the shield diameter. The resistance of each coil is approx. 225Ω.

Image rotation (coils L_{1} and L_{2})
The image rotation coils are wound concentrically around the tube neck.
Under typical operating conditions 50 A turns are required for the maximum rotation of 5°. Both coils have 850 turns. This means that a current of max. 30 mA percoil is required which can be obtained by using a 24 V supply when the coils are connected in series or a 12 V supply when they are in parallel.

Connecting the coils
The coils have been connected to the 8 soldering tags according to Fig. 2.

With L_{3} and L_{4} connected in series according to Fig. 3 a current in the direction indicated will produce a clockwise rotation of the vertical trace and an anti--clockwise rotation of the horizontal trace. With the connection according to Fig. 4 the current as indicated will produce an upward shift.

Fig. 2

Fig. 3

INSTRUMENT CATHODE-RAY TUBE

18 cm diagonal, rectangular flat faced oscilloscope tube with mesh and metal backed screen.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g7}(\ell)}$	10	
Display area		120×100	mm^{2}
Deflection factor, horizontal	M_{X}	approx. 15,516	V / cm
vertical	M_{y}	approx. 4, 5	V / cm

SCREEN : Metal backed phosphor

	colour	persistence
D18-120GH	green	medium short

Useful screen dimensions
Useful scan at $V_{g 7(\ell)} / V_{g_{2}} g_{4}=5$
horizontal
vertical
Spot eccentricity in horizontal direction
in vertical direction
min. $120 \times 100 \mathrm{~mm}^{2}$

\min.	120	mm
min.	100	mm

min. $\quad 100 \mathrm{~mm}$
$\pm 8 \quad \mathrm{~mm}$
$\pm 6 \mathrm{~mm}$
HEATING : Indirect by a.c. or d.c.; parallel supply
Heater voltage
Heater current

V_{f}	6,3	V
If_{f}	300	mA

Data based on pre-production tubes.

MECHANICAL DATA

Dimensions in mm

* The centre of the contact is located within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

Overall length (socket included)
Face dimensions
Net weight
Base

Accessories

Socket (supplied with tube)
Final accelerator contact connector
Mu-metal shield
$\max \quad 454 \mathrm{~mm}$
$\max . \quad 146 \times 121 \quad \mathrm{~mm}^{2}$
approx. 1300 g
14 pin all glass
type 55566
type 55563
type 55584

CAPACITANCE

x_{1} to all other elements except x_{2} x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}$	6,5	pF
$\mathrm{C}_{\mathrm{x}_{2}(\mathrm{x} 1)}$	6,5	pF
$\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}$	5	pF
$\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}$	5	pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	2,2	pF
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}$	1,7	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	5,5	pF
C_{k}	4,5	pF

FOCUSING electrostatic

DEFLECTION
x plates
y plates
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

$$
\text { Angle between } x \text { and } y \text { traces } \quad 90 \pm 10
$$

Angle between x trace and the horizontal axis of the face max. 5^{01})

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjüsted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.
Line width at turencentre
incorner area's.
elder, ram 1.w. 0,50 mm at turencentre
incorner area's.
elder, ram 1.w. approx. 60
D10-12

1) See page 5

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Interplate shield voltage
Geometry control voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control voltage
Control grid voltage for visual extinction of focused spot
Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection factor, horizontal vertical
Deviation of linearity of deflection
Useful scan, horizontal
vertical
LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage
Interplate shield voltage and geometry control electrode voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator and astigmatism control electrode voltage

Control grid voltage
Cathode to heater voltage
Voltage between astigmatism control electrode and any deflection plate

Grid drive, average
Screen dissipation
Ratio $\mathrm{V}_{\mathrm{g}}(\mathrm{l}) / \mathrm{V}_{\mathrm{g} 2}, \mathrm{~g}_{4}$

$\mathrm{V}_{\mathrm{g} 1}$
$\mathrm{M}_{\mathrm{x}} \quad \begin{aligned} & \text { approx. approx. } \\ & \text { a } 15,516 \quad \mathrm{~V} / \mathrm{cm}<17\end{aligned}$ M_{y}

$\mathrm{V}_{7}(\ell)$	max. min.	$\begin{array}{r} 11000 \\ 9000 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{g} 6}$	max.	2200	V
$\mathrm{V}_{\mathrm{g}_{5}}$	\max.	2200	V
v_{g}	max.	2200	V
	max.	2200	V
g2, g_{4}	min.	1350	V
	\max.	200	V
$-\mathrm{g}_{1}$	min.	0	V
V_{kf}	max.	125	V
$-\mathrm{V}_{\mathrm{kf}}$	min.	125	V
	max.		
$\mathrm{v}_{\mathrm{g} 4 / \mathrm{y}}$	\max.	500	V
	max.	20	V
W_{ℓ}	\max.	8	$\mathrm{mW} / \mathrm{cm}^{2}$
$\mathrm{V}_{\mathrm{g} 7}(\ell) / \mathrm{V}_{\mathrm{g} 2}, \mathrm{~g}_{4}$	max.	6,7	

[^5]NOTES

1) In order to align the x-trace with the horizontal axis of the screen, the whole picture can be rotated by means of a rotation coil. This coil will have 50 amp . turns for the indicated max. rotation of 5° and should be positioned as indicated in the drawing.
2) This tube is designed for optimum performance when operating at a ratio

$$
\mathrm{V}_{\mathrm{g}_{7}} / \mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}}=5
$$

The geometry electrode voltage should be adjusted within the indicated range (values with respect to the mean x-plate potential).
A negative control voltage will cause some pincushion distortion and less background light, a positive control voltage will give some barrel distortion and a slight increase of background light.
3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x - and y-plate potentials should be equal for optimum spot quality.
4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
5) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

$$
2,6
$$

April 1972

INSTRUMENT CATHODE-RAY TUBE

Low accelerator voltage cathode-ray tube for monitoring purpose

QUICK REFERENCE DATA					
Accelerator voltage	$\mathrm{V}_{g_{4}}, g_{2}, \mathrm{y}_{2}(\ell)$	$=500 \mathrm{~V}$			
Display area	Both directions full scan				
Deflection coefficient, horizontal	M_{X}	$=56.5 \mathrm{~V} / \mathrm{cm}$			
	vertical	M_{y}	$=49 \mathrm{~V} / \mathrm{cm}$		

SCREEN

	Colour	Persistence
DH3-91	green	medium short

Useful screen diameter
Useful scan horizontal vertical
min. 28 mm
full scan
full scan

HEATING:

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current
$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube

Base

Dimensions and connections
See also outline drawing
Overall length
Face diameter

Net weight:
approx. 39 g
Accessories

Mu-metal shield
type
55525

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
x_{1} to x_{2}
Control grid to all other elements

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}=4.5 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{x}_{2}\left(\mathrm{x}_{1}\right)}=4.5 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}=3.5 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=1.0 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{g}_{1}}=5.6 \mathrm{pF}
\end{aligned}
$$

FOCUSING electrostatic self focusing

DEFLECTION	double electrostatic
x plates	symmetrical
y plates	asymmetrical

LINE WIDTH

Measured on a circle of 25 mm diameter

Accelerator voltage
Beam current
Line width

$$
\begin{aligned}
\mathrm{V}_{\mathrm{g}_{4}, \mathrm{~g}_{2}, \mathrm{y}_{2}(\ell)} & =500 \mathrm{~V} \\
\mathrm{I}(\ell) & =0.5 \mu \mathrm{~A} \\
\text { l.w. } & =0.6 \mathrm{~mm}
\end{aligned}
$$

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Control grid voltage for visual extinction of focused spot $-\mathrm{V}_{\mathrm{g}}$ $=8$ to 27 V
Deflection coefficient
horizontal
vertical
M_{x}
M_{y}
$=41$ to $72 \mathrm{~V} / \mathrm{cm}$
$=35$ to $63 \mathrm{~V} / \mathrm{cm}$
full scan
full scan

LIMITING VALUES (Absolute max. rating system)
Accelerator voltage
Control grid voltage
negative
positive
positive peak
Cathode to heater voltage
cathode positive
cathode negative
Screen dissipation

CIRCUIT DESIGN VALUES

Control grid voltage for visual extinction of focused spot $-\mathrm{V}_{\mathrm{g}}=16$ to 54 V per kV of $\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}, \mathrm{y}_{2}$
Deflection coefficient
horizontal
vertical
Control grid circuit resistance $\quad \mathrm{R}_{1}=\max . \quad 1 \mathrm{M} \Omega$
Deflection plate circuit
resistance

$$
\mathrm{R}_{\mathrm{x},}, \mathrm{R}_{\mathrm{y}}=\max . \quad 5 \mathrm{M} \Omega
$$

REMARK

A contrast improving transparent conductive coating connected to the accelerator electrode is present between glass and fluorescent layer. This enables the application of a high potential with respect to earth to the accelerator electrode, without the risk of picture distortion by touching the face (electrostatic bodyeffect).

INSTRUMENT CATHODE-RAY TUBE

Cathode-ray tube for monitoring purposes.

QUICK REFERENCE DATA				
Accelerator voltage	$\mathrm{V}_{\mathrm{g}_{3}(\ell)}=800 \mathrm{~V}$			
Display area	Both directions full scan			
Deflection coefficient, horizontal	M_{X}	$=62.5 \mathrm{~V} / \mathrm{cm}$		
	vertical	M_{y}		
	$=40$	$\mathrm{~V} / \mathrm{cm}$		

SCREEN

	colour	persistence
DG7-5	yellowish green	medium short
DP7-5	yellowish green	long

Useful screen diameter
Useful scan
horizontal
vertical
min. 65 mm
full scan
full scan

HEATING

Indirect by A.C. or D.C.; parallel supply Heater voltage

Heater current
$\underline{V_{f}}=6.3 \mathrm{~V}$
$I_{f}=300 \mathrm{~mA}$

MECHANICAL DATA

Dimensions in mm

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
English Loctal 9 pins
Dimensions and connections
See also outline drawing
Overall length
max. 160 mm
Face diameter
max. $\quad 71 \mathrm{~mm}$

Net weight:
approx. 140 g
\rightarrow Accessories
Mu-metal shield
type
55530

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
, x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)=2.8 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)=2.8 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)=3.0 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)=3.3 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=0.8 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=0.6 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{g}_{1}}=7.0 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{k}}
\end{aligned}
$$

FOCUSING electrostatic

DEFLECTION double electrostatic

x plates	symmetrical
y plates	symmetrical

Angle between x and y traces $\quad 90^{\circ} \pm 1.5^{\circ}$

LINE WIDTH

Measured on a circle of 50 mm diameter

Accelerator voltage
Beam current
Line width

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient, horizontal vertical

Geometry distortion
Useful scan, horizontal
vertical

$\mathrm{V}_{\mathrm{g}_{3}(\ell)}$	$=$
$\mathrm{I}_{(\ell)}$	$=800 \mathrm{~V}$
1.w.	$=0.5 \mu \mathrm{~A}$

1.w. $=0.4 \mathrm{~mm}$

LIMITING VALUES (Absolute max. rating system)

Accelerator voltage
Focusing electrode voltage
Control grid voltage negative
positive
positive peak
Cathode to heater voltage cathode positive cathode negative
Voltage between accelerator electrode and any deflection plate

Screen dissipation

$\mathrm{V}_{3}(\ell)$	$=\max$. $=\min$.	1000 800
V_{g}	$=\max$.	400
$-\mathrm{V}_{1}$	$=\max$.	200
V_{g}	max.	0
$\mathrm{V}_{\mathrm{g}} \mathrm{p}$	$=\max$	2

$\begin{array}{llll}\mathrm{V}+\mathrm{k} / \mathrm{f}- & =\max . & 200 & \mathrm{~V} \\ \mathrm{~V}-\mathrm{k} / \mathrm{f}+ & =\max . & 125 \mathrm{~V}\end{array}$
$\mathrm{V}_{\mathrm{g} 3 / \mathrm{x}}=\max . \quad 500 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g} 3} / \mathrm{y}=\max .500 \mathrm{~V}$
$\mathrm{W}_{\ell} \quad=\max . \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot Deflection coefficient horizontal vertical

Control grid circuit resistance
Deflection plate circuit resistance
$\mathrm{V}_{2}=250$ to 375 V per kV of V_{3}
$-\mathrm{V}_{1}=0$ to 62.5 V per kV of V_{3}
$\mathrm{M}_{\mathrm{X}}=66$ to $90 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{3}}$
$\mathrm{M}_{\mathrm{y}}=41$ to $56 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{3}}$
$R_{g_{1}}=\max .0 .5 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{X}}, \mathrm{R}_{\mathrm{y}}=\max . \quad 5 \mathrm{M} \Omega$

[^6]
INSTRUMENT CATHODE-RAY TUBE

Cathode-ray tube for monitoring purposes.

QUICK REFERENCE DATA				
Accelerator voltage	$\mathrm{V}_{\mathrm{g}_{3}(\ell)}=800$	V		
Display area	Both directions full scan			
Deflection coefficient, horizontal	M_{x}	$=62.5$	$\mathrm{~V} / \mathrm{cm}$	
	vertical	M_{y}	$=40$	
		$\mathrm{~V} / \mathrm{cm}$		

SCREEN

	colour	persistence
DG7-6	yellowish green	medium short
DP7-6	yellowish green	long

Useful screen diameter
min. 65 mm
Useful scan
horizontal
vertical
full scan
full scan

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

MECHANICAL DATA

Dimensions in mm

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
English Loctal 9 pins

Dimensions and connections

See also outline drawing

Overall length
Face diameter

Net weight:
\rightarrow Accessories

Mu-metal shield
approx. 140 g
approx. 140 g
max. 160 mm
max. 71 mm
type 55530

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{2}\left(\mathrm{x}_{1}\right)}=2.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}=3.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}=3.3 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=0.8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=0.6 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=7.0 \mathrm{pF}$
C_{k}

FOCUSING electrostatic
DEFLECTION double electrostatic
x plates asymmetrical
x_{1} has to be connected to the accelerator electrode. Earthing of the accelerator electrode is recommended.
y plates symmetrical
Angle between x and y traces $\quad 90^{\circ} \pm 1.5^{\circ}$

LINE WIDTH

Measured on a circle of 50 mm diameter

Accelerator voltage
Beam current
Line width
TYPICAL OPERATING CONDITIONS
Accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot
Deflection coefficient, horizontal vertical

Geometry distortion
Useful scan, horizontal
vertical

$\mathrm{V}_{\mathrm{g}_{3}(\ell)}$	$=$
$\mathrm{I}_{(\ell)}$	$=800 \mathrm{~V}$
$1 . \mathrm{w}$.	$0.5 \mu \mathrm{~A}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{g}_{3}(\ell)}=800 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{g}_{2}}=200 \text { to } 300 \mathrm{~V}
\end{aligned}
$$

$$
-\mathrm{v}_{\mathrm{g}_{1}}=\max .50 \mathrm{v}
$$

$$
\mathrm{M}_{\mathrm{x}}=53 \text { to } 72 \mathrm{~V} / \mathrm{cm}
$$

$$
\mathrm{M}_{\mathrm{y}}=33 \text { to } 45 \mathrm{~V} / \mathrm{cm}
$$

See note 1 page 4
full scan
full scan

LIMITING VALUES (Absolute max. rating system)
Accelerator voltage
Focusing electrode voltage
Control grid voltage negative
positive
positive peak

$$
\begin{aligned}
& \begin{array}{rlr}
& =\max . & 1000 \\
\mathrm{~V}_{3}(\ell) & =\min . & 800 \mathrm{~V}
\end{array} \\
& \mathrm{~V}_{2}=\max .400 \mathrm{~V} \\
& -\mathrm{Vg}_{1}=\max .200 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{g}} \quad=\max . \quad 0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{g}_{1 \mathrm{p}}}=\max . \quad 2 \mathrm{~V} \\
& \mathrm{~V}+\mathrm{k} / \mathrm{f}-=\max .200 \mathrm{~V} \\
& \mathrm{~V}-\mathrm{k} / \mathrm{f}+=\max .125 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{g} 3 / \mathrm{x}}=\max . \quad 500 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{g} 3} / \mathrm{y}=\max .500 \mathrm{~V} \\
& \mathrm{~W}_{\ell} \quad=\max . \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}
\end{aligned}
$$

Cathode to heater voltage cathode positive
cathode negative
Voltage between accelerator electrode
and any deflection plate

Screen dissipation

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot
Deflection coefficient horizontal
vertical
Control grid circuit resistance
Deflection plate circuit
resistance
$\begin{aligned} \mathrm{Vg}_{2} & =250 \text { to } 375 \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{3}} \\ -\mathrm{V}_{\mathrm{g}_{1}} & =0 \text { to } 62.5 \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{3}} \\ \mathrm{M}_{\mathrm{X}} & =66 \text { to } 90 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{3}} \\ \mathrm{M}_{\mathrm{y}} & =41 \text { to } 56 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{3}} \\ \mathrm{R}_{\mathrm{g}_{1}} & =\max \cdot 0.5 \mathrm{M} \Omega\end{aligned}$
$\mathrm{R}_{\mathbf{x}}, \mathrm{R}_{\mathbf{y}}=\max . \quad 5 \mathrm{M} \Omega$

[^7]
INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with 7 cm diameter flat face plate and post deflection acceleration by means of a heljcal electrode. The low heater consumption together with the high sensitivity render this tube suitable for transistorized equipment.

QUICK REFERENCE DATA				
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{6}(\ell)}$	$=1200 \mathrm{~V}$		
Display area		$=4.5 \times 6 \mathrm{~cm}$		
Deflection coefficient, horizontal	M_{x}	$=10.7 \mathrm{~V} / \mathrm{cm}$		
	M_{y}	$=3.65 \mathrm{~V} / \mathrm{cm}$		

SCREEN

	Colour	Persistence
DH7-11	green	medium short
DN7-11	bluish green	medium short
DP7-11	yellowish green	long

Useful screen diameter
Useful scan at $\mathrm{V}_{\mathrm{g}_{6}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=4$
horizontal
vertical
min. 68 mm
min. 60 mm
min. 45 mm

HEATING

Indirect by A.C. or D.C.; parallel supply

> Heater voltage
> Heater current
$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}=95 \mathrm{~mA}$

MECHANICAL DATA (Dimensions in mm)

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube

Base
14 pins all glass

Dimensions and connections

Overall length
Face diameter
Net weight

Accessories

Socket (supplied with tube)	type	40467
Final accelerator contact connector	type	55563
Mu-metal shield	type	55532

D.7-11

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)=4.0 \mathrm{pF}$
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
$\mathrm{C}_{\mathrm{x}_{2}\left(\mathrm{x}_{1}\right)}=4.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)=3.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)=3.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=1.9 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=1.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=5.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{k}}=3.0 \mathrm{pF}$

FOCUSING electrostatic

DEFLECTION

x plates
y plates
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.
Angle between x and y traces

$$
90^{\circ} \pm 1^{\circ}
$$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.

Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width
$\mathrm{V}_{\mathrm{g}_{6}(\ell)}=1200 \mathrm{~V}$
$\left.\mathrm{~V}_{4}=300 \mathrm{~V}^{2}\right)$
$\mathrm{V}_{2}=1200 \mathrm{~V}$
$\mathrm{I}(\ell)=10 \mu \mathrm{~A}$
l.w.

HELIX

Post deflection accelerator helix resistance $\quad \min .40 \quad \mathrm{M} \Omega$
2) See page 6

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Astigmatism control electrode voltage

$$
\begin{aligned}
\mathrm{V}_{\mathrm{g}_{6}(\ell)} & =1200 \mathrm{~V} \\
\mathrm{~V}_{5} & \left.=300 \pm 30 \mathrm{~V}^{1}\right) \\
\mathrm{V}_{\mathrm{g}_{4}} & \left.=300 \pm 40 \mathrm{~V}^{2}\right)
\end{aligned}
$$

Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient
horizontal
vertical
Deviation of linearity of deflection
Geometry distortion
$=9.4$ to $12 \mathrm{~V} / \mathrm{cm}$
$=3.2$ to $4.1 \mathrm{~V} / \mathrm{cm}$
$=\max .2 \%^{3}$)
See note ${ }^{4}$)
Useful scan
horizontal
vertical

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient at

$$
\begin{array}{clll}
\mathrm{V}_{\mathrm{g}_{6}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=4 \\
\text { horizontal }
\end{array} \mathrm{M}_{\mathrm{x}}=31.3 \text { to } 40.0 \quad \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{4}}
$$

$$
\text { Control grid circuit resistance } \quad \mathrm{Rg}_{1}=\max . \quad 1.5 \mathrm{M} \Omega
$$

Deflection plate circuit
resistance
Focusing electrode current

$$
\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}=\max . \quad 50 \mathrm{k} \Omega
$$

$\mathrm{I}_{3}=-15$ to $\left.+10 \quad \mu \mathrm{~A}^{5}\right)$
$\overline{\left.\left.\left.1^{2}\right)^{3}\right)^{4}\right)^{5} \text {) See page } 6}$

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{6}(\ell)$	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{aligned} & 5000 \\ & 1200 \end{aligned}$
Geometry control electrode voltage	$\mathrm{V}_{\mathrm{g}_{5}}$	max	2200
Astigmatism control electrode voltage	V_{4}	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{array}{r} 2100 \\ 300 \end{array}$
Focusing electrode voltage	V_{3}	$=\max$.	1000
First accelerator voltage	Vg_{2}	$\begin{aligned} & =\max . \\ & =\min . \end{aligned}$	$\begin{array}{r} 1600 \\ 800 \end{array}$

Control grid voltage
negative
positive
positive peak
Cathode to heater voltage
cathode positive
cathode negative
Voltage between astigmatism control electrode and any deflection plate

Screen dissipation
Ratio $\mathrm{V}_{\mathrm{g} 6}(\ell) / \mathrm{V}_{\mathrm{g}_{4}}$

$-\mathrm{V}_{\mathrm{g}_{1}}$	$=\max$.	200	V
$\mathrm{~V}_{\mathrm{g}_{1}}$	$=\max$.	0	V
$\mathrm{~V}_{\mathrm{g}_{\mathrm{p}}}$	$=\max$.	2	V

$\mathrm{V}+\mathrm{k} / \mathrm{f}-\quad=\max .100 \mathrm{~V}$
$\mathrm{V}-\mathrm{k} / \mathrm{f}+\quad=\max . \quad 15 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g}_{4} / \mathrm{x}}=\max .500 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g}} / \mathrm{y}=\max .500 \mathrm{~V}$
$\mathrm{W}_{\ell} \quad=\max . \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$
$\mathrm{V}_{6(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=\max . \quad 4$

D.7-11

1) This tube is designed for optimum performance when operating at the ratio $\mathrm{Vg}_{6}(l) \mathrm{Vg}_{4}=4$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessaryadjustment its potential will be within the stated range.
${ }^{3}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
3) A graticule, consisting of concentric rectangles of $40.8 \mathrm{~mm} \times 40.8 \mathrm{~mm}$ and $39.2 \mathrm{~mm} \times 39.2 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
${ }^{5}$) Values to be taken into account for the calculation of the focus potentiometer.

INSTRUMENT CATHODE-RAY TUBE

Low accelerator voltage cathode-ray tube for monitoring purposes.

QUICK REFERENCE DATA			
Final accelerator voltage Display area Deflection coefficient, horizontal vertical	$\mathrm{V}_{\mathrm{g}_{4}, \mathrm{~g}_{2}(\ell)}=500 \mathrm{~V}$ Both directions full scan		
	M_{X}	37	V / cm
	$\mathrm{M}_{\mathrm{y}}=$	21	V / cm

SCREEN

	Colour	Persistence
DG7-31	yellowish green	medium

Useful screen diameter
min . 65 mm
Useful scan

horizontal	full scan
vertical	full scan

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

$V_{f}=6.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

MECHANICAL DATA

Dimensions in mm

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Duodecal 12 pins

Dimensions and connections

See also outline drawing

Overall length
Face diameter

Net weight:

Accessories

55530

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)=3.7 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)=3.0 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)=2.5 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)=2.5 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=1.7 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=1.0 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{g}_{1}}=7.6 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{k}}
\end{aligned}
$$

FOCUSING	electrostatic
DEFLECTION	double electrostatic
x plates	asymmetrical
y plates	symmetrical
Angle between x and y traces	$90^{\circ} \pm 1.5^{\circ}$

LINE WIDTH

Measured on a circle of 50 mm diameter

Accelerator voltage
Beam current
Line width

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient, horizontal vertical

Geometry distortion
Useful scan, horizontal
vertical

$\mathrm{V}_{\mathrm{g}_{4}, g_{2}(\ell)}$	$=$	500 V
$\mathrm{~F}_{(\ell)}$	$=$	$0.5 \mu \mathrm{~A}$
$1 . \mathrm{w}$.	$=$	0.4 mm

$$
\begin{aligned}
\mathrm{V}_{\mathrm{g}_{4}, \mathrm{~g}_{2}(\ell)} & =500 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{3}} & =0 \text { to } 120 \mathrm{~V} \\
-\mathrm{V}_{\mathrm{g}_{1}} & =50 \text { to } 100 \mathrm{~V} \\
\mathrm{M}_{\mathrm{x}} & =33.3 \text { to } 41.5 \mathrm{~V} / \mathrm{cm} \\
\mathrm{M}_{\mathrm{y}} & -18.8 \text { to } 23.2 \mathrm{~V} / \mathrm{cm}
\end{aligned}
$$

See note 1 page 4
full scan
full scan

LIMITING VALUES (Absolute max. rating system)

Accelerator voltage
Focusing electrode voltage
Control grid voltage
negative
positive
positive peak

Cathode to heater voltage cathode positive
cathode negative
Voltage between accelerator electrode and any deflection plate

Screen dissipation

$\mathrm{V}_{\mathrm{g}, \mathrm{g}_{2}}(\ell)$	$=\max$. $=\min$.	$\begin{aligned} & 800 \\ & 400 \end{aligned}$
V_{3}	$=\max$.	200
$-\mathrm{Vg}_{1}$	$=\max$.	200
V_{g}	$=\max$.	0
$\mathrm{Vg}_{1 p}$	$=\max$	2

$$
\mathrm{V}+\mathrm{k} / \mathrm{f}-\quad=\max .200 \mathrm{~V}
$$

$$
\mathrm{V}-\mathrm{k} / \mathrm{f}+\quad=\max . \quad 125 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{g}_{4} / \mathrm{x}}=\max .500 \mathrm{~V}
$$

$$
\mathrm{V}_{4} / \mathrm{y}=\max . \quad 500 \mathrm{~V}
$$

$$
\mathrm{W}_{\ell} \quad=\max . \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}
$$

CIRCUIT DESIGN VALUES

Focusing voltage

$$
\mathrm{V}_{3}=0 \text { to } 240 \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}}
$$

Control grid voltage for visual extinction of focused spot

$$
-\mathrm{V}_{1}=100 \text { to } 200 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{2}}
$$

Deflection coefficient at $\mathrm{V}_{\mathrm{g}}(\ell) / \mathrm{V}_{\mathrm{g}}$

horizontal	M_{x}	$=67$ to 83	$\mathrm{~V} / \mathrm{cm}$ per kV of V_{g}	
vertical	${ }^{\circ} \mathrm{M}_{\mathrm{y}}$	$=37.6$ to 46.4	$\mathrm{~V} / \mathrm{cm}$ per kV of V_{g}	
istance	R_{g}	$=\max$.	0.5	$\mathrm{M} \Omega$

Deflection plate circuit

$$
\text { resistance } \quad \mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}=\max . \quad 5 \mathrm{M} \Omega
$$

Focusing electrode current

$$
\left.\mathrm{I}_{\mathrm{g}} \quad=-15 \text { to }+10 \mu \mathrm{~A}^{2}\right)
$$

1) A graticule, consisting of concentric rectangles of $43.2 \mathrm{~mm} \times 43.2 \mathrm{~mm}$ and $40 \mathrm{~mm} \times 40 \mathrm{~mm}$ is aligned with the electrical \times axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
2) Values to be taken into account for the calculation of the focus potentiometer.

Remark: A contrast improving transparent conductive coating connected to $\mathrm{g}_{4}, \mathrm{~g}_{2}$ is present between glass and fluorescent layer. This enables the application of a high potential to g_{4}, g_{2} with respect to earth, without the risk of picture distortion by touching the face (electrostatic body-effect)

INSTRUMENT CATHODE-RAY TUBE

Low accelerator voltage cathode-ray tube for monitoring purposes.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{4}} \mathrm{~g}_{2}(\ell)=$		V
Display area	Both directions full scan		
Deflection coefficient, horizontal	M_{X}	37	V / cm
vertical	M_{y}	21	V / cm

SCREEN

	Colour	Persistence
DG7-32	yellowish green	medium short

Useful screen diameter

Useful scan

horizontal	full scan
vertical	full scan

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current
$\min .65 \mathrm{~mm}$
full scan

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Duodecal 12 pins
Dimensions and connections
See also outline drawing

Overall length
Face diameter

Net weight:

Accessories

D.7-32

CAPACITANCES

x_{1} to all other elements except x_{2} x_{2} to all other elements except x_{1} y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}=3.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)=3.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}=2.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}=2.5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}=1.7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}=1.0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}_{1}}=7.6 \mathrm{pF}$
C_{k}

FOCUSING	electrostatic
DEFLECTION	double electrostatic
x plates	symmetrical
y plates	symmetrical
Angle between x and y traces	$90^{\circ} \pm 1.5^{\circ}$

LINE WIDTH

Measured on a circle of 50 mm diameter

Accelerator voltage
Beam current
Line width

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot
Deflection coefficient, horizontal vertical
Geometry distortion
Useful scan, horizontal
vertical

$\mathrm{V}_{4}, \mathrm{~g}_{2}(\ell)$	$=$	500 V
$\mathrm{I}_{(\ell)}$	$=$	$0.5 \mu \mathrm{~A}$
1.w.	$=$	0.4 mm

LIMITING VALUES (Absolute max. rating system)
Accelerator voltage
Focusing electrode voltage
Control grid voltage
negative
positive
positive peak

$\mathrm{V}_{4}, \mathrm{~g}_{2}(\ell)$	$=\max$. $=\min$.	$\begin{aligned} & 800 \\ & 400 \end{aligned}$
V_{3}	$=\max$.	200
$-\mathrm{V}_{1}$	$=\max$.	200
V_{g}	$=\max$.	0
$\mathrm{Vg}_{1 \mathrm{p}}$	$=\max$.	2

Cathode to heater voltage
cathode positive
cathode negative
Voltage between accelerator electrode and any deflection plate

$$
\mathrm{V}_{\mathrm{g}_{4} / \mathrm{x}}=\max .500 \mathrm{~V}
$$

Screen dissipation

$$
\begin{array}{llll}
\mathrm{V}+\mathrm{k} / \mathrm{f}- & =\max . & 200 & \mathrm{~V} \\
\mathrm{~V}-\mathrm{k} / \mathrm{f}+ & =\max . & 125 & \mathrm{~V}
\end{array}
$$

$$
\mathrm{v}_{\mathrm{g}_{4} / \mathrm{y}}=\max . \quad 500 \mathrm{~V}
$$

$$
\mathrm{W}_{\ell} \quad=\max . \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}
$$

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual extinction of focused spot

$$
\begin{aligned}
\mathrm{V}_{3} & =0 \text { to } 240 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}} \\
-\mathrm{V}_{\mathrm{g}_{1}} & =100 \text { to } 200 \quad \mathrm{~V} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{2}}
\end{aligned}
$$

Deflection coefficient at $\mathrm{V}_{\mathrm{g}_{4} \mathrm{~g}_{2}(\ell)} / \mathrm{V}_{\mathrm{g}}$ vertical $\quad \mathrm{M}_{\mathrm{y}}=37.6$ to $46.4 \mathrm{~V} / \mathrm{cm}$ per kV of V_{g}

Control grid circuit resistance $\quad \mathrm{R}_{\mathrm{g}}=\max .0 .5 \mathrm{M} \Omega$
Deflection plate circuit
resistance
Focusing electrode current

$$
\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}=\max . \quad 5 \mathrm{M} \Omega
$$

$$
\left.\mathrm{I}_{\mathrm{g}} \quad=-15 \text { to }+10 \mu \mathrm{~A}^{2}\right)
$$

1) A graticule, consisting of concentric rectangles of $43.2 \mathrm{~mm} \times 43.2 \mathrm{~mm}$ and $40 \mathrm{~mm} \times 40 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
2) Values to be taken into account for the calculation of the focus potentiometer.

Remark: A contrast improving transparent conductive coating connected to $\mathrm{g}_{4}, \mathrm{~g}_{2}$ is present between glass and fluorescent layer. This enables the application of a high potential to g_{4}, g_{2} with respect to earth, without the risk of picture distortion by touching the face (electrostatic body-effect)

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with 7 cm diameter flat face-plate. The tube is intended for small service oscilloscopes.

SCREEN

	Colour	Persistence
DG7-36	yellowish green DN7 -36	medium medium short

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage	$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
	$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

MECHANICAL DATA

MECHANICAL DATA (continued)

Base
 Duodecal 12 pins

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.
Angle between x and y traces

$$
90^{\circ} \pm 1^{\circ}
$$

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient
horizontal
vertical
Deviation of linearity of deflection
Useful scan
horizontal
vertical

INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with 7 cm diameter flat faceplate and post deflection acceleration by means of a helical electrode. The tube is intended for small service oscilloscopes.

QUICK REFERENCE DATA

QUICK REFERENCE DATA				
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{6}(\ell)}$	$=1200 \mathrm{~V}$		
Display area		$=4.5 \times 6 \mathrm{~cm}$		
Deflection coefficient, horizontal	M_{x}	$=10.7$	$\mathrm{~V} / \mathrm{cm}$	
	vertical	M_{y}	$=3.65 \mathrm{~V} / \mathrm{cm}$	

SCREEN

	Colour	Persistence
DH7-78	green	medium short
DN7-78	bluish green	medium short
DP7-78	yellowish green	long

Useful screen diameter

Useful scan at $\mathrm{V}_{\mathrm{g}_{6}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=4$
horizontal
vertical
min. 68 mm
min. 60 mm
\min. 45 mm

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current
$V_{f}=6.3 \mathrm{~V}$
$I_{f}=300 \mathrm{~mA}$

MECHANICAL DATA
Dimensions in mm

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Dimensions and connections
Overall length
Face diameter
Net weight
Accessories
Socket (supplied with the tube)
Final accelerator contact connector
Mu-metal shield

14 pins all glass
max. 296 mm
max. 77.8 mm
approx. 370 g
fen 60 g,
type 40467
type 55563
type 55532

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

FOCUSING

DEFLECTION
x plates
y plates
electrostatic

double electrostatic

symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $\quad 90 \pm 1^{\circ}$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.
Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width

$\mathrm{V}_{\mathrm{g}_{6}(\ell)}$	$=1200 \mathrm{~V}$
$\mathrm{~V}_{4}$	$\left.=300 \mathrm{~V}^{2}\right)$
$\mathrm{V}_{\mathrm{g}_{2}}$	$=1200 \mathrm{~V}$
$\mathrm{I}(\ell)$	$=10 \mathrm{\mu A}$
1.w.	$=0.65 \mathrm{~mm}$

HELIX

Post deflection accelerator helix resistance
$\min .40 \mathrm{M} \Omega$

2) See page 5

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode

$$
\text { voltage } \left.\quad \mathrm{V}_{5}=300 \pm 30 \quad 1000 \pm 100 \mathrm{~V} \quad 1\right)
$$

Astigmatism control
electrode voltage
Focusing electrode voltage
First acceler ator voltage
Control grid voltage for visual extinction of focused spot
Modulation voltage for

$$
I(\ell)=10 \mu \mathrm{~A}
$$

Deflection coefficient
$\left.\begin{array}{rlllllll}\text { horizontal } & \mathrm{M}_{\mathrm{x}} & = & 9.4 \text { to } & 12 & 31.3 \text { to } 40.0 & \mathrm{~V} / \mathrm{cm} \\ \text { vertical } & \mathrm{M}_{\mathrm{y}} & = & 3.2 \text { to } & 4.1 & 10.7 \text { to } 13.7 & \mathrm{~V} / \mathrm{cm}\end{array}\right)$

Geometry distortion
Useful scan

horizontal	$=\min$.	60	60 mm
vertical	$=\min$.	45	45 mm

CIRCUIT DESIGN VALUES

Focusing voltage
Control grid voltage for visual
extinction of focused spot $-\mathrm{V}_{\mathrm{g}_{1}}=30$ to 60 V per kV of $\mathrm{V}_{\mathrm{g}_{2}}$
Deflection coefficient at $\mathrm{V}_{\mathrm{g}_{6}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=4$
horizontal $\quad \mathrm{M}_{\mathrm{X}}=31.3$ to $40.0 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{4}}$
vertical
Control grid circuit resistance
$\mathrm{V}_{\mathrm{g}}=35$ to 165 V per kV of $\mathrm{V}_{\mathrm{g}_{4}}$

Deflection plate circuit
resistance
Focusing electrode current $\quad I_{g_{3}}=-15$ to $+10 \mu \mathrm{~A}{ }^{5}$)

D.7-78

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{6}(\ell)$		$\begin{array}{ll} \max . & 5000 \\ \min . & 1200 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Geometry control electrode voltage	$\mathrm{V}_{\mathrm{g}_{5}}$	$=$	max. 2200	V
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g}}^{4}$	$=$	$\begin{array}{lr} \max . & 2100 \\ \min . & 300 \end{array}$	V
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{3}}$	$=$	max. 1000	V
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$		$\begin{array}{lr} \max . & 1600 \\ \min . & 800 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Control grid voltage				
negative	$-\mathrm{V}_{\mathrm{g}_{1}}$	$=$	\max. 200	V
positive	V_{g}	$=$	max. 0	V
positive peak	$\mathrm{V}_{\mathrm{g}_{1 p}}$	$=$	$\max .2$	V
Cathode to heater voltage				
cathode positive	$\mathrm{V}_{+\mathrm{k} / \mathrm{f}-}$	$=$	max. 200	V
cathode negative	$\mathrm{V}_{-\mathrm{k} / \mathrm{f}+}$	$=$	max. 125	V
Voltage between astigmatism control electrode and any deflection plate	$\begin{aligned} & \mathrm{V}_{\mathrm{g}_{4} / \mathrm{x}} \\ & \mathrm{~V}_{\mathrm{g}_{4} / \mathrm{y}} \end{aligned}$	$=$	$\begin{array}{ll}\max . & 500 \\ \max . & 500\end{array}$	V
Screen dissipation	w_{ℓ}	$=$	max. 3	$\mathrm{mW} / \mathrm{cm}^{2}$
Ratio $\mathrm{V}_{\mathrm{g}}{ }^{(\ell)} / \mathrm{V}_{\mathrm{g}} 4$	$\mathrm{V}_{\mathrm{g}}(\ell) / \mathrm{V}_{\mathrm{g}} 4$		\max. 4	

1) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g}_{6}(\ell)} / \mathrm{V}_{\mathrm{g}_{4}}=4$. Operating at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
${ }^{2}$) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
2) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
3) A graticule, consisting of concentric rectangles of $40.8 \mathrm{~mm} \times 40.8 \mathrm{~mm}$ and $39.2 \mathrm{~mm} \times 39.2 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
4) Values to be taken into account for the calculation of the focus potentiometer.
7202798-4.8.g-gh

INSTRUMENT CATHODE-RAY TUBE

SCREEN

	colour	persistence
DG10-6	yellowish green	medium
DP10-6	yellowish green	long

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current

MECHANICAL DATA

Base: Magnal

FOCUSING

DEFLECTION
x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
First accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient, horizontal vertical

LIMITING VALUES

Final accelerator voltage
First accelerator voltage

$\mathrm{V}_{\mathrm{g}}(\ell)$	4000	V
$\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2}$	2000	V
V_{3}	400 to 720	V
$-\mathrm{V}_{\mathrm{g}_{1}}$	45 to 100	V
M_{X}	40 to 52.5	V / cm
M_{y}	32 to 40	V / cm

$$
\begin{array}{lll}
\mathrm{Vg}_{5}(\ell) & \max .5000 & \mathrm{~V} \\
\mathrm{~V}_{4}, \mathrm{~g}_{2} & \max . & 2500
\end{array}
$$

INSTRUMENT CATHODE-RAY TUBE

SCREEN

	colour	persistence
DG10-74	yellowish green	medium
DP10-74	yellowish green	long

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current

MECHANICAL DATA

Base: Magnal

$$
\begin{array}{lll}
\mathrm{V}_{\mathrm{f}} & 6.3 & \mathrm{~V} \\
\hline \mathrm{I}_{\mathrm{f}} & 300 & \mathrm{~mA}
\end{array}
$$

Dimensions in mm

FOCUSING

DEFLECTION

x plates	symmetrical
y plates	symmetrical

Angle between x and y traces $90+1.50$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
First accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient, horizontal
vertical

$\mathrm{V}_{5}(\ell)$	4000	V
$\mathrm{~V}_{4}, \mathrm{~g}_{2}$	2000	V
$\mathrm{~V}_{3}$	400 to 720	V
$-\mathrm{V}_{1}$	45 to 100	V
M_{x}	40 to 52.5	$\mathrm{~V} / \mathrm{cm}$
M_{y}	32 to 40	$\mathrm{~V} / \mathrm{cm}$

LIMITING VALUES

Final accelerator voltage
First accelerator voltage
$\mathrm{V}_{5}(\ell)$
$\mathrm{V}_{\mathrm{g}_{2}}, \mathrm{~g}_{4}$
max. 5000 V
max. 2500 V

INSTRUMENT CATHODE-RAY TUBE

General purpose cathode-ray tube with flat face and post deflection acceleration by means of a helical electrode.

SCREEN

	Colour	Persistence
DH10-78	green	medium short
DN10-78	bluish green	medium short
DP10-78	yellowish green	long

heating

Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current
MECHANICAL DATA

$\underline{V_{f}}=6.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$
Dimensions in mm

Base

Accessories

Final accelerator contact connector	type	55560
Mu-metal shield	type	55541

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

Diheptal 12 pins

Is use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

$$
90 \pm 1^{\circ}
$$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot
Deflection coefficient
horizontal
vertical
Deviation of linearity of deflection

$$
\begin{array}{rlr}
\mathrm{V}_{\mathrm{g}_{6}(\ell)} & =4000 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{5}} & =1000 \quad \pm 100 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{4}}, \mathrm{~g}_{2} & =1000 \pm 50 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{g}_{3}} & =150 \text { to } 350 \mathrm{~V} \\
-\mathrm{V}_{\mathrm{g}_{1}} & =22.5 \text { to } 37.5 \mathrm{~V}
\end{array}
$$

Useful scan
horizontal

$$
\begin{aligned}
\mathrm{M}_{\mathrm{X}} & =29 \text { to } 39 \mathrm{~V} / \mathrm{cm} \\
\mathrm{M}_{\mathrm{y}} & =9.4 \text { to } 12.6 \mathrm{~V} / \mathrm{cm} \\
& =\max . \quad 2 \%
\end{aligned}
$$

vertical

$$
\begin{array}{lll}
=\min . & 75 \mathrm{~mm} \\
=\min . & 55 \mathrm{~mm}
\end{array}
$$

INSTRUMENT CATHODE-RAY TUBE

The DG13-2 is a 13 cm spherical faced cathode ray tube primarily intended for inexpensive service oscilloscopes.

SCREEN

	colour	persistence
DG13-2	yellowish green	medium
DP 13-2	yellowish green	long

HEATING

Indirect by A. C. or D. C.; parallel supply

Heater voltage	$\mathrm{V}_{\mathrm{f}} 6.3$	V
	I_{f}	300 mA

MECHANICAL DATA
Dimensions in mm

MECHANICAL DATA (continued)
Base
Diheptal

FOCUSING

DEFLECTION
x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

Angle between x and y traces

$$
90 \pm 1^{0}
$$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
First accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient, horizontal
vertical
Useful scan, horizontal
vertical

$\mathrm{V}_{5}(\ell)$	4000	V
$\mathrm{~V}_{4}, \mathrm{~g}_{2}$	2000	V
$\mathrm{~V}_{\mathrm{g}_{3}}$	400 to 720	V
$-\mathrm{V}_{\mathrm{g}_{1}}$	45 to 100	V
M_{x}	27 to 35	$\mathrm{~V} / \mathrm{cm}$
M_{y}	24 to 29	$\mathrm{~V} / \mathrm{cm}$

full scan full scan

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter oscilloscope tube for inexpensive oscilloscopes.

SCREEN

	colour	persistence
DG13-32	yellowish green	medium

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

$$
\begin{array}{lll}
\mathrm{V}_{\mathrm{f}} & 6.3 & \mathrm{~V} \\
\hline \mathrm{I}_{\mathrm{f}} & 600 \mathrm{~mA}
\end{array}
$$

MECHANICAL DATA

Dimensions in mm

MECHANICAL DATA (continued)

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

Angle between x and y traces $90 \pm 1^{\circ}$

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient, horizontal vertical

Useful scan, horizontal
vertical

INSTRUMENT CATHODE－RAY TUBE

13 cm diameter flat faced oscilloscope tube for general purpose oscilloscopes．

SCREEN

	colour	persistence
DG13－34	yellowish green	medium short
DP 13－34	yellowish green	long

HEATING

Indirect by A．C．or D．C．；parallel supply

| Heater voltage |
| :--- | :--- | :--- |
| Heater current |$\quad \mathrm{V}_{\mathrm{f}} 6.3 \mathrm{~V}, ⿳ 亠 口 子$

MECHANICAL DATA

Dimensions in mm

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angel between x and y traces

$$
90 \pm 1^{0}
$$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
First accelerator voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot
Deflection coefficient, horizontal vertical

Deviation of linearity of deflection
Useful scan, horizontal
vertical

$\mathrm{V}_{\mathrm{g}_{5}(\ell)}$	4000	V
$\mathrm{~V}_{4}, \mathrm{~g}_{2}$	2000	V
$\mathrm{~V}_{3}$	400 to 690	V

vertical	M_{y}	15.8 to	19.6

INSTRUMENT CATHODE-RAY TUBE

10 cm diameter flat faced double gun oscilloscope tube, post-deflection acceleration by means of a helical electrode and low interaction between traces. The tube features beam-blanking.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{8}}(\ell)$	3000	V
	horizontal	full	scan

SCREEN

	colour	persistence
E10-12GH	green	medium short
E10-12GM	yellowish green	long
E10-12GP	bluish green	medium short

Useful screen diameter min. 85 mm
Useful scan (each gun) at $\mathrm{V}_{8}(\ell) / \mathrm{V}_{5}=3$
horizontal full scan
vértical $\quad \min .70 \mathrm{~mm}$
The useful scan may vertically be shifted to a max. of 5 mm with respect to the geometric centre of the face plate.

HEATING

Indirect by A.C. or D. C.; parallel supply
Heater voltage

Heater current \quad each gun \quad| $\mathrm{V}_{\mathrm{f}} 6.3 \mathrm{~V}$ |
| :--- |

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Dimensions and connections
Overall length
Face diameter
Net weight

Accessories

Socket, supplied with tube	type	55566
Final accelerator contact connector	type	55563
Side contact connector	type	55561
Mu-metal shield	type	55545

CAPACITANCES (each gun)

x_{1} ' to all elements except $\mathrm{x}_{2}{ }^{\prime}$
$\mathrm{x}_{2}{ }^{\prime}$ to all elements except $\mathrm{x}_{1}{ }^{\prime}$
x_{1} " to all other elements except $\mathrm{x}_{2}{ }^{\prime \prime}$
x_{2} " to all other elements except $\mathrm{x}_{1}{ }^{\prime \prime}$
y1 to all other elements except y2
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y1 to y_{2}
Grid No. 1 to all other elements
Cathode to all other elements

FOCUSING electrostatic

DEFLECTION

x plates
y plates
Angle between x and y traces
90 ± 1^{0}
Angle between x-traces $\pm 0.8^{\circ}$ max. in the centre of the screen.
Angle between y-traces $\pm 1^{0}$ max. in the centre of the screen.
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.
Final accelerator voltage
Astigmatism control electrode voltage
First accelerator voltage
Beam current
Line width

$\mathrm{V}_{8}(\ell)$	3000	V
$\mathrm{~V}_{5}$	1000	$\left.\mathrm{~V}^{3}\right)$
Vg_{2}	1000	V
$\mathrm{I}_{8}(\ell)$	10	$\mu \mathrm{~A}$
1.w.	0.50	mm

HELIX

Post deflection accelerator helix resistance: $\min . \quad 100 \mathrm{M} \Omega$
${ }^{3}$) See page 6 .

TYPICAL OPERATING CONDITIONS(each gun)

Final accelerator voltage
Intergun shield voltage
Geometry control electrode voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Deflection blanking electrode voltage
Deflection blanking control voltage for beam blanking of a current $\mathrm{I}_{9}(\ell)=10 \mu \mathrm{~A}$
First accelerator voltage
Control grid voltage for visual extinction of focused spot

Deflection coefficient, horizontal vertical

Deviation of linearity of deflection
Geometry distortion
Interaction factor
Tracking error

$\mathrm{V}_{8}(l)$	3000	V
Vg_{7}	1000 ± 100	$\left.\mathrm{~V}^{\mathrm{l}}\right)$
V_{6}	1000 ± 100	$\left.\left.\mathrm{~V}^{1}\right)^{2}\right)$
V_{5}	1000 ± 100	$\left.\mathrm{~V}^{3}\right)$
V_{4}	180 to 380	V
$\mathrm{~V}_{3}$	1000	V

$\Delta V_{g_{3}}$

Vg_{1}	-25	to	-90
V			
M_{X}	12 to	18	$\mathrm{~V} / \mathrm{cm}$
M_{y}	6 to	8	$\mathrm{~V} / \mathrm{cm}$

$\max .2 .5 \%^{4}$)
See note 5
$2 \cdot 10^{-3} \mathrm{~mm} / \mathrm{Vdc}^{6}$)
$1.5 \mathrm{~mm}^{7}$)

[^8]| Final accelerator voltage | $\mathrm{V}_{88}(\ell)$ | max.
 min. | $\begin{aligned} & 3300 \\ & 2700 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Intergun shield voltage | V_{7} | max. | 1200 | V |
| Geometry control electrode voltage | Vg_{6} | max. | 1200 | V |
| Astigmatism control electrode voltage | V_{5} | \max.
 min. | $\begin{array}{r} 1200 \\ 800 \end{array}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| Focusing electrode voltage | V_{4} | \max. | 1200 | V |
| Beam blanking electrode voltage | V_{3} | max. | 1200 | V |
| First accelerator voltage | V_{g} | max.
 min. | $\begin{array}{r} 1200 \\ 200 \end{array}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| Control grid voltage, | | | | |
| negative | $-\mathrm{V}_{1}$ | max. | 200 | V |
| positive | Vg_{1} | max. | 0 | V |
| positive peak | $\mathrm{V}_{\mathrm{g}_{1 p}}$ | max. | 2 | V |
| Cathode to heater voltage, | | | | |
| . cathode positive | $\mathrm{V}_{\text {kf }}$ | max. | 200 | V |
| cathode negative | $-\mathrm{V}_{\mathrm{kf}}$ | max. | 125 | V |
| Average cathode current | I_{k} | max. | 300 | $\mu \mathrm{A}$ |
| Screen dissipation | W_{ℓ} | max. | 3 | mV |
| Ratio $\mathrm{V}_{\mathrm{g}_{8}}(\mathrm{\ell}) / \mathrm{V}_{\mathrm{g}_{5}}$ | $\mathrm{V}_{\mathrm{g}}(\mathrm{l}) /$ | \max. | 3 | |

CIRCUIT DESIGN VALUES (each gun, if applicable)

Focusing voltage
Control grid voltage for visual cut-off focused spot
$\mathrm{V}_{\mathrm{g}_{4}} \quad 180$ to $380 \mathrm{~V} / \mathrm{kV}$ of $\mathrm{V}_{\mathrm{g}_{2}}$
$\mathrm{V}_{\mathrm{g}_{1}} \quad 25$ to $-90 \mathrm{~V} / \mathrm{kV}$ of $\mathrm{V}_{\mathrm{g}_{2}}$
Deflection coefficient $\mathrm{V}_{8}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=3$
horizontal
vertical
Focusing electrode current
Control grid circuit resistance
$\mathrm{M}_{\mathrm{X}} \quad 10$ to $20 \mathrm{~V} / \mathrm{cm}$ per kV of V_{5}
M_{y}
Ig_{4}
$\mathrm{R}_{\mathrm{g}_{1}}$

6 to $8 \mathrm{~V} / \mathrm{cm}$ per kV of V_{5}
-15 to $+10 \mu \mathrm{~A}$
$\max .1 .5 \mathrm{M} \Omega$

1) This tube is designed for optimum performance when operating at the ratio $\mathrm{Vg}_{8}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=3$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage and the intergunshield voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) This voltage should be equal to the mean x - and y plates potential.
3) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
${ }^{4}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
4) A graticule consisting of concentric rectangles of $60 \mathrm{~mm} \times 60 \mathrm{~mm}$ and 57 mm $\times 57 \mathrm{~mm}$ is aligned with electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum potentials applied.
${ }^{6}$) The deflection of one beam when balanced dc voltage are applied to the deflection plates of the other beam, will not be greater than the indicated value.
${ }^{7}$) With 50 mm vertical traces superimposed at the tube face centre and deflected horizontally $\pm 4 \mathrm{~cm}$ by voltages proportional to the relative deflection factors, horizontal separation of the corresponding points of the traces shall not be greater than the indicated value.

INSTRUMENT CATHODE-RAY TUBE

10 cm diameter metal-backed flat-faced double gun oscilloscope tube with post-deflection acceleration by means of a helical electrode and low interaction between beams.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{8}}(\ell)$	4000	V
Display area	horizontal	full scan	
Deflection coefficient, horizontal	vertical	7	cm
	M_{x}	17	$\mathrm{~V} / \mathrm{cm}$
	vertical	M_{y}	7.4

SCREEN

	Colour	Persistence
E10-130GH	green	medium short
E10-130GM	yellowish green	long
E10-130GP	bluish green	medium short

Useful screen diameter
$\min .85 \mathrm{~mm}$
Useful scan (each gun) at $V_{g_{8}}(\ell) / V_{g_{5}}=4$ horizontal full scan vertical min. 70 mm

The useful scan may be shifted vertically to a maximum of 5 mm with respect to the geometric centre of the face plate.

HEATING

Indirect by A.C. or D. C.; parallel supply
Heater voltage

Heater current \quad| V_{f} | 6.3 V | |
| :--- | :--- | :--- |
| | I_{f} | 300 mA |

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base

Dimensions and connections

Overall length

Face diameter
Net weight
Accessories

Socket, supplied with tube	type	55566
Final-accelerator contact connector	type	55563
Side contact connector	type	55561
Mu-metal shield	type	55545

CAPACITANCES

$\mathrm{x}_{1}{ }^{\prime}$ to all other elements except $\mathrm{x}_{2}{ }^{\prime}$ $x_{2}{ }^{\prime}$ to all other elements except $x_{1}{ }^{\prime}$ x_{1} " to all other elements except $\mathrm{x}_{2}{ }^{\prime \prime}$ x_{2} " to all other elements except $\mathrm{x}_{1}{ }^{\prime \prime}$
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Grid No. 1 to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x}_{1}}{ }^{\prime}\left(\mathrm{x}_{2}{ }^{\prime}\right)$	4.5 pF
$\mathrm{C}_{\mathrm{x}_{2}}{ }^{\prime}\left(\mathrm{x}_{1}{ }^{\prime}\right)$	3 pF
$\mathrm{C}_{\mathrm{x}_{1}}{ }^{\prime \prime}\left(\mathrm{x}_{2}{ }^{\prime \prime}\right)$	3 pF
$\left.\mathrm{C}_{\mathrm{x}_{2}}{ }^{\prime \prime} \mathrm{x}_{1}{ }^{\prime \prime}\right)$	4.5 pF
$\left.\mathrm{C}_{\mathrm{y}_{1}}{ }^{\prime} \mathrm{y}_{2}\right)^{\prime}$	2 pF
$\mathrm{C}_{\mathrm{y}_{2}}{ }^{\left(\mathrm{y}_{1}\right)}$	2 pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	2 pF
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}$	1.5 pF
$\mathrm{C}_{\mathrm{g}_{1}}$	5.2
C_{k}	pF
	5

FOCUSING

DEFLECTION
x plates
y plates
Angle between x and y traces (each gun)
Angle between corresponding \times traces at the centre of the screen
Angle between corresponding y traces at the centre of the screen

Electrostatic

Double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

LINE WIDTH

Measured with the shrinking-raster method in the centre of the screen.

Final accelerator voltage
Astigmatism-control electrode voltage
First accelerator voltage
Beam current
Line width
HE LIX
Post-deflection accelerator helix resistance
2) See page 5

$\mathrm{V}_{\mathrm{g}_{8}}(\ell)$	4000	V
$\mathrm{~V}_{\mathrm{g}_{5}}$	1000	V
$\mathrm{~V}_{2}$	$2)$	
$\mathrm{I}_{\mathrm{g}_{8}}(\ell)$	1000	V
l.w.	10	$\mu \mathrm{~A}$
	0.4	mm

TYPICAL OPERATING CONDITIONS (each gun, if applicable)

Final accelerator voltage $\mathrm{V}_{\mathrm{g}_{8}}(\ell)$	4000	V
Intergun shield voltage $\quad \mathrm{V}_{\mathrm{g}}^{7}$	1000 ± 100	$\mathrm{V} \quad 1)$
Geometry-control electrode voltage $\quad \mathrm{V}_{\mathrm{g}_{6}}$	1000 ± 100	V l)
Astigmatism-control electrode voltage $\quad \mathrm{V}_{\mathrm{g}}$	1000 ± 100	V 2)
Focusing electrode voltage $\mathrm{V}_{\mathrm{g}_{4}}$	200 to 320	V
Deflection-blanking electrode voltage $\quad \mathrm{V}_{\mathrm{g}_{3}}$	1000	V
Deflection-blanking control voltage for blanking a beam current $\mathrm{I}_{g_{8}}(\ell)=10 \mu \mathrm{~A} \Delta \mathrm{~V}_{\mathrm{g}_{3}}$	max. 40	V
First accelerator voltage $\mathrm{V}_{\mathrm{g}_{2}}$	1000	V
Control grid voltage for extinction of focused spot	-25 to -90	V
$\begin{array}{ccc}\text { Deflection coefficient, } & \text { horizontal } & \\ & \text { vertical } & \mathrm{M}_{\mathrm{x}} \\ & \mathrm{M}_{\mathrm{y}}\end{array}$	$\begin{array}{r} 14 \text { to } 20 \\ 6.4 \text { to } 8.4 \end{array}$	$\begin{aligned} & \mathrm{V} / \mathrm{cm} \\ & \mathrm{~V} / \mathrm{cm} \end{aligned}$
Deviation of linearity of deflection	\max. 2	\% 3)
Geometry distortion	see note 4	
Interaction factor	max. $2 \cdot 10^{-3}$	$\mathrm{mm} / \mathrm{V}_{\text {DC }}{ }^{5}$)
Tracking error	1.2	mm

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{8}}(\ell)$	\max. min.	$\begin{aligned} & 5000 \\ & 2700 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Intergun shield voltage	$\mathrm{V}_{\mathrm{g}_{7}}$	\max.	1200	V
Geometry control electrode voltage	Vg_{6}	\max.	1200	V
Astigmatism control electrode voltage	V_{5}	max. min.	$\begin{array}{r} 1200 \\ 800 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	\max.	1200	V
Beam blanking electrode voltage	V_{3}	max.	1200	V
First accelerator voltage	V_{g}	\max. min.	$\begin{array}{r} 1200 \\ 200 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Control grid voltage, negative positive	$\begin{gathered} -\mathrm{V}_{\mathrm{g}_{1}} \\ \mathrm{~V}_{\mathrm{g}_{1}} \end{gathered}$	$\max _{\max }$.	200	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Cathode to heater voltage, cathode positive cathode negative	$\begin{array}{r} \mathrm{V}_{\mathrm{kf}} \\ -\mathrm{V}_{\mathrm{kf}} \end{array}$	\max. \max.	125	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Average cathode current	I_{k}	max	300	$\mu \mathrm{A}$
Screen dissipation	W_{ℓ}	max	3	$\mathrm{mW} / \mathrm{cm}^{2}$
Ratio $\mathrm{V}_{\mathrm{g}_{8}}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}$	$\mathrm{V}_{\mathrm{g}}(\mathrm{l}) /$	\max.	4	

1, $\left.{ }^{2},{ }^{3},{ }^{4},{ }^{5}\right)^{6}$) See page 5

CIRCUIT DESIGN VALUES (each gun, if applicable)

Focusing voltage
Control grid voltage for extinction of focused spot

Deflection coefficient at $\mathrm{V}_{\mathrm{g}_{8}}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=4$ horizontal vertical

Focusing electrode current
Control grid circuit resistance
$\begin{array}{ll}\mathrm{V}_{4} & 200 \text { to } 320 \mathrm{~V} \quad \text { per } \mathrm{kV} \text { of } \mathrm{V}_{2} \\ \mathrm{~V}_{1} & -25 \text { to }-90 \mathrm{~V} \quad \text { per } \mathrm{kV} \text { of } \mathrm{V}_{2} \\ \mathrm{M}_{\mathrm{X}} & 14 \text { to } 20 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{\mathrm{g}_{5}} \\ \mathrm{M}_{\mathrm{y}} & 6.4 \text { to } 8.4 \mathrm{~V} / \mathrm{cm} \text { per } \mathrm{kV} \text { of } \mathrm{V}_{5} \\ \mathrm{I}_{4} & -15 \text { to }+10 \mu \mathrm{~A} \\ \mathrm{R}_{\mathrm{g}} & \max .1 .5 \mathrm{M} \Omega\end{array}$

1) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{8}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=4$. Operation at higher ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage and the intergun shield voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
3) The sensitivity at a deflection of $\leq 75 \%$ of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
4) A graticule consisting of concentric rectangles of $60 \mathrm{~mm} \times 60 \mathrm{~mm}$ and $57.5 \mathrm{~mm} \times 57.5 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum potentials applied.
${ }^{5}$) The deflection of one beam when balanced DC voltages are applied to the deflection plates of the other beam, will not be greater than the indicated value.
${ }^{6}$) With 50 mm vertical traces superimposed at the tube face centre and deflected horizontally $\pm 4 \mathrm{~cm}$ by voltages proportional to the relative deflection factors, horizontal separation of the corresponding points of the traces will not be greater than the indicated value.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat faced, split-beam oscilloscope tube with mesh and metalbacked screen.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 7}(\ell)$	10	
Display area		100×80	mm^{2}
Deflection coefficient, $\begin{array}{r}\text { horizontal } \\ \text { vertical }\end{array}$	M_{X} M_{y}, M_{y} "	13.5 9 9	V / cm V / cm V / cm
Overiap of the systems		100	\%

SCREEN : Metal-backed phosphor

	Colour	Persistence
E14-100GH	green	medium short

Useful screen dimensions
Useful scan at $\mathrm{V}_{\mathrm{g} 7}(\ell) / \mathrm{V}_{\mathrm{g} 2}, \mathrm{~g}_{4}=6.7$ horizontal
vertical (each system) overlap

Spot eccentricity in horizontal and vertical directions

HEATING : indirect by A.C. or D.C. ; parallel supply
Heater voltage
Heat er current

Data based on pre-production tubes.

Front view

* The centre of the contact is located within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.
Mounting position : any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

MECHANICAL DATA (continued)
Dimensions and connections
See also outline drawing.
Overall length (socket included)
Face dimensions
Net weight
Base
Accessories
Socket (supplied with tube)
type 55566
Final accelerator contact connector
Beam centring magnet (supplied with tube) ${ }^{6}$)

FOCUSING

DEFLECTION
x -plates y-plates

Electrostatic

Double electrostatic
symmetrical
symmetrical

If the full deflection capacity of the tube is used, part of the beam is intercepted by the deflection plates; hence a low -impedance deflection plate drive is desirable.
Angle between x and y traces (each beam)
Angle between corresponding y traces at screen centre Angle between x trace and horizontal
axis of the face
$\max \quad 90 \pm \frac{1}{45} \quad$.
\max. 50

The x -trace can be aligned with the horizontal axis of the screen by rotating the entire image by means of a rotation coil. This coil will have less than 50 ampturns for the indicated max. rotation of 5° and should be positioned as indicated on the drawing.

LINE WIDTH

Measured with the shrinking raster method under typical operating conditions, and adjusted for optimum spot size at a beam current of $5 \mu \mathrm{~A}$ per system.

Line width at screen centre
1.w. approx. 0.35 mm

CAPACITANCE

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
$y_{1}{ }^{\prime}$ to all other elements except $y_{2}{ }^{\prime}$
y2' to all other elements except yd'
y_{1} " to all other elements except y ${ }_{2}{ }^{\prime \prime}$
$y_{2}{ }^{\prime \prime}$ to all other elements except y1"
external crating

$C_{x_{1}\left(x_{2}\right)}$	8	pF
$\mathrm{C}_{\mathrm{x}_{2}\left(\mathrm{x}_{1}\right)}$	8	pF
$\mathrm{C}_{\mathrm{y}_{1}}{ }^{\prime}\left(\mathrm{y}_{2}{ }^{\prime}\right)$	5	pF
$\mathrm{C}_{\mathrm{y}_{2}}{ }^{\prime}\left(\mathrm{y}_{1}{ }^{\prime}\right)$	6	pF
$\mathrm{C}_{\mathrm{y}_{1}}{ }^{\prime \prime}\left(\mathrm{y}_{2}{ }^{\prime \prime}\right)$	6.5	pF
$\mathrm{C}_{\mathrm{y}_{2}}{ }^{\prime \prime}\left(\mathrm{y}_{1}{ }^{\prime \prime}\right)$	6	pF
C_{m}	NQ00 pF	

CAPACITANCES (continued)

x_{1} to x_{2}
$y_{1}{ }^{\prime}$ to $y_{2}{ }^{\prime}$
y_{1} " to $y_{2}{ }^{\prime \prime}$
$y_{1}{ }^{\prime}$ to $y_{1}{ }^{\prime \prime}$
$y_{2}{ }^{\prime}$ to $y_{2}{ }^{\prime \prime}$
$y_{1}{ }^{\prime}$ to $y_{2}{ }^{\prime \prime}$
y_{2} ' to $y_{1}{ }^{\prime \prime}$
Control grid to all other elements
Cathode to all other elements and heate

NOTES

1) This tube is designed for optimum performance when operating at a ratio $\mathrm{Vg}_{7(\ell)} / V_{\mathrm{g}_{2}, \mathrm{~g}_{4}}=6.7$.
The geometry control voltage $\mathrm{V}_{\mathrm{g}_{6}}$ should be adjusted within the indicated range (values with respect to the mean x-plate potential).
2) A negative control voltage on g_{5} (with respect to the mean x-plate potentiai) will cause some pincushion distortion and less background light. By varying the two voltages $\mathrm{V}_{\mathrm{g}_{5}}$ and $\mathrm{V}_{\mathrm{g}_{6}}$ it is possible to find the best compromise between background light and raster distortion.
3) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
4) The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5) A graticule, consisting of concentric rectangles of $100 \mathrm{~mm} \times 80 \mathrm{~mm}$ and 96 mm x 77 mm is aligned with the electrical x -axis of the tube. With optimum correction potentials applied a raster of each system will fall between these rectangles.
${ }^{6}$) The beam centring magnet should be adjusted for equal intensity of the two traces.

TYPICAL OPERATING CONDITIONS

[^9]
CATHODE-RAY TUBES

Monitor and display tubes

MONITOR AND DISPLAY TUBES

PREFERRED TYPES

```
(Recommended types for new designs)
M17-140W
M17-141W
M24-100W
M24-101W +
M31-130W + 131W.
M38-120W
M38-121W+
```

+ Data in preparation

SCREENS

Although W is the standard screen, certain applications require screens of a different persistence and/or colour (e.g. GH, GR, GM).
Tubes with such screens are supplied to special order.

MONITOR TUBE

17 cm flat-faced rectangular picture tube primarily intended for use as a viewfinder in television cameras.

QUICK REFERENCE DATA			
Deflection angle, diagonal	70	0	
Focusing	electrostatic		
Resolution	min. 1100	lines	
Overall length	max. 234	mm	

SCREEN

Metal-backed phosphor

MECHANICAL DATA

Mounting position: any

Base:
Cavity contact
Accessories
Socket
Final accelerator contact connector

Neo Eightar (B8H)

CT8

242250106001

55563

1) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.
${ }^{2}$) The maximum dimension is determined by the reference line gauge.

FOCUSING Electrostatic

The range of focus voltage shown under "Typical operating conditions" results in optimum focus at a beam current of $50 \mu \mathrm{~A}$.

DEFLECTION Magnetic

Diagonal deflection angle $\quad 70^{\circ}$
REFERENCE LINE GAUGE Dimensions in mm

REMARK

With the high voltage used with this tube internal flash-overs may occur, which may destroy the cathode. Therefore it is necessary to provide protective circuits using sparkgaps. The sparkgaps must be connected as follows:

No other connections between outer conductive coating and chassis are permissible.

CAPACITANCES

Final accelerator to external conductive coating
Cathode to all other elements
Grid No. 1 to all other elements

$\mathrm{C}_{3}, \mathrm{~g}_{5}(\ell) / \mathrm{m}$	300 pF
C_{k}	5 pF
$\mathrm{C}_{\mathrm{g}_{1}}$	7 pF

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Grid no. 1 voltage for extinction of focused raster

RESOLUTION

Resolution at screen centre measured with shrinking raster method

$$
\begin{aligned}
& \text { at } \mathrm{V}_{\mathrm{g}_{3}}, \mathrm{~g}_{5}(\ell)=14 \mathrm{kV}, \mathrm{~V}_{\mathrm{g} 2}=400 \mathrm{~V} \\
& \mathrm{I}_{\ell}=50 \mu \mathrm{~A}, \mathrm{~B}=50 \mathrm{mcd} / \mathrm{cm}^{2}(500 \mathrm{Nit})
\end{aligned}
$$

$$
\min .400 \quad \text { lines }{ }^{1} \text {) }
$$

LIMITING VALUES (Absolute max. rating system)

WARNING

X-ray shielding of the cone is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 14 kV .

[^10]
MONITOR TUBE

17 cm flat-faced rectangular picture tube primarily intended for use as a viewfinder in television cameras. The tube is provided with a bonded face plate and a metal mounting band.

QUICK REFERENCE DATA				
Deflection angle, diagonal	70	0		
Focusing	electrostatic			
Resolution	min. 100	lines		
Overall length	max. 240	mm		

SCREEN

Metal-backed phosphor

Luminescence
Useful rectangle
white
$\min .124 \times 93 \mathrm{~mm}^{2}$

HEATING

Indirect by A.C. or D. C.; parallel supply

Heater voltage	Vf_{f}	6.3	V
	I_{f}	300	mA

MECHANICAL DATA

Mounting position: any
Base: Neo Eightar (B8H)
Cavity contact
CT8
Accessories

Socket
Final-accelerator contact connector

242250106001
55563

MECHANICAL DATA

${ }^{1}$) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.
${ }^{2}$) The maximum dimension is determined by the reference line gauge.

FOCUSING Electrostatic

The range of focus voltage shown under "Typical operating conditions" results in optimum focus at a beam current of $50 \mu \mathrm{~A}$.

DEFLECTION Magnetic

Diagonal deflection angle 70°

REFERENCE LINE GAUGE

Dimensions in mm

REMARK

With the high voltage used with this tube internal flash-overs may occur, which may destroy the cathode. Therefore it is necessary to provide protective circuits using sparkgaps. The sparkgaps must be connected as follows:

No other connections between outer conductive coating and chassis are permissible.

CAPACITANCES

Final accelerator to metal band Final accelerator to external conductive coating
Cathode to all other elements Grid No. 1 to all other elements

$\mathrm{C}_{\mathrm{g}_{3}, \mathrm{~g}_{5}(\ell) / \mathrm{m}^{\prime}}$	135 pF
$\mathrm{C}_{\mathrm{g}_{3}}, \mathrm{~g}_{5}(\ell) / \mathrm{m}$	240 pF
C_{k}	5 pF
C_{g}	7 pF

TYPICAL OPERATING CONDITIONS
Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Grid no. 1 voltage for extinction of focused raster

$\mathrm{V}_{3}, \mathrm{~g}_{5}(\ell)$		14	16	kV
V_{4}	0	to	400	0 to
V_{2}		400	V	
$\mathrm{~g}_{2}$			400	600

$\mathrm{Vg}_{1} \quad-30$ to $-62-40$ to $-90 \quad \mathrm{~V}$

RESOLUTION

nox-intisbeos cuitirefors
Resolution at screen centre measured with shinking raster method

$$
\begin{array}{llll}
\text { at } V_{g_{3}}, g_{5}(\ell) & =14 \mathrm{kV}, \mathrm{~V}_{\mathrm{g}_{2}}=400 \mathrm{~V}, & \mathrm{~min} . & \\
\mathrm{I}_{\ell}=50 \mu \mathrm{~A}, \mathrm{~B}=50 \mathrm{mcd} / \mathrm{cm}^{2}(500 \mathrm{nit}) & & \\
\text { at } V_{g_{3}}, \mathrm{~g}_{5}(\ell)=16 \mathrm{kV}, \mathrm{~V}_{2}=600 \mathrm{~V}, & \mathrm{~min} . & 700 & \text { lines } 1) \\
\mathrm{I}_{\ell}=50 \mu \mathrm{~A}, \mathrm{~B}=60 \mathrm{mcd} / \mathrm{cm}^{2}(600 \mathrm{nit}) & \text { lines } \left.{ }^{1}\right)
\end{array}
$$

LIMITING VALUES (Absolute max. rating system)

WARNING

X-ray shielding of the cone is advisable to give protection against possible danger of personal injury arising from prolonged axposure at close range to this tube when operated above 14 kV .

[^11]
MONITOR TUBE

21 cm rectangular television tube with metal-backed screen primarily intended for use as a precision monitor.

SCREEN

Metal backed phosphor
Lumenescence
white

HEATING

Indirect by A.C. or D.C.; parallel supply
heater voltage
heater current electrostatic

Diagonal deflection angle 90°

REFERENCE LINE GAUGE

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Grid No. 1 voltage for visual extinction of focused raster (grid drive service)

Cathode voltage for visual extinction of focused raster (cathode drive service)

$\mathrm{Vg}_{3}, \mathrm{~g}_{5}(\ell)$	$=$	12 kV
V_{4}	$=0$ to 400 V	
$\mathrm{~V}_{2}$	$=$	400 V

$-\mathrm{V}_{\mathrm{g}_{1}} \quad=32$ to 69 V
$\mathrm{V}_{\mathrm{k}} \quad=29$ to 62 V

MECHANICAL DATA

Base:
Accessories
Final accelerator connector type 55563
Socket

Neo Eightar (B8H)

242250106001

MECHANICAL DATA (continued)
Dimensions in mm

Mounting position: any
Except vertical with the screen downward and the axis of the tube making an angle of less tinan 20° with the vertical.

MONITOR TUBE

21 cm rectangular television tube with metal backed screen primarily intended for use as a picture monitor tube.

SCREEN

Metal backed phosphor
Lumenescence white
Light transmission of face glass 80%

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current
$\mathrm{V}_{\mathrm{f}}=6.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}=300 \mathrm{~mA}$

FOCUSING

 electrostaticThe range of focus voltage shown under "Typical operating conditions" results in optimum focus at a beam current of $100 \mu \mathrm{~A}$.

DEFLECTION magnetic
Diagonal deflection angle
110°

TYPICAL OPERATION
Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Grid No. 1 voltage for extinction of focused raster

$\mathrm{Vg}_{3}, \mathrm{~g}_{5}(\ell)$	$=$	16 kV
Vg_{4}	$=$	0 to 400 V
$\mathrm{~V}_{2}$	$=$	300 V
$\mathrm{~V}_{1}$	$=$	-35 to -72 V

MECHANICAL DATA

Dimensions in mm

MECHANICAL DATA (continued)

Dimensions in mm

Mounting position: any
Except vertical with the screen downward and the axis of the tube making an angle of less than 20° with the vertical.

Base:
Cavity contact
Accessories
Final accelerator connector
Socket

Neo Eightar (B8H)
CT8
type 55563
242250106001

1) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge JEDEC 126 when the gauge is resting on the cone.
2) The maximum dimension is determined by the reference line gauge.

MONITOR TUBE

The M24-100W is a 24 cm diagonal rectangular television tube with metal backed screen primarialy intended for use as a monitor or display tube.

	QUICK REFERENCE DATA
Deflection angle	90°
Focusing	electrostatic
Resolution	900 lines
Overall length	$\max .260 \mathrm{~mm}$

SCREEN

Metal backed phosphor
Luminescence
white
Light transmission of face glass

	52	$\%$
\min.	225	mm
\min.	190	mm
\min.	140	mm

heating

Indirect by a.c. or d.c.; parallel supply
Heater voltage
Heater current

V_{f}	6,3	V
I_{f}	300	mA

CAPACITANCES
Final accelerator to external conductive coating
Cathode to all other elements
Control grid to all other elements
FOCUSING
$\mathrm{C}_{\mathrm{g}_{3}, \mathrm{~g}_{5}(\ell) / \mathrm{m}}$
C_{k}
$\mathrm{C}_{\mathrm{g}_{1}}$

420 pF
Useful diagonal
min 140 mm
Useful width
Useful height
II. 140
electrostatic
The range of focus voltage shown under "Typical operating conditions" results in optimum focus at a beam current of $100 \mu \mathrm{~A}$.

Data based on pre-production tubes

DEFLECTION ${ }^{3}$)

magnetic
Diagonal deflection angle
MECHANICAL DATA

Dimensions in mm

Notes see page 3

MECHANICAL DATA (continued)

Mounting position : any, except vertical with the screen downward and the axis of the tube making an angle of less than 20° with the vertical.

Base
Cavity contact
Accessories

Socket

Final accelerator contact connector

Neo eightar (B8H)
CT8

242250106001
type 55563

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe). Adjustment of the centring magnet should not be such that a general reduction in brightness or shading of the raster occurs.

NOTES

1) The reference line is determined by the plane of the upper edge of the of the flange of reference line gauge when the gauge is resting on the cone.
${ }^{2}$) The maximum dimension is, determined by the erference line gauge.
2) Deflection coil ATIO40 is recommended. If another coil is considered, it is advisalt.
3) Deflection coil ATI040 is recommended. If another coil is considered, it is advisable to contact the local tube supplier.
${ }^{4}$) The bulge at the spliceline seal may increase the indicated maximum values for envelope width, diagonal and height by not more than 6.4 mm , but at any point around the seal the bulge will not protude more than 3.2 mm byond the envelope surface.

TYPICAL OPERATING CONDITIONS
Final accelerator voltage
Focusing electrode voltage
First accelerator voltage

$\mathrm{V}_{\mathrm{g}_{3}, \mathrm{~g}_{5}(\ell)}$		16	kV	
V_{4}	0	to	400	V
$\mathrm{~V}_{2}$			600	V
$\mathrm{~V}_{\mathrm{g}_{1}}$	-32	to	-85	V

RESOLUTION

Resolution at screen centre measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, and at a brightness of $60 \mathrm{mcd} / \mathrm{cm}^{2}$ (600 nit):

900 lines
LIMITING VALUES (Absolute max. rating system)
Final accelerator voltage
$\mathrm{V}_{\mathrm{g}_{3}, \mathrm{~g}_{5}(\ell)}$
$\max .18$
kV $\min 10 \mathrm{kV}$

Focusing electrode voltage

First accelerator voltage

$\mathrm{V}_{\mathrm{g}_{2}}$
$-V_{g_{1}}$
$V_{g_{1}}$
$\mathrm{~V}_{1}$
$\mathrm{~V}_{\mathrm{lp}}$
V_{kf}
$-\mathrm{V}_{\mathrm{kf}}$
$-\mathrm{Vkf}_{\mathrm{p}}$
$\max .1 \mathrm{kV}$
\max. $0,5 \mathrm{kV}$
$\max .800 \mathrm{~V}$
min. 300 V
$\max .150 \quad \mathrm{~V}$
$\max \quad 0 \quad \mathrm{~V}$
$\max 2 \quad \mathrm{~V}$
$\max .250 \quad \mathrm{~V}$
$\max .300 \quad \mathrm{~V}$ 1)
$\max .135 \mathrm{~V}$
$\max 180$ V

REFERENCE LINE GAUGE

${ }^{1}$) During a warm=up period not exceeding 15 s the heater may be 410 V negative with respect to the cathode.

MONITOR TUBE

TheM28-12W is a rectangular $28 \mathrm{~cm} 90^{\circ}$ deflection angle direct viewing picture tube primarily intended as a monitor tube.

QUICK REFERENCE DATA

QUICK REFERENCE DATA		
Face diagonal	28	cm (11 inch)
Deflection angle	90°	
Overall length	245	mm
Neck length	105.5	mm
Neck diameter	20	mm
Light transmission of face glass	50	\%
Focusing		electrostatic
Bulb		reinforced
Heating	$11 \mathrm{~V}, 75$	mA
Resolution	min. 850	lines

SCREEN 1)

Metal backed phosphor

Luminescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height

HEATING

Indirect by A.C. or D.C.
Heater voltage
heater current
white

- 50 \%
min. $262.5-\mathrm{mm}$ min. 228 mm min. 171 mm

MECHANICAL DATA
Dimensions in mm

Mounting position: any
Base $\quad: 7$ pins miniature, with pumping stem
Net weight \quad : approx. 2.2 kg
The socket for the base should not be rigidly mounted; it should have flexible leads and be allowed to move freely.

[^12]
CAPACITANCES

$\left.\begin{array}{llr}\begin{array}{l}\text { Final accelerator to external } \\ \text { conductive coating }\end{array} & \mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g}} / \dot{\mathrm{m}} & <850 \mathrm{pF} \\ >850 \mathrm{pF}\end{array}\right)$

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle 90°
Horizontal deflection angle 80°
Vertical deflection angle 63°
PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 55 mm . The centring magnet should be mounted as close to the deflection coils as possible.

NOTES TO OUTLINE DRAWING

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.
2. The configuration of the external conductive coating is optional but contains the contact area shown in the drawing.
The external conductive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge.
4. This area must be kept clean.
5. Recessed cavity contact.
6. Maximum unflatness of the rim is 1 mm .
7. The mounting screws in the cabinet must be situated inside a circle with a diameter of 5 mm drawn around the corner points of a geometrical rectangle of $240 \mathrm{~mm} \times 182.5 \mathrm{~mm}$.

TYPICAL OPERATING CONDITIONS

Grid drive service

Cathode drive service
Voltages are specified with respect to grid No. 1

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5}(\ell)$	11	13	kV	
Focusing electrode voltage	V_{4}	0 to	350	50 to	400
V	V l)				

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5}(\ell)}$	\max \min.	14 7.5	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$
Grid No. 4 voltage	V_{g}			
positive	$\mathrm{V}_{\mathrm{g}_{4}}$	max.	500	V
negative	$-\mathrm{V}_{\mathrm{g}_{4}}$	max	50	V
Grid No. 2 voltage	V_{g}	$\max _{\min }$.	350 200	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Grid No. 2 to grid No. 1 voltage	$\mathrm{Vg}_{2} / \mathrm{V}_{\mathrm{g}}$	max .	450	V
Grid No. 1 voltage				
positive	V_{g}	\max.	0	V
positive peak	$\mathrm{V}_{\mathrm{g}_{1 p}}$	max	2	V
negative	$-\mathrm{V}_{\mathrm{g}_{1}}$	max.	100	V
negative peak	$-\mathrm{V}_{\mathrm{glp}}$	max.	350	V^{2})

[^13]
LIMITING VALUES (continued)

Cathode to grid No. 1 voltage
positive
positive peak
negative
negative peak
Cathode to heater voltage
positive
positive peak

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
Resistance between external conductive coating and rimband

V_{k} / g_{1}	\max.	100	V
$\mathrm{~V}_{\mathrm{k}} / g_{1 p}$	\max.	350	$\left.\mathrm{~V}^{\mathrm{l}}\right)$
$-\mathrm{V}_{\mathrm{k}} / g_{1}$	\max.	0	V
$-\mathrm{V}_{\mathrm{k}} / g_{1 p}$	\max.	2	V

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	$\max .110$	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	$\max .130$	V

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	$\max . \quad 1$	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	$\max \cdot 0.1$	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}_{1}}$	$\max \cdot 1.5$	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}_{1}}(50 \mathrm{~Hz})$	$\max \cdot 0.5$	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{m} / \mathrm{m}^{\prime}}$	\max.	2

1) Maximum pulse duration 22% of a cycle but max. 1.5 ms .

MONITOR TUBE

31 cm (12 in), 110°, rectangular direct vision monitor tube with integral protection for black-and-white T.V. The rimband leaves the edge of the faceplate free. The 20 mm neck diameter results in a low deflection energy.

QUICK REFERENCE DATA			
Face diagonal		31	$\mathrm{~cm}(12 \mathrm{in})$
Deflection angle		110°	
Overall length	233	mm	
Neck diameter	20	mm	
Light transmission of face glass	50	$\%$	
Focusing		electrostatic	
Bulb	reinforced		
Heating	min. $11 \mathrm{~V}, 75$	mA	
Resolution	850	lines	

SCREEN ${ }^{1}$)

Metal backed phosphor
Luminescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height
white 50 \% min. 295 mm min. 257 mm min. 195 mm

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

V_{f}	11	V
I_{f}	75	mA

The maximum total deviation from the nominal heater voltage is 15%.
The deviation may consists of:
$\max .7 \%$ continuous deviation, e.g. due to component spread, max. 10\% temporary variation.
In case of supply direct from a battery, the heater voltage must be within the limits given on page 8 .

1) Certain applications require a phosphor with a longer persistence. Tubes with such phosphors (LA, GM, GR for instance) are supplied to special order.

MECHANICAL DATA
Dimensions in mm

$\overline{\text { Notes see page } 4}$

MECHANICAL DATA (continued)

Dimensions in mm

Mounting position: any
Net weight $\quad:$ approx. 2.8 kg
Base
: 7 pins miniature, with pumping stem

The socket for the base should not be rigidly mounted, it should have flexible leads and be allowed to move freely.

Notes see page 4

NOTES TO OUTLINE DRAWING

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.
2. The configuration of the external conductive coating may be different but contains the contact area shown in the drawing.
The external conductive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge.
4. This area must be kept clean.
5. Recessed cavity contact I.E.C. 67-III-2.
6. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
7. The mounting screws in the cabinet must be situated inside a circle of 7 mm diameter drawn around the true geometrical positions, i.e. at the corners of a rectangle of $267.5 \mathrm{~mm} \times 204.4 \mathrm{~mm}$.
8. The metal band must be earthed by means of the tag provided. No electrical contact between the metal band and the mounting lug can be guaranteed.

REFERENCE LINE GAUGE

Distance from centre (Max, values)																
Section	Distance from section 1	$\begin{gathered} 0^{0} \\ \text { long } \end{gathered}$	10°	20°	25°	30°	$32^{\circ} 30^{\circ}$	Diagon.	$37^{\circ} 30^{\prime}$	40°	45°	50°	60°	70°	80°	90° short
13	59.6 nom.	72.19	72.03	71.66	71.44	71.24	71.14	71.03	70.96	70.88	70.76	70.60	70.6	70.67	70.8	70.87
12	55 "	85.86	85.57	84.80	84.43	83.48	83.75	83.5	83.32	83.11	82.72	82.38	81.88	81.6	81.5	81.5
11	50	99.45	99.36	98.89	98.40	47.88	97.53	97.1	96.75	96.32	95.38	94.4	92.42	90.7	89.52	89.08
10	45	112.3	112.41	112.2	111.73	110.94	110.41	169.7	109.1	108.33	106.6	104.72	100.9	97.65	95.48	94.7
9	40	121.29	121.87	122.76	122.85	122.41	121.94	121.18	120.47	119.48	117.07	114.3	108.57	103.8	100.73	99.66
8	35	127.9	128.92	131.17	132.12	132.46	132.27	131.65	130.9	129.74	126.54	122.7	114.93	108,76	104.96	103.67
7	30	132.64	133.98	137.39	139.31	140.81	141.16	140.85	140.16	138.87	134.6	129.45	119.71	112.47	108.18	106.76
6	25	135.97	137.47	141.65	144.41	147.22	148.29	148.45	147.88	146.49	140.89	134.31	122.94	115.02	110.48	109
5	20 "	138.44	139.99	144.54	147.82	151.55	153.17	153.7	153.2	151.66	144.83	137.09	124.69	116.45	111.81	110.31
4	15	140.31	141.88	146.63	150.22	154.59	156.01	157.35	156.85	155.08	147.13	138.48	125.41	117.01	112.34	110.84
3	10	141.62	143.2	148.04	151.78	156.46	158.67	159.52	159	157.1	148.53	139.42	126.02	117.55	112.87	111.36
2	5	142.36	14.3 .94	148.82	152.63	157.44	159.75	160.06	160.15	158.21	149.41	140,12	126.58	118.07	113.37	111.86
1	0 "	142.8	144.38	149.27	153.07	157.88	160.19	161.1	160.59	158.67	149.9	140.62	127.06	118.53	113.81	112.3

CAPACITANCES

Final accelerator to external conductive coating	$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}$	$>$
		900 pF
Final accelerator to metal band	$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}^{\prime}$	450 pF
Cathode to all	C_{k}	300 pF
Grid No. 1 to all	C_{1}	3 pF
		7 pF

FOCUSING electrostatic
DEFLECTION magnetic

Diagonal deflection angle 110°

Horizontal deflection angle 990
Vertical deflection angle 80°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt).
Maximum distance between centre of field of this magnet and reference line: 55 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage
Focusing electrode voltage
Grid No. 2 voltage
Grid No. 1 voltage for visual extinction of focused raster
$\mathrm{V}, \mathrm{g}_{3}, \mathrm{~g}_{5}$
11 kV
Vg_{4}
Vg_{2}
V_{g} -35 to -69 V

Cathode drive service
Voltages are specified with respect to grid No. 1
Final accelerator voltage
Focusing electrode voltage
Grid No. 2 voltage
Cathode voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g}_{5}}$		11	kV
V_{g}	0 to	350	V^{1})
$\mathrm{V}_{\mathrm{g} 2}$		250	V
V_{k}	32 to	58	V

1) Individual tubes will have optimum focus within this range. In general an acceptable picture will be obtained with a fixed focus voltage.

LIMITING VALUES (Design centre rating system, unless otherwise stated)

Final accelerator voltage
Grid No. 4 voltage
positive
negative
Grid No. 2 voltage
Grid No. 2 to grid No. 1 voltage
Cathode to grid No. 1 voltage positive
positive peak
negative
negative peak
Cathode to heater voltage positive
positive peak

CIRCUIT DESIGN VALUES

Grid No. 4 current positive
negative
Grid No. 2 current positive
negative

I_{4}	\max.	25	$\mu \mathrm{~A}$
$-\mathrm{I}_{4}$	\max.	25	$\mu \mathrm{~A}$
I_{2}	\max.	5	$\mu \mathrm{~A}$
$-\mathrm{I} g_{2}$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance
Resistance between external conductive coating and rimband

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	$\max \cdot$	0.1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g}_{1}}$	\max.	1.5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}_{1}}(50 \mathrm{~Hz})$	$\max \cdot$	0.5	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{m} / \mathrm{m}^{\prime}}$	\min.	2	$\mathrm{M} \Omega$

[^14]

Discharge cycle of battery

MONITOR TUBE

36 cm rectangular television tube with metal backed screen primarily intended for use as a precision monitor.

SCREEN

Metal backed phosphor

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current
$\frac{\mathrm{V}_{\mathrm{f}}=11 \mathrm{~V}}{\mathrm{I}_{\mathrm{f}}=75 \mathrm{~mA}} \pm 10 \%$

TYPICAL OPERATION

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Grid No. 1 voltage for extinction of focused raster (grid drive service)

Cathode voltage for extinction of focused raster (cathode drive service)

$\mathrm{V}_{3}, \mathrm{~g}_{5}(\ell)$	16 kV
$\mathrm{V}_{\mathrm{g}_{4}}$	0 to 500 V
$\mathrm{~V}_{\mathrm{g}_{2}}$	600 V
$-\mathrm{V}_{\mathrm{g}_{1}}$	43 to 98 V
$\mathrm{~V}_{\mathrm{k}}$	40 to 90 V

RESOLUTION

Resolution at screen centre min. 650 lines
Measured at:

$\mathrm{Vg}_{3}, \mathrm{~g}_{5}(\ell)$	16 kV
g_{2}	600 V

This tube will resolve 650 lines measured at a brightness of 340 Nits based on a picture height of 237 mm .
The focus voltage is adjusted to obtain the smallest roundest spot. For optimum overall resolution an external centring magnet may be required.

WARNING

X-ray shielding is advisable to give protection against danger of personal injury arising from prolonged exposure at close range to this tube.

MECHANICAL DATA

1) Reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.
${ }^{2}$) The maximum dimension is determined by the reference line gauge.

MECHANICAL DATA (continued)

Dimensions in mm

Base:

Cavity contact
Accessories:
Socket
Final accelerator contact connector

FOCUSING

DEFLECTION
Diagonal deflection angle

Neo Eightar (B8H)
CT8

242250106001
type 55563

MONITOR TUBE

The M36-13W is a 36 cm diameter rectangular television tube with metal backed screen primarily intedned for use as a monitor tube.

SCREEN

Metal backed
Colour white

HEATING

Indirect by A.C. or D.C.; parallel or series supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	300	mA

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Grid No. 1 voltage for visual extinction of a focused raster
Resolution at screen centre
Measured at

$\mathrm{V}_{\mathrm{g}_{3}, \mathrm{~g}_{5}}{ }^{(\ell)}$	16	kV
V_{4}	0-400	V
Vg_{2}	400	V
$-\mathrm{V}_{\mathrm{g}}$	$\begin{array}{r} 40 \text { to } 85 \\ \min .625 \end{array}$	V lines
$\mathrm{V}_{\mathrm{g}_{3}, \mathrm{~g}_{5}}(\ell)$	16	kV
Vg_{2}	400	V

This tube will resolve 625 lines measured at a brightness of 340 Nits based on a picture height of 237 mm .
The focus voltage is adjusted to obtain the smallest roundest spot. For optimum overall resolution an external centring magnet may be required.

WARNING

X-ray shielding is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 16 kV .

Mounting position: any, except vertical with the screen downward and the axis of the tube making an angle of less than 20° with the vertical.

| $\frac{\text { Base }}{}$ | Neo eightar (B8H) |
| :--- | :--- | :--- |
| Cavity contact | CT8 |

The range of focus voltage shown under "Typical operating conditions" results in optimum focus at a beam current of $100 \mu \mathrm{~A}$.

DEFLECTION

magnetic

diagonal deflection angle 110°

MONITOR TUBE

36 cm rectangular television tube with metal backed screen and integral protection primarily intended for use as a precision monitor.

SCREEN

Metal backed phosphor
Lumenescene white

HEATING

Indirect by A.C. or D.C.; parallel supply

Heater voltage	Vf_{f}	11	$\mathrm{~V} \pm 10 \%$
	Heater current	I_{f}	75
mA			

TYPICAL OPERATION

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Grid No. 1 voltage for extinction of focused raster (grid drive service)

Cathode voltage for extinction of focused raster (cathode drive service)

$\mathrm{V}_{3}, \mathrm{~g}_{5}(\ell)$	16 kV
V_{4}	0 to 500 V
$\mathrm{~V}_{\mathrm{g}}$	600 V

$-\mathrm{V}_{\mathrm{g}}$
43 to 98 V

RESOLUTION

Resolution at screen centre
min. 650 lines
Measured at:

$\mathrm{V}_{3}, \mathrm{~g}_{5}(\mathrm{l})$	16 kV
Vg_{2}	600 V

This tube will resolve 650 lines measured at a brightness of 340 Nits based on a picture height of 237 mm .
The focus voltage is adjusted to obtain the smallest roundest spot. For optimum overall resolution an external centring magnet may be required.

WARNING

X-ray shielding is advisable to give protection against danger of personal injury arising from prolonged exposure at close range to this tube.

MECHANICAL DATA (continued)
Dimensions in mm

Mounting position: any
Except vertical with the screen downward and the axis of the tube making an angle of less than 20° with the vertical.

Base: Neo Eightar (B8H)

Cavity contact
Accessories:
Socket
Final-accelerator contact connector

CT8

242250106001
55563

FOCUSING Electrostatic

The range of focus voltage shown under typical operating conditions results in optimum focus at a beam current of $100 \mu \mathrm{~A}$.

DEFLECTION Magnetic
Diagonal deflection angle

AXe. now-intacl
2) Arol Dis-122. Sㅇ․
3) Cue \{ Ely-1.00.
3) cap/Kjest
5) M/24-100 Vtf flot
4) Mie over femne 63 865 ?
7) Lnverrabe Lhero = ins coco et,

MONITOR TUBE

diagonal.

The M38-120W is a 38 cm diameter rectangular television tube with metal backed screen primarily intended for use as a monitor tube.

	QUICK REFERENCE DATA	
Deflection angle	110°	
Focusing	electrostatic	
Resolution	min. 650 lines	
Overall length	max. 279.5 mm	

SCREEN

Metal backed phosphor ${ }^{\prime}$

Luminescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height
white

	50	$\%$
min.	350	mm
min.	290.9	mm
min.	226	mm

HEATING

Indirect by A.C. or D. C. ; parallel or series supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	300	mA

CAPACITANCE

Control grid to all other elements
Cathode to all other elements
Final accelerator to external conductive coating

Cg_{1}	6.0	pF
Ck	5.0	pF
$\mathrm{Cg}_{3}, \mathrm{~g}_{5}(\ell) / \mathrm{m}$	600	pF

MECHANICAL DATA

MECHANICAL DATA (continued)

Mounting position: any, except vertical with the screen downward and the axis of the tube making an angle of less than 20° with the vertical.

Bake
Cavity contact
Accessories
Final accelerator contact connector Socket

Neo eightar (B8H)
CT8
type 55563
242250106001

FOCUSING electrostatic

The range of focus voltage shown under "Typical operating conditions" results in optimum focus at a beam current of $100 \mu \mathrm{~A}$.

DEFLECTION double magnetic
diagonal deflection angle 110°
$\left.\left.\left.\overline{1})^{2}\right)^{3}\right)^{4}\right)^{5}$) See page 6

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oerstedt). Adjustment of the centring magnet should not be such that a general reduction in brightness or shading of the raster occurs.

REFERENCE LINE GAUGE
Dimensions in mm
JEDEC 126

TYPICAL OPERATING CONDITIONS

Final accelerator voltage Focusing electrode voltage First accelerator voltage Grid No. 1 voltage for visual extinction of a focused raster Resolution at screen centre Measured at

$\mathrm{V}_{\mathrm{g}_{3}, \mathrm{~g}_{5}(\ell)}$	16	kV
$\mathrm{V}_{4} \mathrm{~g}_{4}, \mathrm{~g}_{5}(\mathrm{l})$	0-400	V 1)
$\mathrm{V}_{\mathrm{g}}{ }^{\text {a }}$	400	V
$-\mathrm{Vg}_{1}$	40 to 85	V
	min. 625	lines
$\mathrm{V}_{\mathrm{g}_{3}, \mathrm{~g}_{5}(\ell)}$	16	kV
Vg_{2}	400	V

This tube will resolve 650 lines measured at a screen current of $100 \mu \mathrm{~A}$.
The focus voltage is adjusted to obtain the smallest roundest spot. For optimum overall resolution an external centring magnet may be required.

LIMITING VALUES (Absolute max. rating system)
Voltages are specified with respect to cathode unless otherwise stated.

Final accelerator voltage	$\mathrm{V}_{3}, \mathrm{~g}_{5}(\ell)$	\max. \min.	18
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	max.	1
Focusing electrode voltage	$-\mathrm{V}_{\mathrm{g}_{4}}$	\max.	0.5
First accelerator voltage	V_{g}	max.	550
First accelerator voltage	g_{2}	min .	350
Control grid voltage, negative	$-\mathrm{Vg}_{1}$	max.	150
positive	$\mathrm{V}_{\mathrm{g} 1}$	\max.	0
positive peak	$\mathrm{V}_{\mathrm{g}}^{\mathrm{p}} \mathrm{p}$	\max.	2
Cathode to heater voltage, positive	V_{kf}	max.	250
positive peak	$\mathrm{V}_{\mathrm{kf}}{ }_{\mathrm{p}}$	max.	300
negative	$-V_{\text {kf }}$	max.	135
negative peak	$-\mathrm{V}_{\mathrm{kf}}$	\max.	180

CIRCUIT DESIGN VALUES

Focusing electrode current, positive negative
Grid no. 2 current, positive negative

I_{2}
$-\mathrm{I}_{2}$
$\mathrm{~g}_{2}$

\max.	25	$\mu \mathrm{~A}$
\max.	25	$\mu \mathrm{~A}$
\max.	5	$\mu \mathrm{~A}$
\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater	R_{kf}	\max.	1	$\mathrm{M} \Omega$
Impedance between cathode and heater $(\mathrm{f}=50 \mathrm{~Hz})$	Z_{kf}	max.	500	$k \Omega$
Resistance between grid no.1 and earth	$\mathrm{R}_{\mathrm{g}_{1}}$	\max.	1.5	$\mathrm{M} \Omega$
Impedance between cathode. and earth $(\mathrm{f}=50 \mathrm{~Hz})$	Z_{k}	\max.	100	$\mathrm{k} \Omega$

[^15]
WARNING

X-ray shielding is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 16 kV .

EXTERNAL CONDUCTIVE COATING

This tube has an external conductive coating (m), which must be earthed and capacitance of this to the final electrode is used to provide smoothing for the EHT supply. The tube marking and warning labels are on the side of the cone opposite the final electrode connector and this side should not be used for making contact to the external conductive coating.

NOTES TO OUTLINE DRAWING

${ }^{1}$) The reference line is determined by the plane of the upper edge of the flange of reference line gauge, (JEDEC 126) when the gauge is resting on the cone.
${ }^{2}$) End of guaranteed contour. The maximum neck and cone contour is given by the Reference line gauge (see page 4).
${ }^{3}$) Bulge at splice-line seal may increase the indicated maximum value for envelope width, diagonal and height by not more than 6.4 mm , but at any point around the seal, the bulge will not protrude more than 3.2 mm beyond the envelope surface at the location specified for dimensioning the envelope width, diagonal and height.
4) The tube should be supported on both sides of the bulge. The mechanism used should provide clearance for the maximum dimensions of the bulge.
${ }^{5}$) The maximum dimension is determined by the reference line gauge.

CATHODE-RAY TUBES

C-R tubes for special applications

PROJECTION TUBE

The M. 13-38 are 13 cm diameter projection tubes.
The tubes are designed for large screen projection of colour TV displays.

QUICK REFERENCE DATA	
Final accelerator voltage	50 kV
Deflection angle	47°
Focusing	magnetic

SCREEN

| Type | MG13-38 | MU13-38 | MY13-38 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Colour | green | blue | red | |
| Colour point | $x=0.19 \quad y=0.72$ | $x=0.17 \quad y=0.13$ | $x=0.66$ | $y=0.33$ |
| Useful area | $\min .92 \times 69 \mathrm{~mm}^{2}$ | | | |

Brightness
MG13-38
MU13-38
MY13-38
measured at $\mathrm{Vg}_{2}=50 \mathrm{kV}$

$$
\mathrm{I}_{\ell}=500 \mu \mathrm{~A}
$$

raster size $92 \times 69 \mathrm{~mm}^{2}$

HEATING

Indirect by A.C. or D.'C.; parallel or series supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	300	mA

MECHANICAL DATA

Dimensions in mm

1) Reference line is determined by position where a gauge $38.1_{-0.05}^{+0.05} \mathrm{~mm}$ dia-
meter and 50 mm long will rest on bulb cone.
${ }^{2}$) Socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base shell will fall within circle concentric with cone axis and having a diameter of 50 mm .
${ }^{3}$) Distance reference line - top centre of grid.
${ }^{4}$) This pin must be connected to earth.

MECHANICAL DATA (continued)

Mounting position: any, except with screen downwards with the axis at an angle of less than 50° to the vertical.
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Dimensions and connections
Overall length
Face diameter
Net weight
Accessories
Socket
Final accelerator contact connector

Duodecal 7 p
$\max .374 \mathrm{~mm}$
$\max .132 .5 \mathrm{~mm}$
approx. 950 g
type $5912 / 20$
supplied with tube

CAPACITANCES

Control grid to all other elements
Cathode to all other elements

C_{g}	\max.	10	pF
C_{k}	\max.	9	pF

FOCUSING magnetic

Distance from the centre of the air gap of the focusing coil to the front of the screen 240 mm

DEFLECTION	double magnetic
deflection angle 47°	

TYPICAL OPERATING CONDITIONS

Accelerator voltage

$\mathrm{Vg}_{2}(\ell)$	50	kV
$-\mathrm{Vg}_{1}$	100 to 170	V
$\mathrm{I}_{2 \mathrm{p}}$	min. 2500	$\mu \mathrm{~A}$

LIMITING VALUES (Absolute max. rating system)
Measured with respect to cathode

Accelerator voltage
Control grid voltage,
negative
positive
positive peak
Grid No. 2 current
Cathode to heater voltage,
cathode positive
cathode negative
Resistance between heater and cathode
Resistance between grid and earth Impedance between grid and earth ($\mathrm{f}=50 \mathrm{~Hz}$)
$\mathrm{Vg}_{2}(\ell)$
$\max . \quad 55 \mathrm{kV}$
min. 40 kV

$V_{+k / f}-$
V-k/f+
R_{kf}
$\mathrm{R}_{\mathrm{g}_{1}}$
Zg_{1}
$\max .200 \mathrm{~V}$
$\max . \quad 0 \mathrm{~V}$
$\max .0 \quad \mathrm{~V}$
\max. $500 \mu \mathrm{~A}^{1}$)
$\max .100 \mathrm{~V}$
\max. $50 \quad \mathrm{~V}^{2}$)
$\max .20 \mathrm{k} \Omega$
$\max .1 .5 \mathrm{M} \Omega$
$\max .0 .5 \mathrm{M} \Omega$

1) In order to prevent the possible occurrence of cracked faces, for images with concentrated bright areas (high screen loads) the g_{2} current should be kept lower than the indicated value. This is especially the case as for as stationary pictures are concerned.
2) In order to avoid excessive hum, the A.C. component of the heater to cathode voltage should be as low as possible and must not exceed 20 VRMS.

GENERAL OBSERVATIONS

It is essential that means be provided for the instantaneous removal of the beam current in the event of a failure of either one or both of the time bases. Unless such a safety device is incorporated a failure of this type will result in the immediate destruction of the screen of the tube.

Shielding equivalent to a lead thickness of 1 mm is required to protect the observer against X radiation.
The raster dimensions should not come below the minimum of $69 \times 72 \mathrm{~mm}^{2}$. The screen shall be given adequate cooling by applying a continuous airblast onto the screen of approx. $0.06 \mathrm{~m}^{3} / \mathrm{sec}$.

In order to prevent damage of the tube caused by a momentary internal arc a resistor of $50 \mathrm{k} \Omega$ has to be connected between anode contact and the power supply.

Before removing the tube, the screen and the cone should be discharged.
The spark trap and the outer coating of the tube must be connected to earth. It is necessary to centre the focusing coil to get optimum sharpness.
It is recommended to use the E.H.T. connector, which is delivered with each tube.

PROJECTION TUBE

The MW13-38 is a 13 cm diameter projection tube.
The brightness of the tube is such that it can be used for large screen projection of TV displays.

QUICK REFERENCE DATA	
Final accelerator voltage	50 kV
Deflection angle	47°
Focusing	magnetic

SCREEN

Metal backed

Colour
Useful screen area
Brightness
measured at $\mathrm{V}_{\mathrm{g}_{2}}=50 \mathrm{kV}$

$$
\mathrm{I}_{\mathrm{l}}=500 \mu \mathrm{~A}
$$

raster size $92 \times 69 \mathrm{~mm}^{2}$
white
$92 \times 69 \mathrm{~mm}^{2}$
$\mathrm{min} .870 \mathrm{mcd} / \mathrm{cm}^{2}$

HEATING

Indirect by A.C. or D.C.; parallel or series supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	300	mA

CAPACITANCES

Control grid to all other elements
Cathode to all other elements
C_{1} max. 10 pF
$\mathrm{C}_{\mathrm{k}} \quad \max .9 \mathrm{pF}$

${ }^{1}$) Reference line is determined by position where a gauge $38.1_{-0.00}^{+0.05} \mathrm{~mm}$ diameter and 50 mm long will rest on bulb cone.
${ }^{2}$) Socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base shell will fall within circle concentric with cone axis and having a diameter of 50 mm .
${ }^{3}$) Distance reference line - top centre of grid.
${ }^{4}$) This pin must be connected to earth.

MECHANICAL DATA (continued)

Mounting position: any, except screen downwards with the axis at an angle of less than 50° to the vertical.
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base
Dimensions and connections
Overall length
Face diameter
Net weight

Accessories

Socket

Final accelerator contact connector

Duodecal 7 p
$\max .374 \mathrm{~mm}$
$\max .132 .5 \mathrm{~mm}$
approx. 950 g
type 5912/20
supplied with tube

FOCUSING magnetic

Distance from the centre of the air gap of the focusing coil to the front of the screen 240 mm

DEFLECTION double magnetic
 deflection angle 47°

TYPICAL OPERATING CONDITIONS

Accelerator voltage
Negative grid No. 1 voltage for visual extinction of a focused raster

Peak accelerator current

$\mathrm{V}_{2}(\ell)$	50
	kV
$-\mathrm{V}_{\mathrm{g}_{1}}$	100 to 170
$\mathrm{I}_{2 \mathrm{p}}$	V

LIMITING VALUES (Absolute max. rating system)
Measured with respect to cathode

Accelerator voltage $\quad \mathrm{Vg}_{2}(\ell)$| \max. | 55 | kV |
| :--- | :--- | :--- |
| \min. | 40 | kV |

Control grid voltage,
negative
positive
positive peak
Grid No. 2 current
Cathode to heater voltage,
cathode positive
cathode negative

Resistance between heater and cathode
Resistance between grid and earth
Impedance between grid and earth ($\mathrm{f}=50 \mathrm{~Hz}$)

$$
-\mathrm{v}_{\mathrm{g}_{1}}
$$

$$
\mathrm{V}_{\mathrm{g}_{1}}
$$

$V_{g_{1 p}}$
I_{2}
$\mathrm{V}_{+\mathrm{k} / \mathrm{f}-} \max .100 \mathrm{~V}^{2}$)
$V_{-k / f+} \max .50 \mathrm{~V}$
$R_{\mathrm{kf}} \quad \max .20 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{g}} \quad \max . \quad 1.5 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}_{1}}$

[^16]
GENERAL OBSERVATIONS

It is essential that means be provided for the instantaneous removel of the beam current in the event of a failure of either one or both of the time bases. Unless such a safety device is incorporated a failure of this type will result in the immediate destruction of the screen of the tube.

Shielding equivalent to a lead thickness of 1 mm is required to protect the observer against X radiation.
The raster dimensions should not come below the minimum of $69 \times 72 \mathrm{~mm}^{2}$. The screen shall be given adequate cooling by applying a continuous airblast onto the screen of approx. $0.06 \mathrm{~m}^{3} / \mathrm{sec}$.
In order to prevent damage of the tube caused by a momentary internal arca resistor of $50 \mathrm{k} \Omega$ has to be connected between anode contact and the power supply.
Before removing the tube, the screen and the cone should be discharged.
The spark trap and the outer coating of the tube must be connected to earth.
It is recommended to use the E.H.T. connector, which is delivered with each tube.
It is necessary to centre the focusing coil to get optimum sharpness.

> Replacement type, see Q13-110. .

Apart from the phosphor, the Q13-110. . is equivalent to the M. 13-16.
The Q13-110GU has an improved phosphor with respect to the MK13-16. The Q13-110BA has the same phosphor as the MC13-16.

Q13-110..

FLYING SPOT SCANNER TUBE

The Q13-110. . is a 13 cm diameter cathode-ray tube intended for flying spot applications.

	QUICK REFERENCE DATA	
Accelerator voltage	25 kV	
Deflection angle	40°	
Resolution	1000 lines	

SCREEN

Metal backed

	Colour	Persistence
Q13-110BA	Purplish blue	Very short
Q13-110GU	White	Very short

Useful screen diameter
min. 108 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply

Heater voltage	V_{f}	6.3	V
Heater current	I_{f}	300	mA

CAPACITANCES

Grid No. 1 to all other electrodes
Cathode to all other electrodes
Accelerator to outer conductive coating
$\mathrm{C}_{\mathrm{g}_{1}}$
C_{k}
$\mathrm{C}_{\mathrm{g}_{2}(\ell) / \mathrm{m}} \quad 250$ to 450 pF

MECHANICAL DATA

Dimensions in mm

Mounting position: any, except with screen downwards and the axis of the tube making an angle of less than 500 with the vertical.

Base Duodecal 7p.

1) Reference line, determined by the plane of the upper edge of the reference line gauge when the gauge is resting on the cone.
2) Insulating outer coating; should not be in close proximity to any metal part.
3) Conductive outer coating; to be grounded.
${ }^{4}$) Recessed cavity contact.
4) Spark trap; to be grounded.

6) The distance between the deflection centre and the reference line should not exceed 31 mm .
7) Distance between the centre of the magnetic length of the focusing unit and the reference line.

FOCUSING magnetic

Focusing coil type AT1997

DEFLECTION magnetic

REFERENCE LINE GAUGE
Dimensions in mm

OPERATING CHARACTERISTICS

Accelerator voltage

Beam current

Negative grid No. 1 cut -off voltage

$\mathrm{V}_{g_{2}(\ell)}$	25	kV
I_{ℓ}	50 to 150	$\mu \mathrm{~A}$
$-\mathrm{V}_{\mathrm{g}_{1}}\left(\mathrm{I}_{\ell}=0\right)$	50 to 100	V

Resolution at centre of screen better than 1000 lines ${ }^{1}$)

[^17]LIMITING VALUES (Absolute max. rating system)
Accelerator voltage
Grid No. 1 voltage,
negative value
positive value
peak positive value
Cathode current
Voltage between heater and cathode ${ }^{1}$)
cathode negative
cathode positive
peak value, cathode positive
External resistance between heater and cathode

External grid No. 1 resistance
External grid No. 1 impedance at a frequency of 50 Hz
$\mathrm{V}_{2}(\ell)$
$\max .27 \mathrm{kV}$
min. 20 kV

$$
\begin{gathered}
-\mathrm{V}_{\mathrm{g}_{1}} \\
+\mathrm{V}_{\mathrm{g}_{1}} \\
+\mathrm{V}_{\mathrm{g}_{1 \mathrm{p}}} \\
\mathrm{I}_{\mathrm{k}}
\end{gathered}
$$

$$
\begin{array}{llll}
\mathrm{V}_{\mathrm{kf}} \text { (k neg.) } & \max . & 125 & \mathrm{~V} \\
\mathrm{~V}_{\mathrm{kf}} \text { (k pos.) } & \max . & 200 & \mathrm{~V} \\
\mathrm{~V}_{\mathrm{kf}} \text { (k pos.) } & \max . & 410 & \mathrm{~V}^{2} \text {) }
\end{array}
$$

$$
\mathrm{R}_{\mathrm{kf}} \quad \max . \quad 1 \mathrm{M} \Omega
$$

$$
\mathrm{R}_{\mathrm{g}_{1}}
$$

$$
\max .1 .5 \mathrm{M} \Omega
$$

$$
\mathrm{Z}_{\mathrm{g}_{1}}(\mathrm{f}=50 \mathrm{~Hz}) \quad \max \cdot 0.5 \mathrm{M} \Omega
$$

REMARKS

Measures should be taken for the beam current to be switched off immediately when one of the time-base circuits becomes defective.

An X-ray radiation shielding with an equivalent lead thickness of 0.5 mm is required to protect the observer.

[^18]

CAMERA TUBES

SURVEY PLUMBICONS*

NOTES

1) Non-preferred type; for replacement purposes only.
2) Without anti-halation glass disc.
3) With infra-red filter on anti-halation glass disc.
4) With non-cladded fibre optic faceplate, ACT electron gun and light pipe.
${ }^{5}$) With black cladded fibre optic faceplate, ACT electron gun and light pipe.
5) Front loading type.
6) With suffix / 01 without anti-halation disc; e.g. XQ1071/01R.
7) Rear loading type. Provided with ceramic centring ring, ACT electron gun and light pipe.
${ }^{9}$) Front loading type with ACT electron gun and light pipe.

+ Data in preparation.
* Registered Trade Mark for TV camera tube.

				$\begin{aligned} & \text { I } \\ & \text { ت } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\pi}{⿹ 勹} \\ & \stackrel{~}{\sharp} \end{aligned}$				
55875., L, R, G, B	220	11/4	M	M	I	95	St	Br	1)
55875., R, G, B-IG	220	11/4	M	M	I	95	St	Ind	1)
55876/01	214	11/4	M	M	I	95	St	Med	$\left.\left.{ }^{1}\right)^{2}\right)$
XQ1020., L, R, G, B	220	11/4	M	M	S	300	St	Br	
XQ1021.; R, G, B	220	11/4	M	M	S	300	St	Ind	
XQ1022	214	11/4	M	M	S	300	St	Med	2)
XQ1023., L, R	220	11/4	M	M	S	300	ER	Br	
XQ1024., R	220	11/4	M	M	S	300	ER	Ind	
XQ1025., L, R	220	11/4	M	M	S	300	ER	Br	$3)$
XQ1026., R	220	11/4	M	M	S	300	ER	Ind	
XQ1220series	210	11/4	M	M	S	300	St	Med, Sc, LLLTV	4)
XQ1230series	210	11/4	M	M	S	300	St	Med, Sc, LLLTV	5)
XQ1070., R, G, B	164	1	M	M	S	95	Sp	Br	$\left.6^{6} 7\right)$
XQ1071., R, G, B	164	1	M	M	S	95	Sp	Ind	6)7)
XQ1072	158	1	M	M	S	95	Sp	Med	
XQ1073., R	164	1	M	M	S	95	ER	Br	+
XQ1074., R	164	1	M	M	S	95	ER	Ind	$+$
XQ1080., R, G, B	164	1	M	M	S	95	Sp	Br	8)
XQ1081., R, G, B	164	1	M	M	S	95	Sp	Ind	$\left.{ }^{8}\right)^{+}$
XQ1090., R, G, B	164	1	M	M	S	95	Sp	Br	$\left.{ }^{9}\right)+$
XQ1091., R, G, B	164	1	M	M	S	95	Sp	Ind	$\left.{ }^{9}\right)+$
XQ1100., R, G, B	158	1	M	M	S	95	Sp	Br	2)9) +
XQ1101., R, G, B	158	1	M	M	S	95	Sp	Ind	2)9) +
XQ1102	158	1	M	M	S	95	Sp	Med	2) ${ }^{9}$) +
XQ1210., R, G, B	136	5/8	E	M	S	300	Sp	Br	$+$
XQ1211., R, G, B	136	5/8	E	M	S	300	Sp	Ind	+
XQ1213., R, G, B	136	5/8	E	M	S	300	ER	Br	$+$
XQ1214., R	136	5/8	E	M	S	300	ER	Ind	+

SURVEY VIDICONS

Abbreviations used in the table:

Br	= in black and white and colour broadcast cameras
E	$=$ Electrostatic
GP	$=$ General purpose
HI	= in high-quality industrial CCTV black and white and colour cameras
I	$=$ Integral
Ind	$=$ in industrial CCTV black and white and colour cameras
M	$=$ Magnetic
Med	in medical X-ray applications, coupled with an X-ray image intensifier
M1	$=$ in military applications
S	$=$ Separate
Sc	in scientific applications

NOTES

1) except for tube length
2) except for heater current

+ Data in preparation

		$\begin{aligned} & \text { E } \\ & \text { H } \\ & \stackrel{0}{0} \\ & \text { E } \\ & \text { تु } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { 苟 } \\ & \text { U } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { J } \\ & 0 \\ & \text { d } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 茍 } \\ & \text { ह̈ } \end{aligned}$			
XQ1010	159	1	E	E	S	300		M1, Sc, Ind
XQ1031	130	1	M	M	I	95	$\begin{array}{ll} 55850 \mathrm{~F}, \mathrm{~S}, \mathrm{SR} & \text { l) } \\ \text { XQ1030 } & \text { l) } \end{array}$	Med, Br, HI
XQ1032	130	1	M	M	I	95	55850N, AM 1 XQ1030 1)	Ind, GP
XQ1240	159	1	M	M	S	95		Med, Br , HI
XQ1241	159	1	M	M	S	95	$\begin{aligned} & 55851 \mathrm{~N}, \mathrm{AM} \\ & \text { XQ1043, XQ1044 } \\ & \text { 55852N, AM } \\ & \text { XQ1053, XQ1054 } \end{aligned}$	Ind, GP
XQ1270	105	$2 / 3$	M	M	I	95		Ind, GP +
XQ1271	105	2/3	M	M	S	95		Ind, GP +

Abbreviations and notes see page 1

GENERAL OPERATIONAL NOTES CAMERA TUBES VIDICONS

A. PRINCIPLES OF OPERATION OF VIDICONS WITH MAGNETIC FOCUSING; MAGNETIC DEFLECTION

1. With integral mesh

Mechanical design
The schematic arrangement of the vidicon with its accessories is shown in Fig. 1.
The vidicon may be assumed to consist of three sections, namely the electron gun, the scanning section, and the target section.

Fig.1. Schematic electrode and coil arrangement
The electron gun contains a thermionic cathode, a grid g_{1} controlling the beam current, and a limiter electrode g_{2} which accelerates the electrons and releases them in a fine beam through its diaphragm.

The scanning section. The electron beam released by g_{2} enters the space enclosed by the cylindrical electrode g_{3}. By means of the combined action of the adjustable electrical field of g_{3} (beam focus control) and a fixed axial magnetic field produced by the focusing coil, the electrons are focused in one loop on to the target.

The far end of the g_{3} cylinder is closed with a fine metal mesh, g_{4}, electrically connected to g_{3}, which produces a uniform, decelerating field in front of the target. The focused beam is magnetically deflected by two pairs of deflection coils so that it scans the target. Proper alignment of the beam with the axial magnetic field is achieved by either an adjustable magnet, or, as shown in Fig.1, by two sets of alignment coils producing an adjustable transverse magnetic field.

The target section is illustrated in Fig.2. It consists of:

- an optically flat glass faceplate,
- a transparent conductive film on the inner surface of the faceplate, connected electrically to the external signal-electrode ring,
- a thin layer of photoconductive material deposited on the conductive film; in the dark this material has a high specific resistance, which decreases with increasing illumination.
The optical image to be televised is focused on the conductive film by means of a lens system.

Fig.2. Target section

Operation

The external signal-electrode ring is connected via a load resistor to a positive voltage in the order of 40 V (see Fig.3).

The target may be assumed to consist of a large number of target elements corresponding to the number of picture elements. Each target element consists of a small capacitor (C_{e}), connected on one side to the signal electrode via the transparent conductive film and shunted by a light-dependent resistor $\left(\mathrm{R}_{1 \mathrm{~d}}\right)$, see Fig.3).
When the target is scanned by the beam its surface will be "stabilized" at approximately the cathode potential (low-velocity stabilization) and a potential difference will be established across the photoconductive layer, inother words, each elementary capacitor will be charged to nearly the same potential as applied to the electrode ring.
In the dark, the photoconductive material is a fairly good insulator, so that only a minute

Fig. 3 fraction of the charge of the elementary capacitors will leak away between successive scans. This charge will be restored by the beam; the resulting current to the signal electrode is termed "dark current".

When an optical image is focused on to the target, those target elements which are illuminated will become more conductive and will be partly discharged. As a consequence a pattern of positive charges corresponding to the optical image will be produced on the side of target facing the gun section.

While scanning this charge pattern the electron beam will deposit electrons on the positive elements until the latter are restored to their original cathode potential, causing a capacitive current to the signal electrode and hence a voltage across the load resistor R_{L}. This voltage, negative going for the highlights, is the video signal and is fed to the pre-amplifier.
A vidicon is called "stabilized" when the magnitude of the beam current applied is just sufficient to restore the scanned surface to cathode potential, so that all elementary capacitors, including those at the highlights in the image, are recharged successively.
During the retrace periods the beam electrons should be prevented from landing on the target since otherwise the scan retraces will appear as dark lines in the picture obtained on the monitor. This may be achieved either by cutting off the beam with suitable negative blanking pulses on the control grid or by cutting off the target with adequate positive blanking pulses applied to the cathode.

2. With a separate mesh construction

The focus coils commonly used in vidicon cameras do not produce an ideal focus field distribution in the vicinity of the vidicon's photoconductive target.

The resulting "landing errors" of the scanning beam reduce the sensitivity and resolution at the periphery of the picture. The beam landing errors can be corrected by electron-optical means. A lens for this purpose may be formed by the cylindrical electrode $\left(g_{3}\right)$ and the mesh electrode (g_{4}). In the vidicons with a separate mesh electrode g_{4} is electrically insulated from g_{3} and connected to a separate base pin.

The mesh electrode $\left(g_{4}\right)$ should be made positive with respect to the cylindrical electrode (g_{3}); the optimum potential difference depends on:
a. the operating mode of the vidicon (choice of the focusing field and V_{3});
b. the particular type of deflection coil unit used.

As a rule, to obtain the best resolution and most uniform whites the $\mathrm{V}_{\mathrm{g}_{4}}$ should be from 1.3 to 1.5 times higher than $V_{g_{3}}$. Fig. 4 shows a typical curve revealing the effect of the ratio $\mathrm{V}_{4} / \mathrm{V}_{\mathrm{g}_{3}}$ on the resolution measured on a vidicon type XQ1240 in a coil unit type AT1102/01. The fall-off in resolution at $\mathrm{Vg}_{4} / \mathrm{V}_{3}=1$, corresponding to the situation with conventional vidicons, is caused by the defocusing effect of a space charge at the cathode side of the mesh electrode, produced by secondary electrons released from the mesh. This space charge can be prevented from building up by making g_{4} at least 15 Volts positive relative to g_{3}.

Fig.4. Effect of the $\mathrm{V}_{4} / \mathrm{V}_{\mathrm{g} 3}$ ratio on the resolution of a vidicon type XQ1240.

Operation of g_{4} at a negative potential with respect to g_{3} must be avoided in any case, since this would inflict permanent damage on the target, due to ion bombardment. A higher potential applied to g_{4} will slightly raise the required deflection currents but these will usually remain well within the ratings of the camera deflection circuits.

Caution. If the camera wiring has been adapted) for the use of vidicons with separate mesh, insertion of an integral-mesh vidicon will result in normal performance of the tube and do no harm to the tube or the wiring of the camera. However, it should be borne in mind that the insertion of a separatemesh vidicon in an unmodified camera may be detrimental to the vidicon, its target being damaged by ion bombardment; moreover, performance will be unsatisfactory.
) A leaflet is available on request giving suggestions for making cameras suitable for incorporating separate-mesh tubes.

B. EQUIPMENT DESIGN AND OPERATING CONSIDERATIONS

The signal electrode connection should be made by a spring contact which bears against the metal ring at the face end of the tube. The spring contact may be provided as part of the focusing coil design.
The signal-electrode voltage should be limited to such a value that the peak dark current does not exceed $0.25 \mu \mathrm{~A}$.

This is of particular importance for the design and adjustment of vidicon cameras with automatically controlled sensitivity (automatic control of the signalelectrode voltage).

Operation of vidicons at excess dark current will result in damage to the photoconductive target and hence shorten the tube life.

The deflection yoke and the focus coil used must be so designed that the beam lands perpendicularly to the target at all points of the scanned area, to ensure high uniformity of sensitivity and focus.

The deflection circuits must provide constant scanning speeds in order to obtain good black-level reproduction. The dark-current signal being proportional to the velocity of scanning, any change in this velocity will produce a black-level error.

The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with this pole located outside of and at the image end of the focusing coil.

The alignment coil assembly should be located on the tube so that its centre is at a distance of approx. $94 \mathrm{~mm}\left(3^{\prime} 11 / 16 \mathrm{in}\right)$ from the face of the tube, and be positioned so that its axis coincides with the axis of the tube, the deflecting yoke and the focusing coil.

The temperature of the faceplate should never exceed $80^{\circ} \mathrm{C}$, either during operation or storage. Operation at a faceplate temperature of 25 to $35^{\circ} \mathrm{C}$ is recommended.

The temperature of the faceplate is determined by the heating effects of the incident illumination, the associated components and the environment and, to a minor extent, by the tube itself.

To reduce these heating effects and to permit operation in the preferred temperature range under conditions of high light levels, respectively high ambient temperatures, the use of an infra-red filter between object and camera lens, or a flow of cooling air directed across the faceplate, is recommended.

Scanning amplitude

Full-size scanning of the $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ area of the photoconductive layer should always be applied.
Underscanning of the photoconductive layer, i.e. scanning of an area of less than $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ or failure of scanning for even a short duration should always be avoided, since this may cause permanent damage to the specified fullsize area.

The resolution of a vidicon increases with increasing $\mathrm{V}_{\mathrm{g}_{3}}$ and $\mathrm{V}_{\mathrm{g}_{4}}$. In general grid 3 and 4 should be operated above 250 V .
In the low voltage mode $\left(\mathrm{V}_{\mathrm{g}_{3}}=\mathrm{V}_{\mathrm{g}_{4}}=275 \mathrm{~V}\right.$ for integral mesh tubes; $\mathrm{V}_{3}=275 \mathrm{~V}$ and $V_{g_{4}}=385 \mathrm{~V}$ for separate mesh tubes in the coil unit AT1102/01) the current through the focusing should be such as to provide an axial magnetic fieldstrength of approximately $3200 \mathrm{~A} / \mathrm{m}$ (40 Oe).
A substantial increase in both limiting resolution and amplitude response may be obtained by operating the tube in the high voltage mode $\left(\mathrm{Vg}_{4}=\mathrm{Vg}_{3}=600 \mathrm{~V}\right.$ for integral mesh tubes, $\mathrm{V}_{\mathrm{g}_{3}}=600 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{g}_{4}}=840 \mathrm{~V}$ for separate mesh tubes. and an axial magnetic field of approximately $5500 \mathrm{~A} / \mathrm{m}$ (70 Oe).

Since beam-landing errors increase with increasing Vg_{3} and V_{4}, such operation will show a reduced signal output in the corners of the scanned area. When a vidicon with integral mesh is operated in this manner, the deflecting and focusing coils employed must be designed in such a way that beam-landing errors are minimized.

Compensation of residual beam-landing errors can be obtained by supplying modulating voltages of parabolic shape and of both horizontal and vertical scanning frequencies to the cathode and additionally, in order to prevent beam-modulation, to g1 and g2.

A suitable amplitude for this mixed parabolic waveform is approximately 4 V peak-to-peak. The polarity should be chosen such that the potential of the cathode is lowered as the beam approaches the edges of the scanned area. The use of this modulating waveform also improves the centre-to-edge focus of the vidicon.

Operation in the high voltage mode requires increased power for the deflecting and focusing coils, which will result in a higher tube temperature unless adequate provisions for cooling are made. Compensation of beam-landing errors by means of mixed modulating voltages of parabolic shape applied to the cathode is in general not needed for vidicons with separate mesh since the beam-landing errors may be sufficiently reduced by a proper choice of the $\mathrm{V}_{\mathrm{g}_{4}} / \mathrm{V}_{\mathrm{g}_{3}}$ ratio.
C. INSTRUCTIONS FOR USE FOR VIDICONS WITH MAGNETIC FOCUSING AND MAGNETIC DEFLECTION

1. In the case of a separate-mesh vidicon make certain that the camera. is adapted for separate-mesh vidicons.
2. Clean the faceplate of the tube.
3. Insert the tube in the deflection unit so that the direction of the horizontal scan is essentially parallel to the plane defined by the short index pin and the longitudinal axis of the tube.
4. Press the socket firmly onto the base pins.
5. Cap lens and close iris.
6. Set: (a) grid No. 1 bias control at maximum negative bias (beam cut-off)
(b) signal-electrode voltage to approximately 25 V
(c) scanning amplitude to maximum scan.
7. Switch on camera equipment and monitor; allow a few minutes for heating up.
8. Adjust monitor to produce a faint, non overscanned, raster.
9. Direct camera to the scene to be televised and uncap lens.
10. Turn grid No. 1 bias-control slowly till a picture is produced on the monitor. If this picture appears washed out, increase beam current. If the picture is too faint, increase lens aperture.
11. Adjust beam focus ($\mathrm{Vg}_{3}, \mathrm{~V}_{\mathrm{g} 4}$ for integral-mesh tubes, V_{3} for separatemesh tubes) and optical focus alternately for best possible focus.
12. Adjust scanning amplitudes:
(a) by means of a mask of $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$, which is in contact with and centred at the faceplate. Decrease horizontal and vertical deflecting currents till the periphery of this mask is just outside the raster on the
monitor. This procedure may be facilitated by small adjustments of the centring controls;
(b) if no mask is available, direct the camera to a test chart having correct aspect ratio ($3: 4$) and adjust the centring controls in such a way that the target ring is just visible in the corners of the picture. Adjust distance from camera to test chart and optical focus alternately till the picture of the test chart completely fills the scanned raster on the monitor.

13. Adjust alignment controls so that the centre of the picture does not move when beam focus $\left(V_{g_{3}}\right.$ and V_{g} for integral-mesh tubes, V_{g} for separatemesh tubes) is varied.
14. Cap lens and adjust signal-electrode voltage to such a value that further increase would cause the background signal to become objectionally high or non-uniform.
15. Uncap lens. Adjust beam focus control for optimal picture uniformity in respect of picture whites and resolution.
16. Adjust iris for a picture of sufficient contrast and adjust beam current to the minimum value which will give details in the picture highlights.
17. Check alignment, beam focus and optical focus.

Always:

- make sure the camera wiring is adapted for a separate-mesh tube before installation;
- make sure that the deflection circuits are operative before adjusting beam current;
- maintain the same scanned target area, hence avoid rotating the tube;
- use full size ($9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$) scanning of the target, hence avoid underscanning;
- use sufficient beam current to stabilize the picture highlights;
- adjust Vg_{4} of separate-mesh tubes to a value positive with respect to Vg_{3};
- avoid peak-dark currents in excess of $0.25 \mu \mathrm{~A}$;
- avoid directing the camera at the sun;
- keep lens capped when transporting the camera.
D. PROPERTIES OF THE PHOTOCONDUCTIVE TARGETS AS USED IN THE XQ1010, XQ1031/1032, XQ1240/1241 (Photoconductive targets type A) Spectral response
The spectral response of the targets used in the above tubes is shown in Fig.6.

Fig. 6

Dark current
The range of dark currents determined at a faceplate temperature of $30 \pm 2{ }^{\circ} \mathrm{C}$ is shown in Fig. 7. ${ }^{1}$).

Fig. 7

1) The XQ1240 is selected for a narrower range (see data sheets).

Transfer characteristics

The light transfer characteristics of a typical vidicon with three dark current settings as parameters are given in Fig. 8.

Fig. 8

Spurious signal specification for Plumbicon* tubes

Revised edition in preparation

* Registered Trade Mark for television camera tube.

Spurious signal specification for Vidicon tubes

Section A Vidicons for telecine, other broadcast applications and critical industrial applications.

Test conditions

1. A back illuminated test transparency, with a aspect ratio of $3: 4$, with threequal ity zones (see Fig.1) is projected onto the specified target area ($9.6 \times 12.8 \mathrm{~mm}^{2}$), producing even illumination.

Fig. 1

2. Light level adjusted to produce a total target current of $0.3 \mu \mathrm{~A}$, target voltage adjusted for a dark current of approx. 20 nA , temperature $30^{\circ} \pm 2^{\circ} \mathrm{C}$, colour temperature of light source $2854{ }^{\circ} \mathrm{K}$.
3. Tube aligned and focused in accordance with the published instructions for use.
4. Video-amplifier system having a bandwidth of 5.5 MHz .
5. Monitor adjusted for a non-blooming white.
6. In the evaluation of blemishes the following definitions apply:
a) a spot (black or white) is a blemish with a maximum linear dimension measured in any direction of 0.75% of the picture height (0.8% for industrial grade tubes, 1% for low cost tubes)
b) a smudge (blackor white) is a blemish with a maximum linear dimension measured in any direction exceeding 0.75% of picture height (0.8% for industrial grade tubes, 1% for low cost tubes)
Permitted number, size and location of blemishes ${ }^{1}$)

Dimensions of blemishes in \% of picture height	Permitted number of blemishes		
	Zone I	Zone II	Zone III
$>0.75 \%$	0	0	0
$\leq 0.75 \%$ but $>0.45 \%$	0	0	1
$\leq 0.45 \%$ but $>0.2 \%$	0	$\left.2)^{2}\right)$	2
$\leq 0.2 \%$	$3)$	$3)$	$3)$

1) Spots (black and white) and smudges (black and white) are not counted when their contrast expressed in \% of picture white as measured on a waveform oscilloscope is less than 25% respectively 10%.
${ }^{2}$) Sum of diameters of these spots shall not exceed 0.75%.
${ }^{3}$) Spots of this size are allowed unless concentration causes a smudge appearance. As contrast of the smudge the average contrast of the concentration is taken.

Section B Vidicons for medical X-ray applications.

Test conditions

1. A back illuminated test transparency with three quality zones (see Fig. 2) is projected onto the specified target area (15 mm dia circular) producing an even illumination.

Fig. 2

2. Light level adjusted to produce a total target current of $0.2 \mu \mathrm{~A}$, target voltage adjusted for a dark current of approx. 20 nA , temperature $30^{\circ} \pm 2^{\circ} \mathrm{C}$.
3. Tube aligned and focused in accordance with the published instructions for use.
4. Video-amplifier system having a bandwidth of 5.5 MHz .
5. Monitor adjusted for a non-blooming white.
6. As Section A. 6

Permitted number, size and location of blemishes ${ }^{2}$)

Dimensions of blemishes in \% of picture height	Permitted number of blemishes		
	Zone I	Zone II	Zone III
$>0.75 \%$	0	0	0
$\leq 0.75 \%$ but $>0.45 \%$	0	1	3
$\leq 0.45 \%$ but $>0.2 \%$	2	3	6
$\leq 0.2 \%$	$3)$	$3)$	$3)$

${ }^{1}$) Sum of numbers of spots in zones II and III shall not exceed 6 .
${ }^{2}$) Spots (black or white) and smudges (black or white) are not counted when their contrast expressed in \% of picture white as measured on a waveform oscilloscope is less than 25% respectively 5%.
3) Spots of this size are allowed unless concentration causes a smudge appearance. As contrast of the smudge the average contrast of the concentration is taken.

Section C Vidicons for industrial applications
Test conditions
As Section A
Permitted number, size and location of blemishes
Dimensions of blemishes
in $\%$ of picture height
$>0.8 \%$
$\leq 0.8 \%$ but $>0.6 \%$
$\leq 0.6 \%$ but $>0.2 \%$
$<0.2 \%$

Permitted number of blemishes	
Zone I + Zone II	Zone III
0	0
0	1
2	3
$2)$	$2)$

${ }^{1}$) Spots (black and white) and smudges (black and white) are not counted when their contrast expressed in \% of picture white as measured on a waveform oscilloscope is less than 50%.
${ }^{2}$) Spots of this size are allowed unless concentration causes a smudge appearance. As contrast of the smudge the average contrast of the concentration is taken.

Section C Vidicons for low cost CCTV cameras

Test conditions

As Section A

Permitted number, size and location of blemishes ${ }^{1}$)
Dimensions of blemishes
in \% of picture height
$>1 \%$
$\leq 1 \%$ but $>0.6 \%$
$\leq 0.6 \%$ but $>0.2 \%$
$\leq 0.2 \%$

Permitted number of blemishes	
Zone I + Zone II	Zone III
0	0
1	3
4	6
$2)$	$2)$

[^19]
RATING SYSTEM

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

CAMERA TUBE

Vidicon television camera tube with electrostatic deflection and electrostatic focusing and ruggedized construction; intended for use in compact TV systems in industrial and other applications.

QUICK REFERENCE DATA			
Separate mesh			
Focusing	electrostatic		
Deflection	electrostatic		
Construction	ruggedized		
Diameter	25.4	$\mathrm{~mm}(1 \mathrm{in})$	
Length	158	$\mathrm{~mm}\left(6 \frac{1}{4} \mathrm{in}\right)$	
Heater	$6.3 \mathrm{~V}, 300$	mA	
Resolution	≥ 600	TV lines	

OPTICAL

Diagonal of quality rectangle on photoconductive layer (aspect ratio 3:4) max. 16 mm

Orientation of image on photoconductive layer:

The direction of the horizontal scan is essential parallel $\pm 5^{\circ}$ to the plane defined by pin no. 2 and the longitudinal tube axis.
Spectral response, max. response at approx. 550 nm

HEATING

Indirect by A.C. or D.C.; parallel and series supply

Heater voltage	V_{f}	6.3	$\mathrm{~V} \pm 10 \%$
Heater current	I_{f}	300	mA

When the tube is used in a series heater chain, the heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

CAPACITANCES

Signal electrode to all

The capacitance C_{as}, which effectively is the output impedance of the tube increases when the tube is inserted into a shield.

MECHANICAL DATA

Dimensions in mm

x_{1} to x_{2}
y_{1} to y_{2}

LIMITING VALUES (Absolute max. rating system)
for scanned area of $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}(3 / 8 \mathrm{in} \times 1 / 2 \mathrm{in})$
"Full-size scanning" i.e. scanning of a $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ area of the photoconductive layer should always be applied. The use of a mask having these dimensions is recommended. Underscanning, i.e. scanning of an area less than $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$, may cause permanent damage to the specified full-size area.

Signal-electrode voltage
Grid no. 5 voltage
Grid no. 4 voltage
Grid no. 3 voltage
Grid no. 2 voltage
Grid no. 1 voltage, negative

- positive

Cathode-to-heater voltage
Voltage between any combination of deflection electrodes

Output current, peak
Dark current, peak
Cathode current
Faceplate illumination
Faceplate temperature, storage and operation

$\mathrm{V}_{\text {as }}$	max.	100	V
$\mathrm{~V}_{\mathrm{g}_{5}}$	max.	750	V
$\mathrm{~V}_{\mathrm{g}_{4}}$	max.	750	V
$\mathrm{~V}_{\mathrm{g}_{3}}$	max.	750	V
$\mathrm{~V}_{\mathrm{g}_{2}}$	max.	750	V
$-\mathrm{V}_{\mathrm{g}_{1}}$	max.	200	V
$\mathrm{~V}_{\mathrm{g}_{1}}$	max.	0	V
$\mathrm{~V}_{\mathrm{kf}}$	\max.	50	V

V	\max.	200	V
$\mathrm{I}_{\mathrm{asp}}$	\max.	0.6	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {darkp }}$	\max.	0.25	$\mu \mathrm{~A}$
I_{k}	\max.	2	mA
E	\max.	5000	lx

$\max . \quad 80{ }^{\circ} \mathrm{C}^{2}$)

[^20]
OPERATING CONDITIONS AND PERFORMANCE

For a scanned area of $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ and a faceplate temperature of $30 \pm 2^{\circ} \mathrm{C}$.

CONDITIONS

Mesh voltage
Collector voltage
Focusing electrode voltage
Accelerator voltage
Grid no. 1 voltage
$V_{g_{5}}$
$V_{g_{4}}$
$V_{g_{3}}$
$V_{g_{2}}$
$V_{g_{1}}$
$\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}$
$\Delta \mathrm{V}_{2}, \Delta \mathrm{~V}_{\mathrm{y}_{1} \mathrm{y}_{2}}$
$\Delta \mathrm{~V}_{\mathrm{xy}}$
Deflection electrode voltage
Correction voltage for centring
Correction voltage for astigmatism

Alignment

Screening
Deflection voltage,
x -deflection: for 12.8 mm scan, per electrode
y-deflection: for 9.6 mm scan, per electrode

PERFORMANCE

Signal electrode voltage for dark current of 20 nA typical
$\mathrm{V}_{\text {as }}$
$V_{\text {as }}$
Signal current
Faceplate illumination 8 lx , c.t. $2854^{\circ} \mathrm{K}$
I_{S}
Decay: residual signal current after dark pulse of 200 ms . 8 lx , c.t. 2854 OK, on faceplate
Grid no. 1 voltage for picture cut-off, with no blanking applied
Limiting resolution in picture centre
Modulation depth at 400 TV lines,
in picture centre
in picture corners
Geometry distortion
Average γ of transfer characteristic for signal
currents between $0.01 \mu \mathrm{~A}$ and $0.3 \mu \mathrm{~A}$

425 V
225 V
100 V
425 V
adjusted for sufficient beam current to stabilize picture highlights

$$
\begin{array}{lrr}
& 225 & \mathrm{~V} \\
\operatorname{li}) \\
\max . & 20 & \mathrm{~V} 2) \\
\max . & 10 & \mathrm{~V} 3)
\end{array}
$$

not required
close fitting mu-metal tubular shield

$$
\begin{array}{ll}
55 & \mathrm{~V}_{\mathrm{pp}} \pm 10 \% \\
42 & \mathrm{~V}_{\mathrm{pp}} \pm 10 \%
\end{array}
$$

$$
20 \text { to } 55 \mathrm{~V}
$$

$$
30 \mathrm{~V}
$$

NOTES

1. Average d.c. voltage of the four deflection electrodes before correction for astigmatism. $\left(\Delta V_{\mathrm{xy}}\right)$.
2. Some centring of the scanned area on the target will generally be needed. The d.c. voltage differences between the electrodes x_{1} and $x_{2}\left(\Delta V_{x_{1}} x_{2}\right)$ and the electrodes y_{1} and $y_{2}\left(\Delta V_{y_{1}}, y_{2}\right)$ needed for centring will not exceed the quoted value.
3. Astigmatism correction may be achieved by applying a voltage difference ($\Delta V_{x y}$) between the x deflection electrode pair and the y deflection electrode pair. This correction is obtained with a voltage difference $\Delta V_{x y}$ not exceeding the quoted value.
4. Signal electrode voltage set for a dark current of 20 nA .
5. Measured with a video amplifier system having an appropriate bandwidth.
6. Square wave response. Typical values for the tube proper, after correction for faults introduced by the optical system, measured with a peak signal current $I_{S p}=0.2 \mu \mathrm{~A}$.
7. Corners defined as 0.35 of diagonal from centre.

SHOCK AND VIBRATION

Shock
The tube will function satisfactorily after having been subjected 3 times in each of 6 directions to a shock pulse of 30 g , duration 11 ms .
The directions are:

Vibration

The tube will function satisfactorily when vibrated at 25 Hz to 500 Hz with an acceleration of 20 g in each of three mutually perpendicular directions one of which coincides with the longitudinal axis of the tube. The rate of change of frequency is logarithmic and such that a complete cycle occupies approximately 10 minutes. The duration of the test is 12 complete cycles in each of 3 directions.

CAMERA TUBE

Plumbicon*, sensitive high-definition pick-up tube with photoconductive target and low velocity stabilization.
The XQ1020 is intended for use in black and white, the L, R, G, and B versions for in four and three tube colour studio cameras.

	QUICK REFERENCE DATA		
Focusing	magnetic		
Deflection	magnetic		
Diameter	approx.	30	mm
Heater	6.3 V	300	mA

OPTICAL

Dimensions of quality rectangle on
photoconductive layer (aspect ratio 3:4)
Orientation of image on photoconductive
layer
Sensitivity at colour temperature of
illumination $=2850 \mathrm{~K}$
type: XQ1020, XQ1020L

$$
\begin{aligned}
& \text { XQ1020R } \\
& \text { XQ1020G } \\
& \text { XQ1020B }
\end{aligned}
$$

Gamma of transfer characteristic
Spectral response; max. response at

HEATING

Indirect by A. C. or D. C. ; parallel sypply
Heater voltage
Heater current
$12.8 \mathrm{~mm} \times 17.1 \mathrm{~mm}^{1}$)

By means of index pin ${ }^{2}$)
min. $325 \mu \mathrm{~A} /$ lumen
min. $70 \mu \mathrm{~A} /$ /lumen 3)
$\min .130 \mu \mathrm{~A} /$ lumen 3)
\min. $\quad 35 \mu \mathrm{~A} /$ lumen 3)
0.95 ± 0.05^{4})
approx. 500 nm

V_{f}	$6.3 \mathrm{~V} \pm 5 \%$
I_{f}	300 mA

[^21]
MECHANICAL DATA

Distance between axis of anti-reflection glass disc and geometrical centre of signal electrode ring, measured in plane of faceplate: max. 0.2 mm .
total glass thickness: $7.2 \pm 0.2 \mathrm{n}=1.5$

1) The base passes a flat gauge with a centre hole $9.00 \pm 0.01 \emptyset$ and holes for passing the pins with the following diameters: 7 holes of $1.75 \pm 0.005 \emptyset$ and one hole of $3.00 \pm$ $0.005 \emptyset$. The holes may deviate max. 0.01 from their true geometrical position. Tickness of gauge 7 mm .
2) The ends of the pins are tapered and/or rounded but not brought to a sharp point.

Mounting position: any
Net weight: approx. 100 g

ACCESSORIES

Socket
Focusing and deflection coil assembly
for XQ1020
for XQ1020L, R, G, B
type 56021
type AT1132 or 312210868300
type AT1112 or
type AT1113 or type 1113/01

For optimal screening of the target from the live end of the line deflection coils the use of 312210868300 or AT1113/01 is recommended.

XQ1020 XQ1020L XQ1020R,G,B

CAPACITANCE

Signal electrode to all

$$
\mathrm{C}_{\mathrm{as}}
$$

$$
3 \text { to } 6 \quad \mathrm{pF}^{5} \text {) }
$$

FOCUSING magnetic ${ }^{6}$)
DEFLECTION magnetic ${ }^{6}$)

CHARACTERISTICS

Grid No. 1 voltage for cut-off at $V_{g 2}=300 \mathrm{~V}$
$\begin{array}{llll}\mathrm{V}_{\mathrm{g} 1} & -30 \text { to }-100 & \left.\left.\mathrm{~V}^{7}\right)^{8}\right)\end{array}$
Blanking voltage, peak to peak
on grid No. 1
on cathode
Grid No. 2 current at normally required beam currents
Dark current at $\mathrm{V}_{\text {as }}=45 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g}_{\text {p-p }}}$
$\mathrm{V}_{\mathrm{k}_{\mathrm{p}-\mathrm{p}}}$
I_{2}
I_{a}

LIMITING VALUES (Absolute max. rating system)
Signal electrode voltage
Grid No. 4 voltage
Grid No. 3 voltage
Voltage between grid No. 4 and grid No. 3
Grid No. 2 voltage
Grid No. 2 dissipation
Grid No. 1 voltage, positive
negative
Cathode current
Cathode heating time before drawing cathode current
T_{w}
Cathode to heater voltage,
positive peak
negative peak

Ambient temperature, storage and operation
Faceplate temperature, storage and operation
Faceplate illumination

V_{kf}	max.	50	V
$-\mathrm{V}_{\mathrm{kf}}$	max.	50	V
	max.	50	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{amb}}$	min.	-30	${ }^{\circ} \mathrm{C}$
	max.	50	${ }^{\circ} \mathrm{C}$
t	min.	-30	${ }^{\circ} \mathrm{C}$
	max.	500	$\left.\mathrm{~lx}^{9}\right)$

${ }^{5},{ }^{6},{ }^{7},{ }^{8},{ }^{9}$) See page 5 .

OPERATING CONDITIONS AND PERFORMANCE

Cathode voltage
Grid No. 2 voltage

V_{k}	0	V
$\mathrm{~V}_{2}$	300	V
$\mathrm{~V}_{\mathrm{a}}$	45	$\left.\mathrm{~V}^{10}\right)$

Beam current

Focusing coil current at given
values of grid No. 4 and grid No. 3 voltage
Line coil current and frame coil current
Faceplate illumination
Faceplate temperature
Ibeam See note 11

See note 12
See note 12
See notes 13 and 14
t $\quad 20$ to $45 \quad{ }^{\circ} \mathrm{C}$
Resolution
Modulation depth i.e. uncompensated horizontal amplitude response at 400 TV lines, at centre of picture.
The figures shown represent the typical horizontal amplitude response of the tube after correction for faults introduced by the optical system. ${ }^{15}$)

Highlight signal current I_{S}
$\mathrm{V}_{\mathrm{g}_{4}}=550$ to 650 V
$\mathrm{V}_{\mathrm{g}_{4}} / \mathrm{g}_{3}=50$ to 100 V
(adjusted for optimum focus)

XQ1020 XQ1020L	XQ1020R	XQ1020G	XQ1020B
0.3	0.15	0.3	0.15
4 A			
40	35	40	50

See also note 12

Limiting resolution
Signal to noise ratio at $\mathrm{I}_{\mathrm{S}}=0.15 \mu \mathrm{~A}$
approx. 200:1 ${ }^{16}$)
Decay (or lag)
measured with 100% signal current $=0.1 \mu \mathrm{~A}$ and a light source with a colour temperature of 2850 K .
Appropriate filter inserted in light-path for tubes XQ1020R, G, B.

Residual signal after dark pulse of 60 ms
Residual signal after dark pulse of 200 ms

XQ1020L, R, G, B	XQ1020B
$\operatorname{max.5}$	$\operatorname{max.}$ 6
max. 2	$\operatorname{max.} 3$

NOTES

1) Underscanning of the specified useful target area of $12.8 \mathrm{~mm} \times 17.1 \mathrm{~mm}$, or failure of scanning, should be avoided since this may cause damage to the photo-conductivelayer.
${ }^{2}$) For correct orientation of the image on the photoconductive layer the horizontal scan should be essentially parallel to the plane passing through the tube axis and the index pin.
2) Measuring conditions:

Illumination 4.541 x at black body colour temperature of 2850 K ; the appropriate filter inserted in the light path. The signal current obtained in nA is a measure of the colour sensitivity expressed in $\mu \mathrm{A}$ per lumen of white light before the filter. Filters used:

55875R	Schott	OG2	thickness	3 mm
55875G	Schott	VG9	thickness	1 mm
55875B	Schott	BG12	thickness	3 mm

See page 8 for transmission curves.
${ }^{4}$) a) Gamma is, to a certain extent, dependent on the wavelength of the illumination applied.
b) The use of gamma-stretching circuitry is recommended.
${ }^{5}$) The capacitance $\mathrm{C}_{\mathrm{a}_{\mathrm{S}}}$ to all, which effectively is the output impedance, increases when the tube is inserted into the deflecting/focusing coil assembly.
${ }^{6}$) For focusing/deflection coil assembly, see under "Accessories".
${ }^{7}$) Without blanking voltage on grid No. 1.
${ }^{8}$) At $V_{k}=0 \mathrm{~V}$.
${ }^{9}$) For short intervals. During storage the tube face shall be covered with the plastic hood provided; when the camera is idle the lens shall be capped.
10) The signal electrode voltage shall be adjusted to 45 V . To enable the tube to handle excessive highlights in the scene to be televised the signal electrode voltage may be reduced to a minimum of 25 V , this will, however, result in some reduction in performance, especially in respect of sensitivity.
${ }^{11)}$ The beam current shall be adjusted for correct stabilization of the highlight signal currents stated in the table.
12).

Black/white coil assembly AT1132 and 312210868300 $\mathrm{Vg}_{3}=550$ to $600 \mathrm{~V}, \mathrm{Vg}_{4}=675 \mathrm{~V}$
Colour coil assemblies Af1112, AT1113, AT1113/01
$\mathrm{V}_{\mathrm{g}_{3}}=550$ to $600 \mathrm{~V}, \mathrm{Vg}_{4}=675 \mathrm{~V}$

Focus current mA	Line current $\mathrm{mA}_{\mathrm{pp}}$	Focus current $\mathrm{mA}_{\mathrm{pp}}$
25	235	35
100	235	35

(approx. values)

The optimum voltage ratio $\mathrm{V}_{\mathrm{g}_{4}} / \mathrm{Vg}_{3}$ depends on the type of focusing/deflection coil used: for types AT1112, AT1113, AT1113/01, AT1132, 312210868300 a ratio of $1.1: 1$ to $1.15: 1$ is recommended.
13) Typical faceplate illumination level for the XQ1020 and XQ1020L to produce $0.3 \mu \mathrm{~A}$ signal current will be approx. 4 lx . The signal currents stated for the colour tubes XQ1020R, G, B respectively will be obtained with an incident white light level (2850 K) on the filter of approx. 10 lx . These figures are based on the filters described in note 3 , for filter BG 12 however a thickness of 1 mm is chosen.
${ }^{14}$) In the case of a black/white camera the illumination on the photoconductive layer, B_{ph}, is related to scene illumination, B_{Sc}, by the formula:

$$
\mathrm{B}_{\mathrm{ph}}=\mathrm{B}_{\mathrm{Sc}} \frac{\mathrm{R} \cdot \mathrm{~T}}{4 \mathrm{~F}^{2}(\mathrm{~m}+1)^{2}}
$$

in which R represents the average scene reflectivity or the object reflectivity, whichever is relevant, T the lens transmission factor. F the lens aperture, and m the linear magnification from scene to target.
A similar formula may be derived for the illumination level on the photoconductive layers of the R, G, and B tubes in which the effects of the various components of the complete optical system have been taken into account.
15) The horizontal amplitude response can be raised by the application of suitable correction circuits, which affects neither the vertical resolution, nor the limiting resolution.
16) The stated ratio represents the "visual equivalent signal-to-noise ratio", which is taken as the ratio of highlight video-signal current to RMS noise current, multiplied by a factor of 3 , assuming an RMS noise current of the video pre-amplifier of 2 nA , bandwidth 5 MHz .

GENERAL RECOMMENDATIONS

1. During transport, handling and storage the axis of the Plumbicon must be either vertical, with faceplate up, or horizontal ; the faceplate should be covered with the hood provided.
2. To avoid damage to the tungsten basepins, the Plumbicon should be inserted in its socket with care. Shocks, undue force, and bending loads on the pins are to be avoided.
3. During long term storage the ambient temperature should not exceed $30^{\circ} \mathrm{C}$.
4. In isolated cases the properties of a Plumbicon may deteriorate slightly when it is kept idle for long periods such as may occur:

- between the factory's pre-shipment test and the actual delivery to the customer;
- between receipt of the tube and its installation;
- when the camera is not used for a long time.

Although the chances of such deterioration are remote it is advisible to operate the tube for some hours at intervals not more than 4 weeks apart.
The following procedure and conditions are recommended:

- Set grid no. 1 bias control to maximum negative bias (beam cut-off).
- Allow a heating-up time of the cathode of at least one minute before turning up the grid no. 1 bias control to produce a beam.
- Set scanning amplitudes to overscan condition.
- Apply an even illumination to the target to obtain a signal current of approx. $0.15 \mu \mathrm{~A}$ and adjust the beam current for correct stabilization.

5. The signal electrode connection is made by a springcontact, which is part of the focusing coil assembly, and is kept pressed against the signal electrode ring.
6. Electrostatic shielding of the signal electrode is required to avoid interference effects in the picture. Effective shielding is provided by a grounded shield inside the focusing coil at the faceplate end, and one inside the deflecting yoke.
7. The light transfer characteristic of the Plumbicon tube being characterized by a gamma near unity, it may be desirable for broadcast applications to incorporate a gamma correcting circuitry in the video-amplifier system with an adjustable gamma of 0.5 to 1 .

It is suggested to design this gamma correcting circuitry such that an extra compression can be introduced by manual control in the video signal range of 75% to 100% of normal peak white level.

This provision will prevent the video-amplifier system from becoming overloaded when the Plumbicon tube is exposed to scenes containing small peaked highlights as caused by reflections of shiny objects.
8. The Plumbicon tube not generating own noise to any noticeable extent, the signal-to--noise ratio will be determined mainly by the entrance noise of the video-amplifier system.

The high sensitivity of the Plumbicon tube warrants pictures with excellent signal-to--noise ratio under normal studio lighting conditions provided its output is fed into a well-designed input stage of the video-amplifier system. In such a system an aperture correction may be incorporated to ensure an attractive gain in resolving power without visually impairing the signal-to-noise ratio.

INSTRUCTIONS FOR USE

Instructions for use are packed with each tube

CAMERA TUBE

Plumbicon*, sensitive pick-up tube with lead oxide photoconductive target and low velocity stabilization. Provided with sepatate mesh construction.

The tubes of this series are mechanically and electrically identical to the tubes of the XQ1020 series, the only difference being the degree of freedom from blemishes of the photoconductive target.

The tubes are intended for industrial and educational black and white and colour cameras. The series comprises the following versions:

XQ1021 for black and white cameras
XQ1021R $\left.\begin{array}{l}\text { XQ1021G }\end{array}\right\} \quad$ for use in the chrominance channels of colour cameras XQ1021B

For all further information see data of the QX1020 series.
*Registered Trade Mark for T.V. camera tube.

CAMERA TUBE

Plumbicon*, sensitive high definition pick-up tube with lead-oxide photoconductive target and low velocity stabilisation.
Provided with separate mesh construction.
The XQ1022 is exclusively intended for use with X-ray image intensifiers in medical equipment.

QUICK REFERENCE DATA				
Focusing		magnetic		
Deflection	magnetic			
Diameter	approx.	30		
Heater	$6.3 \mathrm{~V}, \quad 300$	mA		
Without anti halation glass disc				

OPTICAL

Dimensions of quality area on photoconductive layer
circle of 18 mm diameter $\left.{ }^{1}\right)^{2}$)
Orientation of image on photoconductive layer

By means of index pin ${ }^{2}$)
Sensitivity, measured with a fluorescent light source having P_{20} distribution

Gamma of transfer characteristic
Spectral response; max. response at

HEATING

Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

V_{f}	6.3	$\mathrm{~V} \pm 5 \%$
If	300	mA

[^22]
a) The base passes a flat gauge with a centre hole $9.00 \pm 0.01 \emptyset$ and holes for passing the pins with the following diameters: 7 holes of $1.75 \pm 0.005 \emptyset$ and one hole of $3.00 \pm 0.005 \emptyset$. The holes may deviate max. 0.01 from their true geometrical position. Thickness of gauge 7 mm .
b) The ends of the pins are tapered and/or rounded but not brought to a sharp point.

Mounting position: any

ACCESSORIES

Socket
Focusing and deflection coil assembly

CAPACITANCE

Signal electrode to all
Net weight: approx. 100 g
FOCUSING
magnetic ${ }^{6}$)
DEFLECTION

DEFLECTION magnetic ${ }^{6}$)
type 56021
AT1122, AT1132, AT1132/01 4)

$$
\left.\mathrm{C}_{\mathrm{as}} 3 \text { to } 6 \mathrm{pF}^{5}\right)
$$

CHARACTERISTICS

Grid No. 1 voltage for cut-off

$$
\text { at } \mathrm{V}_{\mathrm{g}_{2}}=300 \mathrm{~V}
$$

$$
\left.\mathrm{V}_{\mathrm{g}_{1}} \quad-30 \text { to }-100 \quad \mathrm{~V}^{7}\right)^{8} \text {) }
$$

Blanking voltage, peak to peak on grid No. 1, min. required on cathode, min. required
Grid No. 2 current at normally required beam currents
Dark current

Ig_{2}	\max.	1 mA
I_{a}	\max.	$3 \mathrm{nA})$

LIMITING VALUES (Absolute max. rating system)

Signal electrode voltage
Grid No. 4 voltage
Grid No. 3 voltage
Voltage between grid No. 4 and grid No. 3
Grid No. 2 voltage
Grid No. 2 dissipation
Grid No. 1 voltage, positive

Cathode current

Cathode heating time before drawing cathode current
Cathode to heater voltage, positive peak negative peak
Ambient temperature, storage and operation

Faceplate temperature, storage and operation

Faceplate illumination

V_{a}	\max.	50	V^{8})
$\mathrm{V}_{\mathrm{g}_{4}}$	max.	1100	V^{8})
$\mathrm{V}_{\mathrm{g}_{3}}$	max.	800	V^{8})
$\mathrm{V}_{4} / \mathrm{g}_{3}$	max.	350	V^{8})
V_{g}	max.	350	V^{8})
Wg_{2}	max.	1	W
Vg_{1}	max.	0	V
$-\mathrm{Vg}_{1}$	max.	125	V
Ik	max.	6	mA

$\mathrm{T}_{\mathrm{h}} \quad \min \quad 1 \mathrm{~min}$

V_{kf}	max.	50	V
$-\mathrm{V}_{\mathrm{kf}}$	max.	50	V
	max.	50	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{amb}}$	min.	-30	$\mathrm{o}^{\circ} \mathrm{C}$

$$
\begin{array}{lrl}
\max . & 50 & { }^{\circ} \mathrm{C} \\
\min . & -30 & { }^{\circ} \mathrm{C} \\
\max . & 100 & \left.1 \mathrm{x}^{9}\right)
\end{array}
$$

$\overline{\left.\left.\left.5)^{6}\right)^{7}\right)^{8}\right)^{9} \text {) See page } 5}$
) Target voltage adjusted to the value indicated by the tube manufacturer in the test sheet as delivered with each individual tube.

OPERATING CONDITIONS AND PERFORMANCE

Cathode voltage
Grid No. 2 voltage
Grid No. 3 voltage
Grid No. 4 voltage
Signal electrode voltage
Beam current

V_{k}	0	V
$\mathrm{~V}_{\mathrm{g}_{2}}$	300	V
$\mathrm{~V}_{\mathrm{g}_{3}}$	$550-600$	V
$\mathrm{~V}_{\mathrm{g}_{4}}$	See note 11	
$\mathrm{~V}_{\mathrm{a}_{\mathrm{s}}}$	$15-45$	$\mathrm{~V}^{12}$)
I_{b}	See note 13	

Focusing coil current
Line coil current and frame coil current $\}$
Highlight signal electrode current
Average signal output
Faceplate temperature
Faceplate illumination

Resolution

Modulation depth, i.e. uncompensated horizontal amplitude response at MHz (625 lines, 50 field system)
in picture centre
Signal to noise ratio at $\mathrm{IS}_{\mathrm{S}}=0.15 \mu \mathrm{~A}$

Decay (or lag)

Measured with 100% video signal current of $0.1 \mu \mathrm{~A}$ which has been flowing through the layer for a minimum of 5 s
Beam adjusted for correct stabilisation.
Fluorescent light source having P_{20} distribution.

Residual signal after dark pulse of 60 msec
Residual signal after dark pulse of 200 msec

\max.	10	$\%$	typ.	5	$\%$	17
max.	4	$\%$	typ.	2	$\%$	17)

$\left.\left.\left.\left.\left.\left.\overline{10,11,12})^{13}\right)^{14}\right)^{15}\right)^{16}\right)^{17}\right)^{18}\right)^{19}$) See pages 5 and 6

NOTES

1. All underscanning of the specified useful target area of 18 mm diameter or failure of scanning should be avoided. Since this may cause permanent damage to the photoconductive layer.
2. The area beyond the 18 mm circular optical image preferably to be covered by a mask.
3. The near unity gamma of the XQ1022 ensures good contrast when televising low contrast X-ray image-intensifier pictures as encountered in radiology. Further contrast improvement may be obtained when an adjustable gamma expansion circuitry is incorporated in the video amplifier system.
4. For optimal screening of the target from the live end of the line deflection coils the use of AT1132/01 is recommended.
5. Cas which effectively is the output impedance, increases when the tube is inserted into the deflection/focusing coil assembly.
6. See "Accessories".
7. With no blanking voltage on g_{1}.
8. At $\mathrm{V}_{\mathrm{k}}=0 \mathrm{~V}$.
9. For short intervals. During storage the tube face shall be covered with the plas tic hood provided.
10. Grid No. 3 voltage adjusted for optimum picture focus.
11. Grid No. 4 voltage $50-100 \mathrm{~V}$ positive to grid No. 3 voltage.
12. The target voltage should be adjusted to the value indicated by the tube manufacturer on the test sheet as delivered with each individual tube.
13. Operation of the tube with beam currents I_{b} not sufficient to stabilize the brightest picture elements must be carefully avoided by order to prevent loss of high light detail and/or "sticking" effects. The incorporation of a separate mesh construction allows excess beam currents Ib up to $0.6 \mu \mathrm{~A}$ to be applied without appreciable loss in resolution.
14. For AT1122, AT1132, AT1132/01, at $\mathrm{V}_{\mathrm{g}_{3}}=550$ to $600 \mathrm{~V}, \mathrm{~V}_{\mathrm{g}_{4}}=675 \mathrm{~V}$

Focus current	25 mA	
Line deflection current	250 mApp	for $18 \mathrm{~mm} \times 18 \mathrm{~mm}$
Frame deflection current	50 mApp	

The optimum voltage ratio $\mathrm{V}_{4} / \mathrm{Vg}_{3}$ depends on the type of focusing/deflection coil used: for types AT1112, AT1132, AT1132/01 ratio of $1.1: 1$ to $1.15: 1$ is recommended.
15. Substraction of the dark current is unnecessary because of the extremely small value.
16. In the case of a black/white camera the illumination on the photoconductive layer, B_{ph}, is related to scene illumination, B_{Sc}, by the formula:

$$
\mathrm{B}_{\mathrm{ph}}=\mathrm{B}_{\mathrm{Sc}} \frac{\text { R.T. }}{4 \mathrm{~F}^{2}(\mathrm{~m}+1)^{2}}
$$

in which R represents the average scene reflectivity or the object reflectivity, whichever is relevant, T the lens transmission factor, F the lens aperture, and m the linear magnification from scene to target.
17. With a signal current of $0.1 \mu \mathrm{~A}$ and a beam current of $0.5 \mu \mathrm{~A}$.
18. Horizontal amplitude response can be raised by the application of aperture correction. Such compensation, however, does not affect the vertical resolution, nor does it influence the limiting resolution.
19. The stated ratio represents the "visual equivalent signal-to-noise ratio", which is taken as the ratio of highlight video-signal current to R.M.S. noise current, multiplied by a factor of 3 . (Assuming an R.M.S. noise current of the video pre-amplifier of $2 \cdot 10^{-9} \mathrm{~A}$, bandwidth 5 MHz).

GENERAL RECOMMENDATIONS

1. During transport, handling and storage the axis of the Plumbicon must be either vertical, with faceplate up, or horizontal; the faceplate should be covered with the hood provided.
2. To avoid damage to the tungsten basepins, the Plumbicon should be inserted into its socket with care. Shocks, undue force, and bending loads on the pins are to be avoided.
3. During long term storage the ambient temperature should not exceed $30{ }^{\circ} \mathrm{C}$.
4. In isolated cases the properties of a Plumbicon may deteriorate slightly when it is kept idle for long periods such as may occur:
. between the factory's pre-shipment test and the actual delivery to the customer;
. between receipt of the tube and its installation;
. when the camera is not used for a long time.
Although the chances of such deterioration are remote it is advisable to operate the tube for some hours at intervals not more than 4 weeks apart.

The following procedure and conditions are recommended:
. Set grid no. 1 bias control to maximum negative bias (beam cut-off).
. Allow a heating-up time of the cathode of at least one minute before turning up the grid no. 1 bias control to produce a beam.
. Set scanning amplitudes to overscan condition.
. Apply an even illumination to the target to obtain a signal current of approx. $0.15 \mu \mathrm{~A}$ and adjust the beam for correct stabilization.
5. The signal electrode connection is made by a springcontact, which is part of the focusing coil assembly, and is kept pressed against the signal electrode ring.
6. Electrostatic shielding of the signal electrode is required to avoid interference effects in the picture. Effective shielding is provided by a grounded shield inside the focusing coil at the faceplate end, and one inside the deflecting yoke.

INSTRUCTIONS FOR USE

Instructions for use are packed with each tube

CAMERA TUBE

Plumbicon*, sensitive pick up tube, with lead-oxide photoconductive target with extended red response and high resolution.
Low velocity target stabilization. Provided with separate mesh construction for good uniformity of signal and resolution and good highlight handling.
The XQ1023 is intended for use in black and white cameras, the XQ1023L for use in the luminance channel of four tube colour cameras, the XQ1023R for use in the red channel of both three and four tube colour cameras.

QUICK REFERENCE DATA		
Focusing : magnetic	Heater	$: 6.3 \mathrm{~V}, 300 \mathrm{~mA}$
Deflection : magnetic	Cut-off of spectral response : over $\quad 850 \mathrm{~nm}$	
Diameter : approx. 30 mm	Provided with anti-halation glass disc	

OPTICAL

Dimensions of quality rectangle on target (aspect ratio $3: 4$) $12.8 \times 17.1 \mathrm{~mm}^{2}$ 1)
Orientation of image on target

$$
\text { See note }{ }^{2} \text {) }
$$

Sensitivity (colour temperature of light source 2854 OK), typical

	notes	XQ1023	XQ1023L	XQ1023R
white	$3), 4)$	$450 \mu \mathrm{~A} / \mathrm{LmF}$	$450 \mu \mathrm{~A} / \mathrm{LmF}$	
red	$5)$			$160^{\circ} \mu \mathrm{A} / \mathrm{LmF}$

* Registered trade mark for T.V. camera tube.

1) 2) 3) 4) 5) See page 5

Data based on pre-production tubes.

Gamma of transfer characteristic
Spectral response
max. response at
0.95 ± 0.05
6)

See page 11
approx. 500 nm

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage	V_{f}	6.3	$\mathrm{~V} \pm 5 \%$
Heater current	I_{f}	approx.	300
mA			

Dimensions in mm

MECHANICAL DATA

Distance between axis of anti-reflection glass disc and geometrical centre of signal electrode ring, measured in plane of faceplate: max. 0.2 mm . total glass thickness: $7.2 \pm 0.2 \quad n=1.5$.

1) The base passes a flat gauge with a centre hole $9.00 \pm 0.01 \emptyset$ and holes for passing the pins with the following diameters: 7 holes of $1.75 \pm 0.005 \emptyset$ and one hole of $3.00 \pm 0.005 \emptyset$.
The holes may deviate max. 0.01 from their true geometrical position. Thickness of gauge 7 mm .
2) The ends of the pins are tapered and/or rounded but not brought to a sharp point.
3) See page 5

MOUNTING POSITION
any

WEIGHT

Net weight

ACCESSORIES

Socket
type 56021
Focusing and deflection coil assembly for XQ1023
for XQ1023L, XQ1023R
approx. 100 g

AT1132, AT1132/01 7)
AT1112

AT1113
AT1113/01 7)

CAPACITANCES

Signal electrode to all
Ca
3 to 6 pF 8)

FOCUSING magnetic 9)

DEFLECTION magnetic ${ }^{9}$)

CHARACTERISTICS

Grid No. 1 voltage for cut-off

$$
\text { at } \mathrm{V}_{2}=300 \mathrm{~V}
$$

Blanking voltage peak to peak on grid No.1, minimum required
on cathode , minimum required
Grid No. 2 current at normally required beam currents
Dark current at $\mathrm{V}_{\mathrm{a}_{\mathrm{s}}}=45 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g}} \quad-30$ to $\left.-100, \mathrm{~V}^{10}\right)$
$\mathrm{V}_{\mathrm{lpp}}$
$\mathrm{V}_{\mathrm{kpp}} \quad 25 \mathrm{~V}$
I_{2}
$\mathrm{I}_{\mathrm{a}_{\mathrm{s}}}$

\max.	1	mA
\max.	0.003	$\mu \mathrm{~A}$

LIMITING VALUES (Absolute max. rating system)
$\left.\begin{array}{lllrl}\text { Signal electrode voltage } & \mathrm{V}_{\mathrm{a}_{\mathrm{s}}} & \max . & 50 & \mathrm{~V} \\ \text { 11) }\end{array}\right)$
7) 8) 9) 10) 11) See pages 5 and 6

LIMITING VALUES (Absolute max. rating system) (continued)

Grid No. 2 dissipation
Grid No. 1 voltage, positive negative

Cathode to heater voltage, positive peak negative peak

Heating-up time of heater
Ambient temperature, storage and operation

Faceplate temperature, storage and operation

Faceplate illumination

$$
\begin{array}{rlrl}
\mathrm{W}_{\mathrm{g}_{2}} & \max . & \mathrm{l} & \mathrm{~W} \\
& & \\
\mathrm{~V}_{\mathrm{g}_{1}} & \max . & 0 & \mathrm{~V} \\
-\mathrm{V}_{\mathrm{g}_{1}} & \max . & 125 & \mathrm{~V} \\
& & & \\
\mathrm{~V}_{\mathrm{kf}_{\mathrm{p}}} & \max . & 50 & \mathrm{~V} \\
-\mathrm{V}_{\mathrm{kf}} & \max . & 50 & \mathrm{~V} \\
& \min . & 1 & \min . \\
& & & \\
& \max . & 50 & \mathrm{o}^{\circ} \mathrm{C} \\
& \min . & -30 & { }^{\circ} \mathrm{C} \\
\mathrm{t}_{\mathrm{amb}} & \max . & 50 & \mathrm{o} \\
& \min . & -30 & \mathrm{o}^{\circ} \mathrm{C} \\
& \max . & 500 & \mathrm{lux} \\
& & 13)
\end{array}
$$

OPERATING CONDITIONS AND PERFORMANCE

Cathode voltage
Grid No. 2 voltage
Signal electrode voltage
Grid No. 3 and No. 4 voltage
Beam current
Focusing coil current
Line and frame deflection coil current
Faceplate illumination
Faceplate temperature
V_{k}
V_{2}
$\mathrm{V}_{\mathrm{a}_{\mathrm{s}}} \quad 45 \mathrm{~V}^{14}$)
V_{3} and $\mathrm{V}_{\mathrm{g}_{4}}$ see note ${ }^{15}$) and ${ }^{17}$)
Ibeam see note ${ }^{16}$)
see note ${ }^{15}$)
see note ${ }^{15}$)
see note ${ }^{18}$) and 19)
20 to $45^{\circ} \mathrm{C}$

Resolution
Modulation depth, i.e. uncompensated horizontal amplitude response at 400 T.V.lines (note 20)

Highlight signal current I_{S}
Beam current
Picture centre
Corners

XQ1023, XQ1023L	$X Q 1023 \mathrm{R}$
$10.3 \mu \mathrm{~A}$	$0.3 \mu \mathrm{~A}$
$0.6 \mu \mathrm{~A}$	$0.6 \mu \mathrm{~A}$

$55 \% \quad 20$)
40\%
21) 22)
12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) See pages 6 and 7

OPERATING CONDITIONS AND PERFORMANCE (continued)

Limiting resolution
Signal to noise ratio at a signal current of $0.15 \mu \mathrm{~A}$
≥ 700 T.V. lines
approx. 200:1 23)

Decay (or lag)

	XQ1023L			
	$\begin{aligned} & I_{\mathrm{S}}=0.3 \\ & \mathrm{I}_{\mathrm{b}}=0.6 \end{aligned}$	$\begin{aligned} & I_{S}=0.04 \\ & I_{b}=0.6 \end{aligned}$	$\begin{aligned} & I_{S}=0.15 \\ & I_{b}=0.3 \end{aligned}$	$\begin{aligned} & I_{S}=0.04 \mu \mathrm{~A} \\ & I_{b}=0.3 \mu \mathrm{~A} \end{aligned}$
Residual signal after dark pulse of 60 ms typ.	3	14	5	13 \%
Residual signal after dark pulse of 200 ms typ.	1.5	5	2	5 \%

NOTES

1. a) Underscanning of the specified target area of $12.8 \times 17.1 \mathrm{~mm}^{2}$ or failure of scanning, should be avoided since this may cause damage to the photoconductive target.
b) In a colour camera the effective useful image dimensions will be slightly smaller, due to small displacements of the guns in the tube from the central position (in that case the centers of the optical images on the faceplates do not coincide exactly with the centers of the useful photoconductive surfaces). An effective useful image area of $12.6 \times 16.8 \mathrm{~mm}^{2}$ is guaranteed.
2. For proper orientation of the image on the photoconductive layer the horizontal scan direction should be parallel to the plane passing through the tube axis and the index pin.
3. All measurements are made with an infrared absorbing filter, Balzers, Calflex B1/K1 interposed between light source and target. For typical transmission curve of this filter see page 10 .
4. Measured with 4.54 lux on the specified target area, when the infrared absorbing filter is removed. The signal current obtained in $n \mathrm{~A}$ equals the sensitivity in $\mu \mathrm{A}$ per filtered lumen ($\mu \mathrm{A} / \mathrm{LmF}$).
5. Measured as indicated in notes 3 and 4 but with additional filter inperposed between light source and target. Filter used is: Schott, OG2 (3 mm). For trans mission curve see page 10 .
6. The use of gamma-stretching circuitry is recommended.
7. For optimal screening of target from live end of line deflection coils type AT1113/01 and type AT1132/01 are recommended.
8. Capacitance $\mathrm{C}_{\mathrm{a}_{5}}$ to all, which effectively is the output impedance, increases when the tube is inserted into the deflecting/focusing assembly.
9. For focusing/deflecting coil assembly, see under "Accessories".
$23)^{24}$) See page 7 .

NOTES (continued)

10. With no blanking voltage on g_{1}.
11. At $\mathrm{V}_{\mathrm{K}}=0 \mathrm{~V}$.
12. A minimum of 1 minute heating -up time for the heater is to be observed before drawing cathode current.
13. For short intervals. During storage and idle periods of the camera the tubeface shall be covered with the plastic hood provided, respectively the lens be capped.
14. The signal electrode voltage shall be adjusted to 45 V . To compete with exces sive highlights in the scene to be televised the signal electrode voltage may be reduced to a minimum of 25 V , this will however result in some reduction in performance.
15. Black and white coil assemblies

AT1132, AT1132/01
$\mathrm{V}_{\mathrm{g}_{3}}=600 \mathrm{~V}$
$\mathrm{~V}_{4}=650 \mathrm{~V}$ to 700 V

Colour assemblies
AT1112, AT1113, ATil13/01

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{g}_{3}}=600 \mathrm{~V} \\
& \mathrm{~V}_{4}=650 \mathrm{~V} \text { to } 700 \mathrm{~V}
\end{aligned}
$$

focus current mA	line deflection current mApp	frame deflection current mA $_{p p}$	
	25	235	35
approx.	100	235	35

The direction of the current through the focusing coil should be chosen such that a north seeking pole will be repelled at the faceplate end of the coil.
The optimum voltage difference between grid No. 4 and grid No. 3 is depending on the type of focusing/deflection assembly used. For above types a voltage difference of 50 V to 100 V is recommended.
16. To accomodate for peaked highlights (reflections etc.) in the scene to be televised some over-stabilization is recommended.
The figures quoted underneath for resolution relate to a "white" signal I_{S} of $0.3 \mu \mathrm{~A}$ and a beam current Ibeam sufficient to just stabilize a peaked "white" signal of $0.6 \mu \mathrm{~A}$ for XQ1023 and XQ1023L, respectively $0.15 \mu \mathrm{~A}$ and $0.3 \mu \mathrm{~A}$ for XQ1023R .
17. Grid No. 3 voltage adjusted for correct electrical focus.
18. Faceplate illumination level for the XQ1023 and XQ1023L typically needed to produce $0.3 \mu \mathrm{~A}$ signal current will be approx. 3 lux. The signal current stated for the XQ1023R will be obtained with an incident light-level $\left(2854^{\circ} \mathrm{K}\right)$ on the filter of approx. 10 lux.
The figures stated for modulation depth are based on the use of the filter described in note 5 .

NOTES (continued)

19. Illumination on the photo-conductive layer, B_{ph}, in the case of a black/white camera is related to scene-illumination, B_{SC}, by the formula:

$$
\mathrm{B}_{\mathrm{ph}}=\mathrm{B}_{\mathrm{Sc}} \frac{\mathrm{R} \cdot \mathrm{~T}}{4 \mathrm{~F}^{2}(\mathrm{~m}+1)^{2}}
$$

in which R represents the scene-reflexivity (average or the object under consideration, whichever is relevant), T the lens transmission factor, F the lens aperture and m the linear magnification from scene to target.
A similar formula may bederived for the illumination level on the photoconductive layer of the XQ1023L, XQ1023R tubes in which the effects of the various components of the complete optical system have been taken into account.
20. The figures shown represent the typical horizontal amplitude responses of the tubes proper after correction for losses in resolution introduced by the optical system.
Horizontal amplitude response can be raised by the application of suitable correction circuits. Such compensation, however, does not affect vertical resolution, nor does it influence the limiting resolution.
21. Corner resolution is measured on the diagonal, at a distance from the picture center equal to 0.35 times the picture diagonal.
22. After readjustment of the electrical focus. For optimal overall resolution the application of dynamic focusing voltages to grid No. 3 is recommended.
23. The stated radio represents the "visual equivalent signal-to-noise ratio", which is taken as the ratio of highlight video-signal current to R.M.S. noise-current, multiplied by a factor of 3 . (Assuming an R.M.S. noise-current of the video-pre-amplifier of $2 \cdot 10^{-9} \mathrm{~A}$, bandwidth 5 MHz).
24. Measured with a signal current I_{S} which has been flowing through the target at least 30 s and beam current sufficient to just stabilize a signal current of magnitude Ib_{b}. The figures in the columns 2 and 4 are indicative for the performance of the tubes under low-key conditions when overbeamed.

GENERAL RECOMMENDATIONS AND INSTRUCTIONS FOR USE

TRANSPORT, HANDLING, STORAGE

During transport, handling or storage the longitudinal axis must either be in a horizontal position or be kept vertically with the faceplate of the tube up.

During long-term storage the ambient temperature should preferably not exceed $30^{\circ} \mathrm{C}$.

GENERAL

1. Signal-electrode connection is made by a suitable spring-contact, executed as part of the focusing coil assembly, against the signal electrode ring at the faceend of the tube.
2. Electrostatic shielding of the signal-electrode is required in order to avoid interference effects in the picture. Effective shielding is provided by grounding shields on the inside of the face-end of the focusing coil and on the inside of the deflecting yoke.
3. In isolated cases the properties of a Plumbicon may deteriorate slightly when it is kept idle for long periods such as may occur:
. between the factory's pre-shipment test and the actual delivery to the customer;

- between receipt of the tube and its installation;
. when the camera is not used for a long time.
Although the chances of such deterioration are remote it is advisable to operate the tube for some hours at intervals not more than 4 weeks apart.

The following procedure and conditions are recommended:
. Set grid no. 1 bias control to maximum negative bias (beam cut-off).

- Allow a heating-up time of the cathode of at least one minute before turning up the grid no. 1 bias control to produce a beam.
. Set scanning amplitudes to overscan condition.
. Apply an even illumination to the target to obtain a signal current of approx. $0.15 \mu \mathrm{~A}$ and adjust the beam for correct stabilization.

4. The Plumbicon as described in these data has been provided with tungsten base pins. It is recommended to avoid mechanical force and shocks to these pins and to insert the tube into its socket, type 56021, with care.
5. The light-transfer characteristic of the Plumbicon being characterised by a gamma near unity, it may be desirable for broadcast applications to incorporate a gamma correcting circuitry in the video-amplifier system with an adjustable gamma of 0.5 to 1 .
It is suggested to design this gamma correcting circuitry such that an extracompression can be introduced by manual control in the video signal range of 75 to 100% of normal peak white level.
This provision will prevent the video amplifier system from becoming overloaded when the Plumbicon with its near unity gamma is exposed to scenes containing small peaked highlights as caused by reflections of shiny objects.
6. The Plumbicon not generating own noise to any noticeable extent, the signal-tonoise ratio will mainly be determined by the entrance noise of the video amplifier system.
The high sensitivity of the Plumbicon warrants pictures with excellent signal-tonoise ratio under normal studio lighting conditions provided its output is fed into a well-designed input stage of the video amplifier system. In such a system an aperture correction may be incorporated to ensure an attractive gain in resolving power without impairing the signal-to-noise ratio.

INSTRUCTIONS FOR USE

Instructions for use are packed with each tube.

Spectral sensitivity characteristic measured at a constant signal output of 50 nA from $12.8 \times 17 \mathrm{~mm}^{2}$ (except at low sensitivity values).

Typical transmission curve of heat-reflecting interference filter, Type CALFLEX-B1/K1

CAMERA TUBE

Plumbicon ${ }^{*}$, sensitive pick-up tube with lead-oxide photoconductive target with extended red response and high resolution. Low velocity target stabilization. Provided with separate mesh construction.
The tubes of this series are mechanically and electrically identical to the tuhes of the XQ1023 series, the only difference being the degree of freedom from blemishes of the photoconductive target.

The tubes are intended for industrial and educational black and white and colour cameras. The series comprises the following versions:

XQ1024	for black and white cameras
XQ1024R	for use in the red channel of colour cameras

For all further information see data of XQ1023.

* Registered Trade Mark for T.V. camera tube.

CAMERA TUBE

Plumbicon*, sensitive pick-up tube with lead-oxide photoconductive target with extended red response and high resolution.

Low velocity target stabilization. Provided with separate mesh for good uniformity of signal and resolution and good highlight handling.

The tubes of the XQ1025 series are identical to the tubes of the XQ1023 series but incorporate an infra-red reflecting filter on the anti-halation glass disc.

QUICK REFERENCE DATA			
Focusing : magnetic	Heater:	$6.3 \mathrm{~V}, 300 \mathrm{~mA}$	
Deflection: magnetic	Cut-off of		
Diameter: approx. 30 mm	spectral response: $\sim 750 \mathrm{~nm}$	1)	
Provided with anti-halation glass disc with infra-red reflecting filter.			

The infra-red reflecting filter eliminates ${ }^{2}$) the need for additional filters in the colour splitting systems when the XQ1025L and XQ1025R are applied in colour cameras originally designed for tubes of the XQ1020 series.

The manufacturer selects the filters per individual tube such, that the spreads in spectral responses in the long wavelength region as published for the XQ1023 tubes (See data XQ1023, Febr. 1909, page 10) are greatly reduced, warranting minimum differences in colour rendition between colour cameras of identical manufacture.

The XQ1025 will provide black and white pictures with true tonal rendition of colours, the spectral response approaching very nearly the relative spectral sensitivity of the human eye.

The XQ1025L is intended for use in the luminance channel of four tube colour cameras, the XQ 1025 R for use in the red channel of both three and four tube colour cameras.

[^23]
OPTICAL

Spectral response
see below
Max. response at approx. 500 nm

Cut-off
~ 750 nm l)

Filter: Hard coating on anti-halation glass disc. Care in handling to avoid scratches is strongly recommended.

For all further data revert to the Published Data of the tubes of the XQ1023 series, Febr. 1969 issue. Note 3, page 5 of these data, referring to the Balzers B1/K1 filter, does not apply.

1) Defined as the wavelength at which the spectral response has dropped to $\leq 1 \%$ of the peak response ($\sim 500 \mathrm{~nm}$).
${ }^{2}$) An infra-red absorbing filter for wavelengths in excess of 900 nm is assumed to be incorporated in the optical system of the camera.

CAMERA TUBE

Plumbicon*, sensitive pick-up tube with lead-oxide photoconductive target with extended red response and high resolution. Low velocity target stabilization.

Provided with separate mesh construction and anti-halation glass disc with I.R. filter.
The tubes of this series are mechanically and electrically identical to the tubes of the XQ1025 series, the only difference being found in the degree of freedom from blemishes of the photoconductive target.

The tubes are intended for industrial and educational black and white and colour cameras. The series comprises the following versions:

$$
\begin{array}{ll}
\text { XQ1026 } & \text { for black and white cameras } \\
\text { XQ1026R } & \text { for use in the red channel of colour cameras }
\end{array}
$$

For all further information see data of the XQ1025 series.

* Registered Trade Mark for T.V. camera tube.

CAMERA TUBE

Vidicon television camera tube with low heater consumption, integral mesh construction, magnetic focusing, magnetic deflection, short length ($130 \mathrm{~mm}, 5 \mathrm{in}$), and 25.4 mm (1 in) diameter.

	QUICK REFERENCE DATA
Integral mesh	
Focusing	magnetic
Deflection	magnetic
Diameter	$25.4 \mathrm{~mm}(1 \mathrm{in})$
Length	$130 \mathrm{~mm} \mathrm{(5in)}$
Heater	$6.3 \mathrm{~V}, 95 \mathrm{~mA}$
Resolution	$\geq 600 \mathrm{TV}$ lines

The electrical and mechanical properties of the two types are essentially identical, the main difference being found in the degree of freedom from blemishes of the photoconductive layers.

XQ1031 - intended for use in industrial and broadcast applications in which a high standard of performance is required.
XQ1032 - general purpose tube for less critical industrial applications, experiments, amateur use etc.

OPTICAL

Diagonal of quality rectangle on photoconductive layer (aspect ratio 3:4)
max.
16
mm

Orientation of image on photoconductive layer:
The direction of the horizontal scan should be essentially parallel to the plane defined by the short index pin and the longitudinal axis of the tube, unless rotation of the tube is found necessary to minimize the number of blemishes in the picture.

Photoconductive layer
Spectral response, max. response at
type A
approx. 550 nm

HEATING

Indirect by A.C. or D.C.; parallel and series supply
Heater voltage V_{f}

V_{f}	6.3	$\mathrm{~V} \pm 10 \%$
I_{f}	95	mA

When the tube is used in a series heater chain, the heater voltage must not exceed 9.5 $\mathrm{V}_{\mathrm{rms}}$ when the supply is switched on.

Data based on pre-production tubes.

CAPACITANCES

Signal electrode to all
$\mathrm{C}_{\text {as }} \quad 4.5 \mathrm{pF}$
This capacitance, which effectively is the output impedance of the tube, increases when the tube is inserted into the deflection and focusing coil unit.

MECHANICAL DATA

Dimensions in mm
Base: JEDEC no. E8-11, IEC 67-I-33a

Mounting position: any
Net weight

ACCESSORIES

Socket
Deflection and focusing coil unit

approx.
50

DEFLECTION magnetic

FOCUSSING magnetic

LIMITING VALUES (Absolute max. rating system)
for scanned area of $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}(3 / 8 \mathrm{in} \times 1 / 2 \mathrm{in})$
"Full-size scanning", i.e. scanning of a $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ area of the photoconductive layer should always be applied. Underscanning, i.e. scanning of an area less than $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$, may cause permanent damage to the specified full-size area.

Signal-electrode voltage
Grid no. 4 voltage and grid no. 3 voltage
Grid no. 2 voltage
Grid no. 1 voltage, negative
positive
Cathode-to-heater voltage, peak positive

Dark current, peak
Output current, peak
Faceplate illumination
Faceplate temperature, storage and operation

$\mathrm{V}_{\text {as }}$	max.	100	V
$\mathrm{V}_{\mathrm{g} 4, \mathrm{~g} 3}$	max.	800	V
$\mathrm{V}_{\mathrm{g} 2}$	max.	450	V
$-\mathrm{V}_{\mathrm{g} 1}$	max.	125	V
$\mathrm{V}_{\mathrm{g} 1}$	max.	0	V
$\mathrm{V}_{\mathrm{kf}} \mathrm{p}$	max.	125	V
$-\mathrm{V}_{\mathrm{kf}}{ }_{\mathrm{p}}$	max.	10	V
$\mathrm{I}_{\text {dark }}$	max.	0.25	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{as}}{ }_{\mathrm{p}}$	\max.	0.6	$\mu \mathrm{A}^{1!}$
E	max.	5000	1 x

1) Video amplifiers should be capable of handling signal-electrode currents of this magnitude without overloading the amplifier or distorting the picture.
2) Under difficult environmental conditions a flow of cooling air directed at the faceplate is recommended. When televising flames and furnaces appropriate infrared absorbing filters should be used.

OPERATING CONDITIONS AND PERFORMANCE

for a scanned area of $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ and a faceplate temperature of $30 \pm 2^{\circ} \mathrm{C}$

CONDITIONS

Grid no. 4 and grid no. 3 (beam focus electrode) voltage

Grid no. 2 (accelerator) voltage
Grid no. 1 voltage

Blanking voltage, peak to peak when applied to grid no. 1
when applied to the cathode
Field strength at centre of focusing coil

Field strength of adjustable alignment coils

Deflection

PERFORMANCE

Signal electrode voltage for dark current of 20 nA

Signal current
faceplate illumination $81 x$ c.t. 2854 K , dark current 20 nA

Decay: residual signal current 200 ms after cessation of the illumination (8 lx , c.t. 2854 K)

Amplitude response at 400 TV lines in picture centre

Limiting resolution in picture centre
Grid no. 1 voltage for picture cut-off with no blanking applied

Average γ of transfer characteristic for signal currents between 0.02 and $0.2 \mu \mathrm{~A}$
Spurious signals (spots and blemishes)

$\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~V}_{\mathrm{g}}$	250 to 300	V	l)
$\mathrm{V}_{\mathrm{g} 2}$	300	V	

adjusted for sufficient beamcurrent to stabilize highlights

0 to 320
A/m ${ }^{3}$) (0 to 4 Oe)
see note 4)

	min.	typ.	max.	
$\mathrm{V}_{\text {as }}$	20	30	50	V
$\mathrm{I}_{\text {S }}$	125	200		$n \mathrm{~A}$ 5)
		10	15	\%
	30	40		\% ${ }^{6}$)
	600			TV lines
$\mathrm{V}_{\mathrm{g} 1}$	-40	-60	-100	V
		0.65		
		not		

NOTES

1) Beam focus is obtained by the combined effect of grid no. 3, the voltage of which should be adjustable over the indicated range, and a focus coil having a field strength of $3200 \mathrm{~A} / \mathrm{m}$ (40 Oe).
2) The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with this pole located outside of and at the image end of the focusing coil.
3) The alignment coil unit should be positioned on the tube so that its centre is at a distance of approx. $94 \mathrm{~mm}(311 / 16 \mathrm{in}$) from the face of the tube and that its axis coincides with the axis of the tube, the deflecting yoke and ti "ocusing coil.
4) The deflection circuits must provide sufficiently linear scanning for good blacklevel reproduction. The output current being proportional to the velocity of scanning, any change in this velocity will produce non-uniformity.
5) Signal current is defined as the component of the output current after the dark current has been subtracted.
6) Square-wave response. Measured with a video amplifier system having an appropriate bandwidth. 8 lux on specified target area, target voltage adjusted for a dark current of 20 nA , beam set for correct stabilization.
7) Conditions:

The camera focused on a uniformly illuminated two-zone test pattern, the diameter of the centre zone (1) being equal to the raster height. Zone (2) being defined as the remainder of the scanned area. Signal electrode voltage adjusted for a dark current of 20 nA , illumination on target 8 lx (c.t. $=2854 \mathrm{~K}$).

Scanning amplitudes of the monitor adjusted to obtain a raster with an aspect ratio of $3: 4$.
Monitor set-up and contrast control adjusted for faint raster when lens of camera is capped, and for non-blooming bright raster when lens of camera is uncapped.

Under the above conditions the number and size of the spots visible in the monitor picture will not exceed the limits stated below. Both black and white spots must be counted, unless the amplitude is less than 50% of the peak white signal.

XQ1031

Spot size in \% of raster height	Maximum number of spots zone 1	
>1	none	zone 2
1 to 0.6	none	none
0.6 to 0.2	1	2
$\leqslant 0.2$	$*$	$*$

XQ1032

Spot size in $\%$ of raster height	Maximum number of spots	
zone 1		

* Do not count spots of this size unless concentration causes a smudgy appearance.
a) Minimum separation between any 2 spots greater than 0.3% of raster height is limited to a distance equivalent to 4% of raster height.
b) Tubes are rejected for smudge, lines, streaks, mottled, grainy, or uneven background having contrast ratios greater than 1.5 to 1 .

CAMERA TUBE

Vidicon television camera tube with low heater consumption, separate mesh construction, magnetic focusing, magnetic deflection and 25.4 mm (1 in) diameter intended for use in medical and industrial X-ray equipment in combination with an X-ray image intensifier tube.

QUICK REFERENCE DATA	
Separate mesh	
Focusing	magnetic
Deflection	magnetic
Diameter	$25.4 \mathrm{~mm}(1 \mathrm{in})$
Length	$158 \mathrm{~mm}\left(6 \frac{1}{4} \mathrm{in}\right)$
Provided with particle trap	$6.3 \mathrm{~V}, 95 \mathrm{~mA}$
Heater	$\geq 1000 \mathrm{TV}$ lines
Resolution	

The electrical and mechanical properties of the XQ1041 are essentially identical to those of the other tubes of the XQ1040 series, the main differences being found in the degree of freedom from blemishes of the photoconductive layer and from mesh deficiencies.

OPTICAL

Quality area on photoconductive layer circular area diam. max. 15 mm Direction of scan.
The direction of the horizontal scan should be essentially parallel to the plane defined by the short index pin and the tube axis.

Spectral response, max. response at approx. 550 mm

HEATING

Indirect by A.C. or D.C.; parallel and series supply

Heater voltage	V_{f}	6.3	$\mathrm{~V} \pm 10 \%$
Heater current	I_{f}	95 mA	

When the tube is used in a series heater chain, the heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

Data based on pre-production tubes

CAPACITANCE

Signal electrode to all
C_{as}
4.5 pF

This capacitance, which effectively is the output impedance of the tube, increases when the tube is inserted into the deflection and focusing coil unit.

MECHANICAL DATA

Dimensions in mm
Base: JEDEC no. E8-11

Net weight

ACCESSORIES

Socket
Deflection and focusing coil unit

Mounting position: any

short index pin

LIMITING VALUES (Absolute max. rating system)
for scanned area of $15 \times 15 \mathrm{~mm}^{2}$

Signal-electrode voltage
Grid no. 4 voltage
Grid no. 3 voltage
Grid no. 2 voltage
Grid no. 1 voltage, negative
positive
Cathode-to-heater voltage, peak positive

Dark current, peak
Output current, peak
Cathode current
Faceplate illumination
Faceplate temperature, storage and operation
$\mathrm{V}_{\text {as }} \max .100 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g} 4} \max .1000 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g} 3}$ max. 850 V
$\mathrm{V}_{\mathrm{g} 2} \max .450 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g} 1} \max .125 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g} 1} \max .0 \mathrm{~V}$
V_{kf} max. 125 V
$\mathrm{V}_{\mathrm{kf}} \mathrm{p}$
$I_{\text {dark }_{p}}$
$\mathrm{I}_{\mathrm{as}}{ }_{\mathrm{p}}$
I_{k}
E
$\mathrm{t} \quad \max . \quad 80{ }^{\circ} \mathrm{C}{ }^{2}$)

1) Video amplifiers should be capable of handling signal-electrode currents of this magnitude without overloading the amplifier or distorting the picture.
${ }^{2}$) Under difficult environmental conditions a flow of cooling air directed at the faceplate is recommended.

OPERATING CONDITIONS AND PERFORMANCE

For a scanned area of $15 \times 15 \mathrm{~mm}^{2}$, the area beyond the quality area of $15 \mathrm{~mm} \emptyset$ covered with a mask, and a faceplate temperature of $30^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$.

CONDITIONS

Mesh voltage

Focusing electrode voltage
Accelerator voltage
Grid no. 1 voltage

Blanking voltage, peak-to-peak
when applied to g_{1}
when applied to cathode
Field strength at centre of focusing coil

Field strength of adjustable alignment coils

PERFORMANCE

Signal-electrode voltage for dark current of 35 nA typical

Signal current
faceplate illumination 2 lx , light source with P20 distribution

Decay: residual signal current after dark pulse of 200 ms . 81 x , P20 light source on faceplate
Grid no. 1 voltage for picture cut-off, with no blanking applied
Limiting resolution at picture centre

Modulation depth at $5 \mathrm{Mc} / \mathrm{s}$ (625 lines, 50 fields system)lines at picture centre
Average γ of transfer characteristic for signal currents between $0.01 \mu \mathrm{~A}$ and $0.3 \mu \mathrm{~A}$

	Normal operation	Operation for high resolution	
Vg_{4}	300 to 450	650 to 1000^{1})	V
Vg_{3}	250 to 300	550 to 650	V
V_{2}	300	300	V
V_{g}	Adjusted for sufficient beam current to stabilize highlights		
	$\begin{aligned} & \geq 75 \\ & \geq 20 \end{aligned}$	≥ 75 ≥ 20	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
H	40	$60{ }^{2}$)	$\mathrm{Oe}{ }^{3}$)
H	0 to 4	0 to 4	Oe ${ }^{4}$)
$\mathrm{V}_{\text {as }}$	$\begin{gathered} 20 \text { to } 55 \\ 30 \end{gathered}$	$\begin{gathered} 20 \text { to } 55 \\ 30 \end{gathered}$	$\begin{aligned} & \left.v^{5}\right) \\ & V^{\prime} \end{aligned}$
$\mathrm{I}_{\text {S }}$	0.075	0.075	$\left.\mu \mathrm{A}{ }^{6}\right)^{7}$)
	8	8	$\begin{array}{r} 7 \\ \% \\ \left.{ }^{6}\right) \end{array}$
Vg_{1}	-30 to -100	-30 to -100	V
	750	1000	${ }^{\text {8) }}$ TV lines
	50	65	\% ${ }^{9}$)

NOTES to page 4.

1) The optimal grid no. 4 voltage for maximum resolution and optimal uniformity of black and white level depends on the type of coil unit used and will be within the range 1.2 to 1.5 times V_{3}.
Under no circumstances should grid no. 4 (mesh) be allowed to operate at a voltage level below the V_{3} level as needed for beam focus, since this may damage the target.
${ }^{2}$) Because of the higher deflecting and focusing power required to produce adequate field strength the tube temperature will increase and adequate provisions for cooling should be made.
${ }^{3}$) The polarity of the focusing coil should be such that a north-seeking pole is attracted to the image end of the focusing coil, with this pole located outside of and at the image end of the focusing coil.
2) The alignment coil unit should be positioned on the tube so that its centre is at a distance of approx. 94 mm ($311 / 16 \mathrm{in}$) from the face of the tube and that its axis coincides with the axis of the tube, the deflecting yoke and the focusing coil.
3) Corresponds to 20 nA for $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ beam.
${ }^{6}$) Signal electrode voltage adjusted for a dark current of 35 nA .
${ }^{7}$) Signal current is defined as the component of the output current after the dark current has been subtracted.
${ }^{8}$) Measured with a video amplifier system having an appropriate bandwidth.
${ }^{9}$) Square wave response. Typical values for the tube proper, after correction for faults introduced by the optical system, measured under conditions of a peak signal current $\mathrm{I}_{\mathrm{S}_{\mathrm{p}}}=0.15 \mu \mathrm{~A}$ and a beam current sufficient to stabilize a signal current of $0.5 \mu \mathrm{~A}$.

CAMERA TUBE

Plumbicon* television camera tube with high resolution lead-oxide photoconductive target, low heater power, separate mesh construction, magnetic focusing, magnetic deflection and 25.4 mm (1 in) diameter.
The tubes of the XQ1070 and XQ1070/01 series produce the same resolving power as the 30 mm diameter tubes like the XQ1020. They are mechanically interchangeable with 1 in diameter vidicons with separate mesh, and have the same pin connections. The XQ1070 and XQ1070/01 are intended for use in black-and-white cameras, the XQ1070L, R, G, B and XQ1070/01L, R, G, B in colour cameras in broadcast, educational and high quality industrial applications.

QUICK REFERENCE DATA	
Separate mesh	
Focusing	magnetic
Deflection	magnetic
Diameter	$25.4 \mathrm{~mm}(1 \mathrm{in})$
Length	$158 \mathrm{~mm}(6.25 \mathrm{in})$
Provided with anti -halation glass disc:	XQ1070L, R, G, B
Without anti -halation glass disc:	XQ1070/01L, R, G, B
Heater	$6.3 \mathrm{~V}, 95 \mathrm{~mA}$
Resolution	$\geq 750 \mathrm{~T} . \mathrm{V}$. lines

OPTICAL

Quality rectangle on photoconductive target
(aspect ratio $3: 4$)
Orientation of image on photoconductive target
For correct orientation of the image on the target the horizontal scan should be essentially parallel to the plane passing through the tube axis and the short index pin.

Faceplate

Refractive index
n 1.49
Refractive index of anti-halation glass disc
n 1.52

[^24]
ELECTRICAL

Heating: Indirect by A.C. or D. C.; parallel or series supply

Heater voltage	Vf_{f}	6.3	$\mathrm{~V} \pm 5 \%$
Heater current	If	95	mA

When the tube is used in a series heater chain, the heater voltage must not exceed 9.5 $\mathrm{V}_{\mathrm{rms}}$ when the supply is switched on.

To avoid registration errors in colour cameras, stabilization of the heater voltage is recommended.

Electron gun characteristics
Cut-off
Grid no. 1 voltage for cut-off at $\mathrm{Vg}_{2}=300 \mathrm{~V} \quad \mathrm{Vg}_{1} \quad-35$ to -100 V
Blanking voltage, peak to peak
on grid no. 1
on cathode
Grid no. 2 current at normally required beam currents

Focusing

$\mathrm{Vg}_{\mathrm{p}-\mathrm{p}}$	50	± 10	V
$\mathrm{~V}_{\mathrm{k}-\mathrm{p}}$	25		V

Deflection
I_{2} max. 0.5 mA

Capacitance

Signal electrode to all $\mathrm{C}_{\mathrm{a}_{\mathrm{s}}} \quad 3$ to 5 pF
This capacitance, which is effectively the output impedance, increases when the tube is inserted in the coil unit.

LIMITING VALUES (Absolute max. rating system)
All voltages are referred to the cathode, unless otherwise stated

Signal electrode voltage	$\mathrm{V}_{\mathrm{a}_{\mathrm{s}}}$	max.	50	V^{3})
Grid no. 4 voltage	$\mathrm{V}_{\mathrm{g}}{ }^{\text {l }}$	max.	1100	V
Voltage between grid no. 4 and grid no. 3	$\mathrm{V}_{\mathrm{g}_{4} / \mathrm{g}_{3}}$	max.	450	V
Grid no. 3 voltage	V_{g}	max.	800	V
Grid no. 2 voltage	Vg_{2}	max.	350	V
Grid no. 1 voltage, positive negative	$\begin{array}{r} \mathrm{Vg}_{1} \\ -\mathrm{Vg}_{1} \end{array}$	max. max.	0 125	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Cathode to heater voltage, positive peak negative peak	$\begin{array}{r} \mathrm{V}_{\mathrm{kf}} \mathrm{p} \\ -\mathrm{V}_{\mathrm{kf}} \end{array}$	max. max.	$\begin{array}{r} 125 \\ 50 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Impedance between cathode and heater at $-\mathrm{V}_{\mathrm{kf}}>10 \mathrm{~V}$	Z_{kf}	min.	2	$k \Omega$
Ambient temperature, storage and operation	$t_{\text {amb }}$	max. \min.	50 -30	$\begin{aligned} & { }^{{ }^{\circ} \mathrm{C}} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Faceplate temperature, storage and operation	t	max. \min.	$\begin{array}{r} 50 \\ -30 \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Faceplate illumination	E	max.	500	$1 \mathrm{x}{ }^{4}$)

ACCESSORIES

Socket
Cinch no. 54A18088 or equivalent
Deflection and focusing coil unit for $\mathrm{bl} /$ wh cameras AT1102/01, AT1103 or equivalent for colour cameras AT1116
or equivalent

MECHANICAL

Mounting position: any
Weight: approx. 60 g
Base: JEDEC E8-11 except length of stem.

1) For serial number 90000 and up (see pin 4 and pumping stem).

OPERATING CONDITIONS AND PERFORMANCE

TYPICAL OPERATING CONDITIONS (scanned area $9.6 \times 12.8 \mathrm{~mm}^{2}$)
Cathode voltage
Grid no. 2 voltage
Signal electrode voltage
Beam current

V_{k}	0	V
Vg_{2}	300	V
$\mathrm{~V}_{\mathrm{a}}$	45	$\mathrm{~V}^{5}$)
I_{b}		see note ${ }^{6}$)

Focusing coil current at given values of grid no. 4 and grid no. 3 voltages
Deflection and alignment currents
see note ${ }^{7}$) see note ${ }^{7}$)

Faceplate illumination see note ${ }^{8}$)

Faceplate temperature

Grid no. 4 voltage
Grid no. 3 voltage
Grid no. 1 voltage
Blanking voltage on grid no. 1, peak to peak

PERFORMANCE

Dark current
$\leq 3 \mathrm{nA}$
Sensitivity at colour temperature of illumination $=2854 \mathrm{~K}$

XQ1070 XQ1070/01 typical 400 XQ1070L XQ1070/01L typical 400 XQ1070R XQ1070/01R typical 80 XQ1070G XQ1070/01G typical 165 XQ1070B XQ1070/01B typical 37
$\min .325 \mu \mathrm{~A} / \mathrm{lm}$
min. $325 \mu \mathrm{~A} / \mathrm{lm}$
min. $70 \mu \mathrm{~A} / \mathrm{lm}$
min. $130 \mu \mathrm{~A} / \mathrm{lm}$
$\min .35 \mu \mathrm{~A} / \mathrm{lm}$
0.95 ± 0.05
approx. 500 nm approx. 650 nm see page 11

Resolution

Modulation depth i.e. uncompensated amplitude response at $400 \mathrm{~T} . \mathrm{V}$. lines at the centre of the picture. The figures quoted refer to the conditions in the high voltage mode.
The figures typically obtained in the low voltage mode will be 2 to 3 absolute percents lower.

The figures shown represent the typical horizontal amplitude response of the tube as obtained with a lense aperture of $\mathrm{f} 5.6 .6^{6}{ }^{12}{ }^{13}$).

	XQ1070 XQ1070/01 XQ1070L XQ1070/01L	XQ1070R XQ1070/01R	XQ1070G XQ1070/01G	XQ1070B XQ1070/01B
Highlight signal current I_{S} Beam current, I$0.2 \mu \mathrm{~A}$	$0.1 \mu \mathrm{~A}$	$0.2 \mu \mathrm{~A}$	$0.1 \mu \mathrm{~A}$	
Modulation depth at 400 T.V. lines in \% typical	40	$0.2 \mu \mathrm{~A}$	$0.4 \mu \mathrm{~A}$	$0.2 \mu \mathrm{~A}$

Limiting resolution
Modulation transfer characteristics
≥ 750 T. V. lines
see page 12

Lag (typical values)
Light source with a colour temperature of 2854 K
Appropriate filter inserted in the light path for the chrominance tubes R, G and B.
Low key conditions

	$\begin{gathered} \text { build-up lag } \\ 14 \text {) } \end{gathered}$				decay lag15)			
	$\mathrm{I}_{\mathrm{S}} / \mathrm{Ib}=20 / 200 \mathrm{nA}$		$\mathrm{IS}_{\mathrm{S}} / \mathrm{Ib}=40 / 400 \mathrm{nA}$		$\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{b}}=20 / 200 \mathrm{nA} \quad \mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{b}}=40 / 400 \mathrm{nA}$			
	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{aligned} & 200 \\ & (\mathrm{~ms}) \end{aligned}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 200 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{aligned} & 60 \\ & (\mathrm{~ms}) \end{aligned}$	$\begin{gathered} 200 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{aligned} & 200 \\ & (\mathrm{~ms}) \end{aligned}$
$\begin{array}{\|l} \text { XQ1070R, XQ1070/01R } \\ \text { XQ1070B, XQ1070/01B } \end{array}$	90	98			11	4		
XQ1070, XQ1070/01 XQ1070L, XQ1070/01L XQ1070G, XQ1070/01G			95	99			7	2.5

High key conditions

	$\begin{aligned} & \text { build-up lag } \\ & 14 \text {) } \end{aligned}$				decay lag 15)			
	$\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{b}}=100 / 200 \mathrm{nA}$		$\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{b}}=200 / 400 \mathrm{nA}$		$\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{b}}=100 / 200 \mathrm{nA}$		$\mathrm{I}_{\mathrm{S}} / \mathrm{Ib}_{\mathrm{b}}=200 / 400 \mathrm{nA}$	
	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 200 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 200 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 200 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 200 \\ (\mathrm{~ms}) \end{gathered}$
XQ1070R, XQ1070/01R					2.5	1		
XQ1070B, XQ1070/01B	97	~ 100			3.5	2		
XQ1070, XQ1070/01 XQ1070L, XQ1070/01L XQ1070G, XQ1070/01G			98	~ 100			1.5	0.6

NOTES

1) Underscanning of the specified useful area of $12.8 \mathrm{~mm} \times 9.6 \mathrm{~mm}$, or failure of scanning, should be avoided since this may cause damage to the photoconductive layer.
2) For focusing/deflection coil unit see under "Accessories".
3) Plumbicon tubes do not permit automatic sensitivity control by means of regulation of the signal electrode voltage. Adequate control is therefore to be achieved by other means (iris control and neutral density filters).
If the tube is applied in cameras originally designed for vidicon tubes, the automatic sensitivity control circuitry should be made inoperative and the signal electrode voltage set to the value indicated in note ${ }^{5}$).
${ }^{4}$) For short intervals. During storage the tube face shall be covered with the plastic hood provided; when the camera is idle the lens shall be capped.
4) The signal electrode voltage shall be adjusted to 45 V . To enable the tube to han dle excessive highlights in the scene to be televised the signal electrode voltage may be reduced to a minimum of 25 V , this will, however, result in some reduction in performance.
5) The beam current I_{b}, as obtained by adjusting the control grid (grid no. 1) voltage is set to 200 nA for R and B tubes, 400 nA for $\mathrm{bl} / \mathrm{wh}, \mathrm{L}$ and G tubes.

Ib is not the actual current available in the scanning beam, but is defined as the maximum amount of signal current, I_{S}, that can be obtained with this beam.

In the performance figures, e.g.for resolution and lag, the signal current and beam current conditions are given, e.g. as $\cdot I_{S} / I_{b}=20 / 200 \mathrm{nA}$. This hence means: with a signal current of 20 nA and a beam setting which just allows a signal current of 200 nA .
N. B. The signal currents are measured with an integrating instrument connected in the signal electrode lead and a uniform illumination on the scannedarea. The peak signal currents as measured on a wave-form osciloscope will be a factor α larger.
$\left(\alpha=\frac{100}{100-\beta}, \beta\right.$ being the total blanking time in $\%$, for the CCIR system $\alpha a-$ mounts to 1.33)

		Focusing current* (mA)		$\begin{aligned} & \text { Line current } \\ & \text { (mApp) } \end{aligned}$		Frame current ($\mathrm{mA}_{\mathrm{pp}}$)	
Coil units	$\mathrm{Vg}_{4} / \mathrm{V}_{\mathrm{g} 3}$	600/375	960/600	600/375	960/600	600/375	960/600
AT1102/01		18	23	200	250	27	34
AT1103		20	26	200	250	29	38
AT1116		83	105	260	330	38	48
		Approx. values for scanned area of $9.6 \times 12.8 \mathrm{~mm}^{2}$					

*Adjusted for correct electrical focus. The direction of the focusing current shall be such that a north-seeking pole is attracted towards the image end of the focusing coil.
Line and frame alignment coil currents max. 21 mA (AT1103) resp. 15 mA (AT1116) corresponding to a flux density of approx. 4×10^{-4} T (4 Gs).
${ }^{8)}$) In the case of a black/white camera the illumination on the photoconductive layer, B_{ph}, is related to scene illumination, B_{Sc}, by the formula:

$$
\mathrm{B}_{\mathrm{ph}}=\mathrm{B}_{\mathrm{SC}} \frac{\text { R.T. }}{4 \mathrm{~F}^{2}(\mathrm{~m}+1)^{2}}
$$

in which R represents the average scene reflectivity or the object reflectivity, whichever is relevant, T the lens transmission factor, F the lens aperture, and m the linear magnification from scene to target.
A similar formula may be derived for the illumination level on the photoconductive layers of the R, G, and B tubes in which the effects of the various components of the complete optical system have been taken into account.
9) The optimum voltage ratio $\mathrm{Vg}_{4} / \mathrm{V}_{\mathrm{g}_{3}}$ to obtain minimum beam landing errors (preferably $\leq 1 \mathrm{~V}$) depends on the type of coil unit used. For types AT1102/01/ AT1103 and AT1116 a ratio of $1.5: 1$ to $1.6: 1$ is recommended.
10) Measuring conditions:

Illumination 4 lx (luminous flux $=0.5 \mathrm{mlm}$) from a tungsten light source with a c.t. of 2854 K , the appropriate filter inserted in the light path.

Filters used:

XQ1070R, XQ1070/01R	Schott	OG570	thickness	3 mm
XQ1070G, XQ1070/01G	Schott	VG9	thickness	1 mm
XQ1070B, XQ1070/01B	Schott	BG12	thickness	3 mm

For transmission curves see page 13 .
11) Gamma-stretching circuitry is recommended.
12) Typical faceplate illumination level for the XQ1070 and XQ1070/01 to produce $0.2 \mu \mathrm{~A}$ signal current will be approx. 4 lx . The signal currents stated for the colour tubes R, G, B will be obtained with an incident white light level (c.t. = 2854 K) on the filter of approx. 10 lx . These figures are based on the filters described in note ${ }^{10}$). For filter BG12, however, a thickness of 1 mm is chosen.
13) The horizontal amplitude response can be raised by the application of suitable correction circuits, which affect neither the vertical resolution nor the limiting resolution.
14) After 10 s of complete darkness. The figures given represent typical percentages of the ultimate signal current obtained 60 ms respectively 200 ms after the illumination has been applied.
15) After a minimum of 5 s of illumination on the target. The figures given represent typical residual signals in percents of the original signal current 60 ms respectively 200 ms after the illumination has been removed.

GENERAL AND RECOMMENDATIONS

1. During transport, handling and storage the axis of the Plumbicon must be either vertical, with faceplate up, or horizontal; the faceplate should be covered with the hood provided.
2. This series of Plumbicon tubes is provided with Kovar pins and therefore requires no more care in handling than vidicon tubes.
3. During long term storage the ambient temperature should not exceed $30^{\circ} \mathrm{C}$.
4. In isolated cases the properties of a Plumbicon may deteriorate slightly when it is kept idle for long periods such as may occur:

- between the factory's pre-shipment test and the actual delivery to the customer;
- between receipt of the tube and its installation;
- when the camera is not used for a long time.

Although the chances of such deterioration are remote it is advisible to operate the tube for some hours at intervals not more than 4 weeks apart.

The following procedure and conditions are recommended:

- Set grid no. 1 bias control to maximum negative bias (beam cut -off).
- Allow a heating -up time of the cathode of at least one minute before turning up the grid no. 1 bias control to produce a beam.
- Set scanning amplitudes to overscan condition.
- Apply an even illumination to the target to obtain a signal current of approx. $0.15 \mu \mathrm{~A}$ and adjust the beam current for correct stabilization.

5. The signal electrode connection is made by a spring contact, which is part of the focusing coil assembly, and is kept pressed against the signal electrode ring.
6. Electrostatic shielding of the signal electrode is required to avoid interference effects in the picture. Effective shielding is provided by one grounded shield inside the focusing coil at the faceplate end, and one inside the deflecting yoke.
7. The light transfer characteristic of the Plumbicon tube having a gamma near unity, it may be desirable to incorporate a gamma correcting circuitry in the video-amplifier system with an adjustable gamma of 0.5 of 1 .

The Plumbicon tube not generating noise to any noticeable extent, the signal-tonoise ratio will be determined mainly by the input noise of the video-amplifier system.
The high sensitivity of the Plumbicon tube warrants pictures with excellent sig-nal-to-noise ratio under normal lighting conditions provided its output is fed into a well-designed input stage of the video-amplifier system. In such a system an aperture correction may be incorporated to ensure an attractive gain in resolving power without visually impairing the signal to noise ratio.

INSTRUCTIONS FOR USE

Instructions for use are packed with each tube.

Typical spectral response curve

Typical square-wave modulation transfer characteristics

Transmission of filters BG12, VG9 and OG570. See note 10

CAMERA TUBE

Plumbicon*, television camera tube with high resolution lead-oxide photoconductive target, low heater power, separate mesh construction, magnetic focusing, magnetic deflection and 25.4 mm (1 in) diameter.

The tubes of these series are mechanically and electrically identical to the tubes of the XQ1070 and XQ1070/01 series, the only difference being the degree of freedom from blemishes of the photoconductive target.

The tubes are intended for industrial and educational black-and-white and colour cameras. The series comprise the following versions:

with anti-halation glass disc	without anti-halation glass disc	
XQ1071	XQ1071/01	for bl/wh cameras
XQ1071R	XQ1071/01R	for use in the chrominance
XQ1071G	XQ1071/01G	$\left\{\begin{array}{l}\text { channels of } \\ \text { XQ1071B }\end{array}\right.$
XQ1071/01B cameras		

For all further information see data of the XQ1070/XQ1070/01 series.

* Registered Trade Mark for television camera tube.

CAMERA TUBE

Plumbicon* television camera tube with high resolution lead-oxide photoconductive target, low power heater, separate mesh construction, magnetic focusing, magnetic deflection, and 25.4 mm (1 in) diameter.

The XQ1072 produces the same resolving power as the 30 mm diameter tube type XQ1022 and is exclusively intended for use with an X-ray intensifier in medical equipment.

The XQ1072 is mechanically interchangeable with 1 in diameter vidicons with separate mesh construction and has the same pin connections.

QUICK REFERENCE DATA	
Separate mesh	
Focusing	magnetic
Deflection	magnetic
Diameter	$25.4 \mathrm{~mm}(1 \mathrm{in})$
Length	$158 \mathrm{~mm}(6.25 \mathrm{in})$
Without anti -halation glass disc	
Heater	$6.3 \mathrm{~V}, 95 \mathrm{~mA}$
Resolution	$\geq 35 \mathrm{lp} / \mathrm{mm}$

OPTICAL

Dimensions of quality area on photoconductive target circle of 15 mm diameter ${ }^{1}$)

Orientation of image on photoconductive target
For correct orientation of the image on the target the horizontal scan should be essentially parallel to the plane passing through the tube axis and the short index pin.

Faceplate

Thickness
$\begin{array}{ll} & 1.2 \\ \text { n } & 1.49\end{array}$

* Registered Trade Mark for television camera tube

ELECTRICAL

Heating: Indirect by A. C. or D. C.; parallel or series supply

Heater voltage	Vf_{f}	6.3	$\mathrm{~V} \pm 5 \%$
Heater current	If_{f}	95	mA

When the tube is used in a series heater chain, the heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.

Electron gun characteristics
 Cut-off

Grid no. 1 voltage for cut-off

$$
\text { at } V_{g_{2}}=300 \mathrm{~V}
$$

$$
\mathrm{Vg}_{1} \quad-35 \text { to }-100 \quad \mathrm{~V}
$$

Blanking voltage, peak to peak
on grid no. 1
on cathode

$\mathrm{Vg}_{1 \mathrm{p}-\mathrm{p}}$	50 ± 10	V
$\mathrm{Vk}_{\mathrm{p}-\mathrm{p}}$	25	V

Grid no. 2 current at normally required beam currents
$\mathrm{Ig}_{2} \max .0 .5 \mathrm{~mA}$

Focusing
Deflection

Capacitance
Signal electrode to all
magnetic 2) magnetic 2)
$\mathrm{Ca}_{\mathrm{s}} \quad 3$ to $5 \quad \mathrm{pF}$

This capacitance which is effectively the output impedance, increases when the tube is inserted in the coil unit.

LIMITING VALUES (Absolute max. rating system)
All voltages are referred to the cathode, unless otherwise stated.
Signal electrode voltage
Grid no. 4 voltage
Grid no. 3 voltage
Voltage between gridno. 4 and grid no. 3
Grid no. 2 voltage
Grid no. 1 voltage, positive
negative
Cathode to heater voltage, positive peak negative peak

Impedance between cathode and heater at $-\mathrm{V}_{\mathrm{kfp}}>10 \mathrm{~V}$
Ambient temperature, storage and operation

Faceplate temperature, storage and operation
Faceplate illumination

ACCESSORIES

Socket
Deflection and focusing coil-unit

$\mathrm{Va}_{\text {s }}$	max.	50	V 3)
Vg_{4}	max.	1100	V
V_{3}	max.	800	V
$\mathrm{Vg}_{4} / \mathrm{g}_{3}$	max	450	V
Vg_{2}	max.	350	V
	\max.	0	V
$-\mathrm{Vg}_{1}$	max.	125	V
$\mathrm{V}_{\mathrm{kfp}}$	max.	125	V
$-\mathrm{V}_{\mathrm{kfp}}$	max.	50	V
Z_{kf}	min.	2	$k \Omega$
$t_{\text {amb }}$	max. \min.	$\begin{array}{r} 50 \\ -30 \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
t	max. \min.	$\begin{array}{r} 50 \\ -30 \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
E	max.	500	$1 \mathrm{x}{ }^{4}$)

Cinch no. 54A18088 or equivalent AT1102/01, AT1103, AT1116 or equivalent

MECHANICAL

Mounting position: any
Weight: approx. 60 g
Base: JEDEC E8-11 except for stem.

7204261.1 short index pin
(i.c.)

1) For serial number 90000 and up. (see pin 4 and pumping stem).

OPERATING CONDITIONS AND PERFORMANCE

TYPICAL OPERATING CONDITIONS 5)
Cathode voltage

V_{k}	0	V
$V_{g_{2}}$	300	V
$V_{a_{s}}$	20 to 45	$\left.\left.V^{3}\right)^{8}\right)$
I_{b}	see note 6 ab	

Focusing coil current at given values of grid no. 4 and grid no. 3 voltages

Deflection and alignment currents
Faceplate illumination (P20 light source)
Faceplate temperature
see note ${ }^{9}$)
see note ${ }^{9}$)
Grid no. 2 voltage
Signal electrode voltage
Beam current

		low voltage m
Grid no. 4 voltage	Vg_{4}	600
Grid no.3 voltage	Vg_{3}	375

Grid no. 1 voltage
Blanking voltage on grid no. 1, peak to peak

PERFORMANCE
Dark current
Signal current, peak

Gamma of transfer characteristic
Spectral response: max. response at cut-off at
$\leq \quad 3 \mathrm{nA}$
$\left.I_{s p} \quad \min .175 \quad n A^{6 a}\right)^{6 b}$)
typ. $\left.225 \mathrm{nA}^{6 \mathrm{a}}\right)^{6 b}$)
$0.95 \pm 0.05 \quad 10$)
approx. 500 nm
approx. 650 nm

Resolution
Modulation depth i.c. uncompensated amplitude response at $13 \mathrm{lp} / \mathrm{mm}(5.0 \mathrm{MHz})$ at the centre of the picture

low voltage mode	high voltage mode 11a)
65%	70%

Modulation transfer characteristic

Decay
Measured with a peak signal current of $0.2 \mu \mathrm{~A}$
Residual signal after dark pulse of 60 ms
Residual signal after dark pulse of 200 ms
max. 6 \%, typ. 4 \% 12)
max. 2.5\%, typ. $1.5 \% 12$)

NOTES

1) Underscanning of the specified useful target area of $15.0 \mathrm{~mm} \phi$ or failure of scanning should be avoided since this may cause damage to the photoconductive layer. The area beyond the $15.0 \mathrm{~mm} \phi$ area preferably to be covered by a mask.
2) For focusing/deflection coil unit see under "Accessories".
3) Plumbicon tubes do not permit automatic sensitivity control by means of regulation of the signal electrode voltage.
If the tube is applied in cameras originally designed for vidicon tubes, the automatic sensitivity control circuitry should be made inoperative and the signal electrode voltage set to the value indicated in note 8 .
4) For short intervals. During storage the tube face shall be covered with the plastic hood provided.
5) Scanning amplitude controls adjusted such that the $15 \mathrm{~mm} \phi$ quality area of the target is displayed on a standard monitor as a circular area with a diameter equal to the raster height.

6a) Grid no. 1 (control grid) voltage adjusted to produce a beam current, $\mathrm{I}_{\mathrm{b}_{\mathrm{p}}}$, which will allow a maximum peak signal current $I_{S p}$ of 500 nA .
N. B. The peak signal currents are measured on a waveform oscilloscope and with a uniform illumination on the $15 \mathrm{~mm} \phi$ target area. When measured with an integrating instrument connected in the signal-electrode lead the average signal currents will be smaller
a) by a factor $\alpha\left(\alpha=\frac{100-\beta}{100}\right), \beta$ being the total blanking time in $\%$; for the CCIR system α amounts to 0.75 .
b) by a factor δ, δ being the ratio of the active target area (circle with $15 \mathrm{~mm} \phi$) to the area which would correspond with the adjusted scanning amplitudes ($15 \times 20 \mathrm{~mm}^{2}$), see note 5 , this ratio amounts to $\delta=0.59$. The total ratio of integrated signal current, I_{S}, to the peak signal current, I_{Sp}, amounts to $\alpha \times \delta=0.44$.
${ }^{6 b}$) The peak signal currents stated relate to a target sensitivity to light with P20 distribution of $\min .200 \mu \mathrm{~A} / 1 \mathrm{~m}$, typical $275 \mu \mathrm{~A} / 1 \mathrm{~m}$.
${ }^{7}$) The optimum voltage ratio $\mathrm{V}_{\mathrm{g}} / / \mathrm{V}_{\mathrm{g} 3}$ to obtain minimum beam landing errors (preferably $\leq 1 \mathrm{~V}$) depends on the type of coil unit used. For types AT1102/01, AT1103, AT1116 a ratio of $1.5: 1$ to $1.6: 1$ is recommended.
${ }^{\text {8 }}$) Target voltage, $V_{\text {as }}$, adjusted to the value indicated by the tube manufacturer on the test sheet as delivered with each tube.

$\mathrm{vg}_{4} / \mathrm{v}_{\mathrm{g}_{3}}$	Focusing current* (mA)		Line current (mApp)		Frame current (mApp)	
	600/375	960/600	600/375	960/600	600/375	960/600
AT1102/01	18	23	310	390	42	53
AT1103	20	26	310	390	46	59
AT1116	83	105	400	510	59	75
	Approx. values for scanning amplitudes corresponding to $15 \times 20 \mathrm{~mm}^{2}$ scanned area					

*Adjusted for correct electrical focus. The direction of the focusing current shall be such that a north-seeking pole is attracted towards the image end of the focusing coil.
Line and frame alignment coil currents max. 21 mA (AT1103) resp. 15 mA (AT1116) corresponding to a flux density of approx. $4 \times 10^{-4} \mathrm{~T}(4 \mathrm{Gs})$.
10) The near unity gamma of the XQ1072 ensures good contrast when televising low contrast X-ray image-intensifier pictures as encountered in radiology. Further contrast improvement may be obtained when an adjustable gamma expansion circuitry is incorporated in the video amplifier system.

11a) Measured with a transparency with a square wave test pattern with vertical bars. The figures given relate to a low frequency reference obtained from a square wave pattern of $1.0 \mathrm{lp} / \mathrm{mm}(385 \mathrm{kHz})$.
The aperture of the lens system adjusted for f 5.6
11b) As in 1la). Bandwidth of the video amplifier system and the waveform oscilloscope 15 MHz (-3 dB point).
12) After a minimum of 5 s of illumination on the target. The figures given represent the residual signals in \% of the original signal current 60 ms respectively 200 ms after the illumination has been removed.

GENERAL AND RECOMMENDATIONS

1. During transport, handling and storage the axis of the Plumbicon must be either vertical, with faceplate up, or horizontal; the faceplate should be covered with the hood provided.
2. This series of Plumbicon tubes is provided with Kovar pins and therefore requires no more care in handling than vidicon tubes.
3. During long term storage the ambient temperature should not exceed $30^{\circ} \mathrm{C}$.
4. In isolated cases the properties of a Plumbicon may deteriorate slightly when it is kept idle for long periods such as may occur:

- between the factory's pre-shipment test and the actual delivery to the customer.
- between receipt of the tube and its installation.
- if the camera is not used for a long time.

Although the chances of such deterioration are remote it is advisable to operate the tube for some hours at intervals not more than 4 weeks apart.

The following procedure and conditions are recommended:

- Set grid no. 1 bias -control to maximum negative bias (beam cut-off).
- Allow a heating -up time of the cathode of at least one minute before turning up the grid no. 1 bias -control to produce a beam.
- Set scanning amplitudes to overscan condition.
- Apply an even illumination to the target to obtain a signal current of approx. $0.15 \mu \mathrm{~A}$ and adjust the beam for correct stabilization.

5. The signal electrode connection is made by a spring contact, which is part of the focusing coil assembly, and is kept pressed against the signal electrode ring.
6. Electrostatic shielding of the signal electrode is required to avoid interference effects in the picture. Effective shieldingis provided by one grounded shield inside the focusing coil at the faceplate end, and one inside the deflecting yoke.

INSTRUCTIONS FOR USE

Instructions for use are packed with each tube.

Modulation transfer characteristic

CAMERA TUBE

Plumbicon *, 25.4 mm (1 in) diameter television camera tube with high resolution lead-oxide photoconductive target, magnetic deflection, magnetic focus. The tubes of the XQ1080 series are provided with a separate mesh and a 0.6 W heater and fea ture:
. Anti-Comet-Tail electron gun for highlight handling.

- Extremely low lag.
. Lightpipe, for adjustable bias lighting to minimise lag under low-key conditions.
. Same resolving power as the 30 mm tubes such as the XQ1020.
- Ceramic centring ring for precise optical alignment.
. Electrode system with precision construction.
. Low output capacitance for optimal S/N ratio.
The tubes of the XQ1080 series are rear-loading tubes, i.e. to be inserted at the rear end of a special coil unit and they have slightly different dimensions and pin connections from other 1 in diameter Plumbicon tubes like e. g. XQ1070.
The XQ1080 is intended for use in black and white cameras XQ1080L, R, G and B are intended for use in colour cameras in broadcast, educational and high quality indus trial applications in which high contrast ratios may occur.

QUICK REFERENCE DATA	
Focusing	magnetic
Deflection	magnetic
Diameter	$25.4 \mathrm{~mm}(1 \mathrm{in})$
Length	$158 \mathrm{~mm}\left(6 \frac{1}{4}\right.$ in $)$
Special features:	Anti -Comet -Tail gun
	Lightpipe
	Anti-halation glass disc
	Ceramic centring ring
Heater	Rear loading construction
Resolution	$6.3 \mathrm{~V}, 95 \mathrm{~mA}$
Cut-off of spectral response	$\geq 750 \mathrm{TV}$ lines
	approx. 650 nm

Data based on pre-production tubes.

* Registered Trade Mark for television camera tube.

OPTICAL

Quality rectangle on photoconductive target (aspect ratio 3:4)

Orientation of image on photoconductive target:
For correct orientation of the image on the target the vertical scan should be essentially parallel to the plane passing through the tube axis and the marker line on the protecting sleeve at the base. 2a)

Optical alignment see note 2 b

Faceplate			
Thickness		1.2	mm
Refractive index	n	1.49	
Refractive index of anti -halation disc	n	1.52	

ELECTRICAL

Heating: Indirect by A. C. or D. C.; parallel or series supply.

Heater voltage	V_{f}	6.3	$\mathrm{~V} \pm 5 \%$
Heater current	If_{f}	95	mA

When the tube is used in a seriesheater chain, the heater voltage must not exceed 9.5 $\mathrm{V}_{\mathrm{rms}}$ when the supply is switched on. To avoid registration errors in colour cameras, stabilization of the heater voltage is recommended.

Electron-gun characteristics

Cut-off
Grid no. 1 voltage for cut-off at $V_{2,4}=300 \mathrm{~V}$, without blanking norA.C.T. pulses
$\mathrm{Vg}_{1} \quad-45$ to $-110 \quad \mathrm{~V}$
Blanking voltage, peak to peak at $\mathrm{Vg}_{2,4}=300 \mathrm{~V}$, on grid no. 1

Grids no. 2 and 4 current (d.c. values)
Grids no.3, 5, and 6 currents
Pulse timing and amplitude requirements (A.C.T.)
Focusing (see under Accessories)
Deflection (see under Accessories)

$\mathrm{Vg}_{1} \mathrm{p}-\mathrm{p}$	50 ± 10	V	$\left.{ }^{4}\right)$
$\mathrm{Ig}_{2,4}$	max. $\quad 0.2$	mA	$\left.{ }^{9}\right)$
	see note 9		

see notes 5 and 8 magnetic
magnetic

Capacitance

Signal-electrode to all
Ca_{s}
2 to 3 pF

This capacitance, which is effectively the output impedance, increases when the tube is inserted in the coil unit.

LIMITING VALUES (Absolute max. rating system)
All voltages are referred to the cathode, unless otherwise stated.

Signal electrode voltage
Grid no. 6 (mesh) voltage
Grid no. 5 (collector) voltage
Voltage between grid no. 6 and grid no. 5
Grid no. 4 (limiter) and grid no. 2 (accelerator, or first anode) voltage
Grid no. 3 (auxiliary grid) voltage
Grid no. 1 (control grid) voltage, positive negative

Grid no. 1 A.C.T. pulse
Cathode to heater voltage, positive peak negative peak

Impedance between cathode and
heater at $-\mathrm{V}_{\mathrm{kf}}>10 \mathrm{~V}$
Ambient temperature, storage and operation
Faceplate temperature, storage and operation
Faceplate illumination

ACCESSORIES

Socket

Deflection, focusing and alignment coil unit

Va_{S}	\max.	50	V
Vg6	max.	1100	V
V_{g}	max.	800	V
$\mathrm{V}_{\mathrm{g}}^{6} / \mathrm{g} 5$	max.	350	V
$\mathrm{V}_{\mathrm{g} 2,4}$	max.	350	V
$\mathrm{V}_{\mathrm{g}} 3$	max.	350	V
Vg_{1}	max.	0	V
$-\mathrm{V}_{\mathrm{g}}$	max.	125	V
$\Delta \mathrm{V}_{\mathrm{g}_{\mathrm{p}}}$	max.	45	$\left.\left.\mathrm{V}^{5}\right)^{8}\right)$
Vkfp	max.	125	V
-Vkf p	max.	50	V
Z_{kf}	min.	2	$k \Omega$
$\mathrm{t}_{\mathrm{amb}}$	max. \min.	50 -30	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
t	$\begin{aligned} & \max . \\ & \min . \end{aligned}$	$\begin{array}{r} 50 \\ -30 \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
E	max.	500	$1 \mathrm{x}{ }^{6}$)

Cinch 133-98-11-015
modified for bias lighting
AT1115

MECHANICAL

Mounting position: any
Weight: approx. 70 g
Base: JEDEC E8-11 except length of stem

(i.c.)

The distance between the geometrical centres of the diameter A of the reference ring and the diameter B of the mesh-electrode ring is $<100 \mu \mathrm{~m}$.

OPERATING CONDITIONS AND PERFORMANCE

TYPICAL OPERATING CONDITIONS

with A.C.T. action (scanned area $9.6 \times 12.8 \mathrm{~mm}^{2}$). All voltages are specified with respect to the cathode potential during the read-out mode. See notes 3, 5, 7, 9 .

Cathode voltage, during read-out mode
during A. C. T. mode

V_{k}	0	$\mathrm{~V}_{8}$
$\mathrm{~V}_{\mathrm{k}}$	0 to 15	$\mathrm{~V}^{8)}$

Signal electrode voltage
Grid no. 6 (mesh) voltage
Grid no. 5 (collector) voltage
Grid no. 4 (limiter) and grid no. 2 (accelerator, or first anode) voltage

Grid no. 3 (auxiliary grid) voltage,
during read-out mode during A. C. T. mode

Grid no. 1 (control grid) voltage, during read-out mode during A. C. T. mode blanking on grid no. 1, peak
$\mathrm{V}_{\mathrm{g}} 3$
Vg_{g}
250 V
0 to $30 \quad \mathrm{~V}^{8}$)
$\begin{array}{ll} \\ \mathrm{V}_{\mathrm{g}} & \text { see note } 13 \\ \mathrm{~V}_{1} & \text { see note } 8\end{array}$
$\begin{array}{ll} \\ \mathrm{V}_{\mathrm{g}} & \text { see note } 13 \\ \mathrm{~V}_{\mathrm{g}} & \text { see note } 8\end{array}$ ${ }^{\mathrm{V}} \mathrm{gl}_{\mathrm{p}}$
$45 \mathrm{~V}^{10}$)
$\left.750 \quad \mathrm{~V}^{11}\right)^{12}$)
$475 \mathrm{~V}^{11}$)
$\mathrm{Vg}_{2,4} 300 \mathrm{~V}$

50 V

Typical beam current, signal current and pulse settings 8)

		XQ1080 XQ1080L	XQ1080R	XQ1080G	XQ1080B
	I_{Sp}	200 nA	100 nA	200 nA	100 nA
	I_{b}	400 nA	200 nA	400 nA	200 nA
A.C.T. level (peak)	280 nA	140 nA	280 nA	140 nA	
Cathode pulse	V_{kp}	10 V	5 V	10 V	5 V
Grid no. 1 pulse	$\mathrm{V}_{\mathrm{glp}}$	40 V	30 V	40 V	30 V
Grid no.3 pulse	$\mathrm{V}_{\mathrm{g} 3 \mathrm{p}}$	220 to 250 V			

Faceplate illumination
Bias lighting via lightpipe
Temperature of faceplate
Deflection, focusing and alignment coil unit
Deflection, focusing and alignment currents

$\mathrm{V}_{6} / \mathrm{Vg}_{5}$ $(\mathrm{~V})$	focus current (mA)	line current (mAp-p)	frame current $\left(\mathrm{mA}_{\mathrm{p}-\mathrm{p}}\right)$
$750 / 475$	32	290	35

Line and frame alignment currents max. 15 mA , corresponding to a flux density of approx. $4 \times 10^{-4} \mathrm{~T}$ (4 Gs).

PERFORMANCE

Dark current

$$
\leq 3 \mathrm{nA}
$$

Sensitivity at colour temperature
of illumination $=2854 \mathrm{~K}$

XQ1080
XQ1080L
XQ1080R
XQ1080G
XQ1080B
typical 400 typical 400 typical 80 typical 165 typical 37

Gamma of transfer characteristic
Transfer characteristics
Highlight handling
Spectral response: max. response at cut-off at
min. $325 \quad \mu \mathrm{~A} / \mathrm{lm}$
min. $325 \quad \mu \mathrm{~A} / \mathrm{lm}$
min. $70 \quad \mu \mathrm{~A} / \mathrm{lm}$
min. $\quad 130 \quad \mu \mathrm{~A} / \mathrm{lm}$
min. $\quad 35 \quad \mu \mathrm{~A} / \mathrm{lm}$
$0.95 \pm 0.05 \cdot 17$) see page 14
≥ 5 lens stops ${ }^{8}$)
approx. 500 nm
approx. 650 nm

Resolution

Modulation depth i.e. uncompensated amplitude response at 400 TV lines at the centre of the picture. The figures represent the typical horizontal amplitude response as measured with a lens aperture of $f 5.6$ 13), 18), 19).

	XQ1080 XQ1080L	XQ1080R	XQ1080G	XQ1080B
Highlight signal current I_{Sp}	$0.2 \mu \mathrm{~A}$	$0.1 \mu \mathrm{~A}$	$0.2 \mu \mathrm{~A}$	$0.1 \mu \mathrm{~A}$
Beam current $\quad \mathrm{Ib}_{\mathrm{p}}$	$0.4 \mu \mathrm{~A}$	$0.2 \mu \mathrm{~A}$	$0.4 \mu \mathrm{~A}$	$0.2 \mu \mathrm{~A}$
Modulation depth at 400				
TV lines in \% typical	40	35	40	45

Modulation transfer characteristics
Limiting resolution
see page 14
≥ 750 TV lines

Lag (typical values)

Light source with a colour temperature of 2854 K
Appropriate filter inserted in the light path for the chrominance tubes R, G and B.
Low key conditions

		build-up lag 20)				$\begin{gathered} \text { decay lag } \\ \text { 21) } \end{gathered}$			
		$\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{b}}=20 / 200 \mathrm{nA}$		$\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{b}}=40 / 400 \mathrm{nA}$		$\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{b}}=20 / 200 \mathrm{nA}$		$\mathrm{I}_{\mathrm{S}} / \mathrm{Ib}=40 / 400 \mathrm{nA}$	
		$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 200 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 200 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 200 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{aligned} & 200 \\ & (\mathrm{~ms}) \end{aligned}$
22) 23)	$\begin{gathered} \mathrm{Id}_{\mathrm{d}} \\ (\mathrm{nA}) \\ \hline \end{gathered}$			98\% $\sim 100 \%$					
XQ1080	0							5\%	2\%
XQ1080L	2.5			-100\%				2.5\%	1\%
XQ1080G	5							1.5\%	0.5\%
XQ1080R XQ1080B	0	>95\%	$\sim 100 \%$			8\%	3%		
	2.5	100%				3.5\%	2\%		
	5			1.5\%	1\%				

High key conditions

	$\begin{gathered} \text { build -up lag } \\ 20) \end{gathered}$				decay lag 21)			
	$\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{b}}=100 / 200 \mathrm{nA}$		$\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{b}}=200 / 400 \mathrm{nA}$		$\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{b}}=100 / 200 \mathrm{nA}$		$\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{b}}=200 / 400 \mathrm{nA}$	
	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{aligned} & 200 \\ & (\mathrm{~ms}) \end{aligned}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{aligned} & 200 \\ & (\mathrm{~ms}) \end{aligned}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{aligned} & 200 \\ & (\mathrm{~ms}) \end{aligned}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{aligned} & 200 \\ & (\mathrm{~ms}) \end{aligned}$
$\begin{aligned} & \text { XQ1080., L, G } \\ & \mathrm{Id}_{\mathrm{d}}=0 \text { to } 5 \mathrm{nA} \\ & \hline \end{aligned}$			98\%	$\sim 100 \%$			1.5\%	0.6\%
XQ1080R $\mathrm{I}_{\mathrm{d}}=0 \text { to } 5 \mathrm{nA}$	>97\%	$\sim 100 \%$			2.5\%	1%		
$\begin{array}{\|l\|} \hline \mathrm{XQ} 1080 \mathrm{~B} \\ \mathrm{I}_{\mathrm{d}}=0 \text { to } 5 \mathrm{nA} \\ \hline \end{array}$					3.5\%	2%		

NOTES

1) Underscanning of the specified useful area of $12.8 \mathrm{~mm} \times 9.6 \mathrm{~mm}$, or failure of scanning, should be avoided since this may cause damage to the photoconductive layer.
2a) The position of this marker line corresponds with the position of the small area contact on the ceramic centring ring. The spring contact in the coil unit, AT1115, is located accordingly. Total possible rotation of the tube while maintaining contact, is approx. 30°.

2 b) The outer diameter of the ceramic centring ring is concentric with the inner diameter of the mesh ring (grid no. 6). In the AT1115 coil unit the tube is centred' with this ring as a reference; this ensures proper optical alignment of the tube in the optical system of a colour camera.
3) When the tube is to be used without Anti-Comet Tail action, grid no. 3 (auxiliary grid) should be connected to grids no. 2 and no. 4 and no A.C.T. pulses should be applied to the cathode and grid no. 1 (control grid). The performance of the tube will then be as déscribed herein with the exception of the highlight handling.
4) Blanking can also be applied to the cathode:
a. -without A.C.T. action (see note 3): required cathode pulse approx. 25 V .
b. -with A.C.T. action: timing, polarity and amplitudes of the A.C.T. pulses will have to be adapted.
5) Pulse timing and amplitudes for A.C.T. action (CCIR system) (blanking on grid no. 1) 4) 7)
For proper operation of the A.C.T. electrode gun three pulses are required, being: a. - A positive-going pulse on the cathode with an adjustable amplitude of 0 to 15 V . This pulse can be chosen to coincide with the full line-blanking period.
b. - A positive-going pulse on gridno. 1 (control grid) with an adjustable amplitude of 25 to 40 V .
The duration of this pulse should be chosen such that it just includes the fly back period ($\approx 5 \mu \mathrm{~s}$) of the line deflection (e.g. $\approx 6 \mu \mathrm{~s}$).
c. - A negative-going pulse on grid no. 3 (auxiliary grid) with an amplitude of approx. 250 V , adjusted to result in a Vg_{3} voltage during the A . C. T. mode of 0 to 30 V .
Duration of chis pulse should be equal to that of the grid no. 1 pulse.

The timing diagram is as follows:

$\mathrm{A}=$ Line blanking period: $\approx 12 \mu \mathrm{~s}, \mathrm{~V}_{\mathrm{k}}$ pulse
$B=A . C . T$. period: $\approx 5 \mu$ s, grids no. 1 and no. 3 pulses
$\mathrm{C}=$ Line flyback period: $\approx 5 \mu \mathrm{~s}$
$\mathrm{D}=$ Clamping time: 2 to $3 \mu \mathrm{~s}$
6) For short intervals. During storage the tube face shall be covered with the plastic hood provided; when the camera is idle the lens shall be capped.
7) a. Read-out mode: defined as the operating conditions during the active line scan (full line period -line blanking interval).
For the CCIR system this will amount to $64 \mu \mathrm{~s}-12 \mu \mathrm{~s}=52 \mu \mathrm{~s}$.
b. A.C.T. mode: defined as the operating conditions during that part of the line blanking interval during which the A.C.T. electrode gun is fully operative. The A.C.T. interval is equal to or slightly overlaps the line flyback time.
8) Pulse amplitude settings

Cathode pulse V_{k} : adjusted to obtain an A . C. T. limiting level at 1.3 to 1.5 times I_{Sp}.
Grid no. 3 pulse : adjusted for maximum and most uniform A.C.T. action over the total scanned area.
Grid no. 1 pulse : adjusted for proper handling of a highlight with a diameter of 10% of picture height and with a brightness corresponding to 32 times peak signal white (I_{sp}).
N. B. Extension of the A.C.T. range can be obtained by increasing the grid no. 1 pulse; this may, however, introduce dark current.
9a) The D. C. voltage supply and/or pulse supply to these electrodes should have a sufficiently low impedance to prevent distortion caused by the peak currents drawn during the A.C.T. mode.
These peak currents may amount to:

cathode	2 mA
grid no. 1	0 mA
grids no. 2 and no. 4	1 mA
grid no.3	$150 \mu \mathrm{~A}$
grid no.5	$300 \mu \mathrm{~A}$
grid no.6	$300 \mu \mathrm{~A}$

The cathode impedance should preferably be chosen $\leq 300 \Omega$.

9b) Video pre-amplifier. In the presence of highlights, peak signal currents of the order of $15-45 \mu \mathrm{~A}$ may be offered to the pre-amplifier during flyback. Special measures have to be taken in the pre-amplifier to prevent temporary overloading.
10) Plumbicon tubes do not permit automatic sensitivity control be means of regulation of the signal electrode voltage. Adequate control is therefore to be achieved by other means (iris control and neutral density filters).
If the tube is applied in cameras originally designed for vidicon tubes, the automatic sensitivity control circuitry should be made inoperative and the signal electrode voltage set to 45 V .
11) The optimum voltage ratio $\mathrm{V}_{6} / \mathrm{V}_{\mathrm{g}}$ to obtain minimum beam landing errors (preferably $\leq 1 \mathrm{~V}$) depends on the type of coil unit used. For type AT1115 a ratio of 1.5:1 to $1.6: 1$ is recommended.
12) Operation with $\mathrm{A} . \mathrm{C} . \mathrm{T}$. at $\mathrm{Vg}_{6}>750 \mathrm{~V}$ is not recommended since this may introduce dark current.
13) Adjusted with the A.C.T. made inoperative, e.g. by setting the cathode pulse to 15 V . The control grid voltage is adjusted to produce a beam current just sufficient to allow a peak signal current of twice the typical value, $I_{S p}$, as observed and measured on a waveform oscilloscope. This amount of beam current is termed Ib_{p}.
N.B. The signal current, I_{s}, and beam current, I_{b}, conditions quoted with the performance figures for e.g., lag, relate to measurements with an integrating instrument connected in the signal-electrode lead and a uniform illumination on the scanned area.
The corresponding peak currents, I_{Sp} and $\mathrm{I}_{\mathrm{b}_{\mathrm{p}}}$, as measured on a waveform oscilloscope will be a factor α larger ($\alpha=100 / 100-\beta$), β being the total blanking time in \%; for CCIR system α amounts to 1.33 .
14) In the case of a black/white camera the illumination on the photoconductive lay$\mathrm{er}, \mathrm{B}_{\mathrm{ph}}$, is related to scene illumination, B_{Sc}, by the formula:

$$
\mathrm{B}_{\mathrm{ph}}=\mathrm{B}_{\mathrm{Sc}} \frac{\text { R.T. }}{4 \mathrm{~F}^{2}(\mathrm{~m}+1)^{2}}
$$

in which R represents the average scene reflectivity or the object reflectivity, whichever is relevant, T the lens transmission factor, F the lens aperture, and m the linear magnification from scene to target.
A similar formula may be derived for the illumination level on the photoconductive layers of the R, G, and Btubes in which the effects of the various components of the complete optical system have been taken into account.
15) Focus current adjusted for correct electrical focus. The direction of the focusing current shall be such that a north seeking pole is attracted towards the image end of the focusing coil, with this pole located outside of and at the image end of the focusing coil.
16) Measuring conditions:

Illumination 4lx (luminious flux $=0.5 \mathrm{mlm}$) at black body temperature of 2854 K ; the appropriate filter inserted in the light path.

Filters used:

XQ1080R	Schott	OG570	thickness	3 mm
XQ1080G	Schott	VG9	thickness	1 mm
XQ1080B	Schott	BG12	thickness	3 mm

For transmission curves see page 13 .
17) Gamma-stretching circuitry is recommended.
18) Typical faceplate illumination level for the XQ 1080 to produce $0.2 \mu \mathrm{~A}$ signal current will be approx. 41 x . The signal current stated for the colour tubes R, G, B will be obtained with an incident white light level (c.t. $=2854 \mathrm{~K}$) on the filter of approx. 10 lx . These figures are based on the filters described in note 16). For filter BG12, however, a thickness of 1 mm is chosen.
19) The horizontal amplitude response can be raised by the application of suitable correction circuits, whichaf fectsneither the vertical resolution nor the limiting resolution.
20) After 10 seconds of complete darkness. The figures given represent typical per centages of the ultimate signal current obtained 60 ms respectively 200 ms after the illumination has been applied.
21) After a minimum of 5 s of illumination on the target. The figures given represent typical residual signals in $\%$ of the original signal current 60 ms respectively 200 ms after the illumination has been removed.
22) The special socket incorporates a small incandescent light bulb ($6 \mathrm{~V}, 1 \mathrm{~W}$), which projects its light on to the pumping stem via a blue-green transmitting filter. The light is conducted via a fine glass rod (lightpipe) to cause a bias illumination on the target. The desired amount of bias light can be obtained by adjusting the cur rent throught the filament of the small bulb.
23) For $\mathrm{bl} / \mathrm{wh}$ operation a bias lighting, corresponding to 2 to 3 nA extra dark current, is usually adequate for excellent speed of response.
In a colour camera the speeds of response of the tubes can be balanced by adjusting the amount of bias lighting per tube.

GENERAL AND RECOMMENDATIONS

1. During transport, handling and storage the axis of the Plumbicon must be either vertical, with faceplate up, or horizontal; the faceplate should be covered with the hood provided.
2. This series of Plumbicon tubes is provided with Kovar pins and therefore requires no more care in handling than vidicon tubes.
3. During long term storage the ambient temperature should not exceed $30^{\circ} \mathrm{C}$.
4. In isolated cases the properties of a Plumbicon may deteriorate slightly when it is kept idle for long periods such as may occur:

- between the factory's pre-shipment test and the actual delivery to the customer;
- between receipt of the tube and its installation;
- when the camera is not used for a long time.

Although the changes of such deterioration are remote it is advisible to operate the tube for some hours at intervals not more than 4 weeks apart.

The following procedure and conditions are recommended:

- Set grid no. 1 bias control to maximum negative bias (beam cut-off).
- Allow a heating -up time of the cathode of at least one minute before turning up the grid no. 1 bias control to produce a beam.
- Set scanning amplitudes to overscan condition.
- Apply an even illumination to the target to obtain a signal current of approx. o. $15 \mu \mathrm{~A}$ and adjust the beam current for correct stabilization.

The signal electrode connection is made by a spring contact, which is part of the focusing coil assembly, and is kept pressed against the signal electrode ring.

Electrostatic shielding of the signal electrode is required to avoid interference effects in the picture. Effective shielding is provided by one grounded shield inside the focusing coil at the faceplate end, and one inside the deflecting yoke.

The light transfer characteristic of the Plumbicon tube having a gamma near unity, it may be desirable to incorporate a gamma correcting circuitry in the video-amplifier system with an adjustable gamma of 0.5 of 1 .

The Plumbicon tube not generating noise to any noticeable extent, the signal-tonoise ratio will be determined mainly by the input noise of the video-amplifier system.

The high sensitivity of the Plumbicon tube warrants pictures with excellent sig-nal-to-noise ratio under normal lighting conditions provided its output is fed into a well-designed input stage of the video-amplifier system. In such a system an aperture correction may be incorporated to ensure an attractive gain in resolving power without impairing the signal to noise ratio.

INSTRUCTIONS FOR USE

Instructions for use are packed with each tube.

Transmission of filters OG570, VG9 and BG12. See note 16

Square wave modulation transfer characteristic

CAMERA TUBES

Plumbicon ${ }^{*}$, sensitive high-definition pick-up tube with lead-oxide photoconductive target. Provided with: separate mesh construction for good overall resolution; Anti--Comet Tail electron gun for improved highlight handling; lightpipe for reduced lag under low-key conditions; fibre optic faceplate. The tubes of the XQ1220 and XQ1230 series can be used in medical, scientific and low light level T.V. systems in which they can be coupled direct to, e.g., X-ray image intensifiers and light intensifiers with fibre optic output windows.

QUICK REFERENCE DATA						
Focusing magnetic						
Deflection magnetic						
Diameter approx. 30 mm						
Length approx. 210 mm						
Available types:						
Quality area Grade Non-cladded fibre optic Black-cladded fibre optic	$12.8 \times 17.1 \mathrm{~mm}^{2}$		$18 \mathrm{~mm} \phi$		$21 \mathrm{~mm} \phi$	
	A	B	A	B	A	B
	XQ1220	XQ1223	XQ1221	XQ1224	XQ1222	XQ1225
	XQ1230	XQ1233	XQ1231	XQ1234	XQ1232	XQ1235
Resolution				\geq	25	$\mathrm{lp} / \mathrm{mm}$
Heater				$6.3 \mathrm{~V}, 300$		mA
Cut-off of spectral response				approx.	. 650	nm

Data based on pre-production tubes.

* Registered Trade Mark for television camera tube.

OPTICAL

Quality rectangle on photoconductive target
(aspect ratio $3: 4$)
Orientation of image on photoconductive target
For correct orientation of the image on the target the horizontal scan should be essentially parallel to the plane passing through the tube axis and the index pin (grid no. 3)

Faceplate

Diameter of fibres
Flat within
approx. $7 \mu \mathrm{~m}$
$1 \mu \mathrm{~m}$

ELECTRICAL

Heating: Indirect by A.C. or D. C. ; parallel supply

Heater voltage
Heater current
$\begin{array}{lll}\mathrm{V}_{\mathrm{f}} & 6.3 \mathrm{~V} \pm 5 \%\end{array}$
I_{f} approx. 300 mA

Electron gun characteristics

Cut-off
Grid no. 1 voltage for cut-off at $\mathrm{V}_{\mathrm{g} 2,4}=300 \mathrm{~V}$,
without blanking nor A.C.T. pulses
Blanking
Applied to grid no, 1, at $\mathrm{V}_{\mathrm{g} 2,4}=300 \mathrm{~V}$
Grid no. 2 and no. 4 current
Focussing (see under Accessories)
Deflection (see under Accessories)
Capacitance
Signal-electrode to all
-45 to -110 V
$\left.\left.50 \pm 10 \mathrm{~V}_{\mathrm{pp}}{ }^{6}\right)^{9}\right)$
max. $\quad 0.2 \mathrm{~mA}{ }^{7}$)
magnetic
magnetic
$\mathrm{C}_{\mathrm{a}_{\mathrm{S}}} 3$ to 6 pF

This capacitance, which is effectively the output impedance, increases when the tube is inserted in the coil unit.

LIMITING VALUES (Absolute max. rating system)
All voltages are referred to the cathode, unless otherwise stated.

Signal electrode voltage
Grid no. 6 (mesh) voltage
Grid no. 5 (collector) voltage
Voltage between grid no. 6 and grid no. 5
Grid no. 4 (limiter) and grid no. 2 (accelerator, or first anode) voltage

Grids no. 4 and no. 2 dissipation
Grid no. 3 (auxiliary grid) voltage
Grid no. 1 (control grid) voltage, positive
negative
Grid no. 1 A.C.T. pulse
Cathode to heater voltage,

> positive peak
negative peak
Faceplate temperature, storage and operation

Faceplate illumination

ACCESSORIES

Coil unit
Socket

V_{S}	\max.	50	V
$\mathrm{~V}_{\mathrm{g} 6}$	\max.	1100	V

$\mathrm{V}_{\mathrm{g} 5} \max .800 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g} 6} / \mathrm{g}_{5}$ max. 350 V
$\mathrm{V}_{\mathrm{g} 2,4} \max .350 \mathrm{~V}$
$\mathrm{W}_{\mathrm{g} 2,4} \max$. $\quad 1 \mathrm{~W}$
$\mathrm{V}_{\mathrm{g} 3} \max .350 \mathrm{~V}$
$\begin{array}{rrrr}V_{g_{1}} & \text { max. } & 0 & \mathrm{~V} \\ -\mathrm{V}_{\mathrm{g}_{1}} & \max . & 125 & \mathrm{~V}\end{array}$
max. $\left.\begin{array}{lll}40 & V_{p} 6\end{array}\right)$
$\begin{array}{rrrr}\mathrm{V}_{\mathrm{kfp}} & \text { max. } & 50 & \mathrm{~V} \\ -\mathrm{V}_{\mathrm{kfp}} & \max . & 50 & \mathrm{~V}\end{array}$
t max. $50{ }^{\circ} \mathrm{C}$
min. $\quad-30{ }^{\circ} \mathrm{C}$
E $\quad \max \quad 500 \quad 1 x^{2}$)

AT1132, AT1132/01
3)
modified version of 56021 (under development)

MECHANICAL

Mounting position: any
Weight: approx. 110 g

a) The base passes a flat gauge with a centre hole $9.00 \pm 0.01 \phi$ and holes for passing the pins with the following diameters: 7 holes of $1.750 \pm 0.005 \phi$ and one hole of $3.000 \pm 0.005 \phi$. The holes may deviate max. 0.01 from their true geometrical position. Thickness of gauge 7 mm .
b) The ends of the pins are tapered and/or rounded but not brought to a sharp point.

OPERATING CONDITIONS AND PERFORMANCE

TYPICAL OPERATING CONDITIONS (with Anti-Comet Tail action) ${ }^{4}$) All voltages are specified with respect to cathode.

Cathode voltage, during read-out mode during A. C. T. mode

Signal electrode voltage
Grid no. 6 (mesh) voltage
Grid no. 5 (collector) voltage

V_{k}	0	$\left.\left.\left.\mathrm{~V}^{5}\right)^{6}\right)^{7}\right)$
V_{k}	0 to	10
$\mathrm{~V}^{7}$		
$\mathrm{~V}_{\mathrm{a}}$	45	V
$\mathrm{~V}_{\mathrm{g} 6}$	675	$\left.\mathrm{~V}^{7}\right)$
$\mathrm{V}_{\mathrm{g} 5}$	600	$\left.\mathrm{~V}^{7}\right)$
$\mathrm{V}_{\mathrm{g}, 4}$	300	$\left.\mathrm{~V}^{7}\right)$

Grid no. 3 (auxiliary grid) voltage, during read-out mode during A.C.T. mode

Grid no. 1 (control grid) voltage blanking voltage to grid no. 1
Scanned area on target
Temperature of faceplate
$\mathrm{V}_{\mathrm{g} 3} \quad 240$ to 260 V ${ }^{7}$)
$\mathrm{V}_{\mathrm{g} 3}$
0 to 10 V
$\mathrm{V}_{\mathrm{g} 1}$ see note ${ }^{8}$)

$$
\left.\left.50 \quad V_{p}{ }^{6}\right)^{9}\right)
$$

$12.8 \times 17.1 \mathrm{~mm}^{2}$
20 to $45{ }^{\circ} \mathrm{C}$
Coil unit
Deflection, focusing and alignment currents

Focus current (adjusted for correct electrical focus) (mA)	Line deflection current $\left(\mathrm{mA}_{\mathrm{pp}}\right)$	Frame deflection current $\left(\mathrm{mA}_{\mathrm{pp}}\right)$
25	235	35

Line and frame alignment coil currents max. 5 mA , corresponding to a flux density of approx. $4 \times 10^{-4} \mathrm{~T}$ (4 Gs)

PERFORMANCE

Dark current (without bias lighting via lightpipe) Sensitivity
to white light of c.t. 2854 K
XQ1220 series
XQ1230 series
to light with P11 distribution
XQ1220 series
XQ1230 series
to light with P20 distribution
XQ1220 series
XQ1230 series

Transfer characteristics

Gamma of transfer characteristic below knee
Spectral response
Max. response at
Cut-off at
Response curve
Resolution ($\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{b}}=150 / 300 \mathrm{nA}$)
XQ1220 series $15 \mathrm{lp} / \mathrm{mm}$ ($385 \mathrm{~T} . \mathrm{V}$. lines) typ. XQ1230 series $15 \mathrm{lp} / \mathrm{mm}$ ($385 \mathrm{~T} . \mathrm{V}$. lines) typ.

Modulation transfer characteristic

$$
\leq \quad 3 \mathrm{nA}
$$

typ. $\quad 375 \mu \mathrm{~A} / 1 \mathrm{~m}$
typ. $\quad 300 \mu \mathrm{~A} / \mathrm{lm}$
typ. $20 \times 10^{-3} \quad \mu \mathrm{~A} / \mu \mathrm{W}{ }^{10}$) typ. $13 \times 10^{-3} \mu \mathrm{~A} / \mu \mathrm{W}{ }^{10}$)
typ. $\quad 15 \times 10^{-3} \quad \mu \mathrm{~A} / \mu \mathrm{W}{ }^{10}$)
typ. $10 \times 10^{-3} \mu \mathrm{~A} / \mu \mathrm{W}{ }^{10}$)
see page 12
0.95 ± 0.05
approx. 550 nm approx. 650 nm
see page 13
8) ${ }^{11 \text {) }}$

P11	P20	
40	30	$\%$
45	40	$\%$

see page 14

Lag (typical values), white light (2854 K), P11, and P20

	$\begin{aligned} & \text { build-up lag } \\ & 12 \text {) } \end{aligned}$				$\begin{gathered} \text { decay lag } \\ 13) \end{gathered}$			
	$\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{b}}=20 / 300 \mathrm{nA}$		$150 / 300 \mathrm{nA}$		20/300nA		150/300nA	
	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 200 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{aligned} & 200 \\ & (\mathrm{~ms}) \end{aligned}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{aligned} & 200 \\ & (\mathrm{~ms}) \end{aligned}$	$\begin{gathered} 60 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{aligned} & 200 \\ & (\mathrm{~ms}) \end{aligned}$
without bias lighting	70	100	98	100	16	5	3.5	1.2
with $2.5 n A$ bias lighting 14)	98	100	99	100	11	2.5	2.8	0.9
with 5 nA bias lighting 14)	99	100	100	100	8	2	2.4	0.7

NOTES

1) All figures quoted in these data sheets refer to a scanned area of $12.8 \times 17.1 \mathrm{~mm}^{2}$. Underscanning of the once chosen area or failure of scanning should be avoided since this may cause damage to the photoconductive target.
${ }^{2}$) For short intervals. During storage and idle periods the tube face must be covered with the plastic hood provided for the purpose, or the lens be capped.
${ }^{3}$) For optimal screening of the signal-electrode from the live end of the line deflection coils the AT1132/01 is recommended.
${ }^{4}$) When the tube is to be used without Anti-Comet Tail action, grid no. 3 (auxiliary grid) should be connected to grids no. 2 and no. 4 and no A.C.T. pulses should be applied to the cathode and grid no. 1 (control grid). The performance of the tube will then be as described herein with the exception of the highlight handling.
2) a. Read-out mode: defined as the operating conditions during the active line scan (full line period - line blanking interval).
For the CCIR system this will amount to $64 \mu \mathrm{~s}-12 \mu \mathrm{~s}=52 \mu \mathrm{~s}$.
b. A.C.T. mode: defined as the operating conditions during that part of the line blanking interval during which the A.C.T. electrode gun is fully operative. The A.C.T. interval is equal to or slightly overlaps the line flyback time.
6. Pulse timing and amplitudes for A.C.T. action (CCIR system)
(blanking on grid no. 1)
For proper operation of the A.C.T. electrode gun three pulses are required, being: a. - a positive-going pulse on the cathode with an adjustable amplitude of 0 to 10 V .
b. - a positive-going pulse on grid no. 1 (control grid) of fixed amplitude of 30 to 35 V . The duration of this pulse should be chosen such that it just includes the flyback period ($\approx 5 \mu \mathrm{~s}$) of the line deflection (e.g. $6 \mu \mathrm{~s}$).
c. - a negative-going pulse on grid no. 3 (auxiliary grid) with an amplitude of approx. 240 V , adjusted for a $\mathrm{V}_{\mathrm{g} 3}$ voltage during the $\mathrm{A} . \mathrm{C}$. T. interval of 0 to 10 V .
Duration and timing of this pulse should be equal to those of the gridno. 1 pulse.

The timing diagram is as follows:

$\mathrm{A}=$ Line blanking period: $\approx 12 \mu \mathrm{~s}, \mathrm{~V}_{\mathrm{k}}$ pulse
$B=A . C . T$. period: $\approx 6 \mu$ s, grids no. 1 and no. 3 pulses
$\mathrm{C}=$ Line flyback period: $\approx 5 \mu \mathrm{~s}$
$\mathrm{D}=$ Clamping time: 2 to $3 \mu \mathrm{~s}$
7) The D.C. voltage supply and/or pulse supply to these electrodes should have a sufficiently low impedance to prevent distortion caused by the peak currents drawn during the A.C.T. mode.
These peak currents may amount to:

grid no. 1	0 mA
grids no. 2 and no. 4	1 mA
grid no. 3	$150 \mu \mathrm{~A}$
grid no. 5	$300 \mu \mathrm{~A}$
grid no. 6	$300 \mu \mathrm{~A}$

${ }^{8}$) Adjusted, with the A. C. T. switched off, to produce a beam current $\mathrm{I}_{\mathrm{b}}=300 \mathrm{nA}$. I_{b} is not the actual current available in the scanning beam, but is defined as the maximum amount of signal current, I_{S}, that can be obtained with this beam.

In the performance figures e.g. for resolution and lag the signal current and beam current conditions are given as $\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{b}}=20 / 300 \mathrm{nA}$.
This hence means: with a signal current of 20 nA and a beam setting which just allows a signal current of 300 nA .
N.B. The signal currents are measured with an integrating instrument connected in the signal-electrode lead, and an uniform illumination on the scanned area. The peak signal currents as measured on a waveform oscilloscope will be a factor α larger $\left(\alpha=\frac{100}{100-\beta}\right), \beta$ being the total blanking time in \%; for CCIR system α amounts to 1.33).
${ }^{9}$) Blanking can also be applied to the cathode:
a. - without A.C.T. action (see note 4): required cathode pulse approx. 25 V .
b. - with A.C.T. action: timing, polarity and amplitudes of the A.C.T. pulses will have to be adapted.
10) The figures shown represent the signal output current in $\mu \mathrm{A}$ obtained per $\mu \mathrm{W}$ of electrical input power into a P11 or P20 phosphor on a fibre optic output window of e.g. an image intensifier or a converter tube.
Such an output window will usually be provided with non-cladded fibre optics when it feeds into an XQ1220 and with black-cladded fibre optics when it is coupled to an XQ1230.
The figures were obtained as the products $\mathrm{S} \times \mathrm{T}_{1}^{2} \times \eta$ or $\mathrm{S} \times \mathrm{T}_{2}^{2} \times \eta$ (see table below) whichever applied.

		symbol	P11	P20	unit
Plumbicon target	Sensitivity of photoconductive target		1800	290	$\mu \mathrm{~A} / 1 \mathrm{~m}$
	Conversion factor Watt to lumen	Sensitivity of photoconductive target	S	0.25	0.14
Fibre optics	Transmission of a non-cladded fibre plate	$\mathrm{T}_{1} *$	90	90	$\%$
	Transmission of a black-cladded fibre plate	$\mathrm{T}_{2} *$	70	70	$\%$
Phosphor	Luminous efficiency of phosphor	$\eta^{* *}$	10	14	$\%$

* For the sake of simplicity it is assumed that the fibre optics in the output window and in the Plumbicon faceplate have identical transmissions.
** The phosphors being usually metal-backed, the figures for the luminous efficiencies have been corrected for the effects of the backing.

11) Measured with a test transparency with the emulsion side in direct contact with the faceplate and which is illuminated with diffused light (lambertian illumination). The test transparency has square wave patterns in a white background.
The figures given relate to a low frequency reference obtained from a square wave pattern of $1.0 \mathrm{lp} / \mathrm{mm}(330 \mathrm{kHz})$.
${ }^{12}$) After 10 seconds of complete darkness. The figures given represent typical percentages of the ultimate signal current obtained 60 ms respectively 200 ms after the illumination has been applied.
12) After a minimum of 5 s of illumination on the target. The figures given represent typical residual signals in $\%$ of the original signal current 60 ms respectively 200 ms after the illumination has been removed.
13) The special socket incorporates a small incandescentlight bulb ($6 \mathrm{~V}, 1 \mathrm{~W}$), which projects its light on the pumping stem via a blue-green transmitting filter. The light is conducted via a fine glass rod (lightpipe) to cause a bias illumination on the target. The desired amount of bias light can be obtained by adjusting the current through the filament of the small bulb.

GENERAL AND RECOMMENDATIONS

1. During transport, handling and storage the axis of the Plumbicon must be either vertical, with faceplate up, or horizontal; the faceplate must be kept covered with the hood provided for the purpose.
2. To avoid damage to the tungsten basepins, the Plumbicon should be inserted into its socket with care, avoiding undue forces and bending loads on the pins.
3. During long-term storage the ambient temperature should preferably not exceed $30^{\circ} \mathrm{C}$.
4. In isolated cases the properties of a Plumbicon may deteriorate slightly when it is kept idle for long periods such as may occur:
. between the factory's pre-shipment test and the actual delivery to the customer.

- between receipt of the tube and its installation.
. if the camera is not used for a long time.
Although the chances of such deterioration are remote it is advisable to operate the tube for some hours at intervals not more than 4 weeks apart.
The following procedure and conditions are recommended:
- Set grid no. 1 bias-control to maximum negative bias (beam cut-off).
- Allow a heating-up time of the cathode of at least one minute before turning up the grid no. 1 bias-control to produce a beam.
- Set scanning amplitudes to overscan condition.
- Apply an even illumination to the target to obtain a signal current of approx. $0.15 \mu \mathrm{~A}$ and adjust the beam current for correct stabilization.

5. The signal electrode connection is made by a spring contact, which is part of the focusing coil unit and is kept pressed against the signal electrode ring.

6 Electrostatic shielding of the signal electrode is required to avoid interference effects in the picture. Effective shielding is provided by one grounded shield inside the focusing coil at the faceplate end, and one inside the deflecting yoke.
7. The Plumbicon tube not generating own noise to any noticeable extent, the signal--to-noise ratio will be determined mainly by the input noise of the video-amplifier system.

The high sensitivity of the Plumbicon tube warrants pictures with excellent signal--to-noise ratio under normal lighting conditions provided its output is fed into a well-designed input stage of the video-amplifier system. In such a system an aperture correction may be incorporated to ensure an attractive gain in resolving power without visually impairing the signal-to-noise ratio.

Typical signal output characteristics in A.C.T. operation
Scanning area: $12.8 \times 17.1 \mathrm{~mm}^{2}$
Beam current : just sufficient to stabilize 500 nA signal current

Cathode voltage during flyback :
curve 1:4.5 V
curve 2: 6 V
curve 3:7.5 V
curve 4:9 V

Typical spectral response characteristics

Typical square wave modulation transfer characteristics in tube centre.
(1) for blue light (P11)
(2) for green light (P20)

Measuring conditions: see note 11

CAMERA TUBE

Vidicon television camera tube with low heater consumption, separate mesh construction, magnetic focusing, magnetic deflection and 25.4 mm (1 in) diameter intended for use in black-and-white and colour television cameras in industrial, medical and broadcast applications.

	QUICK REFERENCE DATA
Separate mesh	
Focusing	magnetic
Deflection	magnetic
Diameter	$25.4 \mathrm{~mm}(1 \mathrm{in})$
Length	$159 \mathrm{~mm}\left(6 \frac{1}{4} \mathrm{in}\right)$
Heater	$6.3 \mathrm{~V}, 95 \mathrm{~mA}$
Resolution	$\geq 1000 \mathrm{TV}$ lines

The electrical and mechanical properties of the two types are essentially identical, the differences being found in the degree of freedom from blemishes of the photoconductive layers, in the sensitivity and the signal electrode voltage range.

XQ1240 - intended for use in industrial, medical and broadcast applications in which a high standard of performance is required.

XQ1241 - general purpose tube for less critical industrial applications, experiments, amateur use etc.

OPTICAL

Diagonal of quality rectangle on photoconductive layer (aspect ratio $3: 4$) max.

16 mm
Orientation of image on photoconductive layer:
The direction of the horizontal scan should be essentially parallel to the plane defined by the short index pin and the longitudinal axis of the tube.
Photoconductive layer
Spectral response, max. response at

HEATING

Indirect by A.C. or D.C.;parallel and series supply

Heater voltage	V_{f}	6.3	$\mathrm{~V} \pm 10 \%$
Heater current	I_{f}	95	mA

When the tube is used in a series heater chain, the heater voltage must not exceed $9.5 \mathrm{~V}_{\mathrm{rms}}$ when the supply is switched on.
Data based on pre-production tubes

CAPACITANCES

Signal electrode to all
This capacitance, which effectively is the output impedance of the tube, increases when the tube is inserted into the deflection and focusing coil unit.

MECHANICAL DATA

Base: JEDEC no. E8-11 except for pumping stem IEC 67-I-33a

Mounting position: any
Net weight

ACCESSORIES

Socket
Deflection and focusing coil unit DEFLECTION magnetic

approx.
55 g

TE1004, Cinch no. 54A18088 or equiva lent.
AT1102/01, AT1003 or equivalent

FOCUSSING magnetic

LIMITING VALUES (Absolute max. rating system)
for scanned area of $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}(3 / 8 \mathrm{in} \times 1 / 2 \mathrm{in})$
"Full-size scanning", i.e. scanning of a $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ area of the photocon ductive layer should always be applied. Underscanning, i.e. scanning of an area less than $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$, may cause permanent damage to the specified full-size area.

Signal-electrode voltage
Grid no. 4 voltage
Grid no. 3 voltage
Grid no. 2 voltage
Grid no. 1 voltage, negative positive

V_{a}	max.	100	V
$\mathrm{~V}_{\mathrm{g} 4}$	\max.	1000	V
$\mathrm{~V}_{\mathrm{g} 3}$	\max.	850	V
$\mathrm{~V}_{\mathrm{g} 2}$	\max.	450	V
$-\mathrm{V}_{\mathrm{g} 1}$	\max.	125	V
$\mathrm{~V}_{\mathrm{g} 1}$	\max.	0	V

Cathode-to-heater voltage, peak positive negative
Dark current, peak
Output current, peak
Faceplate illumination

$\mathrm{V}_{\mathrm{kf}_{\mathrm{p}}}$	\max.	125	V	
$-\mathrm{V}_{\mathrm{kf}}$	\max.	10	V	
$\mathrm{I}_{\mathrm{dark}}$	\max	0.25	$\mu \mathrm{~A}$	
I_{as}	\max.	0.6	$\mu \mathrm{~A}$	$1)$
E	\max	5000	lx	

Faceplate temperature, storage and operation

1) Video amplifiers should be capable of handling signal-electrode currents of this magnitude without overloading.
2) Under difficult environmental conditions a flow of cooling air directed at the fa ceplate is recommended.
3) Under conditions of high heat irradation the use of a infra-red absorbing filter is recommended.

OPERATING CONDITIONS AND PERFORMANCE

for a scanned area of $9.6 \mathrm{~mm} \times 12.8 \mathrm{~mm}$ and a faceplate temperature of $30 \pm 2{ }^{\circ} \mathrm{C}$.

CONDITIONS

Mesh voltage	$\mathrm{V}_{\mathrm{g} 4}$
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 3}$
Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$
Grid no. 1 voltage	$\mathrm{V}_{\mathrm{g} 1}$

Blanking voltage, peak-to-peak when applied to gl
when applied to cathode
Field strength at centre of focusing coil (nominal)

Field strength of adjustable $\quad \mathrm{H}$ alignment coils

PERFORMANCE

Signal electrode voltage for dark current of 20 nA

Grid no. 1 voltage for picture cut-off, with no blanking applied

Signal current
faceplate illumination 8 lx c.t. 2854 K

Decay: residual signal current 200 ms after cessation of the illumination ($8 \mathrm{~lx}, 2854 \mathrm{~K}$)

[^25]Limiting resolution at picture centre

Modulation depth at 400 TV lines at picture centre

Average γ of transfer characteristic for signal currents between $0.01 \mu \mathrm{~A}$ and $0.3 \mu \mathrm{~A}$
Spurious signals (spots and blemishes)

See note 9)

NOTES

1) The optimal grid no. 4 voltage for best uniformity of black and white level depends on the type of coil unit used and will be 1.4 times $\mathrm{V}_{\mathrm{g} 3}$ for the coil units mentioned under "Accessories".
Under no circumstances should grid no. 4 (mesh) be allowed to operate at a voltage level below the $\mathrm{V}_{\mathrm{g} 3}$ level, since this may damage the target.
2) Because of the higher deflecting and focusing power required to produce adequate field strength the tube temperature will increase and adequate provisions for cooling should be made.
3) The polarity of the focusing coil should be such that a north-seeking pole is at tracted to the image end of the focusing coil, with this pole located outside of and at the image end of the focusing coil.
4) The alignment coil unit should be positioned on the tube so that its centre is at a distance of approx. $94 \mathrm{~mm}(311 / 16 \mathrm{in}$) from the face of the tube and that its axis coincides with the axis of the tube, the deflecting yoke and the focusing coil.
5) Signal-electrode voltage adjusted for a dark current of 20 nA .
6) Signal current is defined as the component of the output current after the dark current has been subtracted.
7) Measured with a video amplifier system having an appropriate bandwidth.
8) Square wave response. Measured with a lens aperture of f5.6, a peak signal cur. rent $I_{S p}=0.15 \mu \mathrm{~A}$ and a beam current sufficient to stabilize a signal current of $0.5 \mu \mathrm{~A}$.
9) Conditions:

The camera focused on a uniformly illuminated two-zone test pattern, the diameter of the centre zone (1) being equal to the raster height. Zone (2) being defined as the remainder of the scanned area. Signal electrode voltage adjusted for a dark current of 20 nA , illumination on the target 8 lx , (c.t. $=2854^{\circ} \mathrm{K}$).

Scanning amplitudes of the monitor adjusted to obtain a raster with an aspect ratio of 3:4.

Monitor set-up and contrast control adjusted for faint raster when lens of camera is capped, and for non-blooming bright raster when lens of camera is uncapped.

Under the above conditions the number and size of the spots visible in the monitor picture will not exceed the limits stated below. Both black and white spots must be counted unless the amplitude is less than 10% (XQ1240), or less than 25% (XQ1241) of the peak white signal.

XQ1240

Spot size in \% of raster height	Maximum number of spots zone 1	
>1	none	zone 2
1 to 0.6	none	none
0.6 to 0.2	1	2
$\leqslant 0.2$	$*$	$*$

XQ1241

Spot size in \% of raster height	Maximum number of spots zone $1 \quad$ zone 2
>1	none none
1 to 0.6	$1 \quad 3$
m 0.6 to 0.2	3 5
$\leqslant 0.2$	* *
	max. 8

* Do not count spots of this size unless concentration causes a smudgy appearance.
a) Minimum separation between any two spots greater than 0.2% of raster height is limited to a distance equivalent to 5% of raster height.
b) Tubes are rejected for smudge, lines, streaks, mottled, grainy or uneven background having contrast ratios in excess of 10% (XQ1240), respectively 25% (XQ1241).

CAMERA TUBE

Plumbicon*, sensitive high-definition pick-up tube with photoconductive target and low velocity stabilization.
The 55875 is intended for use in black and white; the L, R, G, and B versions for use in four and three tube colour studio cameras.

	QUICK REFERENCE DATA		
Focusing		magnetic	
Deflection	magnetic		
Diameter	approx. 30	mm	
Heater		$6.3 \mathrm{~V}, 90$	mA

OPTICAL

Dimensions of quality rectangle on photoconductive layer (aspect ratio $3: 4$)
Orientation of image on photoconductive layer

Sensitivity at colour temperature of illumination $=2850 \mathrm{~K}$
type: 55875, 55875L
55875R
55875G 55875B

Gamma of transfer characteristic
Spectral response; max. response at

HEATING

Indirect by A.C. or D. C.; parallel supply
Heater voltage
Heater current

[^26]
55875
 55875 L
 55875 R,G,B

MECHANICAL DATA

Distance between axis of anti-reflection glass disc and geometrical centre of signal electrode ring, measured in plane of faceplate: max. 0.2 mm .
total glass thickness $7.2 \pm 0.2 \quad \mathrm{n}=1.5$.

a.) The base passes a flat gauge with a centre hole $9.00 \pm 0.01 \emptyset$ and holes for passing the pins with the following diameters: 7 holes of $1.75 \pm 0.005 \emptyset$ and one hole of $3.00 \pm 0.005 \emptyset$.
The holes may deviate max. 0.01 from their true geometrical position. Thickness of gauge 7 mm .
b) The ends of the pins are tapered and/or rounded but not brought to a sharp point.

Mounting position: any
Net weight

ACCESSORIES

Socket
Focusing and deflection coil assembly for 55875
for $55875 \mathrm{~L}, \mathrm{R}, \mathrm{G}, \mathrm{B}$
type 56021
type AT1132
type AT1112 or type AT1113

CAPACITANCE

Signal electrode to all
$\mathrm{C}_{\mathrm{a}} \quad 3$ to $\quad 6 \mathrm{pF}^{5}$)
FOCUSING magnetic 6)
DEFLECTION magnetic ${ }^{6}$)

CHARACTERISTICS

Grid No. 1 voltage for cut-off at $\mathrm{Vg}_{2}=300 \mathrm{~V}$
Blanking voltage, peak to peak
on grid No. 1
on cathode
Grid No. 2 current at normally required beam currents
Dark current at $\mathrm{V}_{\mathrm{as}}=45 \mathrm{~V}$
V_{g}
-30 to $\left.-100 \quad V^{7}\right)^{8}$)
$\mathrm{V}_{\mathrm{g} p-\mathrm{p}}$
$\mathrm{V}_{\mathrm{k}_{\mathrm{p}-\mathrm{p}}}$
min. 25 V
$\mathrm{I}_{\mathrm{g}_{2}}$
I_{a}
LIMITING VALUES (Absolute max. rating system)

Signal electrode voltage
Grid No. 4 and No. 3 voltage
Grid No. 2 voltage
Grid No. 1 voltage, positive negative

Cathode current
Cathode heating time before drawing cathode current T_{h}
Cathode to heater voltage,

positive peak	$\mathrm{V}_{\mathrm{kfp}}$	\max.	125	V
negative peak	$-\mathrm{V}_{\mathrm{kfp}}$	max.	10	V
ure, storage and operation	$\mathrm{t}_{\text {amb }}$	max. min.	$\begin{array}{r} 50 \\ -30 \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
ture, storage and operation	t	max. \min.	$\begin{array}{r} 50 \\ -30 \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
tion		max.	500	1x ${ }^{9}$)

$\mathrm{V}_{\mathrm{a}} \quad \max . \quad 50 \mathrm{~V}^{8}$)
$\mathrm{V}_{\mathrm{g}}, \mathrm{V}_{\mathrm{g}_{3}} \max .750 \mathrm{~V}^{8}$)
V_{g}
V_{g}
$-\mathrm{V}_{\mathrm{g}}$
I_{k}
$\max .450 \mathrm{~V}^{8}$)
$\max . \quad 0 \mathrm{~V}$
$\max .125 \mathrm{~V}$
$\max . \quad 3 \mathrm{~mA}$
$\min . \quad 1 \mathrm{~min}$

Ambient temperature, storage and operation

Faceplate temperature, storage and operation
Faceplate illumination
$\max .500 \mathrm{~lx}{ }^{9}$)
$\max . \quad 0.5 \mathrm{~mA}$
$\max .0 .003 \mu \mathrm{~A}$

OPERATING CONDITIONS AND PERFORMANCE

Cathode voltage

V_{k}	0	V
$\mathrm{~V}_{\mathrm{g}_{2}}$	300	V
$\mathrm{~V}_{\mathrm{a}}$	45	V
	${ }^{10}$)	
$\mathrm{I}_{\text {beam }}$	See note	11

Focusing coil current at given values of grid No. 4 and grid No. 3 voltage

Line coil current and frame coil current
Faceplate illumination
Faceplate temperature

See note 12
See note 12
See notes 13 and 14
t $\quad 20$ to $45{ }^{\circ} \mathrm{C}$

Resolution
Modulation depth i.e. uncompensated horizontal amplitude response at 400 TV lines, at centre of picture.
The figures shown represent the typical horizontal amplitude response of the tube after correction for faults introduced by the optical system. 15)

Highlight signal current I_{S}
$\mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~V}_{\mathrm{g}_{3}}=550$ to 600 V

55875	55875 R	55875 G	55875 B
55875 L			
0.3	0.15	0.3	0.15 40 40
35	40	$50 \quad \%$	

(adjusted for optimum focus)
See also note 12

Limiting resolution
Signal to noise ratio ${ }^{16}$)
≥ 600 TV lines
approx. 200:1

Decay (or lag)
The decay is basically independent of the illumination level.
Measured with 100% signal current $=0.1 \mu \mathrm{~A}$ and a light source with a colour temperature of 2850 K .
Appropriate filter inserted in light-path for tubes 55875 R, G, B.

55875L, R, G	55875B
max. 5	$\max .6$ \%
max. 2	max. 3

$\left.10,11,12,13,14)^{15}\right)^{16}$) See pages 5 and 6.

NOTES

${ }^{1}$) Underscanning of the specified useful target area of $12.8 \mathrm{~mm} \times 17.1 \mathrm{~mm}$, or failure of scanning, should be avoided since this may cause damage to the photoconductive layer.
${ }^{2}$) For correct orientation of the image on the photoconductive layer the vertical scan should be essentially parallel to the plane passing through the tube axis and the mark on the tube base.
${ }^{3}$) Measuring conditions:
Illumination 4.54 lx at black body colour temperature of 2850 K ; the appropriate filter inserted in the light path. The signal current obtained in nA is a measure of the colour sensitivity expressed in $\mu \mathrm{A}$ per lumen of white light before the filter.
Filters used:

55875R	Schott	OG2	thickness	3 mm
55875G	Schott	VG9	thickness	1 mm
55875B	Schott	BG12	thickness	3 mm

See page 8 for transmission curves.
${ }^{4}$) a) Gamma is, to a certain extent, dependent on the wavelength of the illumination applied.
b) The use of gamma-stretching circuitry is recommended.
5) The capacitance $\mathrm{C}_{\mathrm{a}_{\mathrm{S}}}$ to all, which effectively is the output impedance, increases when the tube is inserted into the deflecting/focusing coil assembly.
6) For focusing/deflection coil assembly, see under "Accessories".
7) Without blanking voltage on grid No. 1 .
8) At $V_{k}=0 \mathrm{~V}$.
${ }^{9}$) For short intervals. During storage the tube face shall be covered with the plastic hood provided; when the camera is idle the lens shall be capped.
10) The signal electrode voltage shall be adjusted to 45 V . To enable the tube to handle excessive highlights in the scene to be televised the signal electrode voltage may be reduced to a minimum of 25 V , this will, however, result in some reduction in performance, especially in respect of sensitivity.
11) The beam current shall be adjusted for correct stabilization of the highlight signal currents stated in the table.
12)

Black/white coil assembly AT1132

$$
\begin{aligned}
& \mathrm{V}_{4}, \mathrm{~V}_{\mathrm{g}_{3}}=600 \mathrm{~V} \\
& \text { Colour coil assemblies AT1112, AT1113 } \\
& \mathrm{V}_{\mathrm{g}_{4}}, \mathrm{~V}_{\mathrm{g}_{3}}=600 \mathrm{~V}
\end{aligned}
$$

Focus current mA	Line current $\mathrm{mA}_{\mathrm{pp}}$	Frame current $\mathrm{mA}_{\mathrm{pp}}$
25	235	35
100	235	35
(approx. values)		

55875
 55875 L 55875 R,G,B

13) Typical faceplate illumination level for the 55875 and 55875 L to produce $0.3 \mu \mathrm{~A}$ signal current will be approx. 4 lx . The signal currents stated for the colour tubes 55875 R, G, B respectively will be obtained with an incident white light level (2850 K) on the filter of approx. 10 lx . These figures are based on the filters described in note 3, for filter BG12 however a thickness of 1 mm is chosen.
${ }^{14}$) In the case of a black/white camera the illumination on the photoconductive layer, B_{ph}, is related to scene illumination, B_{Sc}, by the formula:

$$
\mathrm{B}_{\mathrm{ph}}=\mathrm{B}_{\mathrm{sc}} \frac{\mathrm{R} \cdot \mathrm{~T}}{4 \mathrm{~F}^{2}(\mathrm{~m}+1)^{2}}
$$

in which R represents the average scene reflectivity or the object reflectivity, whichever is relevant, T the lens transmission factor, F the lens aperture, and m the linear magnification from scene to target.
A similar formula may be derived for the illumination level on the photoconductive layers of the R, G, and B tubes in which the effects of the various components of the complete optical system have been taken into account.
15) The horizontal amplitude response can be raised by the application of suitable correction circuits, which affects neither the vertical resolution, nor the limiting resolution.
16) The stated ratio represents the "visual equivalent signal-to-noise ratio", which is taken as the ratio of highlight video-signal current to RMS noise current, multiplied by a factor of 3 , assuming an RMS noise current of the video pre-amplifier of 2 nA , bandwidth 5 MHz .

GENERAL RECOMMENDATIONS

1. During transport, handling and storage the axis of the Plumbicon must be either vertical, with faceplate up, or horizontal; the faceplate should be covered with the hood provided.
2. To avoid damage to the tungsten basepins, the Plumbicon should be inserted into its socket with care. Shocks, undue force, and bending loads on the pins are to be avoided.
3. During long term storage the ambient temperature should not exceed $30^{\circ} \mathrm{C}$.
4. In isolated cases the properties of a Plumbicon may deteriorate slightly when it is kept idle for long periods such as may occur :
. between the factory's pre-shipment test and the actual delivery to the customer;
. between receipt of the tube and its installation;
. when the camera is not used for a long time.
Although the chances of such deterioration are remote it is advisable to operate the tube for some hours at intervals not more than 4 weeks apart.

The following procedure and conditions are recommended:
. Set grid no. 1 bias control to maximum negative bias (beam cut-off):
. Allow a heating-up time of the cathode of at least one minute before turning up the grid no. 1 bias control to produce a beam.
. Set scanning amplitudes to overscan condition.

- Apply an even illumination to the target to obtain a signal current of approx. $0.15 \mu \mathrm{~A}$ and adjust the beam for correct stabilization.

5. The signal electrode connection is made by a springcontact, which is part of the focusing coil assembly, and is kept pressed against the signal electrode ring.
6. Electrostatic shielding of the signal electrode is required to avoid interference effects in the picture. Effective shielding is provided by a grounded shield inside the focusing coil at the faceplate end, and one inside the deflecting yoke.
7. The light transfer characteristic of the Plumbicon tube being characterized by a gamma near unity, it may be desirable for broadcast applications to incorporate a gamma correcting circuitry in the video-amplifier system with an adjustable gamma of 0.5 to 1 .

It is suggested to design this gamma correcting circuitry such that an extra compression can be introduced by manual control in the video signal range of 75% to 100% of normal peak white level.

This provision will prevent the video-amplifier system from becoming overloaded when the Plumbicon tube is exposed to scenes containing small peaked highlights as caused by reflections of shiny objects.
8. The Plumbicon tube not generating own noise to any noticeable extent, the signal-to-noise ratio will be determined mainly by the entrance noise of the video-amplifier system.

The high sensitivity of the Plumbicon tube warrants pictures with excellent sig-nal-to-noise ratio under normal studio lighting conditions provided its output is fed into a well-designed input stage of the video-amplifier system. In such a system an aperture correction may be incorporated to ensure an attractive gain in resolving power without visually impairing the signal-to-noise ratio.

INSTRUCTIONS FOR USE

Instructions for use are packed with each tube.

CAMERA TUBE

Plumbicon*, sensitive pick-up tube with lead-oxide photoconductive target and low velocity stabilization.

The tubes of this series are mechanically and electrically identical to the tubes of the 55875 series, the only difference being the degree of freedom from blemishes of the photoconductive target.

The tubes are intended for industrial and educational black and white and colour cameras. The series comprises the following versions:

$$
\begin{array}{ll}
55875-\text { IG } & \text { for black and white cameras } \\
55875 R-\text { IG } & \\
55875 \text {-IG } & \text { for use in the chrominance channels of colour cameras } \\
55875 \text {-IG } &
\end{array}
$$

For all further information see data of the 55875 series.

[^27]
CAMERA TUBE

Plumbicon ${ }^{*}$, pick-up tube with photoconductive target and low velocity stabilisation exclusively intended for use with X -ray image intensifier in medical equipment.

QUICK REFERENCE DATA	
Focusing	magnetic
Deflection	magnetic
Diameter	30 mm
Heater	$6.3 \mathrm{~V}, 90 \mathrm{~mA}$
Without anti-halation glass disc	

OPTICAL

Image dimensions on photoconductive layer
Sensitivity, measured with a fluorescent light source having P20 distribution

Gamma of transfer characteristic
Spectral response, max. response
circle of $\left.\left.18.0 \mathrm{~mm}^{(a m e t e r}{ }^{1}\right)^{2}\right)^{3}$)
\min. $200 \mu \mathrm{~A} /$ lumen
typ. $275 \mu \mathrm{~A} /$ lumen
0.95 ± 0.05
4)
= at approx. 500 nm

HEATING

Indirect by A. C. or D. C.; parallel supply

Heater voltage	V_{f}	6.3	$\mathrm{~V} \pm 10 \%$
Heater current	I_{f}	90	mA

1) All underscanning of the specified useful target-area of 18.0 mm diameter or failure of scanning, should be carefully avoided, since this may cause permanent damage to the photoconductive layer.
2) The area beyond the 18.0 mm circular optical image preferably to be covered by a mask.
${ }^{3}$) Direction of vertical scan should be essentially parallel to the plane passing through the tube axis and the mark on the tube base.
3) The near unity gamma of the $55876 / 01$ ensures good contrast when televising low contrast X-ray image-intensifier pictures as encountered in radiology. Further contrast improvement may be obtained when an adjustable gamma expansion circuitry is incorporated in the video amplifier system.
${ }^{*}$) Registered T.M. for TV camera tube.

CAPACITANCES

Signal electrode to all

MECHANICAL DATA

$$
\mathrm{C}_{\mathrm{a}_{\mathrm{s}}} \quad 3 \text { to } 6 \mathrm{pF}^{1} \text {) }
$$

Dimensions in mm

FOCUSING

DEFLECTION

MOUNTING POSITION
magnetic
magnetic
any

ACCESSORIES

Socket	type 56021
Focusing and deflection coil assembly	type AT1122, AT1132, AT1132/01
NET WEIGHT	approx. 100 g

[^28]
CHARACTERISTICS

Grid No. 1 voltage for cut-off

$$
\text { at } V_{g_{2}}=300 \mathrm{~V}
$$

Blanking voltage, peak to peak on grid No. 1 min . required on cathode min. required

Grid No. 2 current at normally required beam current

Dark current
$\left.\begin{array}{llrl}\mathrm{V}_{1} & -30 & \text { to } & -100\end{array} \quad \mathrm{~V}^{1}\right)$

LIMITING VALUES (Absolute max. rating system)

Signal electrode voltage
Grid No. 4 and grid No. 3 voltage
Grid No. 2 voltage
Grid No. 1 voltage
positive
negative
Cathode current
Cathode to heater voltage positive peak
negative peak
Ambient temperature
(storage and operation)
Face-plate illumination
Face-plate temperature (storage and operation)

1) With no blanking voltage on gl
${ }^{2}$) Target voltage adjusted to the value indicated by the tube manufacturer on the test sheet as delivered with each individual tube.
${ }^{3}$) $A t V_{k}=0 \mathrm{~V}$.
${ }^{4}$) For short intervals. During storage the tube face shall be covered with the plastic hood provided.

OPERATING CONDITIONS AND PERFORMANCE

Cathode voltage
Grid No. 2 voltage
Grid No. 4 and grid No. 3 voltage
Signal electrode voltage
Beam current
Focusing coil current
Line coil and frame coil current
Highlight signal electrode current
Average signal output
Face-plate temperature
Face-plate illumination

V_{k}	0	V
$\mathrm{~V}_{2}$	300	V
$\mathrm{~V}_{\mathrm{g}_{4}}, \mathrm{~V}_{\mathrm{g}_{3}}$	550 to 600	$\mathrm{~V}^{1}$)
V_{a}	15 to	45
C_{s}	V^{2})	

See note?

See note 4
I_{s}
0.1 to $0.5 \mu \mathrm{~A}{ }^{5}$)
approx. $0.06 \mu \mathrm{~A}{ }^{5}$)
25 to $40{ }^{\circ} \mathrm{C}$
approx. 2 lux ${ }^{6}$)
${ }^{1}$) Grid No. 4 and No. 3 voltage adjusted for optimum picture focus.
${ }^{2}$) The target voltage should be adjusted to the value indicated by the tube manufacturer on the test sheet as delivered with each individual tube.
${ }^{3}$) Operation of the tube with beam currents Ib not sufficient to stabilize the brightest highlight picture elements must be carefully avoided in order to prevent loss of highlight-detail and/or "sticking" effects.
Operation at excessively high beam currents will result in loss of resolution.
4) For AT1122, AT1132, AT1132/01:

Focus coil current : 25 mA
Line deflection current : 250 mApp
Frame deflection current: 50 mApp
approx. values at $\mathrm{V}_{3} g_{4}=550-600 \mathrm{~V}$ for $18 \mathrm{~mm} \times 18 \mathrm{~mm}$ scanning
${ }^{5}$) Substraction of dark current is unnecessary because of the extremely small value.
${ }^{6}$) Illumination on the photoconductive layer, B_{ph}, is related to scene-illumination, B_{Sc}, by the formula:

$$
\mathrm{B}_{\mathrm{ph}}=\mathrm{B}_{\mathrm{Sc}} \frac{\mathrm{R} \cdot \mathrm{~T} \cdot}{4 \cdot \mathrm{~F}^{2} \cdot(\mathrm{~m}+1)^{2}}
$$

in which R represents the scene-reflexivity (average or of the object under consideration, whichever is relevant), T the lens transmissionfactor, F the lens aperture and m the linear magnification from scene to target.

OPERATING CONDITIONS AND PERFORMANCE(continued)

Modulation depth, i.e. uncompensated hor-
Modulation depth, i.e. uncompensated hor-
izontal amplitude response (see note 1) at
5 MHz in picture centre (625 lines,
50 fields system) $>30 \%{ }^{2}$)
Signal to noise ratio
at a signal current of $0.15 \mu \mathrm{~A}$
approx. 200: 1
3)

Persistence (or lag)
Low persistence renders tube very suitable for medical X-ray applications in combination with X -ray image intensifier
Persistence is basically independent of illumination level

Decay

Measured with 100% video signal current of $0.1 \mu \mathrm{~A}$ to zero signal after 5 s peak video signal. Beam current adjusted for correct stabilisation. Fluorescent light source having P20 distribution.
Residual signal after dark pulse of 60 ms Residual signal after dark pulse of 200 ms

55876/01

Resolution

approx. 200:1 ${ }^{3}$)

GENERAL RECOMMENDATIONS AND INSTRUCTIONS FOR USE

MOUNTING, WORKING POSITION

1. Any

2. During transport, handling or storage the longitudinal axis must either be in a horizontal position or be kept vertically with the face-plate of the tube up.
3 . During long term storage the ambient temperature should not exceed $30^{\circ} \mathrm{C}$.
${ }^{1}$) With a signal current of $0.10 \mu \mathrm{~A}$ and a beam current of $0.20 \mu \mathrm{~A}$.
2) Horizontal amplitude response can be raised by the application of suitable phase-and-aperture correction circuits. Such compensation, however, does not affect vertical resolution, nor does it influence the limiting resolution.
${ }^{3}$) The specified ratio represents the "visual equivalent signal-to-noise ratio", which is taken as the ratio of highlight video-signal current to R.M.S. noise-current, multiplied by a factor of 3. (Assuming an R.M.S. noise-current of the video preamplifier of $2 \cdot 10^{-9} \mathrm{~A}$, bandwidth 5 MHz .)

GENERAL

1. Signal electrode connection is made by a suitable spring-contact which is executed as part of the focusing coil.
2. Electrostatic shielding of the signal-electrode is required in order to avoid interference effects in the picture. Effective shielding is provided by grounding shields on the inside of the faceplate end of the focusing coil and on the inside of the deflecting yoke.
3. The Plumbicon as described in these data has been provided with tungsten base pins. It is recommended to avoid mechanical force and shocks to these pins and to insertt the tube into its socket with care.
4. In isolated cases the properties of a Plumbicon may deteriorate slightly when it is kept idle for long periods such as may occur:
. between the factory's pre-shipment test and the actual delivery to the customer;

- between receipt of the tube and its installation;
. when the camera is not in use for a long time.
Although the chances of such deterioration are remote it is advisable to operate the tube for some hours at intervals not more than 4 weeks apart.

The following procedure and conditions are recommended:
. Set grid no. 1 bias control to maximum negative bias (beam cut-off).
. Allow a heating-up time of the cathode of at least one minute before turning up the grid no. 1 bias control to produce a beam.
. Set scanning amplitudes to overscan condition.
. Apply an even illumination to the target to obtain a signal current of approx. $0.15 \mu \mathrm{~A}$ and adjust the beam for correct stabilization.
5. The Plumbicon not generating own noise to any noticeable extent, the signal-tonoise ratio will mainly be determined by the entrance noise of the video amplifier system.
The high sensitivity of the Plumbicon warrants pictures with excellent signal-to-noise ratio, provided its output is fed into a well-designed input stage of the video-amplifier system. In such a system an aperture correction may be incorporated to ensure an attractive gain in resolving power without impairing the visual signal-to-noise ratio.

INSTRUCTIONS FOR USE

Instructions for use are packed with each tube.

IMAGE INTENSIFIER TUBES

IMAGE INTENSIFIER TUBE

Self-focusing electrostatic diode image intensifier tube with fibre-optic windows for general purpose applications.

QUICK REFERENCE DATA				
Luminance gain	>50			
Photocathode	S20 with enhanced red response			
Screen phosphor	P20			
Useful cathode and screen diameters	25	mm		
Anode voltage	15	kV		
Overall dimensions (approx.)	$60 \times 50 \mathrm{dia}$.	mm		

PHOTOCATHODE

Surface
Wavelength at maximum response
Useful diameter
External surface of cathode window

S20 with enhanced red response

$$
\begin{array}{r}
500 \mathrm{~nm} \\
>\quad 25 \mathrm{~mm}
\end{array}
$$

Flat to within $2 \mu \mathrm{~m}$ over entire diameter

SCREEN

Surface
Metal-backed P20
Yellow green
Medium short
$>25 \mathrm{~mm}$
Flat to within $2 \mu \mathrm{~m}$ over entire diameter

FOCUSING

Self-focusing electrostatic with image inversion.

Mounting position: any
Net weight : approx. 145 g

Contacts to cathode and screen should be made to the respective bearing surfaces. Contact rings should be kept well clear of the fibre-optic windows. Maximum contact force must not exceed 1 kg .

CHARACTERISTICS (Measured at $\mathrm{V}_{\mathrm{a}}=15 \mathrm{kV}, \mathrm{t}_{\mathrm{amb}}=-50$ to $+30^{\circ} \mathrm{C}$)
Luminance gain (see note 1) 50

Photocathode sensitivity
(measured using a tungsten lamp of
colour temperature 2854 OK)
Radiant sensitivity at $\lambda=800 \mathrm{~nm}$
$>\quad 100 \mu \mathrm{~A} / \mathrm{lm}$
$>\quad 2.0 \mathrm{~mA} / \mathrm{W}$
at $\lambda=850 \mathrm{~nm}$
$>\quad 0.5 \mathrm{~mA} / \mathrm{W}$
Centre magnification, M_{C} (see note 2)

$$
0.935 \pm 0.010
$$

Distortion (see note 3)
Centre resolution (see note 4)
Edge resolution (see note 5)
Background equivalent illumination (see note 6)
$7.00 \pm 1.65 \%$
>60 line pairs $/ \mathrm{mm}$
$>\quad 50$ line pairs $/ \mathrm{mm}$
1.0μ lux

Axial eccentricity

A point at the centre of the photocathode will form an image within a concentric circle of 1.5 mm diameter on the screen.

OPERATING CONDITIONS

V_{a} (see note 7) 15 kV
LIMITING VALUES (Absolute max. rating system)
Anode voltage max. 16 kV
Anode voltage (useful continuous operation)
\min. 10 kV
Photocathode illumination, continuous
(see note 8)
\max. 2.0 lux
Ambient temperature
$t_{\text {amb }} \max .+50{ }^{\circ} \mathrm{C}$

NOTES

1. Luminance gain is defined as $\frac{\pi \cdot \mathrm{L}_{\mathrm{o}}}{\mathrm{E}_{\mathrm{i}}}$
where $L_{O}=$ luminance $\left(\mathrm{cd} / \mathrm{m}^{2}\right)$ in a direction normal to the screen, measured with an eye-corrected photometer having an acceptance angle of less than 2 degrees.
and $\quad E_{i}=$ illumination (lux) incident on a 19 mm diameter concentric area of the cathode, produced by a tungsten lamp at a colour temperature of $2850{ }^{\circ} \mathrm{K}$.
2. This is the magnification of a 2 mm diameter concentric circle on the photocathode, as measured on the screen.
3. Percentage distortion $=\left(\frac{M_{d}}{M_{C}} \times 100\right)$, where M_{d} is the magnification at a distance of 10 mm from the centre of the photocathode and M_{C} is the magnification at a distance of 1 mm from the centre of the photocathode.
4. Measured at the centre of the photocathode.
5. Measured at the photocathode at a distance of 7 mm from the centre.
6. This is the value of input illumination required to give an increase in screen luminance equivalent to the background luminance.
7. Permanent damage may result from a temporary reversal of polarity.
8. This figure assumes uniform illumination of the photocathode. Permanent damage may result if the tube is exposed to radiant power sogreat as to cause excessive heating of the photocathode.

PHOTOCATHODE SPECTRAL RESPONSE CURVE

PHOTO TUBES

LIST OF SYMBOLS

Supply voltage V_{b}
Cathode current I_{k}
Anode series resistance R_{a}
Sensitivity N
Capacitance, anode to cathode Cak
Ambient temperature t_{amb}Envelope temperaturetenv

GENERAL OPERATIONAL RECOMMENDATIONS PHOTOTUBES

1. GENERAL

1.1 Photo tubes are photo-electric devices of the emissive type, as distinct from the barrier-layer and photo-conductive cells. They may be divided into two groups:

1. High-vacuum photo tubes,
2. Gas-filled photo tubes

Each of these groups can be subdivided into red sensitive and blue sensitive photo tubes; the spectral response depending upon the photocathode material. For the blue sensitive photo tubes the " A " type of cathode is used (caesiumantimony).
For the red sensitive photo tubes the " C " type of cathode is used (caesiumoxidised silver).
Spectral response curves for each type of cathode are given at the end of these recommendations.

2. OPERATING CHARACTERISTICS

For a vacuum photo tube, the anode current for a fixed quantity of light, is rea sonably constant at anode voltages above a certain low value known as the "saturation voltage".
The gas-filled photo tube contains a quantity of inert gas, the ionising potential of which is generally somewhat higher than the saturation voltage of an equivalent vacuum photo tube so that the anode current is substantially constant between the saturation voltage and the voltage at which ionisation commences. Above this voltage range, ionisation increases, resulting in a progressive increase in anode current.
Since a gas -filled photo tube operates at a higher voltage than the ionising potential it will have a greater sensitivity than a similar vacuum photo tube.
Within the operating ranges of both groups of photo tubes the anode current is directly proportional to the quantity of light incident on the cathode surface.
2.1 Luminous sensitivity. The response of a photo tube to light falling on its cathode is termed its luminous sensitivity; this is expressed in micro-amperes per lumen.
The sensitivity of all types is dependent upon the colour temperature of the light source and in some cases upon the portion of the cathode that is illuminated.

The sensitivity of gas-filled photo tubes moreover is dependent upon the anode voltage; the sensitivity of vacuum photo tubes in the "saturation region" in which region the tube mainly operates, is practically independent of the anode voltage.
Unless otherwise stated, the values given in the data sheets have been obtained by illuminating the total useful cathode area with an incandescent lamp having a colour temperature of $2700^{\circ} \mathrm{K}$.
The values given for sensitivity on the data sheets are the initial values for average photo tubes. The ratio between the maximum and minimum initial sensitivity of photo tubes of a given type will not exceed 3 to 1 .
2.2 Dark current. This is the current which flows between photocathode and anode when the photo tube is in total darkness. The tube is in total darkness when no radiation within the spectral sensitivity curve of the photocathode is present. This current is caused mainly by electrical leakage and thermionic emission from the photocathode and will therefore increase with temperature and voltage.
2.3 Frequency response. The sensitivity of a vacuum photo tube is constant for frequencies of light modulation up to those generally met in practice. Only at very high frequencies, at which transit time limitations occur, the sensitivity becomes dependent upon the frequency.
The sensitivity of gas-filled photo tubes, however, decreases with the frequency. At a frequency of 15000 Hz this decrease is about 3 dB , as is shown in the accompanying curve.

3. THERMAL DATA

Ambient temperature. The temperature of the photocathode may not be too high otherwise evaporation of the emissive cathode layer may result, with consequent reduction in sensitivity and life. As it is difficult to measure this temperature a limiting value for the ambient temperature is given on the published data sheets.
It must be considered, however, that even in case the ambient temperature in the immediate vicinity of the photo tube is not beyond the limit, an excessive temperature rise of the photocathode can be caused e.g. by infrared heat radiation. If the possibility of this radiation exists, a suitable filter should be inserted in the optical path to minimize this effect.

4. OPERATIONAL NOTES

Stability during life. Where a gas-filled photo tube is continuously operated at its maximum rated voltage its sensitivity may fall by as much as 50%, during 500 hours.
Vacuum photo tubes on the other hand are inherently more stable.

The stability of both types of photo tubes will be improved if the current density of the photocathode is reduced (e.g. by reducing the incident light or enlarging the illuminated area of the photocathode).
Particularly in the case of gas-filled photo tubes reduction of the anode voltage will improve the stability.

Also in the inoperative periods photo tubes must not be exposed to strong radiation such as direct sunlight .

A loss of sensitivity of both vacuum and gas-filled photo tubes during operation will be wholly or partially restored during the inoperative periods.

Prevention of glow discharge. Gas-filled photo tubes must not be operated above the published maximum voltage since a glow discharge, indicated by a faint blue glow in the bulb, may occur which adversely affects the good operation of the photo tube and even can result in rapid destruction of the photocathode. If accidental over-running can be expected the anode resistance should have a value of at least $0.1 \mathrm{M} \Omega$.
Where it is necessary to use the maximum operating voltage a stabilized supply is recommended.

5. MOUNTING

If no restrictions are made on the individual published data sheets photo tubes may be mounted in any position.

6. STORAGE

It is necessary that photo tubes be always stored in the dark.

7. LIMITING VALUES

The limiting values of photo tubes are given in the absolute max. rating system.

8. OUTLINE DIMENSIONS

The outline dimensions are given in mm .

Reletive spectral response curve type A

Frequency response curve (see also 2.3)

VACUUM PHOTOTUBE

Vacuum phototube, particularly sensitive to daylight and to light radiation with a blue predominance.

QUICK REFERENCE DATA				
Anode supply voltage	V_{b}	max.	100	V
Luminous sensitivity	N		45	$\mu \mathrm{A} /$ lumen
Spectral response curve		type		
Outline dimensions		max.		mm

MECHANICAL DATA

Dimensions in mm
Base: Miniature

The arrows show the direction of the incident radiation
The cathode connection should be made to pins 1, 2, 6 and 7 connected together and the anode connection to pins 3, 4 and 5 together

Photo cathode

Surface
Projected sensitive area
caesium antimony
$4 \mathrm{~cm}^{2}$

ELECTRICAL DATA

Operating characteristics
Anode supply voltage
Anode series resistor

V_{b}	100	V
R_{a}	1	$\mathrm{M} \Omega$

Luminous sensitivity measured with the whole cathode area illuminated by a lamp of colour temperature $2700{ }^{\circ} \mathrm{K}$ $\mathrm{N} \quad 45 \mu \mathrm{~A} / \mathrm{lumen}$

Dark current
$I_{\text {dark }}$
$\max .0 .05 \mu \mathrm{~A}$

Capacitance
Anode to cathode
C_{ak}
0.7 pF

LIMITING VALUES (Absolute max. rating system)

Anode supply voltage	V_{b}	\max.	100	V
Cathode current	I_{k}	\max.	5	$\mu \mathrm{~A}$
Ambient temperature	$\mathrm{t}_{\mathrm{amb}}$	\max.	70	${ }^{\circ} \mathrm{C}$

GAS FILLED PHOTOTUBE

Gas filled phototube particularly sensitive to incandescent light sources, and to near infra-red radiation.

QUICK					REFERENCE DATA
Anode supply voltage	V_{b}	max.	90	V	
Luminous sensitivity	N		125	$\mu \mathrm{~A} / \mathrm{l}$ lumen	
Spectral response curve		type	C		
Outline dimensions		\max.	19 dia. $\times 54$	mm	

MECHANICAL DATA

Dimensions in mm
Base: Miniature

The arrows show the direction of the incident radiation
The cathode connection may be made to pins $1,2,6$ and 7 connected together and the anode connection to pins 3, 4 and 5 connected together.

Photocathode

Surface
Projected sensitive area

Caesium on oxidized silver

$$
3.0 \mathrm{~cm}^{2}
$$

ELECTRICAL DATA

Operating characteristics
Anode supply voltage
Anode series resistor

V_{b}	90	V
R_{a}	1	$\mathrm{M} \Omega$

Luminous sensitivity measured with the whole cathode area illuminated by a lamp of colour temperature $2700^{\circ} \mathrm{K} \quad \mathrm{N} \quad 125 \mu \mathrm{~A} / \mathrm{lumen}$
Dark current
$I_{\text {dark }} \max .0 .1 \mu \mathrm{~A}$
Capacitance
Anode to cathode
$\mathrm{C}_{\mathrm{ak}} \quad 1.1 \mathrm{pF}$

LIMITING VALUES (Absolute max. rating system)

Anode supply voltage	V_{b}	\max	90	V
Cathode current	I_{k}	\max.	2.0	$\mu \mathrm{~A}$
Ambient temperature	$\mathrm{t}_{\mathrm{amb}}$	\max.	100	${ }^{\circ} \mathrm{C}$

VACUUM PHOTOTUBE

Vacuum phototube, particularly sensitive to incandescent light sources, and to near infra-red radiation.

QUICK REFERENCE DATA				
Anode supply voltage	V_{b}	max.	250	V
Luminous sensitivity	N		20	$\mu \mathrm{~A} / \mathrm{lumen}$
Spectral response curve		type $\quad \mathrm{C}$		
Outline dimensions	max. 19 dia. $\times 54$	mm		

MECHANICAL DATA

Dimensions in mm
Base: Miniature

The arrows show the direction of the incident radiation.
The cathode connection may be made to pins 1, 2, 6 and 7 connected together and the anode connection to pins 3,4 and 5 connected together.

Photo cathode
Surface
Projected sensitive area
Ceasium on oxidised silver
$3.0 \mathrm{~cm}^{2}$

ELECTRICAL DATA

Operating characteristics

Anode supply voltage	Vb	50	V
Anode series resistor	R_{a}	1	$\mathrm{M} \Omega$

Luminous sensitivity measured with the whole cathode area illuminated by a lamp of colour temperature $2700{ }^{\circ} \mathrm{K}$

Dark current (at $\mathrm{V}_{\mathrm{a}}=100 \mathrm{~V}$)
$\mathrm{N} \quad 20 \quad \mu \mathrm{~A} /$ lumen
$I_{\text {dark }} \max .0 .05 \mu \mathrm{~A}$

Capacitance

Anode to cathode

LIMITING VALUES (Absolute max. rating system)
Anode supply voltage
$\mathrm{V}_{\mathrm{b}} \max .250 \mathrm{~V}$
Cathode current
Ambient temperature

I_{k}	\max.	10	$\mu \mathrm{~A}$
$\mathrm{t}_{\mathrm{amb}}$	\max.	100	${ }^{\circ} \mathrm{C}$

GAS FILLED PHOTOTUBE

Gas-filled phototube particularly sensitive to daylight and to radiation having a blue predominance.

QUICK REFERENCE DATA				
Anode supply voltage	V_{b}	\max	90	V
Luminous sensitivity	N		130	$\mu \mathrm{~A} / \mathrm{lumen}$
Spectral response curve		type A		
Outline dimensions		$\max .19$ dia. $\times 54$	mm	

MECHANICAL DATA
Base: Miniature

Dimensions in mm

The arrows show the direction of the incident radiation
The cathode connection may be made to pins 1, 2, 6 and 7 connected together and the anode connection to pins 3, 4 and 5 connected together.

Photocathode

Surface	Caesium antimony
Projected sensitive area	$2.1 \mathrm{~cm}^{2}$

ELECTRICAL DATA

Operating characteristics

Anode supply voltage	V_{b}		85	V	
Anode series resistor	R_{a}		1		Ω
Luminous sensitivity measured with the whole cathode area illuminated by a lamp of colour temperature $2700{ }^{\circ} \mathrm{K}$	N		130		A/lumen
Dark current	$\mathrm{I}_{\text {dark }}$	max.	0.1		
Capacitance					
Anode to cathode	$\mathrm{C}_{\text {ak }}$		0.9		

LIMITING VALUES (Absolute max. rating system)

| Anode supply voltage | V_{b} | $\max .90 \mathrm{~V}$ |
| :--- | :--- | :--- | :--- |
| Cathode current | I_{k} | $\max \cdot 0.0125 \mu \mathrm{~A} / \mathrm{mm}^{2}$ |
| Ambient temperature | $\mathrm{t}_{\mathrm{amb}}$ | $\max . \quad 70{ }^{\circ} \mathrm{C}$ |

VACUUM PHOTOTUBE

Vacuum phototube particularly sensitive to daylight and to light radiation with a blue predominance.

QUICK REFERENCE DATA				
Anode supply voltage	V_{b}	max.	100	V
Luminous sensitivity	N		45	$\mu \mathrm{~A} /$ lumen
Spectral response curve		type A		
Outline dimensions		$\max .19$ dia. $\times 54$	mm	

MECHANICAL DATA

Base: Miniature

Dimensions in mm

The arrows show the direction of the incident radiation.
The cathode connection may be made to pins $1,2,6$ and 7 connected together and the anode connection to pins 3,4 and 5 connected together.

Photocathode

Surface

caesium antimony
Projected sensitive area
$2.1 \mathrm{~cm}^{2}$

ELECTRICAL DATA

Operating characteristics

Anode supply voltage	V_{b}	85	V
Anode series resistor	R_{a}	1	$\mathrm{M} \Omega$

Luminous sensitivity measured with the whole cathode area illuminated by a lamp of colour temperature $2700^{\circ} \mathrm{K}$

Dark current
$45 \mu \mathrm{~A} /$ lumen
$I_{\text {dark }} \max .0 .05 \mu \mathrm{~A}$
Capacitance
Anode to cathode
C_{ak}
0.9 pF

LIMITING VALUES (Absolute max. rating system)

| Anode supply voltage | V_{b} | $\max .100$ | V |
| :--- | :--- | :--- | :--- | :--- |
| Cathode current | I_{k} | $\max .0 .025$ | $\mu \mathrm{~A} / \mathrm{mm}^{2}$ |
| Ambient temperature | $\mathrm{t}_{\mathrm{amb}}$ | $\max . \quad 70$ | ${ }^{\circ} \mathrm{C}$ |

PHOTO TUBE

Vacuum phototube with high stability and linearity intended for use in high precision photometry (maximum intensity 1 lux) and for measurements of quickly changing light phenomena (maximum light intensity approx. 1000 lux).

QUICK REFERENCE DATA			
Anode voltage	V_{a}	6 to 90	V.C.
Average current	I	$\max .50 \times 10^{-9}$	A
Peak current	I_{p}	$\max .35 \times 10^{-6}$	A
Sensitivity	N	60×10^{-6}	A/lumen
Rise time		14	ns
Spectral response		type A	
Outline dimensions		max. 52×82	mm

MECHANICAL DATA

Dimensions in mm

Mounting position: any

Photocathode

Cathode material

Caesium-antimony
The cathode material has been deposed on the inner surface of the window. This window is optically plane and polished.
It therefore allows the luminous source to be at close and narrowly reproducable distance from the cathode.

Useful cathode area
Spectral response dia. 30 mm

The spectral response curve shown is a nominal curve and considerable variation between individual tubes may be expected.
Sensitivity measured with a tungsten ribbon
lamp having a c.t. of $2850^{\circ} \mathrm{C}$
$\begin{array}{lll}\text { typical } 60 \times 10^{-6} & \mathrm{~A} / \text { lumen } \\ \text { min. } & 35 \times 10^{-6} & \mathrm{~A} / \text { lumen }\end{array}$
Each tube is marked with its sensitivity
An angle of 15° between the axis of the tube and the direction of the incident light decreases the sensitivity not more than 5%.

CAPACITANCE

Anode to cathode

$$
\mathrm{C}_{\mathrm{ak}} \quad 13 \mathrm{pF}
$$

TYPICAL CHARACTERISTICS

Saturation voltage, luminous flux 0.05 lumen luminous flux 1 lumen

Anode voltage
Dark current
Linearity ${ }^{1}$)
Insulation resistance
Rise time

	<6	$V_{\text {D.C. }}$
	<70	$V_{\text {D.C. }}$
V_{a}	6 to 90	$\mathrm{~V}_{\mathrm{D} . \mathrm{C}}$
$\mathrm{I}_{\mathrm{a}_{0}}$	\max.	10^{-12}
	A	
	0.1	$\%$
$\mathrm{r}_{\text {ins }}$	\min.	10^{15}
$\mathrm{~T}_{\mathrm{r}}$	Ω	
	14	ns

[^29]LIMITING VALUES (Absolute max. rating system)

Anode voltage	V_{a}	\max.	100	V ${ }_{\text {D.C. }}$
```Cathode current per mm2}\mathrm{ of cathode area, peak average ( }\mp@subsup{\textrm{T}}{\mp@subsup{\textrm{av}}{\textrm{V}}{}}{=1 s```	$\begin{aligned} & \mathrm{I}_{\mathrm{k}_{\mathrm{p}}} \\ & \mathrm{I}_{\mathrm{k}} \end{aligned}$	$\max$.   max.	$\begin{array}{r} 50 \times 10^{-9} \\ 70 \times 10^{-12} \end{array}$	$\mathrm{A} / \mathrm{mm}^{2}$   $\mathrm{A} / \mathrm{mm}^{2}$
$\begin{array}{ll} \text { Cathode current, peak } \left.{ }^{1}\right) \\ & \text { average }\left(\mathrm{T}_{\mathrm{a}_{\mathrm{V}}}=1 \mathrm{~s}\right) \end{array}$	$\begin{aligned} & \mathrm{I}_{\mathrm{k}_{\mathrm{p}}} \\ & \mathrm{I}_{\mathrm{k}} \end{aligned}$	$\max$.   $\max$.	$\begin{aligned} & 35 \times 10^{-6} \\ & 50 \times 10^{-9} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
Envelope temperature	${ }^{\text {t bulb }}$	min.	-90	${ }^{\mathrm{O}} \mathrm{C}$
	${ }^{\text {t bulb }}$	$\max$.	+60	${ }^{\circ} \mathrm{C}$

## LIFE EXPECTANCY

With an average cathode current of $50 \times 10^{-9} \mathrm{~A}$, the sensitivity will not decrease more than $10 \%$ of its initial value between zero and 500 operating hours. At lower cathode currents a higher stability may be expected.

## REMARKS

- The cathode should not be exposed to direct sunlight.
- In cases where low frequency noise influences the measuring results, this source of noise may be reduced by cooling the tube to $-90^{\circ} \mathrm{C}$.


## APPLICATION

The currents allowed through 150AV are so low that amplification will always be necessary. To maintain the precision of the signal coming from the phototube is often the main problem.

This problem may be divided into four parts:

1. Distortion due to capacitive shunting:

The signal on the input of the amplifier is

$$
v=\frac{i}{\sqrt{\frac{1}{R} 2+\omega^{2} C^{2}}}
$$

in which $\mathrm{v}=$ signal in V
$\mathrm{i}=$ current through phototube in A
$R=$ part of series-resistance (in $\Omega$ ) from which the signal is taken
$\omega=2 \pi X$ frequency of the signal in Hz
$\mathrm{C}=$ total capacitance of cathode of phototube + input-capacitance of amplifier + stray capacitance of wiring in F . The value of C will not easily be kept below 20 pF .

1) With the cathode uniformly illuminated.

If a certain distortion only is accepted the maximum frequency of the signal to be transferred will limit the value of the resistance from which the signal will be taken and by this limit the value of the signal on the input of the amplifier.
2. Noise:

The level of the signal on the input of the amplifier shall be above the noise level.
The 3 main sources of noise are:
a. Shot noise in the phototube which follows the formula:

$$
\begin{aligned}
& \mathrm{I}_{\text {noise }}=\sqrt{2 \text { ei } \times \mathrm{B}} \text { in } A_{\text {R.M.S. }} \\
& \mathrm{V}_{\text {noise }}=\text { RxI }_{\text {noise }}
\end{aligned}
$$

in which $\mathrm{e}=1.6 \times 10^{-19}$ in As
$\mathrm{i}=$ the current through the phototube in A
$B=$ the bandwidth in Hz
$\mathrm{R}=$ value of resistor from which signal is taken in $\Omega$
b. Resistance noise of that part of the series-resistor from which the input signal for the amplifier is taken.
This part of the noise follows the formula:

$$
\mathrm{V}_{\text {noise }}=\sqrt{4 \mathrm{kTRB}}
$$

in which $\mathrm{k}=1.35 \times 10^{-23}$
$\mathrm{T}=$ temperature in ${ }^{\circ} \mathrm{K}$
$\mathrm{R}=$ value of resistor in $\Omega$
$B=$ bandwidth in Hz
c. Input-noise of the amplifier

In such cases where an electron tube is used in the input of the amplifier, the noise-voltage follows the formula

$$
V_{\text {noise }}=\sqrt{\sum v^{2} e q \Delta B}
$$

The value of $V_{e q}$ as a function of frequency is different for each type of tube, but for frequencies above $1000 \mathrm{~Hz} \mathrm{~V}_{\text {eq }}$ does not change much with the frequency allowing the formula to be reduced to

$$
V_{\text {noise }}=V_{e q} \sqrt{B}
$$

In that case $V_{\text {eq }}$ can be approximated within a factor 2 to 3 by

$$
\mathrm{V}_{\mathrm{eq}}=\frac{3 \times 10^{-9} \sqrt{\mathrm{I}_{\mathrm{a}}}}{\mathrm{~S}}
$$

in which $I_{a}$ is the anode current of the tube in $A$ and $S$ is the transconductance in $\mathrm{A} / \mathrm{V}$.

## 150AV

3. Input current of the amplifier

The input-current of the amplifier should be low compared with the signal current through the phototube.
4. Linearity of the amplifier

The amplifier should have a feedback so that the stability and the distortion of the signal is not impaired.

If the circumstances are such that the signal to noise ratio cannot be kept within acceptable limits - usually there where low incident illumination levels combine with high frequencies - use of this type of phototube should be abandoned in preference to photomultipliers where the distortion due to capacitive shunting and noise sources other than shot noise are of smaller relative importance.

## Examples:

An example for a simple circuit which is useful for many purposes of static light measurements is shown in fig. 1.


In this circuit the $\mu \mathrm{A}$ meter with $50 \mu \mathrm{~A} \mathrm{f.s.d} .\mathrm{may} \mathrm{be} \mathrm{calibrated} \mathrm{in} \mathrm{milli-lumen}$ or - if the whole of the cathode is illuminated - in lux. Assuming that the pointer of the $\mu \mathrm{A}$ meter will not move with frequencies above 20 Hz , for calculation of the noise level frequencies below 20 Hz are of interest only.
For currents of $5 \times 10^{-9} \mathrm{~A}$ through the phototube the signal on the input of the amplifier is of a level of 5 V , the shot noise on a level of $10^{-4} \mathrm{~V}$, the resistance noise on a level of $10^{-5} \mathrm{~V}$, the equivalent noise voltage on the input of EC1000 on a level of $10^{-6} \mathrm{~V}$.

The feedback of this system is about 1000 times, so the accuracy is solely determined by the accuracy of the $\mu \mathrm{A}$ meter, all other sources being small.

Mains voltage variations of $+10 \%$ and $-15 \%$ are of no influence on the meas uring result.

The circuit of Fig. 1 is calibrated as follows:
Adjust $\mathrm{P}_{2}$ so that the total cathode resistance of the EC1000 is $\frac{\mathrm{A} \times \mathrm{R}_{1}}{50 \times 1000} \Omega$
in which $R_{1}$ is the value of the series resistance of the 150 AV and
A is the actual sensitivity in $\mu \mathrm{A} /$ lumen of the 150 AV as marked on the tube.
Disconnect the connection between the phototube and the grid of the EC1000 and connect the grid of EC1000 to earth. Connect the circuit to the mains and adjust $\mathrm{P}_{1}$ so that the $\mu \mathrm{A}$ meter indicates zero.

The circuit is now restored and has been calibrated for 0.02 mlumen per $\mu \mathrm{A}$ deflection of the $\mu \mathrm{A}$ meter.

For measurements of rapidly changing phenomena the series-resistor in Fig. 1 of 150 AV should be adapted for an acceptable signal to noise ratio and acceptable distortion while the $\mu \mathrm{A}$ meter should be replaced by a resistor shunted by the input of an oscilloscope.
Depending on the frequency further adaptations of the circuit may be necessary, e.g. further smoothing of the D.C. voltages and a D.C. heater supply for the EC1000.

For extremely rapid changes when all time constants of the circuit have to be reduced as far as possible a circuit as shown in fig. 2 may be used on which laser light flashes can be recorded with a rise time of the signal on the oscilloscope of 20 ns .

fig. 2

Remark $P_{1}$ and $P_{2}$ should be wirewound resistors.

## PHOTO TUBE

Vacuum phototube with high stability and linearity intended for use in high precision/photometry (maximum intensity 1 lux) and for measurements of quickly changing light phenomena (maximum light intensity approx. 1000 lux).

QUICK REFERENCE DATA				
Anode voltage	$\mathrm{V}_{\mathrm{a}}$		6 to 90	VD.C.
Average current	I	max	$35 \times 10^{-9}$	A
Peak current	$\mathrm{I}_{\mathrm{p}}$	max.	$25 \times 10^{-6}$	A
Sensitivity	N		$20 \times 10^{-6}$	A/lumen
Rise time			14	ns
Spectral response			type C	
Outline dimensions		$\max$	$52 \times 82$	mm

## MECHANICAL DATA

Dimensions in mm


Mounting position: any

The cathode material has been deposed on the inner surface of the window. This window is optically plane and polished.
It therefore allows the luminous source to be at close and narrowly reproducable distance from the cathode.

Useful cathode area dia. 26 mm
Spectral response
type C
The spectral response curve shown is a nominal curve and considerable variation between individual tubes may be expected.

Sensitivity measured with a tungsten ribbon
lamp having a c.t. of $2850^{\circ} \mathrm{K}$
typical $20 \times 10^{-6}$ A/lumen $\min$. $14 \times 10^{-6} \mathrm{~A} /$ lumen

Each tube is marked with its sensitivity.
An angle of $15^{\circ}$ between the axis of the tube and the direction of the incident light decreases the sensitivity not more than $5 \%$.

## CAPACITANCE

Anode to cathode

$$
\mathrm{C}_{\mathrm{ak}} \quad 13 \mathrm{pF}
$$

## TYPICAL CHARACTERISTICS

Saturation voltage, luminous flux 0.05 lumen
luminous flux 1 lumen
Anode voltage
Dark current
$\mathrm{V}_{\mathrm{a}}$
$\mathrm{I}_{\mathrm{a}_{0}}$ $\max . \quad 10^{-9}$ A
Linearity ${ }^{1}$ )
Insulation resistance
Rise time

		$\begin{array}{r} <6 \\ <70 \end{array}$	$\begin{aligned} & \text { VD.C. } \\ & \text { VD.C. } \end{aligned}$
$\mathrm{V}_{\mathrm{a}}$		6 to 90	$V_{\text {D. }}$ C.
$\mathrm{I}_{\mathrm{a}_{0}}$	max.	$10^{-9}$	A
		0.1	\%
$\mathrm{r}_{\text {ins }}$	min.	$10^{15}$	$\Omega$
$\mathrm{T}_{\mathrm{r}}$		14	ns

[^30]LIMITING VALUES (Absolute max. rating system)

Anode voltage
Cathode current per $\mathrm{mm}^{2}$ of cathode area, peak
average ( $\mathrm{T}_{\mathrm{av}}=1 \mathrm{~s}$ )

Cathode current, peak ${ }^{1}$ )

$$
\text { average }\left(\mathrm{T}_{\mathrm{av}}=1 \mathrm{~s}\right)
$$

## Envelope temperature

$\mathrm{V}_{\mathrm{a}} \quad \max . \quad 100 \quad \mathrm{~V}_{\mathrm{D} . \mathrm{C}}$.
$I_{k_{p}} \max .50 \times 10^{-9} \mathrm{~A} / \mathrm{mm}^{2}$. $\max .70 \times 10^{-12} \mathrm{~A} / \mathrm{mm}^{2}$
$\max .25 \times 10^{-6}$ A
$\max .35 \times 10^{-9} \quad \mathrm{~A}$
$\begin{array}{llll}\text { tbulb } & \min . & -90 & { }^{\circ} \mathrm{C} \\ \text { tbulb } & \max . & +60 & { }^{\circ} \mathrm{C}\end{array}$

## LIFE EXPECTANCY

With an average cathode current of $35 \times 10^{-9} \mathrm{~A}$, the sensitivity will not decrease more than $10 \%$ of its initial value between zero and 500 operating hours. At lower cathode currents a higher stability may be expected.

## REMARKS

- The cathode should not be exposed to direct sunlight.
- In cases where low frequency noise influences the measuring results, this source of noise may be reduced by cooling the tube to $-90^{\circ} \mathrm{C}$.


## APPLICATION

Please refer to data of 150 AV .

## PHOTO TUBE

Vacuum phototube with high stability and linearity intended for use in high precision photometry (maximum intensity 1 lux) and for measurements of quickly changing light phenomena (maximum light intensity approx. 1000 lux).

QUICK REFERENCE DATA			
Anode voltage	$\mathrm{V}_{\mathrm{a}}$	6 to 90	$V_{\text {D. }}$ C.
Average current	I	$\max .50 \times 10^{-9}$	A
Peak current	$\mathrm{I}_{\mathrm{p}}$	$\max .35 \times 10^{-6}$	A
Sensitivity	N	$60 \times 10^{-6}$	A/lumen
Rise time		14	ns
Spectral response		type U	
Outline dimensions		max. $52 \times 110$	mm

## MECHANICAL DATA

Dimensions in mm


Mounting position: any

Cathode material
Caesium-antimony

The cathode material has been deposed on the inner surface of the quartz window. This window is optically plane and polished.
It therefore allows the luminous source to be at close and narrowly reproducable distance from the cathode.
$\begin{array}{lll}\text { Useful cathode area } & \text { dia. } & 30 \mathrm{~mm} \\ \text { Spectral response } & \text { type U } & \end{array}$
The spectral response curve shown is a nominal curve and considerable variation between individual tubes may be expected.
Sensitivity measured with a tungsten ribbon
lamp having a c.t. of $2850{ }^{\circ} \mathrm{K}$

$$
\begin{array}{lll}
\text { typical } & 60 \times 10^{-6} & \mathrm{~A} / \text { lumen } \\
\text { min. } & 35 \times 10^{-6} & \mathrm{~A} / \mathrm{lumen}
\end{array}
$$

Each tube is marked with its sensitivity.
An angle of $15^{\circ}$ between the axis of the tube and the direction of the incident light decreases the sensitivity not more than $5 \%$.

## CAPACITANCE

Anode to cathode $\mathrm{C}_{\mathrm{ak}} 13 \mathrm{pF}$

## TYPICAL CHARACTERISTICS

Saturation voltage, luminous flux 0.05 lumen luminous flux 1 lumen

Anode voltage	$\mathrm{V}_{\mathrm{a}}$	6 to 90	$\mathrm{~V}_{\mathrm{D}} \mathrm{C}$.
Dark current	$\mathrm{I}_{\mathrm{a}_{\mathrm{o}}}$	$\max$.	$10^{-12}$
A			
Linearity ${ }^{1}$ )		0.1	$\%$
Insulation resistance	$\mathrm{r}_{\text {ins }}$	min.	$10^{15}$
Rise time	$\mathrm{T}_{\mathrm{r}}$	14	ns

[^31]
## LIMITING VALUES (Absolute max. rating system)

Anode voltage
Cathode current per $\mathrm{mm}^{2}$ of
cathode area, peak
average $\left(T_{a v}=1 \mathrm{~s}\right)$
Cathode current, peak ${ }^{1}$ )
average $\left(\mathrm{T}_{\mathrm{av}}=1 \mathrm{~s}\right)$
Envelope temperature
$\mathrm{V}_{\mathrm{a}} \max$.
100
$V_{D . C .}$

$\mathrm{I}_{\mathrm{I}_{\mathrm{p}}} \mathrm{I}_{\mathrm{k}}$
$t_{\text {bulb }}$
$t_{\text {bulb }}$
$\max .50 \times 10^{-9} \mathrm{~A} / \mathrm{mm}^{2}$ $\max .70 \times 10^{-12} \mathrm{~A} / \mathrm{mm}^{2}$
$\max .35 \times 10^{-6} \mathrm{~A}$ $\max .50 \times 10^{-9} \mathrm{~A}$
min. $\quad-90{ }^{\circ} \mathrm{C}$
$\max . \quad+60{ }^{\circ} \mathrm{C}$

## LIFE EXPECTANCY

With an average cathode current of $50 \times 10^{-9} \mathrm{~A}$, the sensitivity will not decrease more than $10 \%$ of its initial value between zero and 500 operating hours.

At lower cathode currents a higher stability may be expected.

## REMARKS

- The cathode should not be exposed to direct sunlight.
- In cases where low frequency noise influences the measuring results, this source of noise may be reduced by cooling the tube to $-90^{\circ} \mathrm{C}$.


## APPLICATION

Please refer to data of 150 AV .

## PHOTO TUBE

Top sensitive gas-filled phototube, sensitive to ultra-violet radiation, intended for use as an on-off device in flame failure circuits.

QUICK REFERENCE DATA						
Supply voltage		$\mathrm{V}_{\mathrm{b}}$				
220	VRMS 2					

## OPERATING PRINCIPLE

When photons of sufficient energy strike the cathode of the device electrons may be released. Provided the tube voltage is sufficiently high, these electrons may initiate a discharge. The probability that this will occur is dependent amongst other things on the value of the supply voltage and the ultra-violet radiation intensity.
The discharge will extinguish as soon as the instantaneous value of the tube voltage falls below the maintaining voltage.
It should be noted that most sources of visible light (e.g. the sun, fluorescent lamps) are at the same time sources of U.V. radiation.
Where the level of such radiation affects the reliable operation of the circuit, adequate shielding or filtering should be provided.

## DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: Noval 4 pins


The arrows show the required direction of incident radiation for highest sensitivity.
Mounting position: any

## MOUNTING

A noval socket with a centre hole diameter of at least 5.4 mm should be used. Pins 1 and 6 should be connected to pins 9 and 4 respectively on the socket.

## CHARACTERISTICS

Spectral response

Maintaining voltage
0.2 to $0.29 \mu \mathrm{~m}(2000$ to 2900 R) See also page 7
$\mathrm{V}_{\mathrm{m}} \quad 180$ to 220 V

## RECOMMENDED CIRCUITS

I. DIRECT RELAY CIRCUIT ( $t_{\mathrm{amb}}=\max \cdot 70^{\circ} \mathrm{C}$ )


Fig. 1

$\mathrm{R}_{1}$	$100 \Omega \pm 10 \%$
$\mathrm{R}_{2}$	$220 \mathrm{k} \Omega \pm 10 \%$
$\mathrm{R}_{3}$	$270 \Omega \pm 10 \%$
D	4 diodes
$\mathrm{C}_{1}$	$12 \mathrm{nF} \pm 15 \%$
$\mathrm{C}_{2}$	$25 \mu \mathrm{~F} \pm 15 \%$

Relay:
R $\quad 12 \mathrm{k} \Omega \pm 10 \%$
$\mathrm{I}_{\mathrm{On}}<3 \mathrm{~mA}$
$I_{\text {off }} \quad 0.5$ to 1.5 mA
$\mathrm{W}_{\text {max }}>1.2 \mathrm{~W}$.

## Notes

1. The filter $\mathrm{R}_{1} \mathrm{C}_{1}$ reduces the effects of high voltage transients on the mains.
2. Incidental discharges of the tube will not activate the relay for any value of the mains voltage within the range $220 \mathrm{~V}+10 \%$ to $-15 \%$.

## Sensitivity

Under the worst probable conditions of supply voltage ( 190 V ) component vari-. ation and characteristic variation of the tube during 10.000 hours, the tube will activate the relay when a "standard radiation source" (candle, see fig.4) is at a distance $<50 \mathrm{~mm}$ from the tube.

RECOMMENDED CIRCUITS (continued)
II. INDIRECT RELAY CIRCUITS ( $\mathrm{t}_{\mathrm{amb}}=\max .100^{\circ} \mathrm{C}$ )

IIa


Fig. 2

$\mathrm{R}_{1}$	$100 \Omega$
$\mathrm{R}_{2}$	$100 \Omega$
$\mathrm{R}_{3}$	$120 \mathrm{k} \Omega \pm 10 \%$
$\mathrm{R}_{4}$	$120 \mathrm{k} \Omega \pm 10 \%$
$\mathrm{R}_{5}$	$470 \mathrm{k} \Omega \pm 10 \%$


$\mathrm{C}_{1}$	$12 \mathrm{nF} \pm 15 \%$
$\mathrm{C}_{2}$	$12 \mathrm{nF} \pm 15 \%$
$\mathrm{C}_{3}$	$2.2 \mu \mathrm{~F} \pm 15 \%$
$\mathrm{D}_{1}, \mathrm{D}_{2}$	diodes

## Note

The filter $\mathrm{R}_{1} \mathrm{C}_{1}$ reduces the effects of high voltage transients on the mains.

## Sensitivity

The curve on page 8 shows the relationship between the output voltage $\mathrm{V}_{\mathrm{O}}$ and the distance between the tube and the "standard radiation source" (see fig.4) under the worst probable conditions of supply voltage ( 198 V ) and component variation for the least sensitive new tube.
After the first 10000 hours of operation the sensitivity will have decreased, but will in all cases be better than indicated by the curve on page 8 provided the radiation source is doubled (two candles according to fig.4).

## RECOMMENDED CIRCUITS (continued)

IIb


Fig. 3

$\mathrm{R}_{1}$	$100 \Omega \pm \pm 10 \%$
$\mathrm{R}_{2}$	$100 \Omega \pm \pm 10 \%$
$\mathrm{R}_{3}$	$330 \mathrm{k} \Omega \pm 10 \%$
$\mathrm{R}_{4}$	$150 \mathrm{k} \Omega \pm 10 \%$
$\mathrm{R}_{5}$	$470 \mathrm{k} \Omega \pm 10 \%$

$\mathrm{C}_{1} \quad 12 \mathrm{nF} \pm 15 \%$
$\mathrm{C}_{2} \quad 12 \mathrm{nF} \pm 15 \%$
$\mathrm{C}_{3} \quad 2.2 \mu \mathrm{~F} \pm 15 \%$
$\mathrm{D}_{1}$ diode

Note
The filter $\mathrm{R}_{1} \mathrm{C}_{1}$ reduces the effects of high voltage transients on the mains.

## Sensitivity

The curve on page 8 shows the relationship between the output voltage $\mathrm{V}_{0}$ and the distance between the tube and the "standard radiation source" (see fig.4) under the worst probable conditions of supply voltage ( 198 V ) and component variation for the least sensitive new tube.
After the first 10000 hours of operation the sensitivity will have decreased, but will in all cases be better than indicated by the curve on page 8 provided the radiation source is doubled (two candles according to fig.4).

## LIMITING VALUES

Ambient temperature, operating storage
$t_{a m b}$
$\max .100$
$\square$
$\min .-50{ }^{\circ} \mathrm{C}$
$\max .+50{ }^{\circ} \mathrm{C}$
${ }^{\mathrm{t}} \mathrm{stg}$
$\min .-25{ }^{\circ} \mathrm{C}$
max. $70{ }^{\circ} \mathrm{C}$ when used in cir-
cuit fig. 1 ${ }^{\circ} \mathrm{C} \begin{aligned} & \text { when used in cir- } \\ & \text { cuits fig. } 2 \text { and } 3\end{aligned}$ ${ }^{\circ} \mathrm{C} \begin{aligned} & \text { when used in cir- } \\ & \text { cuits fig. } 2 \text { and } 3\end{aligned}$

## Warning

Designers of flame failure detectors are strongly advised not to depart from the recommended circuits. Any such departure may result in an unsafe operating mode which is likely to cause an internal short in the tube before its rated useful life has expired.

## Application notes

To ensure that the intensity of radiation incident on the built-in tube will be sufficient throughout its service life ( 10000 hours in the case of a new tube) the following procedure should be observed:

## For circuit fig. 1

Place a "standard radiation source" at a distance of 50 mm from the tube and measure the average voltage across the relay.
In actual operation the same-tube should be mounted at a distance from the flame such that the average voltage across the relay is at least equal to that obtained under irradiation from the "standard radiation source" at 50 mm .
Care should be taken that the value of the mains voltage is the same during both measurements.
The flame used during this measurement should be the minimum flame which has to be detected. No further readjustment of the distance between tube and flame will be necessary when the tube has to be replaced.

## For circuits fig. 2 and fig. 3

The output power from the circuits in fig. 2 and 3 is too low for direct tripping of a relay. For effective discrimination, the voltage on the input of the added amplifier must attain a certain threshold value when the U.V. energy emitted by the flame attains a certain critical intensity.
The implication is that steps must be taken to ensure that the output voltage $V_{0}$ from the recommended circuit will remain above this threshold value throughout the life of the tube. This is done in the following way. Read from the dotted curve on page 8 the distance $d$ corresponding to the required minimum output voltage $\mathrm{V}_{0}$.
Place two "standard radiation sources" at the distance d from the tube and connect the circuit output to a d.c. voltmeter with a high input resistance; observe the average output voltage $\mathrm{V}_{0}$. (The mean value around which the needle swings.)
In actual operation the same tube should be mounted at a distance from the flame such that the average output voltage $\mathrm{V}_{\mathrm{O}}$ is at least equal to that obtained under irradiation from the two "standard irradiation sources" at the distance d.

Care should be taken that the value of the mains voltage is the same during both measurements.
The flame used during this measurement should be the minimum flame which has to be detected.
No further readjustment of the distance between tube and flame is necessary when the tube has to be replaced.

Above procedures do of course not include allowance for dirt deposited on the tube during life.


Fig. 4
"Standard radiation source"



The output voltage as a function of the distance between radiation source and the least sensitive tube in the circuit of fig. 3 .
The curve is valid at 0 hours when the tube is irradiated by one "standard radiation source" and at 10000 hours when irradiated by two "standard radiation sources".


The output voltage as a function of the distance between radiation source and the least sensitive tube in the circuit of fig. 2 .
The curve is valid at 0 hours when the tube is irradiated by one "standard radiation source" and at 10000 hours when irradiated by two "standard radiation sources".

## ASSOCIATED ACCESSORIES

## FOCUSING COIL



When the Q13-110. . is operated at $\mathrm{Vg}_{2}(\ell)=25 \mathrm{kV}$, the current through the focusing coil should be adjusted at approx. 33 mA .

The distance between air-gap centre and the screen surface of the Q13-110.. should be 217 mm .

## TUBE SOCKET

## FOR 14-PIN ALL GLASS BASES



Material: Synthetic resin insulating material
14 silver plated fork-shaped contacts

## MU-METAL SCREEN



## MU-METAL SCREEN



## MU-METAL SCREEN



## MU-METAL SCREEN



Material: Mu-metal, 0.35 mm thick

## MU-METAL SCREEN



## MU-METAL SCREEN



## MU-METAL SCREEN



## MU-METAL SCREEN



Material: Mu-metal, 0.35 mm thick

## MU-METAL SCREEN

Type 55548A without mounting bracket
Type 55548 with mounting bracket

*) inside diameter
Material: Mu-metal, 0.5 mm thick

## MU-METAL SCREEN



FINAL ACCELERATOR CONTACT CONNECTOR


Material: cadmium plated spring contact rubber insulating material

## SIDE CONTACT CONNECTOR



FINAL ACCELERATOR CONTACT CONNECTOR


## TUBE SOCKET FOR 14-PIN BASES



Material: synthetic resin insulating material
14 gold plated fork shaped contacts

## MU-METAL SCREEN



* inside diameter



## MU-METAL SCREEN

Type 55580 A with 4 mounting lugs L
Type 55580 without mounting lugs L

*) inside diameter
Material: Mu-metal, 0.35 mm thick

## MU-METAL SCREEN

Type 55581A with hole H
Type 55581 without hole H


Material: Mu-metal, 0,5 mm thick.

## MU-METAL SCREEN



## MU-METAL SCREEN



## TUBE SOCKET FOR 7-PIN BASES



Material: synthetic resin insulating material
7 contacts, guiding hole and central hole

## INDEX OF TYPENUMBERS

Type No.	Section
AT1997	Acc.
D7-190..	IT
D10-11..	IT
D10-12..	IT
D10-160..	IT
D10-161..	IT
D10-170..	IT
D10-200../07	IT
D13-15..	IT
D13-16..	IT
D13-16../01	IT
D13-19..	IT
D13-21..	IT
D13-23..	IT
D13-26..	IT
D13-26../01	IT
D13-27..	IT
D13-450.. 01	IT
D13-480	IT
D13-481	IT
D13-500.. 01	IT
D14-120..	IT
D14-121	IT
D14-122..	IT
D14-123..	IT
D14-160.. 09	IT
D18-120..	IT
D.3-91	IT
D.7-5	IT
D.7-6	IT


Type No.	Section
D. 7-11	IT
D. 7-31	IT
D.7-32	IT
D.7-36	IT
D.7-78	IT
D.10-6	IT
D.10-74	IT
D.10-78	IT
D.13-2	IT
D.13-32	IT
D.13-34	IT
E10-12..	IT
E10-130.	IT
E14-100GH	IT
M17-140W	M
M17-141W	M
M21-11W	M
M21-12W	M
M24-100W	M
M28-12W	M
M31-120W	M
M36-11W	M
M36-13W	M
M36-16W	M
M38-120W	M
MG/U/Y13-38	SCT
MW13-38	SCT
M.13-16	SCT
Q13-110..	SCT
XQ1010	CT


Type No.	Section
XQ1020series	CT
XQ1021series	CT
XQ1022	CT
XQ1023series	CT
XQ1024series	CT
XQ1025series	CT
XQ1026series	CT
XQ1031	CT
XQ1032	CT
XQ1041	CT
XQ1070series	CT
XQ1071series	CT
XQ1072	CT
XQ1080	CT
XQ1220series	CT
XQ1230series	CT
XQ1240	CT
XQ1241	CT
XX1052	Int.T
$90 A V$	PT
$90 C G$	PT
$90 C V$	PT
$92 A G$	PT
$92 A V$	PT
$150 A V$	PT
$150 C V$	Acc.
$150 U V$	
$155 U G$	PT
40467	
55530	


Acc	= Accessories	M	= Monitor and display tubes
CT	= Camera tubes	PT	= Photo tubes
IT	= Instrument Cathode-ray tubes	SCT	= Cathode-ray tubes for
Int.	= Image intensifier tubes		special applications


Type No.	Section
55531	Acc.
55532	Acc.
55534	Acc.
55540	Acc.
55541	Acc.
55545	Acc.
55547	Acc.
55548	Acc.
55548 A	Acc.
55550	Acc.


Type No.	Section
55551	Acc.
55554	Acc.
55555	Acc.
55557	Acc.
55560	Acc.
55561	Acc.
55563	Acc.
55566	Acc.
55568	Acc.
55580	Acc.


Type No.	Section
55580 A	Acc.
55581	Acc.
55581 A	Acc.
55582	Acc.
55585	Acc.
55875 series	CT
$55875-$ IGseries	CT
$55875 \mathrm{R} / \mathrm{G} / \mathrm{B}-\mathrm{IG}$	CT
$55876 / 01$	CT
56020	Acc.

## CATHODE-RAY TUBES

## General and screen types

Instrument tubes
Monitor and display tubes
C-R tubes for special applications

## CAMERA TUBES

IMAGE INTENSIFIER TUBES

## PHOTO TUBES

ASSOCIATED ACCESSORIES


[^0]:    1) Reflective material.
[^1]:    ${ }^{1}$ ) See page 6 .

[^2]:    4) See page 6
[^3]:    2) See page 5
[^4]:    1) See page 5
[^5]:    Notes see page 5.

[^6]:    ${ }^{1}$ ) A graticule, consisting of concentric rectangles of $43.2 \mathrm{~mm} \times 43.2 \mathrm{~mm}$ and $40 \mathrm{~mm} \times 40 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.

[^7]:    ${ }^{1}$ ) A graticule, consisting of concentric rectangles of $43.2 \mathrm{~mm} \times 43.2 \mathrm{~mm}$ and $40 \mathrm{~mm} \times 40 \mathrm{~mm}$ is aligned with the electrical $\times$ axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.

[^8]:    $\left.\left.\left.\left.\left.\left.{ }^{1}\right)^{2}\right)^{3}\right)^{4}\right)^{5}\right)^{6}\right)^{7}$ ) See page 6

[^9]:    Notes see page 4

[^10]:    ${ }^{1}$ ) If necessary the resolution can be inproved by the use of a beam centring magnet. This magnet, type number 3322142 11401, together with directions for use, is supplied on request.
    ${ }^{2}$ ) During a warm-up period not exceeding 15 s the heater may be 410 V negative with respect to the cathode.
    $3{ }^{\text {ail }} A+107 / 01$ is recommendece

[^11]:    ${ }^{1}$ ) If necessary the resolution can be improved by the use of a beam centring magnet. This magnet, type number 3322142 11401, together with directions for use, is supplied on request.
    ${ }^{2}$ ) During a warm-up period not exceeding 15 s the heater may be 410 V negative with respect to cathode.

[^12]:    For notes see page 4

[^13]:    1) Voltage range to obtain optimum overall focus at $100 \mu \mathrm{~A}$ beam current.
    ${ }^{2}$ ) Maximum pulse duration $22 \%$ of a cycle but max. 1.5 ms .
[^14]:    1) Absolute maximum rating system.
    2) Maximum pulse duration $22 \%$ of a cycle but max. 1.5 ms .
[^15]:    1) With the small change in focus spot size with variation of focus voltage the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus, a voltage of at least -100 V to +500 V will be required.
[^16]:    ${ }^{1}$ ) In order to prevent the possible occurrence of cracked faces, for images with concentrated bright areas (high screen loads) the g2 current should be kept lower than the indicated value. This is especially the case as for as stationary pictures are concerned.
    ${ }^{2}$ ) In order to avoid excessive hum, the A.C. component of the heater to cathode voltage should be as low as possible and must not exceed 20 VRMS.

[^17]:    $\overline{1) \text { With focusing coil AT1997 }}$

[^18]:    1) In order to avoid excessive hum, the A.C. component of the heater to cathode voltage should be as low as possible and should not exceed 20 VRMS.
    ${ }^{2}$ ) During a heating-up period not exceeding 45 sec .
[^19]:    ${ }^{1}$ ) Spots (black and white) and smudges (black and white) are not counted when their contrast expressed in \% of picture white as measured on a waveform oscilloscope is less than $50 \%$.
    2) Spots of this size are allowed unless concentration causes a smudge appearance. As contrast of the smudge the average contrast of the concentration is taken.

[^20]:    ${ }^{1}$ ) Video amplifiers should be capable of handling signal-electrode currents of this magnitude without overloading the amplifier or distorting the picture.
    ${ }^{2}$ ) Under difficult environmental conditions a flow of cooling air directed at the faceplate is recommended. When televising flames and furnacesappropriateinfra-red filters should be used.

[^21]:    *Registered Trade Mark for T. V. camera tube 1) 2) ${ }^{3}$ ) ${ }^{4}$ ) See page 5 .

[^22]:    *Registered Trade Mark for T.V. camera tube
    $\left.\left.{ }^{1}\right)^{2}\right)^{3}$ ) See page 5.

[^23]:    *Registered Trade Mark for T.V. camera tube

[^24]:    * Registered Trade Mark for television camera tube.

[^25]:    Notes: see page 5.

[^26]:    * Registered Trade Mark for T.V. camera tube $\left.\left.\left.{ }^{1}\right)^{2}\right)^{3}\right)^{4}$ ) See page 5.

[^27]:    * Registered Trade Mark for T.V. camera tube.

[^28]:    ${ }^{1}$ ) Cap. $a_{S}$-rest, which effectively is the output impedance, increases when the tube is inserted into the deflection/focusing coil assembly.

[^29]:    ${ }^{1}$ ) The relation between the incident luminous flux and the tube current is linear within measuring errors, provided the anode voltage is higher than the saturation voltage.

[^30]:    ${ }^{1}$ ) The relation between the incident luminous flux and the tube current is linear within measuring errors, provided the anode voltage is higher than the saturation voltage.

[^31]:    1) The relation between the incident luminous flux and the tube current is linear within measuring errors, provided the anode voltage is higher than the saturation voltage.
