PHILIPS

COMPONENTS AND MATERIALS

PART 6 AUGUST 1971

Electric motors and accessories

Timing and control devices

COMPONENTS AND MATERIALS

Part 6

August 1971

I "Electric motors and accessories" (Polymotor)

Small synchronous motors

Stepper motors
B

Small d.c. motors

Tachogenerators and servomotors

Asynchronous motors

II "Timing and control devices" (A.W. Haydon)
Indicators for built-in test equipment (bite) F
Time indicators, timers, timing motors

Comprehensive contents list at the back

DATA HANDBOOK SYSTEM

To provide you with a comprehensive source of information on electronic components, subassemblies and materials, our Data Handbook System is made up of three series of handbooks, each comprising several parts. The three series, identified by the colours noted, are:
ELECTRON TUBES (9 parts) BLUE
SEMICONDUCTORS AND INTEGRATED CIRCUITS (5 parts) RED
COMPONENTS AND MATERIALS (6 parts) GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued annually; the contents of each series are summarized on the following pages.
We have made every effort to ensure that each.series is as accurate, comprehensive and up-to-date as possible, and we hope you will find it to be a valuable source of reference. Where ratings or specifications quoted differ from those published in the preceding edition they will be pointed out by arrows. You will understand that we can not guarantee that all products listed in any one edition of the handbook will remain available, or that their specifications will not be changed, before the next edition is published. If you need confirmation that the pusblished data about any of our products are the latest available, may we ask that you contact our representative. He is at your service and will be glad to answer your inquiries.

ELECTRON TUBES (BLUE SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1

Transmitting tubes (Tetrodes, Pentodes)

Part 2

Tubes for microwave equipment

Part 3

Special Quality tubes

Part 4

Receiving tubes

Part 5

Cathode-ray tubes
Photo tubes
Camera to:bes

Part 6

Photomultipliers tubes
Channel electron multipliers
Scintillators
Photoscintillators

Part 7

Voltage stabilizing and reference tubes Counter, selector, and indicator tubes Trigger tubes
Switching diodes

Part 8

T. V. Picture tubes

Part 9

Transmitting tubes (Triodes)
Tubes for R. F. heating (Triodes)

January 1971
Associated accessories
March 1971

March 1970
Miscellaneous devices
April 1971

May 1971
Photoconductive devices
Associated accessories

June 1971
Radiation counter tubes
Semiconductor radiation detectors
Neutron generator tubes Photo diodes
Associated accessories
July 1971
Thyratrons
Ignitrons
Industrial rectifying tubes
High-voltage rectifying tubes
August 1970

January 1971
Associated accessories

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Diodes and Thyristors
General
Signal diodes
Tunnel diodes
Variable capacitance diodes
Voltage regulator diodes
Part 2 Low frequency; Deflection
General
Low frequency transistors (low power)
Low frequency power transistors

Part 3 High frequency; Switching

General
High frequency transistors

Part 4 Special types

General
Transmitting transistors
Microwave devices
Field effect transistors
Dual transistors
Microminiature devices for thick- and thin-film circuits

Part 5 Integrated Circuits

General
Digital integrated circuits
DTL (FC family)
TTL (FJ family)
MOS (FD family)

September 1970
Rectifier diodes
Thyristors, diacs, triacs
Rectifier stacks
Accessories
Heatsinks
October 1970
Deflection transistors
Accessories

November 1970
Switching transistors
Accessories
December 1970
Beam lead devices for thick- and thin-film circuits
Photo devices
Accessories

March 1971
Linear integrated circuits

COMPONENTS AND MATERIALS (GREEN SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Circuit Blocks, Input/Output Devices

September 1970

Circuit blocks 100 kHz Series
Circuit blocks 1-Series
Circuit blocks 10-Series
Circuit blocks 20-Series
Circuit blocks 40-Series
Counter modules 50-Series

Norbits 60-Series, 61-Series
Circuit blocks 90-Series
Circuit blocks for ferrite core
memory drive
Input/output devices

December 1970
Polycarbonate, paper, mica, polystyrene capacitors
Electrolytic capacitors
Variable capacitors
February 1971
Audio and mains transformers
Television tuners
Components for black and white television
Components for colour television
Deflection assemblies for camera tubes

Part 4 Magnetic Materials, Piezoelectric Ceramics

April 1971

Ferrites for radio, audio and television
Small coils, assemblies and assembling parts

Ferroxcube potcores and square cores
Ferroxcube transformer cores
Piezoxide
Permanent magnet materials

Part 5 Memory Products, Magnetic Heads, Quartz Crystals, June 1971 Microwave Devices, Variable Transformers, Electro-mechanical Components

Ferrite memory cores
Matrix planes, matrix stacks
Complete memories
Magnetic heads

Quartz crystal units, crystal filters
Isolators, circulators
Variable mains transformers
Electro-mechanical components

Part 6 Electric Motors and Accessories, Timing and Confrol Devices

August 1971

Small d.c. motors
Tachogenerators and servomotors
Indicators for built-in test equipment

Technology relating to the products described in this publication is shared by the following companies.

Australia

PHILIPS INDUSTRIES Ltd.
20, Herbert Street
Artarmon (N.S.W.)

Austria

WIENER RADIOWERKE G.m.b.H.
P.o.b. 111

A 1072 Wien
Belgium
M.B.L.E.

80, Rue des Deux Gares
1070 Brussels
Canada
PHILIPS ELECTRONIC INDUSTRIES Ltd.
Côte de Liesse Road 5930
Montreal

Denmark

MINIWATT A.S.
Emdrupvej 115
DK-2400 Kobbenhavn N.V.
Finland
ELCOMA
P.O. 10255

Helsinki 10
France
POLYMOTOR SEDELEM
14, Passage Charles Dallery Paris XIe

Germany
VALVO G.m.b.H.
Burchardstrasse 19
2 Hamburg 1
Israe!
ISRALECTRA Ltd.
12, Allenby Road
Haifa
Italy
POLYMOTOR ITALIANA
Via Vittor Pisani 31
Milano

Japan

PHILIPS PRODUCT SALES CORP. OF JAPAN
World Trade Center Bldg, 32nd floor
5, 3-chome, Shiba Hamamatsu-cho
Minato-ku
Tokyo

New Zealand

EDAC Ltd.
70-72 Kingsford Smith Street
Wellington

Netherlands

PHILIPS NEDERLAND N.V.
Gebouw VB - Elonco Dept. Eindhoven

Norway
ELECTRONICA A.S.
Postboks 5220
Oslo 3

South-Africa

EDAC (Pty) Ltd.
South Park Lane
New Doornfontein
Johannesburg
Spain
COPRESA S.A.
Balmes 22
Barcelona 7
Switzerland
PHILIPS A.G.
CH 8027
Zurich 3/45

Sweden

A.B. ELCOMA

Lidingovăgen 50 Fack
Stockholm 27
United Kingdom
IMPEX ELECTRICAL Ltd.
Market Road
Richmond (Surrey)
U.S.A.

THE A.W. HAYDON COMPANY
232, North Elm Street Waterbury (Conn.)

Other Countries
POLYMOTOR INTERNATIONAL
1, Boulevard Anspach
1000 Brussels, Belgium
Tel. 192746
Telex: 23203 Polymotor

This book describes two groups of products: "Electric motors and accessories" are Polymotor products, "Timing and control devices" are manufactured by the A.W. Haydon Company.

Some general remarks:

- All mechanical drawings have been laid out according to the European projection method.
- The dimensions of the products are given in mm, unless otherwise stated.
- Forces are given in grams (g); $100 \mathrm{~g}=1$ Newton (N) $=3.53$ ounce (oz)
- Torques are given in gramcentimetre (gcm); $100 \mathrm{gcm}=0.01$ Newtonmeter $(\mathrm{Nm})=$ 1.39 ounce inch (oz. in)
- For ordering our products please use their catalogue number; accessories such as phasing capacitors, brackets and inverters should be ordered with a separate order sheet, unless otherwise indicated.
- The information given in this book does not imply a license under any patent.

I ELECTRIC MOTORS

 AND ACCESSORIES (POLYMOTOR)
Small synchronous motors

General page A3
Unidirectional motorspage A19
Reversible motors page A29
Synchrodrivers page A45
A.C./D.C. synchronous motors page A51
Universal programme switchassembly kit page A57

PRINCIPLES

In a two-pole synchronous motor fitted with a permanent-magnet rotor, a sinusoidally alternating magnetic field is set up in the stator by the sinusoidal exciting current. The alternating field can be assumed to be the resulcant of two magnetic fields of equal and constant strength but rotating in opposite directions. The vector diagram at a time t can then be drawn (Fig. below).
The constant fields are here represented by the vectors H_{ℓ} and H_{r}. The permanent magnet (the rotor) can now follow either the field rotating counterclockwise or the one rotating clockwise. Fundamentally, therefore, a synchronous motor can rotate in either direction. However, more advanced constructions like our synchronous motors rotate in one direction which is determined elec-
 trically as will be explained later on.
During one cycle of the alternating supply current a motor with two poles, that is one pair of poles, will make one revolution. In a motor with p pole pairs the rotor turns through $360 / \mathrm{p}$ angular degrees. The speed of the motor is thus determined by the frequency and the number of pole pairs and can be calculated with the formula:

$$
\mathrm{n}=\frac{60 f}{\mathrm{p}} \mathrm{rev} / \mathrm{min}
$$

where $f=$ frequency and $p=$ number of pole pairs.

PERMANENT-MAGNETIC ROTOR

As described above, the speed of the motor is governed by the number of pole pairs. How many pole pairs can be provided on a magnet ring depends on the space available along the periphery of the ring, and on the properties of the magnetic material. The magnetic material is characterized by a high coercive force so that a great number of poles can be accommodated in a small space. Moreover, the residual flux will not be attenuated by the alternating field. In our synchronous motors as many as 24 poles can be made along the periphery of the magnet ring. Thus, the speed of these motors operating from 50 Hz mains is:

$$
\mathrm{n}=\frac{60 \times 50}{12}=250 \mathrm{rev} / \mathrm{min}
$$

and with 60 Hz mains:

$$
\mathrm{n}=\frac{60 \times 60}{12}=300 \mathrm{rev} / \mathrm{min}
$$

The low motor speed means that for most applications the gearing-down ratio can be very small. This results in gearboxes of simple design which show very little wear in the bearings.

SYNCHRONOUS MOTORS WITH A SINGLE CONSTANT ROTATING FIELD

The figure below shows the situation at a time t in a synchronous motor with an auxiliary field added. Both the main field and the auxiliary one are again represented as being the resultant of two magnetic fields of equal and constant strength but rotating in opposite directions.

The main field, which changes sinusoidally, is represented by the vectors H_{1} and H_{r}. The poles of the main field are indicated by N_{H} and S_{H}.
If the rotor is driven by, for example, H_{r} (clockwise), then H_{1} (counterclockwise) will give rise to a vibration at double the frequency of the main field. To control the rotation of the motor and, as in this example, make it run clockwise only, and to eliminate the vibration at the same time, H_{1} must be eliminated. This can be achieved by the compensating or auxiliary field F (with its component fields F_{1} and F_{r}, identical and rotating in opposite directions), between poles NF_{F} and SF . We see that F_{1}, rotating counterclockwise, will always oppose H_{1} (also counterclockwise), and even eliminate it when fields H and F are of equal strength. We also see that F_{r} and H_{r} combine to the resulting rotating field R . The rotor will rotate in the direction of R because it is the only remaining field. Evidently R can also be chosen such that the motor can only run counterclockwise.

Finally, we see that in the figures the auxiliary field F lags behind the main field H by an angle (phase shift) $\omega \mathrm{t}$.

The above explanation applies to a two-pole motor; in motors with more poles the auxiliary poles must be uniformly distributed between them.

Two methods are available for obtaining a single constant rotating magnetic field:

- an auxiliary lagging field is derived from the main field; our unidirectional motors operate on this principle (see below)
- two stators are used yielding alternating fields with a certain phase shift between them, as in our reversible types of motors (see the next page).

SYNCHRONOUS MOTORS WITH ONE DIRECTION OF ROTATION (catalogue numbers 9904110)

All these motors are provided with a copper ring around each of the auxiliary poles. The effect is that an induction current is produced through the rings, lagging behind the voltage E_{2} (induced by the field $\phi \mathrm{H}_{2}$). The induced magnetic flux ϕ_{2} forms with the main flux $\phi_{\mathrm{H}_{2}}$ the desired auxiliary flux ϕ_{F}, which lags behind the main flux, $\phi_{H_{2}}$, by the angle α. The construction is such that the auxiliary field, though weaker than the main field, ensures unidirectional operation of the motor.

SYNCHRONOUS MOTORS WITH AN ELECTRICALLY REVERSIBLE DIRECTION OF ROTATION (catalogue numbers 9904111)

As mentioned on the preceding page, the rotation of a synchronous motor can be made stable by incorporating two stators in one casing. The required phase shift is obtained by means of a capacitor which can be connected inseries with either stator coil.

Current I_{1} in coil L_{1} will lag behind voltage E by 45°. With the aid of a capacitor, current I_{2} in coil L_{2} can be made to lead the voltage by 45°, giving a phase angle between I_{1} and I_{2} of 90°. The total current I_{t} will then be approximately in phase with the voltage so that the maximum torque, and hence a high efficiency, is attained at a very low power consumption. From the above explanation it follows that the poles of the two stators must be an angle of 180-90 apart.
With L_{1} and L_{2} in parallel, as above, either the intersection of L_{1} and the capacitor, or of L_{2} and the capacitor, can be connected to the supply. Switching over will, however, reverse the rotation of the motor.
An arrangement with the two stator coils connected in series is also possible; this point is dealt with in some detail in the next subsection.

PARALLEL AND SERIES CONNECTION OF THE STATOR COILS IN REVERSIBLE MOTORS

The reversible synchronous motors can be made to produce a higher torque by connecting the stator coils in series, with the exception of the type $990411106 \ldots$ which is available only with parallel-connected coils.
The figures below show the circuit diagrams.

Parallel-connected stator coils

Series-connected stator coils

With series-connected coils the motors require about double the supply voliage.

Evidently a motor suitable for operation from a 24 -volt source with parallel-connected coils may be operated from a 48 -volt source when the coils are connected in series. In this way we get:

Vector diagram for parallelconnected stator coils

Vector diagram for seriesconnected stator coils

The vector diagrams show that the voltage across each coil in the series arrangement is $\sqrt{2}$ times that in the parallel arrangement. The same is true of the current through each coil. Therefore the maximum torque produced by a motor with seriesconnected coils is considerably higher than that of a motor with parallel-connected coils.

However, not only the torque but the power consumption as well increases in the case of series connection. This is accompanied by a rise in the temperature of the stator coils (ΔT). As most of the materials used in the motors cannot withstand a temperature exceeding $110^{\circ} \mathrm{C}$, users of reversible motors with series-connected coils will have to make sure that the sum of the ambient temperature and $\Delta \mathrm{T}$ never exceeds $110{ }^{\circ} \mathrm{C}$, when the motors are in continuous operation.
With intermittent operation a higher ambient temperature may be acceptable, depending on the ratio between "switched-on time" and "switched-off time". Wethink it wise to explain this point to you with the aid of Figs. a, b and c.

Fig.a shows, for the motor type 990411105311 , with series-connected coils, the warm-up and cool-down curves; the maximum temperature rise occurs in the coils after about 90 minutes of continuous operation (see also the Note). Fig.b indicates that with a duty cycle of, say, 30 minutes, of which 20 minutes is switched-on time
and 10 minutes switched-off time, the coil temperature rises $49^{\circ} \mathrm{C}$ after the first switched-on interval, then drops by $15^{\circ} \mathrm{C}$ during the first switched-off interval, next rises again by $24^{\circ} \mathrm{C}$, etc., until eventually the maximum temperature rise of $60^{\circ} \mathrm{C}$ is attained.
With the "total" temperature limit being $110^{\circ} \mathrm{C}$ it is clear that this type of seriesconnected motor may be operated intermittently if the ambient temperature does not exceed 110-60 $=50^{\circ} \mathrm{C}$.

Finally Fig.c shows the maximum permissible ambient temperature plotted as a function of the duty cycle for different on/off ratios. The upper limit is $70^{\circ} \mathrm{C}$ (motor may be used intermittently), the lower one is $40^{\circ} \mathrm{C}$ (motor may be used continuously).

Fig.a

Fig.b

Fig.c

Note - The curve of Fig.a is measured on an abitrary motor 990411105311 at maximum supply voltage and with a phasing capacitor with maximum value. For other motors and/or in other circumstances the temperature rise ($\Delta \mathrm{T}$) can be lower or higher.

STARTING CHARACTERISTICS

Among the factors determining how fast synchronous motors using permanent magnets will start and whether the direction of rotation is correct, the following two deserve our attention:

- the loading conditions
- the relative positions of stator and rotor upon starting.

Loading may be as follows:

1. No load is present.
2. The torques are equal in both directions of rotation but they are below the maximum available motor torque.
3. The clockwise torque is equal to the maximum available motor turque but the counterclockwise torque is much lower.
4. The counterclockwise torque is infinitely high (that is: a mechanical stop is applied) but the clockwise torque equals the maximum available motor torque.
5. A torque is placed on the motor even when it is not energized (the load takes the form of a spring) but it does not exceed the motor's stalling torque.
6. The load has a high moment of inertia.

These loads can be applied directly to the motor spindle or via gears. In the latter case there will normally exist some backlash between the gearwheels which is sufficient to enable the motor to start in the unloaded mode and there will be no difficulty in handling the loads except in case 5 . This is a special case because one can never be sure that a smooth start in the desired direction is made. To understand this we must realize that before the motor is excited the load torque equals a holding torque produced by the motor's magnetic circuit, otherwise the rotor wouldturn round. When the supply voltage is switched on, the holding torque may be reduced which will result in the motor being driven in the wrong direction by the load torque. The field operating in the wrong direction will have to be suppressed first.

The above phenomenon is most pronounced in unidirectional motors with the auxiliary field derived from the main one; the constant rotating field motors with two stator coils are less sensitive to it. In extreme cases it will be necessary to introduce a mechanical stop to neutralize the effect.

In case 6 the high inertia moment, when placed direct on the spindle, may cause the load not to be accelerated enough to reach synchronous speed; the rotor may then oscillate. Given sufficient amplitude these oscillations may after a longer or shorter time - depending on the nature and magnitude of the load, and on the motor excitation - develop into a steady rotation. The sense of rotation is determined by the direction of the oscillation which is the first to attain the necessary maximum. Hence it may well happen that the motor starts running in the wrong direction. It will continue to do so when the load in this direction is small enough. To avoid this effect one must make sure that the inertia moment of the load does not surpass a certain maximum.

Stronger motors are hampered by the inertia moment of the rotor which is so high that not much is left for the load. For this reason the motors $990411106 \ldots$ have been equipped with a so-called resonance rotor, with a flexible connection between rotor and spindle. The rotation of this rotor upon switching-on is first an oscillating one but here too the oscillations develop into the steady rotation. Thanks to this rotor construction this type of motor starts rapidly, practically noiseless and without vibrations.

Laboratory measurements have demonstrated that unidirectional motors when starting under adverse loads need a starting time of about 250 ms . However, in most cases the starting time is considerably shorter. Twin-stator types of electrically reversible motors need, under adverse conditions, a starting time of about 80 ms .

Resonance rotor

Note
The mass inertia moment of the pinion can be calculated with the formula

$$
\mathrm{J}=\frac{\pi}{32} \times \gamma \times \mathrm{h} \times\left(\mathrm{D}^{4}-\mathrm{d}^{4}\right)
$$

for an annular object (see the sketch alongside) with

$$
\begin{array}{ll}
\text { outer diameter } & \text { (D) in } \mathrm{cm} \\
\text { inner diameter } & \text { (d) } \text { in } \mathrm{cm} \\
\text { height } & \text { (h) } \text { in } \mathrm{cm} \\
\text { specific gravity } & (\gamma) \\
\text { in } \mathrm{g} / \mathrm{cm}^{3}
\end{array}
$$

In the case of a pinion we may have:
$D=4 \mathrm{~mm}$ (outer diameter over the teeth; this simplifies the calculation and provides a safety margin)
$\mathrm{d}=1.6 \mathrm{~mm}$ (spindle diameter)
$\mathrm{h}=4.5 \mathrm{~mm}$
specific gravity $=7.6 \mathrm{~g} / \mathrm{cm}^{3}$
Its mass inertia moment may then work out to be $0.0086 \mathrm{gcm}^{2}$.
Any pinion with an outer diameter smaller than that of the centring rim on the motor will, as a rule, have a sufficiently small inertia moment.

SOME NOTES ON THE STRAY FIELD

For the major part our synchronous motors are provided with a steel casing which minimizes the stray field. Exceptions are the types $990411105 \ldots$ and 9904111 06... .

The strength of a stray field decreases as a function of the distance from the motor. It can be determined by measuring the e.m.f. induced in a coil placed in the stray field, and using the formula:
$H_{e f f}=C x e_{e f f}$
where $H_{e f f}=$ effective value of the fieldstrength at the location of the measuring coil
$\mathrm{C}=\mathrm{a}$ constant representing the size and the number of turns of the coil (can be found by calculation or calibration)
$e_{\text {eff }}=v a l u e ~ r e a d ~ f r o m ~ t h e ~ t u b e ~ v o l t m e t e r . ~ . ~$
Example: In the case of the 990411106211 motor the following values were determined:
at the motor casing: 71 Oe
at 1 cm distance $: 12.4 \mathrm{Oe}$
at 2 cm distance : 4.7 Oe

SOME MECHANICAL NOTES

Braking torque

In all the types of synchronous motor a considerable braking torque is produced when the current is interrupted due to the strong rotor magnet poles moving closely to the stator poles. The rotor is strongly braked, so that the motor stops almost immediately.
The angle through which the rotor can still turn after switching off depends on the magnitude and moments of inertia of the load. In normal use it will not be morethan 20°. For most applications additional mechanical brakes are, therefore, not required.

Bearings

It has been found that the following materials were best suitable for manufacturing bearings of sound construction and meeting the wide variety of demands imposed on the motors.

1. Plastic slide bearings
a. A polyamide of a high quality with a very finely graded emulsion of molybdenum disulphide (MoS_{2}) which gives self-lubricating properties, is used in the types $990411002 \ldots, 990411004 \ldots$ and $990411005 \ldots$ motors.
Water absorption: negligible ($<1.5 \%$).
Coefficient of friction: low (<0.15), so the losses due to friction are very small. Chemical resistance: very high; it is resistant to the normal organic solvents, esters, ketones, lubricating oil, petrol, paraffin, and solutions of organic salts.
b. P.T.F.E. This material is used in the motor type for high temperatures, 9904110 03... .
2. Sintered-metal slide bearings
a. Sintered-bronze self-aligning slide bearings are used in the types $990411104 \ldots$ and $990411107 \ldots$ motors.
b. Sintered-iron is used in the type $990411106 \ldots$ motors.
3. Needle bearings

These bearings are used in the type $990411105 \ldots$ motors.

MEASURING THE MOTOR TORQUE

The adjoining sketch illustrates the set-up for measuring the maximum motor torque. A pulley with diameter D is placed on the spindle, and a string is fastened at one end around the pulley and at the other to a helical spring with diameter d .

Next the motor is started, and it will wind the string around the pulley thereby stretching the spring. This goes on until the force exerted by the spring equals the maximum motor torque. Then the motor stops and Δl, that is the total displacement of a needle fixed to the spring, is measured.
With the aid of the formula: $\mathrm{M}=\left(\frac{1}{2} \mathrm{D}+\frac{1}{2} \mathrm{~d}\right) \times \mathrm{C} \times \Delta \mathrm{l}$ the motor torque can be calculated, where C is a constant characteristic for the spring and $\Delta 1$ is the displacement of the needle.

It is also possible to mark the scale in such a way that the motor torque can be read directly from it. Attention should be paid to the fact that the mass of the pulley should be as small as possible for accurate results.

QUALITY CONTROL

Quality control is the prime concern from the moment a development is starteduntil the product has been series-produced.
Thus, checks are carried out:

- during the development by testing the most important properties,
- at the end of development by approval tests on hand-made samples to make sure that the motor conforms to specifications; there is a standard programme of checks and tests subdivided into six groups (see below),
- during the first trial run in the factory, when the same programme of tests is carried out,
- during manufacture, when sometimes all individual products are tested, sometimes random tests are conducted.

The finished product is examined by an independent testing organization making random tests thus checking whether the manufacturer's quality control is up to standard. Also, any complaints on the part of customers are investigated by the quality department of the factory and by the independent testing organization.

There is a great difference between the tests carried out before full production starts and those performed during production, as becomes clear from the schedules given below.

QUALITY CONTROL BEFORE MANUFACTURING STARTS

The following so-called "release approval" tests are made:

1. Functional tests

The motors are subjected to:

- voltage fluctuations between -10 and $+10 \%$ or between -15 and $+10 \%$
- on-off switching, up to 250000 times
- a functional test at $-20^{\circ} \mathrm{C}$, unless otherwise specified.

2. Tests on the resistance to damage during transport

These tests comprise:

- simulated transport tests on packed motors
- bump tests on motors mounted on a frame.

3. Climatic tests

To examine the behaviour of the motors under various conditions of shelving, the motors are subjected to:

- a temperature-cycle test, -40 to $+85^{\circ} \mathrm{C}, 30 \%$ R. H. (30 hours)
- a cycle damp test, 6 days
- a cold dry shelf test at $-40^{\circ} \mathrm{C}$ (16 hours), unless otherwise specified.

4. Life tests

No system of life tests yet devised gives a sure approval of the conduct of the motors over a long period. Some insight is gained from standard life tests and, in addition, a number of motors are operated for years at the rated voltage and under normal climatic conditions, both loaded and unloaded. The combination of life tests and practical experience gives a reasonable basis for predicting the motor life.

The standard life tests are not intended to cover the whole normal service life, because this would imply extremely prolonged test periods. Extrapolation of the test results allows us to assure that our synchronous motors are fit for continuous service for many years.
The standard life tests are as follows:

- operation for 2000 hours at room temperature and maximum load
- operation for 2000 hours at $70^{\circ} \mathrm{C}$ unless otherwise specified and 70% of maximum load.

5. Dimensional checks

The product is checked visually; the dimensions are compared with those specified on the drawings.
6. Checks on whether the safety requirements are met

The motors should comply with the safety requirements according to CEE 10 , Class 2 except motor $990411005 .$. which comes under CEE 10, Class 1.
Examples of the requirements are: air gaps -8 mm ; creeping distances -8 mm ; high voltages -2500 V between live parts and casing, for one minute. The connecting wires for all 60 Hz motors should be in accordance with CSA and UL requirements.

QUALITY CONTROL DURING PRODUCTION

The following tests are performed during production:

1. Random checks on motor components.
2. Random checks on sub-assemblies for the motor.
3. Tests during manufacturing, on such properties as:

- direction of rotation
- current
- torque
- spindle deviation
- height of motor
- resistance to insulation test voltage as given in the technical performance.

All the products are checked for major defects accordingto MLL standard 105, inspection level II, AQL: 1%.

LIFE

It is very difficult to give an exact value for the expected life of our products since the circumstances in which they are used are often very different. Accelerated life tests can only give an indication.
There are accelerated life tests carried out during 2000 hours, including tests under high ambient temperatures. After these severe tests, the motors still have to conform to the specifications and to be able to work for a long time. Some "informal" tests are carried out; for example, one of the motors has run continuously for more than 5 years under full load under normal (dusty) conditions. No excessive wear or other undesirable results were noted.

RELIABILITY

Synchronous motors are mostly used in applications where they are required to operate for a long time and where failures are highly undesirable because many functions are controlled, as in the case of timers or programme switches. A synchronous motor must therefore be trouble-free. The only way to achieve high reliability is to use a very simple design and to check the quality during all phases of production.
Our motors have:

- no ratchets that wear out
- closed casings hence, the air gap between rotor and stator is protected
- a coil which is wound in a simple way
- a one-piece rotor moulded to the spindle
- been checked regularly during development and manufacture.

APPLICATIONS

The synchronous motors can be used in a wide range of applications.
Industrial
Different types of clocks:

- control clocks
- master clocks
- secondary clocks
- signal clocks
- rate change clocks
- switch clocks

Different types of time devices:

- delay relays
- time printers and stamps
- time checking devices
- time recorders
- time switches

Signal apparatus for air traffic control and waterway traffic control
Recording instruments
Electric stage control stands
Control equipment for the processing industry, and for heating and airconditioning installations
Remote control units
Programme switches
Entertainment
Record players
Slide projectors
Television selector units
Tape recorders
Toy drivers
Television sets
Domestic
Timers and programme switches for:

- defroster sections in refrigerators and deepfreezers
- washing machines
- dish washers
- cooking ranges and ovens
- ultraviolet lamps
- automatic vending machines.

Special synchronous motors with inverter for operation from d.c. sources can be used in:

- emergency equipment (standby)
- short-cycle d.c. timing devices
- d.c. -powered musical equipment
- d.c. control systems
- portable (measuring) instruments

REMARKS ON THE TECHNICAL DATA

- The current, power and temperature increase values are guidance values and are measured at $20^{\circ} \mathrm{C}$, in free circulating air and at nominal voltage
- The torque values are minimum ones (except those of the synchrodriver), for the values at nominal voltage see the performance graph
- Derating of torque is given in a percentage per deg C above the ambient temperature of $20^{\circ} \mathrm{C}$
- The curves of the performance graphs are measured on arbitrary motors and synchrodrivers of basic types; they apply also to the derived versions, e.g. curves of motor 990411002101 apply alsoto motors 990411002111,990411002121 and 990411002131
- At low ambient temperature $\left(<-5^{\circ} \mathrm{C}\right)$ the moment in which the motors reach their synchronous speed will be delayed
- The sense of rotation, clockwise (cw) or counterclockwise (ccw), is that seen when looking towards the spindle as shown by the arrow.

9904110

UNIDIRECTIONAL MOTORS

SURVEY

The range of unidirectional motors comprises the following types:

- standard type, catalogue number $990411002 .$. .
- type for high ambient temperature, catalogue number $9904 \overline{11003} .$. .
- under voltage type,
- small type,
catalogue number $9904 \overline{11004} \ldots$
catalogue number $9904 \overline{11005} \ldots$

Mounting brackets for these motors are given at the end of this section.

Standard type, catalogue number 990411002. .

Under-voltage type, catalogue number 9904110 04...

Type for high ambient temperature, catalogue number 990411003. .
$71548 \mathrm{H7}$

Small type, catalogue number $990411005 .$.

STANDARD TYPE

TECHNICAL DATA

Plain version clockwise rotation counterclockwise rotation	catalogue number $990411002 .$. .							
	001	101	201	301	401	501	601	701
	011	111	211	311	411	511	611	711
version with pinion clockwise rotation	021	121	221	321	421	521	621	721
counterclockwise rotation	031	131	231	331	431	531	631	731
Nominal voltage (V)	220	220	117	110	48	24	12	6.3
Frequency (Hz)	60	50	60	50	50	50	50	50
Speed (rev/min)	300	250	300	250	250	250	250	250
Current (mA)	11	7.5	22	17	40	73	170	230
Input power (W)					. 6			
Starting torque (gcm)					25			
Working torque (gcm)					30			
Torque derating (\%)					. 6			
Temperature increase of the motor ($\mathrm{deg}^{\text {c }}$)					30			
Ambient temperature range $\quad\left({ }^{\circ} \mathrm{C}\right)$		-20 t	+ 70				-20 to	+50
Permissible voltage fluctuations (\%)					to +1			
Insulation according to CEE10					ass			
Insulation test voltage (V)		25						
Bearings				slide	bear			
Maximum radial force (g)					90			
Maximum axial force (g)					50			
Maximum inertial load (gcm^{2})					15			
Housing				zinc	plat			
Weight (g)					90			

version with pinion
number of teeth $=10$
module $=0.3$
addendum modification $=+0.2$

TYPE FOR HIGH AMBIENT TEMPERATURE

TECHNICAL DATA

	catalogue number
plain version clockwise rotation counterclockwise rotation	$\begin{aligned} & 990411003101 \\ & 990411003111 \end{aligned}$
Nominal voltage (V)	220
Frequency (Hz)	50
Speed (rev/min)	250
Current (mA)	11
Input power (W)	2.2
Starting torque ${ }^{1}$) (gcm)	15
Working torque ${ }^{1}$) (gcm)	15
Torque derating (\%)	0.6
Temperature increase of the motor (degC)	40
Ambient temperature range (${ }^{\circ} \mathrm{C}$)	-20 to +120
Permissible voltage fluctuations (\%)	+15 to +10
Insulation according to CEE10	class 2
Insulation test voltage (V)	2500
Bearings	slide bearings
Maximum radial force (g)	50
Maximum axial force (g)	10
Maximum inertial load (gcm^{2})	0.15
Housing	zinc plated
Weight (g)	90

[^0]

UNDER-VOLTAGE TYPE
TECHNICAL DATA

version with pinion
number of teeth $=10$
module $=0.3$
addendum modification $=+0.2$

SMALL TYPE

TECHNICAL DATA

plain version clockwise rotation counterclockwise rotation		catalogue number $990411005 .$.						
		101 ${ }^{1}$)	201	301	401	501	601	701
		1111)	211	311	411	511	611	711
version with pinion clockwise rotation		121 ${ }^{1}$)	221	321	421	521	621	721
counterclockwise rotation		131 ${ }^{1}$)	231	331	431	531	631	731
Nominal voltage	(V)	220	117	110	48	24	12	6
Frequency	(Hz)	50	60	50	50	50	50	50
Speed	(rev/min)	250	300	250	250	250	250	250
Current	(mA)	8	8	5	12.5	24	70	100
Input power	(W)	1.8	0.9	0.5	0.6	0.5	0.8	0.6
Starting torque	(gcm)	5	5	5	5	5	5	5
Working torque	(gcm)	5	5	5	5	5	5	5
Torque derating	(\%)	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Temperature increase of the motor	$(\operatorname{deg} \mathrm{C})$	20	35	20	25	20	30	25
Ambient temperature range	$\left({ }^{\circ} \mathrm{C}\right)$	-20 to +70						
Permissible voltage fluctuations	(\%)	-15 to +10						
Insulation according to CEE10		class 1						
Insulation test voltage	(V)	2500						
Bearings		slide bearings						
Maximum radial force	(g)	30						
Maximum axial force	(g)	10						
Maximum inertial load	$\left(\mathrm{gcm}^{2}\right)$	0.05						
Housing		zinc plated						
Weight	(g)	40						

${ }^{1}$) With series resistor of $20 \mathrm{k} \Omega, 2 \mathrm{~W}$.
Also available without resistor under catalogue number:
990411005102 , 990411005112,990411005122 and 990411005132 respectively.

[^1]
BRACKETS

Special brackets have been made available for mounting the motors of the series $990411002 \ldots, 990411003 \ldots$ and $990411004 \ldots$ to some piece of equipment, which may be a gearbox.
They are identified as follows:
bracket 990413101001 for use with motors of the series 990411002. . and $990411004 \ldots$ (plain versions and versions with pinion)
bracket 990413101003 for use with motors of the $990411003 \ldots$ series.

Bracket 990413101001

Bracket 990413101003

[^2]
REVERSIBLE MOTORS

SURVEY

The range of reversible motors comprises the following types:

- medium torque type,
- high torque type,
- high torque, slender type, cat
- small type,
catalogue number $990411104 .$. .
catalogue number $9904 \overline{11105}$...
catalogue number 990411106 ...
catalogue number $9904111107 .$.

All these motors are supplied without phasing capacitors. For recommended capaci tors see paragraph "Technical Data" of the relevant motors.

Medium torque type, catalogue number 9904111 04...

High torque slender type, catalogue number 9904111 06...
 \rightarrow.

High torque type, catalogue number 9904111 05...

MEDIUM TORQUE TYPE

TECHNICAL DATA

${ }^{1}$) Continuous operation. Intermittent operation must allow for a maximum permis sible stator temperature of $110^{\circ} \mathrm{C}$. See also paragraph "Parallel and series connection of the stator coils in reversible motors".
2) Readily available.
catalogue number $990411104 .$. .

version with pinion
number of teeth $=10$
module $=0.3$
addendum modification $=+0.2$

Coils in parallel

Coils in series

HIGH TORQUE TYPE

TECHNICAL DATA

plain version		catalogue number $990411105 .$.					
		coils in parallel					
		111	211	311	411	511	611
Nominal voltage	（V）	220	117	110	48	24	12
Frequency	（Hz）	50	60	50	50	50	50
Speed（r	（rev／min）	250	300	250	250	250	250
Current	（mA）	16	42	30	65	140	280
Input power	（W）	3.3	4.5	4.5	3.3	3.3	3.3
Starting torque	（gcm）	325	325	325	325	325	325
Working torque	（gcm）	375	375	375	375	375	375
Torque derating	（\％）	0.25	0.25	0.25	0.25	0.25	0.25
Temperature increase of the motor（degC）		40	50	40	40	40	40
Ambient temperature range ${ }^{1}$ ）	$\left({ }^{\circ} \mathrm{C}\right)$	-20 to +70					
Permissible voltage fluctuations	ns（\％）	-15 to +10					
Insulation according to CEE10		class 2					
Insulation test voltage	（V）				00		
Bearings		needle bearings					
Maximum radial force	（g）	1500					
Maximum axial force	（g）	aluminium					
Housing	（g）						
Weight		550					
Required phasing capacitor Permissible a．c．voltage Catalogue number 2222 ．．．．．．．．	（ $\mu \mathrm{F}$ ） （V）	0.12	0.47	0.47	2.2	10	40
		330	250	250	160	160	
		¢	๓	ఱ	๓		
		H	－	む	$\stackrel{1}{\sim}$	\bigcirc	
		I	＊	む	Nิ	\bigcirc	
		∞	in	in	∞	in	
		N	\＃	F゙	戸	－	

[^3]catalogue number $990411105 .$.

coils in series					
111	211	311	411	511	611
380	220	220	110^{2}	48	24
50	60	50	50	50	50
250	300	250	250	250	250
10	27	30	70	110	250
3.7	6	6	7.5	7.5	6
400	550	550	550	550	550
450	600	600	600	600	600
0.25	0.25	0.25	0.25	0.25	0.25
45	60	60	60	55	60
-20 to +40					
-15 to +10					
class 2					
2500					
needle bearings					
1500					
500					
aluminium					
550					

0.18	0.68	0.82	4	16	60
330	250	250	160	160	
๓					－
$\begin{aligned} & \dot{\infty} \\ & \underset{i}{7} \end{aligned}$	H O in	$\begin{aligned} & \text { H } \\ & \text { O } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { ì } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { in } \end{aligned}$	\％
N	\＃゙	戸゙	N	N్లు	L్లు

Coils in parallel

Coils in series

Connection diagrams

HIGH TORQUE, SLENDER TYPE

TECHNICAL DATA

plain versionversion with pinion		catalogue number $990411106 .$.					
		011	111	211	311	411	511
		031	131	231	331	431	531
Nominal voltage	(V)	220	220	117	110	48	24
Frequency	(Hz)	60	50	60	50	50	50
Speed (r	(rev/min)	300	250	300	250	250	250
Current	(mA)	24	27	60	50	110	200
Input power	(W)	5	5	6	5	5	5
Starting torque	(gcm)	300	300	300	300	250	300
Working torque	(gcm)	375	375	375	375	350	375
Torque derating	(\%)	0.25	0.25	0.25	0.25	0.25	0.25
Temperature increase of the motor (degC)		35	35	45	35	35	35
Ambient temperature range	$\left({ }^{\circ} \mathrm{C}\right)$	-20 to +70					
Permissible voltage fluctuations	S (\%)	-10 to +10					
Insulation according to CEE10		class 2					
Insulation test voltage	(V)	2500					
Bearings		slide bearings					
Maximum radial force	(g)	1500					
Maximum axial force	(g)	150					
Housing		aluminium					
Weight	(g)	300					
Required phasing capacitor	($\mu \mathrm{F}$)	0.15	0.18	0.68	0.68	3.5	14
Permissible a.c. voltage	(V)	330	330	250	250	160	160
Catalogue number$2222 \text {. }$			\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		H1	\pm	+	\pm	10	4
		ה	\cdots	$\stackrel{\circ}{\text { in }}$	$\stackrel{\circ}{\text { in }}$	in	is
		N	N	F	$\underset{\sim}{7}$	N	닌

[^4]

plain version

Connection diagram

SMALL TYPE

TECHNICAL DATA

[^5]

version with pinion
number of teeth $=10$
module $=0.3$
addendum modification $=+0.2$

Coils in parallel

Coils in series

Connection diagrams

SYNCHRODRIVERS

DESCRIPTION

Fundamentally the synchrodriver is based upon the same principles as the unidirectional motors.
Due to the integration of motor and geartrain not sufficient space was left for a proper arrangement of the main and auxiliary poles. As a result the magnetic field was disturbed and therefore the maximum properties of our synchronous motors could not be achieved.
By a special magnetization of the rotor and the use of a one-way ratchet this disadvantage could be eliminated and our synchrodrivers are in all respects comparable to conventional motor-gear units.
Furthermore, plastic components fabricated according to the latest views are incorporated to make a reliable, attractively shaped product meeting mass-production requirements. These are all reasons why the synchrodriver represents the most economical solution for a wide range of timing devices as used in household appliances.
The basic version is an $8 \mathrm{rev} / \mathrm{min}$ synchrodriver; the starting time of this version is less than 1 s and the rebound angle smaller than 5 degrees. A version which has a speed of $1 \mathrm{rev} / \mathrm{min}$ is also available. It has been de-
 signed mainly for use in high temperatures (up to $120^{\circ} \mathrm{C}$ intermittently).

MOUNTING

The synchrodrivers must be mounted by means of two non-ferrous screws or rivets. For the electrical connections use can be made of AMP terminals 160315.

TECHNICAL DATA

1) Available with a spindle diameter of 3 mm under catalogue numbers 990411503001 (cw) and 990411503011 (ccw).
2) Torque at nominal voltage.
${ }^{3}$) It is allowed to use this synchrodriver intermittently in the temperature range +50 to $+120^{\circ} \mathrm{C}\left(+50\right.$ to $+100^{\circ} \mathrm{C}$ for the synchrodrivers 990411505002 and 9904115 05012). As a result the maximum permissible torque and the maximum radial force decrease; at $120^{\circ} \mathrm{C}$ the maximum permissible torque is 300 gcm , the maximum radial force is 100 g .

Versions with a speed of $8 \mathrm{rev} / \mathrm{min}$ (spindle diameter 3 mm).

counterclockwise rotation

clockwise rotation
Versions with a speed of $1 \mathrm{rev} / \mathrm{min}$ (spindle diameter 1.7 mm).

A.C./D.C. SYNCHRONOUS MOTORS

RZ 52801-28

APPLICATION

These synchronous motors, in conjunction with a d.c. to a.c. inverter, are used for applications which require:

- instantaneous automatic switchover to a d.c. standby supply in the event of an a.c. mains failure
- a choice of supply, such as portable and transportable electrical measuring instru ments
- a d.c. supply only, such as portable record players and tape recorders.

DESCRIPTION

These synchronous motors are conventional 12 V unidirectional or reversible motors, the former employing slightly modified coils. The motors operate either directly from a 12 V a.c. supply, or indirectly (via an inverter which is mounted on a printedwiring board) from a 12 V d.c. supply. The supply used is fed either directly to the motor (a.c.) or to the inverter (d.c.) via a switching element.
TECHNICAL DATA

clockwise rotationcounterclockwise	catalogue number			
	unidirectional motors		reversible motors	
	990411002806	990411005806	990411104611	990411107611
	990411002808	990411005808		
Catalogue number of associated inverter	990413103001	990413103001	990413103002	990413103002
Type of supply	a.c. d.c.	a.c. d.c.	a.c. d.c.	a.c. d.c.
Nominal voltage (V)	1212	1212	1212	1212
Frequency (Hz)	50 50*)	50 50*)	50 50*)	50 50*)
Speed (rev/min)	250250	250250	250250	250250
Working torque (gcm)	3020	$7 \quad 6$	11060	35 30
Ambient temperature range (${ }^{\circ} \mathrm{C}$)	-5 to +50	-5 to +50	-5 to +50	-5 to +50
Bearings	slide	slide	slide	slide
Maximum radial force (g)	9090	$30 \quad 30$	500500	250250
Maximum axial force (g)	5050	$10 \quad 10$	150150	75
Required phasing capacitor ($\mu \mathrm{F}$)	-	-	1212	4.7 4.7
Catalogue number	-	- -	222232550126	222234129475

*) Produced by associated inverter.

Using d.c. supply and inverter

Using d.c. supply and inverter

Using d.c. supply and inverter

Using a.c. supply at 50 Hz

Using a.c. supply at 50 Hz

Using a.c. supply at 50 Hz

Using d.c. supply and inverter

Unidirectional motor 990411002806
or 990411002808

- $=-{ }^{2}$

Using a.c. supply at 50 Hz

Unidirectional motor 990411005806 or 990411005808

Connection diagram

A.C./D.C. SYNCHRONOUS MOTORS

Reversible motor 990411104611

Connection diagram

Circuit diagram of inverter 990413103001 , for use in conjunction with unidirectional motors.

Printed-wiring board connections.

Circuit diagram of inverter 990413103002 , for use in conjunction with reversible motors.

UNIVERSAL PROGRAMME SWITCH ASSEMBLY KIT

INTRODUCTION

This assembly kit enables the user to construct, with a limited number of components, a programme switch for many different timing cycles, very simple in design but sturdy enough to be suitable for both professional and non-professional purposes. In the professional field the programme switch can be valuable in the programming of industrial processes or scientific research experiments. As non-professional applications we may mention the use in domestic appliances or entertainment apparatus, for instance

- electric blankets
- electric water boilers
- electric heaters
- illumination-control units for shop windows.

The timing function is carried out by a camshaft, and the number of revolutions this makes per minute is dependent on the selected gearing-down ratio.
Two types of kit are available:

- for use with $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, catalogue number 990413102001
- for use with $117 \mathrm{~V}, 60 \mathrm{~Hz}$ supply, catalogue number 990413102002.

SHORT DESCRIPTION

The universal programme switch consists of four basic elements:

1. The motor.

Unidirectional motor for $220 \mathrm{~V}, 50 \mathrm{~Hz}$ (catalogue number 990411002124) or for $117 \mathrm{~V}, 60 \mathrm{~Hz}$ (catalogue number 990411002223), or reversible motor for $220 \mathrm{~V}, 50 \mathrm{~Hz}$ (catalogue number 990411004134) or for $117 \mathrm{~V}, 60 \mathrm{~Hz}$ (catalogue number 990411104332).
For details see "Technical Data" of motors $990411002 .$. and $990411104 .$. respectively.
2. The reduction gear.

A wide variety of pinions and gearwheels makes it possible to obtain a great number of gear ratios, and thus outgoing-spindle speeds between $1 \mathrm{rev} / \mathrm{min}$ and $1 \mathrm{rev} / 24 \mathrm{~h}$.
3. The camshaft with cams.

The camshaft carries up to 6 adjustable cams .
Each cam consists of two separate discs, which can be turned in respect to each other in order to obtain the desired switching time.
This adjustment can be made with a special tool on which the angle of adjustment is indicated.
4. The switch assemb,y, comprising 6 microswitches with alternating contacts together with insulator plates, operating levers and rollers.

A comprehensive instruction manual is supplied with each kit to explain the assembly procedure and the adjustment of the various cams and contacts.

Assembled programme switch

GEARBOXES

GENERAL

The reduction gearboxes of the $990413001 \ldots$ series have been designed for use with the synchronous motors provided with standard pinions. They are supplied separately but can easily be mounted to any of these motors.

To attach the motor to the gearbox, place the reversible centring bush in position so that it fits the centring rim on the motor casing, and fasten the motor by means of the two screws in the gearbox cover. For fastening the motors $990411005 .$. and $990411107 \ldots$ the gearbox is provided with two threaded holes M2.6.

Many different gear ratios can be built into the same metal casing. There are over 60 standard gear ratios, 31 are preferred ones.
The gearboxes are meant for small series and professional applications with versatility as the main property. As a rule small quantities of those in the preferred range can be supplied from stock.

For all data necessary for selecting the appropriate gearbox from the series, see the survey at the end of this section.

TECHNICAL DATA

Maximum permissible load
Maximum permissible radial force Maximum permissible axial force

$$
\begin{aligned}
& 2000 \mathrm{gcm} \\
& 1000 \mathrm{~g}
\end{aligned}
$$

Gearbox -performance graph
By using a gearbox with a large gearing-down ratio it will be possible to obtain a torque at the outgoing spindle of the gearbox which surpasses the maximum permissible load on the gearbox of 2000 gcm . The gearbox-performance graph therefore shows 2000 gcm as the torque limit.

The graph can be used either for finding the maximum obtainable torque value of a given motor + gearbox, or the proper motor-gearbox combination for obtaining a given torque.
a. Motor $990411005 .$. ; required gearing-down ratio $36: 1$.

The graph shows the maximum obtainable torque to be 100 gcm . Gearbox efficiency has been taken into account.
b. Desired torque value 100 gcm , required gearing-down ratio $36: 1$.

The graph shows that the motor with the catalogue number $990411005 \ldots$ does the job.

SURVEY

Preferred range

catalogue number	gear ratio	number of revolutions of outgoing spindle when coupled to a motor operating from		direction of rotation of outgoing spindle compared to motor spindle 1)	effi cien cy
		50 Hz mains	60 Hz mains		
990413001001	25:6	$60 \mathrm{rev} / \mathrm{min}$	$72 \mathrm{rev} / \mathrm{min}$	same	0.64
01003	25:4	$40 \mathrm{rev} / \mathrm{min}$	$48 \mathrm{rev} / \mathrm{min}$	same	0.64
01004	25:3	$30 \mathrm{rev} / \mathrm{min}$	$36 \mathrm{rev} / \mathrm{min}$	same	0.64
01005	10:1	$25 \mathrm{rev} / \mathrm{min}$	$30 \mathrm{rev} / \mathrm{min}$	same	0.64
01006	25:2	$20 \mathrm{rev} / \mathrm{min}$	$24 \mathrm{rev} / \mathrm{min}$	same	0.64
01008	50:3	$15 \mathrm{rev} / \mathrm{min}$	$18 \mathrm{rev} / \mathrm{min}$	opposite	0.51
01009	20:1	$12.5 \mathrm{rev} / \mathrm{min}$	$15 \mathrm{rev} / \mathrm{min}$	same	0.64
01011	25:1	$10 \mathrm{rev} / \mathrm{min}$	$12 \mathrm{rev} / \mathrm{min}$	opposite	0.51
01014	100:3	$7.5 \mathrm{rev} / \mathrm{min}$	$9 \mathrm{rev} / \mathrm{min}$	opposite	0.51
01016	125:3	$6 \mathrm{rev} / \mathrm{min}$	$7.2 \mathrm{rev} / \mathrm{min}$	opposite	0.51
01017	50:1	$5 \mathrm{rev} / \mathrm{min}$	$6 \mathrm{rev} / \mathrm{min}$	opposite	0.51
01019	125:2	$4 \mathrm{rev} / \mathrm{min}$	$4.8 \mathrm{rev} / \mathrm{min}$	opposite	0.51
01021	250:3	$3 \mathrm{rev} / \mathrm{min}$	$3.6 \mathrm{rev} / \mathrm{min}$	same	0.41
01087	75:1	$3 \frac{1}{3} \mathrm{rev} / \mathrm{min}$	$4 \mathrm{rev} / \mathrm{min}$	opposite	0.51
01023	125:1	$2 \mathrm{rev} / \mathrm{min}$	$2.4 \mathrm{rev} / \mathrm{min}$	opposite	0.51
01026	200:1	$1.25 \mathrm{rev} / \mathrm{min}$	$1.5 \mathrm{rev} / \mathrm{min}$	same	0.41
01027	250:1	$1 \mathrm{rev} / \mathrm{min}$	$1.2 \mathrm{rev} / \mathrm{min}$	same	0.41
01028	300:1	$50 \mathrm{rev} / \mathrm{h}$	$1 \mathrm{rev} / \mathrm{min}$	same	0.41
01034	500:1	$30 \mathrm{rev} / \mathrm{h}$	$36 \mathrm{rev} / \mathrm{h}$	same	0.41
01037	750:1	$20 \mathrm{rev} / \mathrm{h}$	$24 \mathrm{rev} / \mathrm{h}$	opposite	0.33
01038	2500:3	$18 \mathrm{rev} / \mathrm{h}$	$21.6 \mathrm{rev} / \mathrm{h}$	opposite	0.33
01039	1000:1	$15 \mathrm{rev} / \mathrm{h}$	$18 \mathrm{rev} / \mathrm{h}$	opposite	0.33
01041	1250:1	$12 \mathrm{rev} / \mathrm{h}$	$14.4 \mathrm{rev} / \mathrm{h}$	opposite	0.33
01042	1500:1	$10 \mathrm{rev} / \mathrm{h}$	$12 \mathrm{rev} / \mathrm{h}$	opposite	0.33
01051	3750:1	$4 \mathrm{rev} / \mathrm{h}$	$4.8 \mathrm{rev} / \mathrm{h}$	same	0.26
01054	5000:1	$3 \mathrm{rev} / \mathrm{h}$	$3.6 \mathrm{rev} / \mathrm{h}$	same	0.26
01055	6000:1	$2.5 \mathrm{rev} / \mathrm{h}$	$3 \mathrm{rev} / \mathrm{h}$	same	0.21
01062	$15000: 1$	$1 \mathrm{rev} / \mathrm{h}$	$1.2 \mathrm{rev} / \mathrm{h}$	opposite	0.21
01071	$45000: 1$	$8 \mathrm{rev} / 24 \mathrm{~h}$	$9.6 \mathrm{rev} / 24 \mathrm{~h}$	same	0.17
01077	$90000: 1$	$4 \mathrm{rev} / 24 \mathrm{~h}$	$4.8 \mathrm{rev} / 24 \mathrm{~h}$	same	0.17
01085	$360000: 1$	$1 \mathrm{rev} / 24 \mathrm{~h}$	$1.2 \mathrm{rev} / 24 \mathrm{~h}$	opposite	0.14

[^6]
Non-preferred range

catalogue number	gear ratio	number of revolutions of outgoing spindle when coupled to a motor operating from		direction of rotation of outgoing spindle compared to motor spindle ${ }^{1}$)	effi - ciency
		50 Hz mains	60 Hz mains		
990413001022	100:1	$2.5 \mathrm{rev} / \mathrm{min}$	$3 \mathrm{rev} / \mathrm{min}$	opposite	0.51
01025	500:3	$1.5 \mathrm{rev} / \mathrm{min}$	$1.8 \mathrm{rev} / \mathrm{min}$	same	0.41
01088	3000:9	$45 \mathrm{rev} / \mathrm{h}$	$54 \mathrm{rev} / \mathrm{h}$	opposite	0.33
01031	375:1	$40 \mathrm{rev} / \mathrm{h}$	$48 \mathrm{rev} / \mathrm{h}$	same	0.41
01032	400:1	$37.5 \mathrm{rev} / \mathrm{h}$	$45 \mathrm{rev} / \mathrm{h}$	opposite	0.33
01033	1250:3	$36 \mathrm{rev} / \mathrm{h}$	$43.2 \mathrm{rev} / \mathrm{h}$	opposite	0.33
01035	600:1	$25 \mathrm{rev} / \mathrm{h}$	$30 \mathrm{rev} / \mathrm{h}$	opposite	0.33
01036	625:1	$24 \mathrm{rev} / \mathrm{h}$	28.8 rev/h	same	0.41
01043	5000:3	$9 \mathrm{rev} / \mathrm{h}$	$10.8 \mathrm{rev} / \mathrm{h}$	same	0.26
01044	1875:1	$8 \mathrm{rev} / \mathrm{h}$	$9.6 \mathrm{rev} / \mathrm{h}$	opposite	0.33
01045	2000:1	$7.5 \mathrm{rev} / \mathrm{h}$	$9 \mathrm{rev} / \mathrm{h}$	opposite	0.33
01047	2500:1	$6 \mathrm{rev} / \mathrm{h}$	$7.2 \mathrm{rev} / \mathrm{h}$	opposite	0.33
01048	3000:1	$5 \mathrm{rev} / \mathrm{h}$	$6 \mathrm{rev} / \mathrm{h}$	same	0.26
01049	3125:1	$4.8 \mathrm{rev} / \mathrm{h}$	$5.76 \mathrm{rev} / \mathrm{h}$	opposite	0.33
01056	6250:1	$2.4 \mathrm{rev} / \mathrm{h}$	$2.88 \mathrm{nev} / \mathrm{h}$	opposite	0.21
01057	7500:1	$2 \mathrm{rev} / \mathrm{h}$	2.4 rev/h	opposite	0.21
01059	10000:1	$1.5 \mathrm{rev} / \mathrm{h}$	$1.8 \mathrm{rev} / \mathrm{h}$	opposite	0.21
01061	$12500: 1$	$1.2 \mathrm{rev} / \mathrm{h}$	$1.44 \mathrm{rev} / \mathrm{h}$	opposite	0.21
01064	$20000: 1$	$0.75 \mathrm{rev} / \mathrm{h}$	$0.9 \mathrm{rev} / \mathrm{h}$	opposite	0.21
01066	$24000: 1$	$15 \mathrm{rev} / 24 \mathrm{~h}$	$18 \mathrm{rev} / 24 \mathrm{~h}$	same	0.17
01068	$30000: 1$	$12 \mathrm{rev} / 24 \mathrm{~h}$	$14.4 \mathrm{rev} / 24 \mathrm{~h}$	same	0.17
01069	$36000: 1$	$10 \mathrm{rev} / 24 \mathrm{~h}$	$12 \mathrm{rev} / 24 \mathrm{~h}$	same	0.17
01093	40 000:1	$9 \mathrm{rev} / 24 \mathrm{~h}$	$10.8 \mathrm{rev} / 24 \mathrm{~h}$	same	0.17
01072	48 000:1	$7.5 \mathrm{rev} / 24 \mathrm{~h}$	$9 \mathrm{rev} / 24 \mathrm{~h}$	same	0.17
01074	$60000: 1$	$6 \mathrm{rev} / 24 \mathrm{~h}$	$7.2 \mathrm{rev} / 24 \mathrm{~h}$	same	0.17
01075	72 000:1	$5 \mathrm{rev} / 24 \mathrm{~h}$	$6 \mathrm{rev} / 24 \mathrm{~h}$	same	0.17
01076	$75000: 1$	$4.8 \mathrm{rev} / 24 \mathrm{~h}$	$5.76 \mathrm{rev} / 24 \mathrm{~h}$	same	0.17
01079	120000:1	$3 \mathrm{rev} / 24 \mathrm{~h}$	$3.6 \mathrm{rev} / 24 \mathrm{~h}$	same	0.17
01082	180000:1	$2 \mathrm{rev} / 24 \mathrm{~h}$	$2.4 \mathrm{rev} / 24 \mathrm{~h}$	opposite	0.14
01083	240000:1	$1.5 \mathrm{rev} / 24 \mathrm{~h}$	$1.8 \mathrm{rev} / 24 \mathrm{~h}$	opposite	0.14
01084	300000:1	$1.2 \mathrm{rev} / 24 \mathrm{~h}$	$1.44 \mathrm{rev} / 24 \mathrm{~h}$	opposite	0.14

[^7]
Stepper motors

General
page B3
Industrial digital motors
Professional digital and
servo-mount digital motors
4- and 8-phase electronic switch
page B35
page B83

INTRODUCTION

Stepper motors are rapidly becoming recognized as the best - and often unique - solution to many control problems. This is due to their lacking the disadvantages of closed-loop servo-mechanism systems; extreme sensitivity for interference, and the need for the input information to be converted from digital to analogue. Besides step per motors afford a cheaper solution. Two kinds of stepper motors exist: the varia ble reluctance and the permanent magnet type. Our motors are of the latter construc tion which is distinguished from the variable reluctance type by its simplicity, very small size, large step angle and better damping (giving relative freedom from the effects of resonance and a smaller overshoot). Especially the adoption of the 8 -phase construction led to the present satisfactory situation.

Our line of permanent magnet stepper motors covers working torques from 60 gcm to 1600 gcm , pull -out rates from $320 \mathrm{steps} / \mathrm{s}(400 \mathrm{rev} / \mathrm{min})$ to $16000 \mathrm{steps} / \mathrm{s}(10000$ $\mathrm{rev} / \mathrm{min})$ and pull-in rates from $140 \mathrm{steps} / \mathrm{s}(350 \mathrm{rev} / \mathrm{min})$ to $1200 \mathrm{steps} / \mathrm{s}(750 \mathrm{rev} /$ min).
General design of the motor has been optimised over the long period we have been concerned with stepper motor production. All motors can be delivered complete with their own electronic control, thus ensuring that the motors always deliver the high performance of which they are capable. Roller or ball bearings are standard on most models*, and the PD and SMDtypes can be made to satisfy MIL specifications on request.

The range consists of 21 motors, eight of which are PD ("Professional Digital") types, a further eight SMD ("Servo-Mount Digital") types, and five ID ("Industrial Digital") types. A PD motor and its corresponding SMDtype, which has the PDtype number + 1, have identical specifications except for the mounting. PDtypes have a square mount ing flange, and the SMD types have the standard servo-motor mounting. ID types may be used in less-demanding applications.

[^8]
PRINCIPLES

Fig. 1 illustrates the action diagrammatically. The motor shown is a 4-phase, 2 -pole type; this means that the stator has four phases and the rotor two poles (one north and one south). With phase P and phase R energized, the four stator poles take the polarities shown in Fig. la and the rotor turns to the position 1. If phase Q is now energized instead of phase P, the rotor will turn through 90° (anti-clockwise) to the position 2 shown in Fig. 1b. Steps to the positions 3 and 4 can be obtained in a similar fashion. Fig. 1c shows the effect of completely de-energizing stator RS; the rotor turns a half step to intermediate position $2 \frac{1}{2}$. If stator PQ had been completely de-energized, the rotor would have turned anti-clockwise to intermediate position $1 \frac{1}{2}$.

Fig. 1. Diagrammatic representation of a 4 -phase, 2 -pole motor:
(a) rotor at position 1 ;
(b) rotor at position 2 ;
(c) rotor at intermediate position $2 \frac{1}{2}$ (see next page).

Energization of phases related to rotor position.

Phases energized	Stator de-energized	Resultant rotor step position
P, R	-	1
R	PQ	$1^{\frac{1}{2}}$
R, Q	-	2
Q	RS	$2 \frac{1}{2}$
Q, S	-	3
S	PQ	$3 \frac{1}{2}$
S, P	-	4
P	RS	$\frac{1}{2}$

The direction of rotation can be reversed at any point.

If we now make a stator with eight phases and place in it the 2 pole rotor as shown in Fig. 2, the rotor will turn only 45° per step. An important advantage of the 8-phase stator is that during the switching from one phase to its partner (i.e. when complete de-energization of a whole stator occurs), 75% of the full torque is still available because three out of the four stators remain energized. In Fig. 2 complete de-energization of stator PQ (phases R, T, V still energized) will cause the rotor to turn to intermediate position $1 \frac{1}{2}$; complete de-energization of winding VW (phases P, R, T still energized), will cause the rotor to turn to intermediate position $\frac{1}{2}$.

(c)

Fig. 2. Diagrammatic representation of an 8 -phase, 2 -pole motor: rotor at position 1 .

Thus, an advantage of 8 -phase motors is that the stepping angle can be small while still having a high torque and stepping rate. In general, the smaller the stepping angle, the greater the resolution. The small stepping angle of our motors (7.5° for 4 -phase, 3.75° for 8 -phase) has been achieved by using a 24 pole rotor and stator.* Although not often used, it is possible to halve these stepping angles by counting the intermediate steps; as noted above, however, the torque is then reduced. To obtain the maximum torque for a certain average power dissipation, the current in each phase should reach its maximum value immediately and maintain this, and the switchover time from one phase to the next should be zero. The only way in which this second requirement can be closely approached is to use electronic switching. Two inexpensive electronic switching circuits using integrated circuits on printed-wiring boards have been developed for our motors, one for 4 -phase and the other for δ-phase types. The first requirement-that the current in each phase should reach its maximum value immediately and maintain this - can usually be satisfactorily approximated at start and low stepping rates simply by paralleling each winding with a capacitor (C_{V} in Fig.3) and using a higher supply voltage via a resistor R_{V}. During the time that a phase is switched off, C_{V} charges via R_{V} to voltage V_{b}; when the switch is again closed, C_{V} discharges through the winding. Resistor R_{V} serves in addition another purpose: at higher frequencies it reduces the opposing currents in the phases due to the back e.m.f. thus increasing pull-in and pull-out rates, and torque. This method increases the power consumption of the system, due to the dissipation of resistor R_{V}. If dis sipation in the system is to be kept to a minimum, it might be better to choose a motor that can attain the speed without the help of the RC-network.

Fig. 3. Connection of the compensating network $\mathrm{R}_{\mathrm{V}}-\mathrm{C}_{\mathrm{V}}$. (L is the stator phase winding 1 ; the numbers 1 and 1 ' refer to the leads to and from phase 1. The switch can be a transistor, as in the electronic switches, described below).

[^9]
TERMINOLOGY

(in alphabetical order)
Detent Torque: The maximum torque that can be applied to the spindle of an unexcited motor without causing continuous rotation. Unit: gcm.

Deviation: The change in spindle position from the unloaded holding position when a certain torque is applied to the spindle of an excited motor. Unit: degrees.
Holding Torque: The maximum steady torque that can be externally applied to the spindle of an excited motor without causing continuous rotation. Unit: gcm.

Maximum Pull-In Rate (Speed): The maximum switching rate (speed) at which an unloaded motor can start without losing steps. Unit: steps/s (rev/min).
Maximum Pull-Out Rate (Speed): The maximum switching rate (speed) which the unloaded motor can follow without losing steps. Unit: steps/s (rev/min).

Overshoot: The maximum amplitude of the oscillation around the final holding position of the rotor after cessation of the switching pulses. Unit: degrees.

Permanent Overshoot: The number of steps the rotor moves after cessation of the switching pulses. Unit: steps.

Phase: Each winding connected across supply voltage.
Pull-In Rate (Speed): The maximum switching rate (speed) at which a frictionally load ed motor can start without losing steps. Unit: steps/s (rev/min).
Pull-In Torque: The maximum torque that can be applied to a motor spindle when starting at the pull-in rate. Unit: gcm.
Pull-Out Rate (Speed): The maximum switching rate (speed) which a frictionally load ed motor can follow without losing steps. Unit: steps/s (rev/min).

Pull-Out Torque: The maximum torque that can be applied to a motor spindle when running at the pull-out rate. Unit: gcm.
Start Range: The range of switching rates within which a motor can start without losing steps.
Step Angle: The nominal angle that the motor spindle must turn through between ad jacent step positions. Unit: degrees.
Stepping Rate: The number of step positions passed by a fixed point on the rotor per second. Unit: steps/s.

S!ew Range: The range of switching rates within which a motor can run unidirectionally and follow the switching rate (within a certain maximum acceleration) without losing steps, but cannot start, stop or reverse.

Typical stepper motor curves illustrating the terminology used.

CHARACTERISTICS

The characteristic of foremost importance to the designer is the way in which rotor torque varies with speed (stepping rate). Fig. 1 compares the torque/stepping rate characteristics of the PD20 and PD12, from which it is clear that motors are available to cope with most situations. These curves can be further modified so that peak torque occurs at other than zero stepping rate, by using certain values of resistors and capacitors across the windings (see relevant data sheets). In addition, the curves can be raised or lowered by varying the applied voltage.

Fig. 1. Typical curves from two motors in the range: the PD20 (SMD21) and the PD12 (SMD13).

By way of example, take the torque/stepping rate characteristic of the PD24 (Fig. 1) and examine it in detail. The solid "pull-in torque" curve A is the start characteris tic: from this can be read the allowable load friction torque which, when applied to the rotor spindle, will allow the rotor to reach a certain stepping rate from stand-still with out missing a step. The "pull-out torque" curve B shows allowable friction torque plotted against stepping rate after gradual increase of the rate. The motor cannot be quickly accelerated or decelerated in this region (i.e. between the start curve and the slew curve) without the risk of discrepancies appearing between number of pulses supplied and number of steps moved by the rotor. This region is called the "slew range".
The two solid curves described above are for the values of $\mathrm{R}_{\mathrm{V}}, \mathrm{C}_{\mathrm{V}}$ and V_{b} given. The two broken curves are for $\mathrm{V}_{\mathrm{b}}=5 \mathrm{~V}$ and no C_{V} or R_{V}. (Curve a: pull-in torque; curve b: pull-out torque).

Fig. 2. Start and slew range curves for the PD24.

In practice, the stepper motor must be started at a stepping rate not exceeding the rate given by the start curve for the friction load present, then brought into the slew range by gradually increasing the pulse rate. To stop accurately, the pulse rate must first be gradually reduced, back to the rate used to start the motor. Below this rate, the rotor will stop without permanent overshoot even if the pulse rate is suddenly reduced to zero.

The curves given in the data section assume the inertia of the load to be small compared to the rotor inertia. If the load inertia is appreciable, the start curve will be ad versely affected in that stepping rates will be reduced. The slew range will not be affected; however, acceleration and deceleration in the slew range must then be smaller.

Stepper motors are inherently prone to instability due to the pulsating nature of the energizing signals. Often, the instability region lies outside the working region, or is very slight, thus causing no problem. If instability is a problem, however, there are a number of ways available to reduce it to insignificancy. Instability results from the internal resonance of the "motor + electronics" system. The resonance frequen cy can be affected by the load inertia and the RC network, while the amplitude of os cillation is determined by the friction load and RC. It may also be possible to move the working speed range of the motor above or below the instability region.

Our motors do in fact exhibit instability over certain speed ranges for the values of $\mathrm{R}_{\mathrm{V}}, \mathrm{C}_{\mathrm{V}}$ and V_{b} chosen to produce the curves given in the data sheets below, it must be remembered, however, that firstly the $\mathrm{R}_{\mathrm{V}}-\mathrm{C}_{\mathrm{V}}-\mathrm{V}_{\mathrm{b}}$ values were chosen only with an eye to producing the best speed, and secondly, that the loadinertia is assumednegligible. With appreciable inertia, the instability can disappear.

The dissipation stated for each motor in the PD and SMD series is that which gives a 40-45 degC rise in motor temperature. The maximum temperature for which the motors are designed is $125^{\circ} \mathrm{C}$. For the ID series, a temperature rise of $30-40 \mathrm{degC}$ has been allowed: maximum temperature is $100^{\circ} \mathrm{C}$. If used at a low ambient temperature, a higher supply voltage is permissible giving correspondingly higher torque.

[^10]
APPLICATIONS

The stepper motor converts electrical digital information into mechanical movement. Given this property plus the fact that the digital technique is the predominant method used for information processing, applications for stepper motors cover an extremely wide field.

A very important advantage of stepper motors over most other electro-mechanical converters is that the control can be open-loop: the error is non-cumulative, and in many cases information feedback is not necessary. Elimination of feedback loops saves much expense, both in design and installation.

Stepper motors can be thought of as positioners, or as variable speed drives; below are a few examples.

As positioners:

- Pulse counters on production lines
- Selectors in information retrieval systems
- Remote indicators
- Numerically controlled machine tool drives
- Line spacing control for print-out machines
- Punched-tape drives
- Diaphragm control in optical and medical equipment.

As variable speed drives:

- Curve tracers
- Paper-feed devices in chart recorders
- Drives for electronic sweep generators
- Synchronizers between machines and their recording instruments
- Variable speed spool drives in the textile industry.

As will be seen from the data given below, our motors cover a wide range of per formance. Motors used as positioners usually require high starting torque, such as given by the types PD18 and PD20. On the other hand, motors used as variable speed drives require high speed, provided by types PD12 and PD16. Applications in which both high torque and high speedare necessary are likely to be covered by types PD20 and PD24. The torque/speed (torque/stepping rate) graphs are in fact the first thing the designer is usually interested in when choosing the motor;typical curves for each motor are given in the relevant data sheet.
A stepper motor can also be used as an integrator. By feeding a continuously varying signal to an analogue-digital converter giving a pulse frequency proportional to the amplitude of the input signal, a stepper motor supplied with those pulses will move the load attached to its shaft through a distance proportional to the time integral of the signal.

STEPPER MOTOR

	QUICK REFERENCE DATA	
Step angle	$7^{0} \quad 30^{\prime}$	
Maximum torque	150	gcm^{*})
Holding torque	225	$\left.\mathrm{gcm}{ }^{*}\right)$
Maximum pull-in rate	350	$\mathrm{steps} / \mathrm{s}$
Maximum pull-out rate	550	$\mathrm{steps} / \mathrm{s}$

RZ 26753.7

APPLICATION

This stepper motor has been designed for converting electrical digital information, supplied via an electronic switch, into mechanical movement. It can be used as a positioner or in a variable speed drive.

DESCRIPTION

The stepper motor has a 4 -phase stator and a permanent magnet rotor with 24 poles in a rugged and simple construction. The motor coils are adapted to the electronic switch 990413103003 (see relevant data sheet) for optimum performance.

[^11]
TECHNICAL DATA

Dimensions (in mm) and connections

Marking

The connecting leads are colour-coded, see Fig. 1.

Maximum pull- $-\frac{\text { in }}{\text { out }}$ torque
Holding torque
Maximum pull-in rate ${ }^{1}$)
Maximum pull-out rate ${ }^{1}$)
Number of steps per revolution
Step angle
Step angle tolerance
Direction of rotation
Mass moment of inertia of the rotor
Maximum axial force
Maximum radial force
Bearings
Weight
Ambient temperature range

> operating storage
Maximum permissible motor temperature
Number of phases
Resistance per coil

150 gcm
225 gcm
350 steps/s
550 steps/s
48
7030^{\prime}
$\pm 20^{\prime}$ non cumulative
electrically reversible
$11 \mathrm{gcm}^{2}$
150 g
500 g
sleeve
160 g
-20 to $+70^{\circ} \mathrm{C}$
-40 to $+85^{\circ} \mathrm{C}$
$100^{\circ} \mathrm{C}$
4
15Ω

1) measured with 4-phase electronic switch 990413103003 and with the coils connected according to Fig. 2b.

Inductance per coil
Current per coil
Power consumption of the motor
Insulation resistance at $500 \mathrm{~V} \mathrm{d.c}$.

30 mH
330 mA
3.3 W
$100 \mathrm{M} \Omega$

Fig.2a. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, without compensating network.

Fig. 2b. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, with compensating network.
$\mathrm{R}_{\mathrm{V}}=22 \Omega, \mathrm{C}_{\mathrm{V}}=27 \mu \mathrm{~F}$,
$\mathrm{V}_{\mathrm{b}}=12 \mathrm{~V}$ d.c.
$\mathrm{R}_{\mathrm{S}}=\left(\mathrm{V}_{\mathrm{b}}-5\right) / 0.230 \Omega$.

*) figures refer to terminals of electronic switch.

Fig. 3. Torque versus stepping rate. (Solid lines obtained with circuit of Fig.2b, dashed lines obtained with circuit of Fig.2a)

Fig.4. Applied torque versus deviation.

STEPPER MOTOR

	QUICK REFERENCE DATA	
Step angle	70	30^{\prime}
Maximum torque	650	$\left.\mathrm{gcm}^{*}\right)$
Holding torque	900	$\left.\mathrm{gcm}^{*}\right)$
Maximum pull-in rate	240	$\mathrm{steps} / \mathrm{s}$
Maximum pull-out rate	360	steps/s

APPLICATION

This stepper motor has been designed for converting electrical digital information, supplied via an electronic switch, into mechanical movement. It can be used as a positioner or in a variable speed drive.

DESCRIPTION

The stepper motor has a 4-phase stator and a permanent magnet rotor with 24 poles in a rugged and simple construction. The motor coils are adapted to the electronic switch 990413103003 (see relevant data sheet) for optimum performance.

[^12]
TECHNICAL DATA

Dimensions (in mm) and connections

Fig. 1

Marking

The connecting leads are colour-coded, see Fig.1.

Maximum pull- ${ }^{\text {in }}$ out torque
Holding torque
Maximum pull-in rate ${ }^{1}$)
Maximum pull-out rate ${ }^{1}$)
Number of steps per revolution
Step angle
Step angle tolerance
Direction of rotation
Mass moment of inertia of the rotor
Maximum axial force
Maximum radial force
\longrightarrow Bearings
Weight
Ambient temperature range
operating storage
Maximum permissible motor temperature
Number of phases
Resistance per coil
Inductance per coil
Current per coil

650 gcm

900 gcm
240 steps/s
360 steps/s
48
7030^{\prime}
$\pm 20^{\prime}$ non cumulative
electrically reversible
$93 \mathrm{gcm}^{2}$
500 g
1500 g
needle
500 g
-20 to $+70^{\circ} \mathrm{C}$
-40 to $+100^{\circ} \mathrm{C}$
$100^{\circ} \mathrm{C}$
4
9Ω
25 mH
550 mA

[^13]Power consumption of the motor Insulation resistance at 500 V dc
5.5 W
$100 \mathrm{M} \Omega$

Fig. 2a. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, without compensating network.

Fig.2b. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, with compensating network.
$\mathrm{R}_{\mathrm{V}}=15 \Omega, \mathrm{C}_{\mathrm{V}}=100 \mu \mathrm{~F}$,
$\mathrm{V}_{\mathrm{b}}=12 \mathrm{~V}$ d.c.
$\mathrm{R}_{\mathrm{S}}=\left(\mathrm{V}_{\mathrm{b}}-5\right) / 0.230 \Omega$.

*) figures refer to terminals of electronic switch.

Fig.3. Torque versus stepping rate. (Solid lines obtained with circuit of Fig.2b, dashed lines obtained with circuit of Fig.2a).

Fig.4. Applied torque versus deviation.

STEPPER MOTOR

	QUICK REFERENCE DATA
Str p angle	7030^{\prime}
Maximum torque	500
Molding torque	700
Maximum pull-in rate	
Maximum pull-out rate	200
steps $/ \mathrm{s}$	
Maxim	320 steps $/ \mathrm{s}$

APPLICATION

This stepper motor has been designed for converting electrical digital information, supplied via an electronic switch, into mechanical movement. It can be used as a positioner or in a variable speed drive.

DESCRIPTION

The stepper motor has a 4-phase stator and a permanent magnet rotor with 24 poles in a rugged and simple construction. The motor coils are adapted to the electronic switch 990413103003 (see relevant data sheet) for optimum performance.

[^14]
TECHNICAL DATA

Dimensions (in mm) and connections

Marking
The terminals are numbered as indicated in Fig. 1.

Maximum pull- in out torque
Holding torque
Maximum pull-in rate ${ }^{1}$)
Maximum pull-out rate ${ }^{1}$)
Number of steps per revolution
Step angle
Step angle tolerance
Direction of rotation
Mass moment of inertia of the rotor
Maximum axial force
Maximum radial force
Bearings
Weight
Ambient temperature range operating storage
Maximum permissible motor temperature
Number of phases
Resistance per coil
Inductance per coil
Current per coil
Power consumption of the motor
Insulation resistance at 500 V dc

500 gcm
700 gcm
200 steps/s
320 steps/s
48
$7^{\circ} 30^{\prime}$
$\pm 20^{\prime}$ non cumulative
electrically reversible
$90 \mathrm{gcm}^{2}$
150 g
1500 g
sleeve
320 g

```
-20 to +70 0}\textrm{C
-40 to +100 0}\textrm{C
100 *}\textrm{C
4
12\Omega
35 mH
400 mA
4 W
100 M \Omega
```

1) measured with 4-phase electronic switch 990413103003 and with the coils connected according to Fig. 2b.

Fig.2a. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, without compensating network.

Fig.2b. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, with compensating network.
$\mathrm{R}_{\mathrm{v}}=15 \Omega, \mathrm{C}_{\mathrm{v}}=50 \mu \mathrm{~F}$,
$\mathrm{V}_{\mathrm{b}}=12 \mathrm{~V}$ d.c.
$\mathrm{R}_{\mathrm{s}}=\left(\mathrm{V}_{\mathrm{b}}-5\right) / 0.230 \Omega$

*) figures refer to terminals of electronic switch.

Fig.3. Torque versus stepping rate. (Solid lines obtained with circuit of Fig. 2b, dashed lines obtained with circuit of Fig. 2a)

Fig.4. Applied torque versus deviation

STEPPER MOTOR

	QUICK REFERENCE DATA	
Step angle	70	30^{\prime}
Maximum torque	60	
Holding torque	80	$\left.\mathrm{gcm}^{*}\right)$
Maximum pull-in rate	500	$\mathrm{steps} / \mathrm{s}$
Maximum pull-out rate	1000	$\mathrm{steps} / \mathrm{s}$

APPLICATION

This stepper motor has been designed for converting electrical digital information, supplied via an electronic switch, into mechanical movement. It can be used as a positioner or in a variable speed drive.

DESCRIPTION

The stepper motor has a 4-phase stator and a permanent magnet rotor with 24 poles in a rugged and simple construction. The motor coils are adapted to the electronic switch 990413103003 (see relevant data sheet) for optimum performance.

[^15]
TECHNICAL DATA

Dimensions (in mm) and connections

Marking
The connecting leads are colour-coded, see Fig. 1.

Maximum pull- ${ }_{\text {out }}^{\text {in }}$ torque
Holding torque
Maximum pull-in rate ${ }^{1}$)
Maximum pull-out rate ${ }^{1}$)
Number of steps per revolution
Step angle
Step angle tolerance
Direction of rotation
Mass moment of inertia of the rotor
Maximum axial force
Maximum radial force
Bearings
Weight
Ambient temperature range operating storage
Maximum permissible motor temperature
Number of phases
Resistance per coil
Inductance per coil
Current per coil

60 gcm
80 gcm
500 steps/s
1000 steps/s
48
7030^{\prime}
$\pm 40^{\prime}$ non cumulative
electrically reversible
$2.6 \mathrm{gcm}^{2}$
75 g
250 g
sleeve
75 g
-20 to $+70{ }^{\circ} \mathrm{C}$
-40 to $+100^{\circ} \mathrm{C}$
$100^{\circ} \mathrm{C}$
4
25Ω
30 mH
175 mA

1) measured with 4-phase electronic switch 990413103003 and with the coils connected according to Fig. 2b.

Power consumption of the motor Insulation resistance at $500 \mathrm{~V}_{\mathrm{dc}}$
1.7 W
$100 \mathrm{M} \Omega$

Fig.2a. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, without compensating network.

Fig. 2b. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, with compensating network.
$\mathrm{R}_{\mathrm{v}}=43 \Omega, \mathrm{C}_{\mathrm{v}}=27 \mu \mathrm{~F}$,
$\mathrm{V}_{\mathrm{b}}=12 \mathrm{~V}$ d. c .
$R_{s}=\left(V_{b}-5\right) / 0.230 \Omega$.

*) figures refer to terminals of electronic switch.

Fig.3. Torque versus stepping rate. (Solid lines obtained with circuit of Fig. 2b, dashed lines obtained with circuit of Fig.2a).

Fig.4. Applied torque versus deviation.

STEPPER MOTOR

APPLICATION

This stepper motor has been designed for converting electrical digital information, supplied via an electronic switch, into mechanical movement. It can be used as a positioner or in a variable speed drive.

DESCRIPTION

The stepper motor has a 4-phase stator and a permanent magnet rotor with 12 poles in a rugged and simple construction. The motor coils are adapted to the electronic switch 990413103003 (see relevant data sheet) for optimum performance.

[^16]
TECHNICAL DATA

Dimensions (in mm) and connections

Fig. 1.

Marking

The connecting leads are colour-coded, see Fig. 1.

Maximum pull- ${ }^{\text {in }}$ out torque
Holding torque
Maximum pull-in rate ${ }^{1}$)
Maximum pull-out rate ${ }^{1}$)
Number of steps per revolution
Step angle
Step angle tolerance
Direction of rotation
Mass moment of inertia of the rotor
Maximum axial force
Maximum radial force
Bearings
Weight
Ambient temperature range operating storage
Maximum permissible motor temperature
Number of phases
Resistance per coil
Inductance per coil
Current per coil
Power consumption of the motor
Insulation resistance at 500 V dc

350 gcm
650 gcm
160 steps/s
400 steps/s
24
150
$\pm 30^{\prime}$ non cumulative
electrically reversible
$93 \mathrm{gcm}^{2}$
500 g
1500 g
needle
500 g
-20 to $+70^{\circ} \mathrm{C}$
-40 to $+100^{\circ} \mathrm{C}$
$100^{\circ} \mathrm{C}$
4
9Ω
20 mH
550 mA
5.5 W
$100 \mathrm{M} \Omega$
${ }^{1}$) measured with 4 -phase electronic switch 990413103003 and with the coils connected according to Fig. 2b.

Fig. 2a. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, without compensating network.

Fig.2b. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, with compensating network.
$\mathrm{R}_{\mathrm{v}}=15 \Omega, \mathrm{C}_{\mathrm{v}}=100 \mu \mathrm{~F}$,
$\mathrm{V}_{\mathrm{b}}=12 \mathrm{~V}$ d.c.
$R_{s}=\left(V_{b}-5\right) / 0.230 \Omega$.

*) figures refer to terminals of electronic switch.

Fig.3. Torque versus stepping rate. (Solid lines obtained with circuit of Fig. 2b, dashed lines obtained with circuit of Fig. 2a).

Fig.4. Applied torque versus deviation.

STEPPER MOTORS

These stepper motors have been designed for converting electrical digital ínformation, supplied via an electronic switch, into mechanical movement. They can be used as positioners or in variable speed drives.

DESCRIPTION

The stepper motors have a 4-phase stator and a permanent magnet rotor with 24 poles all enclosed in a robust aluminium housing. The motor coils are adapted to the elec tronic switch 990413103003 (see relevant data sheet) for optimum performance. The PD10 has a square mounting flange while the SMD11 is provided with a so-called servo-flange (size 15) and meets standard servo-mount requirements. The motors are characterized by their robust design and if desired they can be made to satisfy MIL specifications.

[^17]
TECHNICAL DATA

Dimensions

Fig. 1a.
PD10 in mm
8 connecting leads

Fig. 1b.
SMD11 in

Marking
The connecting leads are colour-coded, see Fig. 2

Maximum pull- ${ }^{\text {in }}$ out torque
Holding torque
Maximum pull-in rate ${ }^{-1}$)
Maximum pull-out rate ${ }^{1}$)
Number of steps per revolution
Step angle
Step angle tolerance
Direction of rotation
Mass moment of inertia of the rotor

70 gcm
100 gcm
≥ 500 steps/s
≥ 1000 steps/s
48
$7^{\circ} 30^{\prime}$
$\pm 20^{\prime}$ non cumulative
electrically reversible $3.5 \mathrm{gcm}^{2}$
${ }^{1}$) measured with 4 -phase electronic switch 990413103003 (see relevant data sheet) and with the coils connected according to Fig. 2b.

Maximum axial play (axial force 150 g)
Maximum axial force
Maximum radial force
Bearings
Weight
Ambient temperature range operating storage
Maximum permissible motor temp.
Number of phases
Resistance per coil
Inductance per coil
Current per coil
Power consumption of the motor
Insulation resistance at 500 V d.c.
0.08 mm

500 g
1000 g
ball-bearings
140 g
up to $+85^{\circ} \mathrm{C}$
up to $+110^{\circ} \mathrm{C}$
$125^{\circ} \mathrm{C}$
4
27Ω
20 mH
175 mA
1.75 W
$100 \mathrm{M} \Omega$

Fig. 2a. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, without compensating network.

[^18]

Fig. 2b. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, with compensating network.
$\mathrm{R}_{\mathrm{V}}=47 \Omega(\pm 5 \%), 2 \mathrm{~W} ; \mathrm{C}_{\mathrm{V}}=10 \mu \mathrm{~F}, 64 \mathrm{~V}$ d.c. $; \mathrm{V}_{\mathrm{b}}=12 \mathrm{~V}$ d.c. $;$
$R_{S}=\left(V_{b}-5\right) / 0.230 \Omega$

[^19]

Fig. 3. Torque versus stepping rate, measured at room temperature. (Solid lines obtained with circuit of Fig. 2b, dashed lines obtained with circuit of Fig. 2a). Derating at low and high temperatures.

Fig. 4. Applied torque versus deviation.

STEPPER MOTORS

QUICK REFERENCE DATA		
Step angle		
Maximum torque	$3^{\circ} 45^{\prime}$	
Holding torque	$150 \mathrm{gcm}{ }^{*}$)	
Maximum pull -in rate	$180 \mathrm{gcm}{ }^{*}$)	
Maximum pull-out rate	$1200 \mathrm{steps} / \mathrm{s}$	

APPLICATION

These stepper motors have been designed for converting electrical digital information, supplied via an electronic switch, into mechanical movement. They can be used as positioners or in variable speed drives.

DESCRIPTION

The stepper motors have an 8 -phase stator and a permanent magnet rotor with 24 poles all enclosed in a robust aluminium housing. The motor coils are adapted to the electronic switch 990413103004 (see relevant data sheet) for optimum performance. The PD12 has a square mounting flange while the SMD13 is provided with a so-called servo-flange (size 15) and meets standard servo-mount requirements. The motors are characterized by their robust design and if desired they can be made to satisfy MIL specifications.

[^20]
TECHNICAL DATA

Dimensions

Fig. 1a.
PD12 in mm
16 connecting leads

Fig. 1b.
SMD13 in inches

16 connecting leads

Marking

The connecting leads are colour-coded, see Fig. 2

Maximum pull - - out in torque
Holding torque
Maximum pull-in rate ${ }^{1}$)
Maximum pull-out rate ${ }^{1}$)
Number of steps per revolution
Step angle
Step angle tolerance
Direction of rotation
Mass moment of inertia of the rotor

150 gcm
180 gcm
1200 steps/s
16000 steps/s
96
$3^{\circ} 45^{\prime}$
$\pm 20^{\prime}$ non cumulative
electrically reversible
$7 \mathrm{gcm}^{2}$

1) measured with 8 -phase electronic switch 990413103004 (see relevant data sheet) and with the coils connected according to Fig. 2b.

Maximum axial play (axial force 150 g)
Maximum axial force
Maximum radial force
Bearings
Weight
Ambient temperature range
operating
storage
Maximum permissible motor temp.
Number of phases
Resistance per coil
Inductance per coil
Current per coil
Power consumption of the motor
Insulation resistance at $500 \mathrm{~V} \mathrm{d.c}$.
0.08 mm

500 g
1000 g
ball-bearings
220 g
up to $+85^{\circ} \mathrm{C}$
up to $+110^{\circ} \mathrm{C}$
$125^{\circ} \mathrm{C}$
8
27Ω
20 mH
175 mA
3.5 W
$100 \mathrm{M} \Omega$

Fig. 2a. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, without
${ }^{\text {* }}$) Figures refer to terminals of electronic switch.

Fig. 2b. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, with
$\mathrm{R}_{\mathrm{V}}=91 \Omega(\pm 5 \%), 5 \mathrm{~W} ; \mathrm{C}_{\mathrm{V}}=10 \mu \mathrm{~F}, 64 \mathrm{~V}$ d.c. $; \mathrm{V}_{\mathrm{b}}=20 \mathrm{~V}$ d.c. $; \mathrm{R}_{\mathrm{S}}=\left(\mathrm{V}_{\mathrm{b}}-5\right) / 0.440 \Omega$
*) Figures refer to terminals of electronic switch.

Fig. 3. Torque versus stepping rate, measured at room temperature. (Solid lines obtained with circuit of Fig. 2b, dashed lines obtained with circuit of Fig. 2a). Derating at low and high temperatures.

Fig. 4. Applied torque versus deviation.

STEPPER MOTORS

These stepper motors have been designed for converting electrical digital information, supplied via an electronic switch, into mechanical movement. They can be used as positioners or in variable speed drives.

DESCRIPTION

The stepper motors have a 4-phase stator and a permanent magnet rotor with 24 poles all enclosed in a robust aluminium housing. The motor coils are adapted to the electronic switch 990413103003 (see relevant data sheet) for optimum performance.
The PD14 has a square mounting flange while the SMD15 is provided with a so-called servo-flange (size 23) and meets standard servo-mount requirements. The motors are characterized by their robust design and if desired they can we made to satisfy MIL specifications.

[^21]
TECHNICAL DATA

Dimensions

Fig.1a. PD 14 (in mm)

Fig.lb.
SMD 15 (in inches)

Marking

The connecting leads are colour-coded, see Fig. 2

Maximum pull- in out torque
Holding torque
Maximum pull-in rate ${ }^{1}$)
Maximum pull-out rate ${ }^{1}$)
Number of steps per revolution
Step angle
Step angle tolerance
Direction of rotation
Mass moment of inertia of the rotor

250 gcm
350 gcm
360 steps/s
550 steps/s
48
$7^{\circ} 30^{\prime}$
$\pm 10^{\prime}$ non cumulative
electrically reversible $18 \mathrm{gcm}^{2}$

[^22]Maximum axial play (axial force 150 g)
Maximum axial force
Maximum radial force
Bearings
Weight
Ambient temperature range operating storage
Maximum permissible motor temperature
Number of phases
Resistance per coil
Inductance per coil
Current per coil
Power consumption of the motor
Insulation resistance at 500 V dc
0.07 mm

750 g
1500 g
ball
500 g
-54 to $+85^{\circ} \mathrm{C}$
-62 to $+110^{\circ} \mathrm{C}$
$125{ }^{\circ} \mathrm{C}$
4
15Ω
25 mH
350 mA
3.7 W
$100 \mathrm{M} \Omega$

Fig.2a. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, without compensating network.
*) Figures refer to terminals of electronic switch.

Fig.2b.Diagram for connecting the motor to the electronic switch via a printed-wiring connector, with compensating network.
$\mathrm{R}_{\mathrm{V}}=18 \Omega(\pm 5 \%), 5 \mathrm{~W} ; \mathrm{C}_{\mathrm{V}}=50 \mu \mathrm{~F}, 40 \mathrm{~V}$ d.c. $; \mathrm{V}_{\mathrm{b}}=12 \mathrm{~V}$ d.c. $;$
$R_{\mathrm{S}}=\left(\mathrm{V}_{\mathrm{b}}-5\right) / 0.230 \Omega$
*) Figures refer to terminals of electronic switch.

Fig. 3. Torque versus stepping rate, measured at room temperature. (Solid lines obtained with circuit of Fig. 2b, dashed lines obtained with circuit of Fig. 2a). Derating at low and high temperatures.

Fig.4.Applied torque versus deviation.

STEPPER MOTORS

	QUICK REFERENCE DATA	
Step angle	3045^{\prime}	
Maximum torque	400	$\left.\mathrm{gcm}{ }^{*}\right)$
Holding torque	500	$\left.\mathrm{gcm}{ }^{*}\right)$
Maximum pull-in rate	900	steps $/ \mathrm{s}$
Maximum pull-out rate	7500	steps $/ \mathrm{s}$

APPLICATION

These stepper motors have been designed for converting electrical digital information, supplied via an electronic switch, into mechanical movement. They can be used as positioners or in variable speed drives.

DESCRIPTION

The stepper motors have an 8-phase stator and a permanent magnet rotor with 24 poles, all enclosed in a robust aluminium housing. The motor coils are adapted to the electronic switch 990413103004 (see relevant data sheet) for optimum performance.
The PD16 has a square mounting flange while the SMD17 is provided with a so-called servo-flange (size 23) and meets standard servo-mount requirements. The motors are characterized by their robust design and if desired they can be made to satisfy MIL specifications.

[^23]
TECHNICAL DATA

Dimensions

Fig. 1a. PD 16 (in mm)

Fig. 1b. SMD 17 (in inches)

Marking
The connecting leads are colour-coded, see Fig. 2.

Maximum pull- ${ }^{\text {in }}$ out torque
Holding torque
Maximum pull-in rate ${ }^{1}$)
Maximum pull-out rate ${ }^{1}$)
Number of steps per revolution
Step angle
Step angle tolerance
Direction of rotation
Mass moment of inertia of the rotor
Maximum axial play (axial force 150 g)
Maximum axial force
Maximum radial force
Bearings
Weight
Ambient temperature range operating storage
Maximum permissible motor temp.
Number of phases
Resistance per coil
Inductance per coil
Current per coil
Power consumption of the motor
Insulation resistance at 500 V dc

400 gcm
500 gcm
900 steps/s
7500 steps/s
96
$3^{\circ} 45^{\prime}$
$\pm 10^{\prime}$ non cumulative
electrically reversible
$32 \mathrm{gcm}^{2}$
0.07 mm

750 g
1500 g
ball
600 g
-54 to $+85^{\circ} \mathrm{C}$
-62 to $+110^{\circ} \mathrm{C}$
$125^{\circ} \mathrm{C}$
8
15Ω
25 mH
350 mA
6.5 W
$100 \mathrm{M} \Omega$

[^24]
Fig. 2a. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, without compensating network.

[^25]

Fig. 3. Torque versus stepping rate, measured at room temperature. (Solid lines obtained with circuit of Fig. 2b, dashed lines obtained with circuit of Fig. 2a). Derating at low and high temperatures.

Fig.4. Applied torque versus deviation.

STEPPER MOTORS

	QUICK REFERENCE DATA	
Step angle	7°	30^{\prime}
Maximum torque	1000	$\left.\mathrm{gcm}^{*}\right)$
Holding torque	1400	$\left.\mathrm{gcm}{ }^{*}\right)$
Maximum pull-in rate	260	steps $/ \mathrm{s}$
Maximum pull-out rate	340	steps $/ \mathrm{s}$

70-657H4

RZ 26753-15

APPLICATION

These stepper motors have been designed for converting electrical digital information, supplied via an electronic switch, into mechanical movement. They can be used as positioners or in variable speed drives.

DESCRIPTION

The stepper motors have a 4-phase stator and a permanent magnet rotor with 24 -poles, all enclosed in a robust aluminium housing. The motor coils are adapted to the electronic switch 990413103003 (see relevant data sheet) for optimum performance. The PD1 8 has a square mounting flange while the SMD19 is provided with a so-called servo-flange (size 28) and meets standard servo-mount requirements. The motors are characterized by their robust design and if desired they can be made to satisfy MIL specifications.

[^26]
TECHNICAL DATA

Dimensions

Fig.1a. PD 18 (in mm)

Fig. 1b. SMD 19
(in inches)

Marking

The connecting leads are colour-coded, see Fig. 2.

Maximum pull- ${ }_{\text {out }}^{\text {in }}$ torque
Holding torque
Maximum pull-in rate ${ }^{1}$)
Maximum pull-out rate ${ }^{1}$)
Number of steps per revolution
Step angle
Step angle tolerance
Direction of rotation
Mass moment of inertia of the rotor

1000 gcm
1400 gcm
260 steps /s
340 steps /s
48
$7^{\circ} 30^{\prime}$
$\pm 10^{\prime}$ non cumulative
electrically reversible $110 \mathrm{gcm}^{2}$

[^27]Maximum axial play (axial force 150 g)
Maximum axial force
Maximum radial force
Bearings
Weight
Ambient temperature range operating storage
Maximum permissible motor temperature
Number of phases
Resistance per coil
Inductance per coil
Current per coil
Power consumption of the motor
Insulation resistance at $500 \mathrm{~V}_{\mathrm{dc}}$
0.07 mm

2000 g
5000 g
ball
800 g
-54 to $+85^{\circ} \mathrm{C}$
-62 to $+110^{\circ} \mathrm{C}$
$125^{\circ} \mathrm{C}$
4
9Ω
25 mH
600 mA
6.5 W
$100 \mathrm{M} \Omega$

Fig.2a. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, without compensating network.
*) Figures refer to terminals of electronic switch.

Fig.2b. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, with compensating network.
$\mathrm{R}_{\mathrm{V}}=10 \Omega(\pm 5 \%), 8 \mathrm{~W} ; \mathrm{C}_{\mathrm{V}}=50 \mu \mathrm{~F}, 40 \mathrm{~V}$ d.c. $; \mathrm{V}_{\mathrm{b}}=12 \mathrm{~V}$ d.c. $;$
$R_{S}=\left(V_{b}-5\right) / 0.230 \Omega$
*) Figures refer to terminals of electronic switch.

Fig. 3. Torque versus stepping rate, measured at room temperature. (Solid lines obtained with circuit of Fig. 2b, dashed lines ohtained with circuit of Fig. 2a). Derating at low and high temperatures.

Fig. 4 Applied torque versus deviation

STEPPER MOTORS

These stepper motors have been designed for converting electrical digital information, supplied via an electronic switch, into mechanical movement. They can be used as positioners or in variable speed drives.

DESCRIPTION

The stepper motors have an 8 -phase stator and a permanent magnet rotor with 24 poles, all enclosed in a robust aluminium housing. The motor coils are adapted to the electronic switch 990413103004 (see relevant data sheet) for optimum performance.
The PD20 has a square mounting flange while the SMD21 is provided with a so-called servo-flange (size 28) and meets standard servo-mount requirements. The motors are characterized by their robust design and if desired they can be made to satisfy MIL specifications.

[^28]
TECHNICAL DATA

Dimensions

16 connecting Leads

Fig. 1a. PD 20 (in mm)

Fig. lb. SMD 21 (in inches)

Marking

The connecting leads are colour-coded, see Fig. 2 .

Maximum pull- ${ }^{\text {in }}$ out torque
Holding torque
Maximum pull-in rate
Maximum pull-out rate
1)

Number of steps per revolution
Step angle
Step angle tolerance
Direction of rotation
Mass moment of inertia of the rotor
Maximum axial play (axial force 150 g)
Maximum axial force
Maximum radial force
Bearings
Weight
Ambient temperature range operating storage
Maximum permissible motor temperature
Number of phases
Resistance per coil
Inductance per coil
Current per coil
Power consumption of the motor
Insulation resistance at 500 V dc

1600 gcm
1900 gcm
650 steps/s
6000 steps/s
96
$3^{\circ} 45^{\prime}$
$\pm 10^{\prime}$ non cumulative
electrically reversible
$220 \mathrm{gcm}^{2}$
0.07 mm

2000 g
5000 g
ball
1400 g
-54 to $+85^{\circ} \mathrm{C}$
-62 to $+110^{\circ} \mathrm{C}$
$125{ }^{\circ} \mathrm{C}$
8
9Ω
25 mH
550 mA
11 W
$100 \mathrm{M} \Omega$

[^29]
*) Figures refer to terminals of electronic switch.

Fig.2b. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, with
$\mathrm{R}_{\mathrm{V}}=30 \Omega(\pm 5 \%), 16 \mathrm{~W} ; \mathrm{C}_{\mathrm{V}}=100 \mu \mathrm{~F}, 64 \mathrm{~V}$ d.c. $; \mathrm{V}_{\mathrm{b}}=20 \mathrm{~V}$ d.c. $; \mathrm{R}_{\mathrm{S}}=\left(\mathrm{V}_{\mathrm{b}}-5\right) / 0.440 \Omega$
*) Figures refer to terminals of electronic switch.

Fig. 3. Torque versus stepping rate, measured at room temperature. (Solid lines obtained with circuit of Fig. 2b, dashed lines obtained with circuit of Fig. 2a). Derating at low and high temperatures.

Fig.4. Applied torque versus deviation.

STEPPER MOTORS

	QUICK REFERENCE DATA	
Step angle	15^{0}	
Maximum torque	600	$\left.\mathrm{gcm}{ }^{*}\right)$
Holding torque	800	$\left.\mathrm{gcm}{ }^{*}\right)$
Maximum pull-in rate	140	$\mathrm{steps} / \mathrm{s}$
Maximum pull-out rate	460	$\mathrm{steps} / \mathrm{s}$

70-657H4

RZ 26753-15

SMD 23

APPLICATION

These stepper motors have been designed for converting electrical digital information, supplied via an electronic switch, into mechanical movement. They can be used as positioners or in variable speed drives.

DESCRIPTION

The stepper motors have a 4-phase stator and a permanent magnet rotor with 12 poles, all enclosed in a robust aluminium housing. The motor coils are adapted to the electronic switch 990413103003 (see relevant data sheet) for optimum performance.
The PD22 has a square mounting flange while the SMD23 is provided with a so-called servo-flange (size 28) and meets standard servo-mount requirements. The motors are characterized by their robust design and if desired they can be made to satisfy MIL specifications.

[^30]
990411222001 990411223001

TECHNICAL DATA

Dimensions
Fig. 1a.
PD 22
(in mm)

Fig. 1b. SMD 23 (in inches)

Marking
The connecting leads are colour-coded, see Fig. 2 .

Maximum pull- ${ }_{\text {out }}^{\text {in }}$ torque
Holding torque
Maximum pull-in rate 1)
Maximum pull-out rate 1)
Number of steps per revolution
Step angle
Step angle tolerance
Direction of rotation
Mass moment of inertia of the rotor

600 gcm
800 gcm
140 steps/s
460 steps/s
24
15°
$\pm 15^{\prime}$ non cumulative
electrically reversible
$110 \mathrm{gcm}^{2}$

1) measured with 4-phase electronic switch 990413103003 and with the coils connected according to Fig. 2b.

Maximum axial play (axial force 150 g)
Maximum axial force
Maximum radial force
Bearings
Weight
Ambient temperature range operating storage
Maximum permissible motor temperature
Number of phases
Resistance per coil
Inductance per coil
Current per coil
Power consumption of the motor
Insulation resistance at $500 \mathrm{~V}_{\mathrm{dc}}$

$$
\begin{aligned}
& 0.07 \mathrm{~mm} \\
& 2000 \mathrm{~g} \\
& 5000 \mathrm{~g} \\
& \text { ball } \\
& 800 \mathrm{~g} \\
& -54 \text { to }+85^{\circ} \mathrm{C} \\
& -62 \text { to }+110^{\circ} \mathrm{C} \\
& 125^{\circ} \mathrm{C} \\
& 4 \\
& 9 \Omega \\
& 20 \mathrm{mH} \\
& 600 \mathrm{~mA} \\
& 6.5 \mathrm{~W} \\
& 100 \mathrm{M} \Omega
\end{aligned}
$$

Fig. 2a. Diagram for connecting the motor to electronic switch via a printedwiring connector, without compensating network.
*) Figures refer to terminals of electronic switch.

Fig. 2b. Diagram for connecting the motor to electronic switch via a printedwiring connector, with compensating network.
$\mathrm{R}_{\mathrm{V}}=10 \Omega(\pm 5 \%), 8 \mathrm{~W} ; \mathrm{C}_{\mathrm{V}}=50 \mu \mathrm{~F}, 40 \mathrm{~V}$ d.c. $; \mathrm{V}_{\mathrm{b}}=12 \mathrm{~V}$ d.c. $;$
$\mathrm{R}_{\mathrm{S}}=\left(\mathrm{V}_{\mathrm{b}}-5\right) / 0.230 \Omega$
*) Figures refer to terminals of electronic switch.

Fig. 3. Torque versus stepping rate, measured at room temperature. (Solid lines obtained with circuit of Fig. 2b, dashed lines obtained with circuit of Fig. 2a). Derating at low and high temperatures.

Fig.4. Applied torque versus deviation.

STEPPER MOTORS

APPLICATION

These stepper motors have been designed for converting electrical digital information, supplied via an electronic switch, into mechanical movement. They can be used as positioners or in variable speed drives.

DESCRIPTION

The stepper motors have an 8-phase stator and a permanent magnet rotor with 12 poles, all enclosed in a robust aluminium housing. The motor coils are adapted to the electronic switch 990413103004 (see relevant data-sheet)for optimum performance. The PD 24 has a square mounting flange while the SMD 25 is provided with a so-called servo-flange (size 28) and meets standard servo-mount requirements. The motors are characterized by their robust design and if desired they can be made to satisfy MIL specifications.

[^31]
990411224001

TECHNICAL DATA

Dimensions

Fig. la. PD 24 (in mm)

Fig. lb. SMD 25 (in inches)

Marking
The connecting leads are colour-coded, see Fig. 2.

Maximum pull- in out torque
Holding torque
Naximum pull-in rate ${ }^{1}$)
Maximum pull-out rate ${ }^{1}$)
Number of steps per revolution
Step angle
Step angle tolerance
Direction of rotation
Mass moment of inertia of the rotor
Maximum axial play (axial force 150 g)
Maximum axial force
Maximum radial force
Bearings
Weight
Ambient temperature range operating storage
Maximum permissible motor temperature
Number of phases
Resistance per coil
Inductance per coil
Current per coil
Power consumption of the motor
Insulation resistance at $500 \mathrm{~V}_{\mathrm{dc}}$

900 gcm
1100 gcm
350 steps /s
3500 steps/s
48
$7^{\circ} 30^{\prime}$
$\pm 15^{\prime}$ non cumulative
electrically reversible
$220 \mathrm{gcm}^{2}$
0.07 mm

2000 g
5000 g
ball
1400 g
-54 to $+85^{\circ} \mathrm{C}$
-62 to $+110^{\circ} \mathrm{C}$
$125{ }^{\circ} \mathrm{C}$
8
9Ω
20 mH
550 mA
11 W
$100 \mathrm{M} \Omega$

[^32]
Fig.2a. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, without compensating network.
*) Figures refer to terminals of electronic switch.

Fig. 2b. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, with

Fig. 3. Torque versus stepping rate, measured at room temperature. (Solid lines obtained with circuit of Fig. 2b, dashed lines obtained with circuit of Fig. 2a). Derating at low and high temperatures.

Fig. 4 Applied torque versus deviation.

ELECTRONIC SWITCH for 4-phase stepper motors

RZ 26753-1

APPLICATION

The electronic switch changes a train of input pulses into a sequential pulse output which provides the required pulse pattern for driving 4-phase stepper motors.

DESCRIPTION

The electronic switch is essentially a reversible ring counter, each of its 4 outputs being followed by an output stage. The ring counter is built up with I.C.'s of the FJ series which need a supply voltage of 5 V . For this reason the whole unit has been designed for this voltage. The unit has two inputs: the first one receives the order for the rotor to perform the step, the second one determines the direction of rotation by means of a d.c. level. The output stages are equipped with silicon transistors developed for switching inductive loads. All components are mounted on a double-sided printed-wiring board mating a printed-wiring connector with two rows of 10 contacts and a contact pitch of 0.156 inch.

TECHNICAL DATA

Dimensions (in mm and in inches) and terminal location

Detailed view of the slot
Weight 40 g
Ambient temperature range

operating	0 to $+70^{\circ} \mathrm{C}$
storage	-40 to $+70^{\circ} \mathrm{C}$

Power supply
voltage (V_{b})
current (at $\mathrm{V}_{\mathrm{b}}=5 \mathrm{~V}$)

$$
+5 \mathrm{~V} \pm 5 \%
$$

$$
230 \mathrm{~mA} \pm 10 \%
$$

Input data

Direction of rotation

V_{R} in " 1 " state (high level)
V_{R} in " 0 " state (low level)
$I_{R}\left(V_{R}\right.$ in " 1 " state)
$-I_{R}\left(V_{R}\right.$ in " 0 " state)
Maximum V_{R}
$-\mathrm{I}_{\mathrm{R}}$, limiting value

\geq \geq \leq	$0.0 \mathrm{~V}, \leq 5 \mathrm{~V}, \geq 0 \mathrm{~V}$
$<$	$120 \mu \mathrm{~A}$
$<$	4.8 mA
	5.5 V
	20 mA

Stepping
V_{T} in " 1 " state (high level)
V_{T} in "0" state (low level)
$\mathrm{I}_{\mathrm{T}}\left(\mathrm{V}_{\mathrm{T}}\right.$ in " 1 " state)
$-\mathrm{I}_{\mathrm{T}}\left(\mathrm{V}_{\mathrm{T}}\right.$ in " 0 " state $)$
Maximum V_{T}
$-\mathrm{I}_{\mathrm{T}}$, limiting value
Pulse width (V_{T} in " 1 " state)
Frequency

$$
\begin{aligned}
\geq & 2.0 \mathrm{~V}, \leq 5 \mathrm{~V} \\
\leq & 0.8 \mathrm{~V}, \geq 0 \mathrm{~V} \\
< & 250 \mu \mathrm{~A} \\
< & 6.4 \mathrm{~mA} \\
& 5.5 \mathrm{~V} \\
& 20 \mathrm{~mA} \\
> & 100 \mathrm{~ns} \\
< & 25 \mathrm{kHz}
\end{aligned}
$$

Output data

Permissible voltage (at each
output)

Permissible current (per output)
Saturation voltage (V_{CE})
$<100 \mathrm{~V}$
$<600 \mathrm{~mA}$
$<500 \mathrm{mV}$

Note: The level may change state only when the input pulse for stepping is in the " 0 " state (low level).
Circuit diagram

Parts list

component	description	value	tolerance
C1	electrolytic capacitor	$125 \mu \mathrm{~F}, 10 \mathrm{~V}$	$-10 /+50 \%$
C2	capacitor	$0.1 \mu \mathrm{~F}$	10%
C3	capacitor	1 nF	10%
D1 -D8	diode	BAX13	
D9	diode	AAZ18	
U1	integrated circuit	FJJ121	
U2	integrated circuit	FJH131	
U3	integrated circuit	$\mathrm{FJH161}$	
R1 -R4	carbon resistor	$390 \Omega, 0.2 \mathrm{~W}$	5%
R5 -R8	carbon resistor	$51 \Omega, 0.7 \mathrm{~W}$	5%
R9 -R12	carbon resistor	$6.8 \mathrm{k} \Omega, 0.2 \mathrm{~W}$	5%
R13-R16	carbon resistor	$180 \Omega, 0.2 \mathrm{~W}$	5%
T1 -T4	transistor	BSW 66	
T5 -T8	transistor	BC 107	
Z1	zener diode	$\mathrm{BZY88/C5V6}$	
Z2 -Z3	zener diode	$\mathrm{BZY} 88 / \mathrm{C} 5 \mathrm{~V} 1$	

ELECTRONIC SWITCH for 8-phase stepper motors

RZ 26753-2

APPLICATION

The electronic switch changes a train of input pulses into a sequential pulse output which provides the required pulse pattern for driving 8 -phase stepper motors.

DESCRIPTION

The electronic switch is essentially a reversible ring counter, each of its 8 outputs being followed by an output stage. The ring counter is built up with I.C.'s of the FJ series which need a supply voltage of 5 V . For this reason the whole unit has been designed for this voltage. The unit has two inputs: the first one receives the order for the rotor to perform the step, the second one determines the direction of rotation by means of a d.c. level. The output stages are equipped with silicon transistors developed for switching inductive loads. All components are mounted on a double-sided printed-wiring board mating a printed-wiring connector with two rows of 22 contacts and a contact pitch of 0.156 inch.

TECHNICAL DATA

Dimensions (in mm and in inches) and terminal location

input for stepping (T)
input for direction input for direct
of rotation (R)

Detailed view of the slot
Weight 80 g
Ambient temperature range
operating
storage
Power supply
voltage (V_{b})
current (at $V_{b}=5 \mathrm{~V}$)

$$
\begin{array}{r}
0 \text { to }+70^{\circ} \mathrm{C} \\
-40 \text { to }+70^{\circ} \mathrm{C}
\end{array}
$$

Input data
Direction of rotation
V_{R} in " 1 " state (high level)
V_{R} in "0" state (low level)
$\mathrm{I}_{\mathrm{R}}\left(\mathrm{V}_{\mathrm{R}}\right.$ in " 1 " state)
${ }^{-I_{R}}$ (V_{R} in " 0 " state)
Maximum V_{R}
$-\mathrm{I}_{\mathrm{R}}$, limiting value

Stepping

V_{T} in " 1 " state (high level)
V_{T} in "0" state (low level)
$\mathrm{I}_{\mathrm{T}}\left(\mathrm{V}_{\mathrm{T}}\right.$ in "1" state)
${ }^{-I_{T}}\left(V_{\mathrm{T}}\right.$ in " 0 " state $)$
Maximum V_{T}
$-\mathrm{I}_{\mathrm{T}}$, limiting value
Pulse width (V_{T} in " 1 " state)
Frequency

Output data

Permissible voltage (at each output)
Permissible current (per output)
Saturation voltage (V_{CE})
$\left.\begin{array}{rl} & \geq 2.0 \mathrm{~V}, \leq 5 \mathrm{~V} \\ \leq & 0.8 \mathrm{~V}, \geq 0 \mathrm{~V}\end{array}\right\}$ see Note below

$$
\begin{aligned}
\geq & 2.0 \mathrm{~V}, \leq 5 \mathrm{~V} \\
\leq & 0.8 \mathrm{~V}, \geq 0 \mathrm{~V} \\
< & 400 \mu \mathrm{~A} \\
< & 12.8 \mathrm{~mA} \\
& 5.5 \mathrm{~V} \\
& 20 \mathrm{~mA} \\
> & 100 \mathrm{~ns} \\
< & 25 \mathrm{kHz}
\end{aligned}
$$

$<100 \mathrm{~V}$
$<600 \mathrm{~mA}$
$<500 \mathrm{mV}$

Note: The level may change state only when the input pulse for stepping is in the " 0 " state (low level).
Circuit diagram

Parts list

component	description	value	tolerance
C1	electrolytic capacitor	$125 \mu \mathrm{~F}, 10 \mathrm{~V}$	$-10 /+50 \%$
C2	capacitor	$0.1 \mu \mathrm{~F}$	10%
C3	capacitor	1 nF	10%
D1 -D16	diode	BAX13	
D17	diode	AAZ18	
U1	integrated circuit	FJJ121	
U2	integrated circuit	FJJ121	
U3	integrated circuit	FJH131	
U4	integrated circuit	FJH161	
U5	integrated circuit	FJH161	
U6	integrated circuit	FJH121	
R1 -R8	carbon resistor	$390 \Omega, 0.2 \mathrm{~W}$	5%
R9 -R16	carbon resistor	$51 \Omega, 0.7 \mathrm{~W}$	5%
R17-R24	carbon resistor	$6.8 \mathrm{k} \Omega, 0.2 \mathrm{~W}$	5%
R25-R32	carbon resistor	$180 \Omega, 0.2 \mathrm{~W}$	5%
T1 -T8	transistor	BSW66	
T9 -T16	transistor	BC107	
Z1	zener diode	BZY88/C5V6	
Z2 -Z3	zener diode	BZY88/C5V1	

Small d.c. motors

Governed d.c. motors page C3 Ungoverned d.c. motors page C27

APPLICATIONS

The governed d.c. motors have been developed for use with an electronic speed control unit to keep the speed of the motor within narrow limits under variations inload, supply and temperature. Sample electronic control units or circuit diagrams are available on request.
The motors can be used in a wide range of applications.
Recording instruments:

- cassette recorders
- portable tape recorders
- record players and changers
- chart and pen-driving units in recording instruments

Optical industry:

- film cameras (film drive and zoom lens drive)
- slide projectors

Measurement and control equipment:

- small battery timers
- domestic clocks

Instruments for automation

DIRECT CURRENT MOTOR in deep drawn metal housing

	QUICK REFERENCE DATA		
Nominal voltage		4.5	$\mathrm{~V}_{\mathrm{dc}}$
Speed		2000	$\mathrm{rev} / \mathrm{min}$
Input power		max.	0.6
W			
Torque	min.	11	$\left.\mathrm{gcm}{ }^{*}\right)$

APPLICATION

This small d.c. motor has been designed for applications which require a high quality.
Examples:

- small tape recorders (cassette recorders)
- record players
- record changers
- film cameras
- car cassette radios

DESCRIPTION

The motor has been provided with a permanent magnet system, consisting of a ring magnet with which a very low holding torque has been obtained. It has a nickel-plated deep drawn steel housing. The built-in spark suppressor (V.D.R.) increases the collector life considerably.
The motor is suitable for operation in tropical environments.
*) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

TECHNICAL DATA

Dimensions in mm

Weight

100 g

The values given below apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $860-1060$ mbar and a relative humidity of $45-75 \%$.
Nominal values

Voltage
Torque
Speed
at nominal load
at no load
Current
at nominal load
at no load
Starting torque
Input power
Induced voltage at $3000 \mathrm{rev} / \mathrm{min}$
Rotor resistance measured statically with brushes
Direction of rotation
Ambient temperature range
Bearings
Maximum radial force on the bearings

> 4.5 Vdc
> min. $\left.11 \mathrm{gcm}{ }^{*}\right)$
$2000 \mathrm{rev} / \mathrm{min}$
$2650 \pm 250 \mathrm{rev} / \mathrm{min}$
$\max .0 .110 \mathrm{~A}$
$\max .0 .035 \mathrm{~A}$
min. $50 \mathrm{gcm}{ }^{*}$)
max. 0.6 W
4.4-5.1 V
$10 \pm 0.7 \Omega$
clockwise, see dimensional drawing -10 to $+50^{\circ} \mathrm{C}$
slide-bearings
$100 \mathrm{~g}{ }^{*}$)

$$
\begin{aligned}
\hline \text { *) } 1 \mathrm{gcm} & =10^{-4} \mathrm{Nm} \\
1 \mathrm{~g} & =10^{-2} \mathrm{~N}
\end{aligned}
$$

Maximum axial force
Maximum axial play
Rotor inertia
Housing, material finish
$10 \mathrm{~g}^{*}$)
0.6 mm
$10.2 \times 10^{-3} \mathrm{gcms}^{2}{ }^{*}$)
steel, deep drawn
nickel-plated

Limiting conditions

The following maximum values should never be exceeded.

Maximum voltage
Maximum permissible load
Maximum permissible input current
Maximum speed
Maximum output

$$
\begin{aligned}
& 6 \mathrm{~V} \mathrm{dc} \\
& 18 \mathrm{gcm} *) \\
& 0.15 \mathrm{~A} \\
& 3000 \mathrm{rev} / \mathrm{min} \\
& 0.5 \mathrm{~W}
\end{aligned}
$$

The curves are measured on an arbitrary motor.

REMARK

The motor can be used with the electronic speed control unit 990413201006 ; see the relevant data sheet.
*) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$
$1 \mathrm{~g}=10^{-2} \mathrm{~N}$

DIRECT CURRENT MOTOR with interference-suppression filter

	QUICK REFERENCE DATA		
Nominal voltage		4.5	$\mathrm{~V}_{\mathrm{dc}}$
Speed		2000	$\mathrm{rev} / \mathrm{min}$
Input power	max.	0.6	W
Torque	min.	11	$\left.\mathrm{gcm}^{*}\right)$

APPLICATION

This small d.c. motor has been designed for applications which require a high quality, e.g. musical equipment.

DESCRIPTION

The motor has been provided with a permanent magnet system, consisting of a ring magnet with which a very low holding torque has been obtained. It has a housing of extruded aluminium. The built-in spark suppressor (V.D.R.) increases the collector life considerably. An interference-suppression filter has been incorporated in the housing so that there can be no objection to building in this type of motor close to equipment that is sensitive to electrical interference.
The motor is suitable for operation in tropical environments.
*) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

TECHNICAL DATA

Dimensions in mm

Weight

100 g

The values given below apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $860-1060 \mathrm{mbar}$ and a relative humidity of $45-75 \%$.
Nominal values

Voltage
Torque
Speed
at nominal load
at no load
Current
at nominal load
at no load
Starting torque
Input power
Induced voltage at $3000 \mathrm{rev} / \mathrm{min}$
Rotor resistance measured statically with brushes
Direction of rotation
Ambient temperature range
Bearings
Maximum radial force on the bearings
Maximum axial force
Maximum axial play
Rotor inertia
Housing, material

$$
\begin{aligned}
\text { *) } 1 \mathrm{gcm} & =10^{-4} \mathrm{Nm} \\
1 \mathrm{~g} & =10^{-2} \mathrm{~N}
\end{aligned}
$$

$4.5 \mathrm{~V}_{\mathrm{dc}}$
min. $11 \mathrm{gcm}{ }^{*}$)
$2000 \mathrm{rev} / \mathrm{min}$
$2650 \pm 250 \mathrm{rev} / \mathrm{min}$
$\max .0 .110 \mathrm{~A}$
$\max .0 .035 \mathrm{~A}$
min. $50 \mathrm{gcm}{ }^{*}$)
\max. 0.6 W
4.4-5.1 V
$10 \pm 0.7 \Omega$
clockwise, see dimensional drawing
-10 to $+50^{\circ} \mathrm{C}$
slide bearings
$100 \mathrm{~g}{ }^{*}$)
$10 \mathrm{~g}{ }^{*}$)
0.6 mm
$10.2 \times 10^{-3} \mathrm{gcms}^{2}{ }^{*}$)
aluminium; extruded

DIRECT CURRENT MOTOR

Limiting conditions

The following maximum values should never be exceeded.

Maximum voltage
Maximum permissible load
Maximum permissible input current
Maximum speed
Maximum output

$$
\begin{aligned}
& 6 \mathrm{~V}_{\mathrm{dc}} \\
& \left.18 \mathrm{gcm}{ }^{*}\right) \\
& 0.15 \mathrm{~A} \\
& 3000 \mathrm{rev} / \mathrm{min} \\
& 0.5 \mathrm{~W}
\end{aligned}
$$

The curves are measured on an arbitrary motor.

REMARK

The motor can be used with the electronic speed control unit 990413201006 ; see the relevant data sheet.

[^33]
DIRECT CURRENT MOTOR

	QUICK REFERENCE DATA		
Nominal voltage		3.2	$\mathrm{~V}_{\mathrm{dc}}$
Speed	2000	$\mathrm{rev} / \mathrm{min}$	
Input power	max. 0.85	W	
Torque	min.	18	$\mathrm{gcm} *)$

APPLICATION

This small d.c. motor has been mainly designed for servo purposes in a wide range of professional and industrial applications.
Examples:

- film cameras (film drive and zoom lens drive)
- slide projectors
- portable recording instruments (chart drive and pen drive)
- instruments for automation.

DESCRIPTION

The motor has been provided with a housing of sintered iron.
A special construction of a flat collector, a light brush construction and a built-in spark suppressor (V.D.R.) guarantee a smooth running. The motor is suitable for tropical environments.

[^34]
TECHNICAL DATA

Dimensions in mm

Weight
approx. 45 g
The values given below apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmos pheric pressure of 860-1060 mbar and a relative humidity of $45-75 \%$.

Nominal values

Voltage
Torque
Speed
at nominal load
at no load

Current

at nominal load
at no load
Starting voltage at no load
Starting torque
Input power
Induced voltage at $3000 \mathrm{rev} / \mathrm{min}$
Rotor resistance measured statically with brushes
Direction of rotation
Ambient temperature range
Bearings
Maximum radial force on the bearings
Maximum axial force
Maximum axial play
Rotor inertia
Housing, material finish
$3.2 \mathrm{~V}_{\mathrm{dc}}$
min. $18 \mathrm{gcm}{ }^{*}$)
$2000 \mathrm{rev} / \mathrm{min}$
3000-3500 rev/min
$\max \cdot 0.265 \mathrm{~A}$
$\max .0 .05 \mathrm{~A}$
$\max .0 .6 \mathrm{~V}_{\mathrm{dc}}$
min. $45 \mathrm{gcm}{ }^{*}$)
max. 0.85 W
2.6-3.1 V
$4.5 \Omega \pm 10 \%$
counterclockwise, see dimensional
drawing
-10 to +50 oC
slide bearings; self-lubricating
$100 \mathrm{~g}{ }^{*}$)
$10 \mathrm{~g}{ }^{*}$)
0.4 mm
$4.10^{-3} \mathrm{gcms}^{2}{ }^{*}$)
sintered iron
blackened
*) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$
$1 \mathrm{~g}=10^{-2} \mathrm{~N}$

Limiting conditions

The following maximum values should never be exceeded.
Maximum voltage
Maximum permissible load
Maximum permissible input current
Maximum speed
Maximum output
$5 \mathrm{~V}_{\mathrm{dc}}$
$25 \mathrm{gcm}{ }^{*}$)
0.35 A
$3500 \mathrm{rev} / \mathrm{min}$
0.8 W

The curves are measured on an arbitrary motor.

REMARKS

- A circuit diagram of an electronic speed control, suitable for this motor, can be supplied on request.
- Special long-life versions for use in e.g. small recorders are available on request.

[^35]
DIRECT CURRENT MOTORS with reduction

QUICK REFERENCE DATA						
catalogue number	nominal voltage $\left(\mathrm{V}_{\mathrm{dc}}\right)$	reduction ratio	speed $(\mathrm{rev} / \mathrm{min})$	input power (W)	torque $\left(\mathrm{gcm} \mathrm{*}^{*}\right)$	
990412053101	3	$27: 1$	96	0.45	150	
990412053102	3	$15.8: 1$	162	0.45	90	
990412053103	3	$10: 1$	258	0.45	55	
990412053104	3	$1.6: 1$	1600	0.45	11	

APPLICATION

These small d.c. motors with reduction have been mainly designed for servo purposes in professional and industrial applications, which require high reliability and smooth running.

Examples:

- film cameras (film drive and zoom lens drive)
- slide projectors
- portable recording instruments (chart drive and pen drive)
- instruments for automation.

[^36]
DESCRIPTION

The motors have been provided with a housing of sintered iron.
A reduction of the motor speed has been obtained by means of a high-precision reduction gear, mounted in a steel housing, which is fitted to the motor.
A special construction of a flat collector, a light brush construction and a built-in spark suppressor (V.D.R.) guarantee a smooth running.
The motors are suitable for use with an electronic remote control unit. They can be used in tropical environments.

TECHNICAL DATA

Dimensions in mm

The direction of rotation is given in connection with the polarity.

[^37]approx. 65 g

The values given below apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $860-1060 \mathrm{mbar}$ and a relative humidity of $45-75 \%$.

Nominal values

Catalogue number 9904120	53101	53102	53103	53104	
Reduction ratio	27: 1	15.8: 1	10:1	1.6:1	
Voltage	3	3	3	3	V_{dc}
Torque	150	90	55	11	$\mathrm{gcm}{ }^{*}$)
Speed at nominal load	96 ± 12	162 ± 20	258 ± 31	1600 ± 180	$\mathrm{rev} / \mathrm{min}$
at no load	110 ± 12	190 ± 20	298 ± 31	1870 ± 200	$\mathrm{rev} / \mathrm{min}$
Current at nominal load	≤ 0.15	≤ 0.15	≤ 0.15	≤ 0.15	A
at no load	≤ 0.05	≤ 0.05	≤ 0.05	≤ 0.05	A
Starting voltage at no load	< 1	<1	<1	$<$	V_{dc}
Starting torque	≥ 750	≥ 450	≥ 285	≥ 55	gcm *)
Input power	≤ 0.45	≤ 0.45	≤ 0.45	≤ 0.45	W
Maximum radial force on the bearings	200	200	200	100	g^{*})

Induced voltage at $3000 \mathrm{rev} / \mathrm{min}$ (rotor speed) between 2.6 and 3.1 V
Rotor resistance measured
statically with brushes

Direction of rotation
Ambient temperature range
Maximum axial force
Maximum axial play
Rotor inertia
Housing, material of motor material of gearbox
$4.5 \Omega \pm 10 \%$
clockwise, see dimensional drawing -10 to $+50^{\circ} \mathrm{C}$ $100 \mathrm{~g}{ }^{*}$)
0.2 mm
$4 \cdot 10^{-3} \mathrm{gcms}{ }^{2}$
sintered iron steel

[^38]$1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$

Limiting conditions

The following maximum values should never be exceeded.

Catalogue number $9904120 \ldots .$.	53101	53102	53103	53104	
Maximum voltage	5	5	5	5	$\mathrm{~V}_{\mathrm{dc}}$
Maximum permissible load	470	280	175	35	$\mathrm{gcm}{ }^{*}$)
Maximum permissible input current	0.35	0.35	0.35	0.35	A
Maximum speed	130	220	350	2200	$\mathrm{rev} / \mathrm{min}$
Maximum output	0.6	0.6	0.6	0.7	W

Note- The gears of the gearbox can easily withstand a load of $1000 \mathrm{gcm}{ }^{*}$) on the outgoing spindle.

MOUNTING

The motors can be fixed by means of two screws M3 in the mounting holes of the gearbox.
The bearing of the outcoming spindle can also be used as a centring piece.

REMARKS

Versions for other supply voltages and with different speeds can be supplied on request.

In the future motors with other reduction ratios will be available.
\rightarrow A circuit diagram of an electronic 4-speed control unit can be supplied on request.

ELECTRONIC SPEED CONTROL UNIT for direct current motors 990412001501 and 990412001502

	QUICK REFERENCE DATA
Voltage range	5 to $9 \mathrm{~V}_{\mathrm{dc}}$
Speed	$2000 \mathrm{rev} / \mathrm{min}$
Torque	$\left.\geq 6 \mathrm{gcm}^{*}\right)$

GENERAL
With this electronic speed control unit the speed of the motor 990412001501 or 990412001502 is kept within narrow limits under variations in load, supply voltage and temperature.
The combination of motor and speed control unit is very suitable for use in e.g. tape recorders, record players and record changers. The unit can be used in tropical environments.

[^39]TECHNICAL DATA (See also the data sheets of the motor used with the speed control unit)

Dimensions in mm

Connecting diagram

The data given below are valid for the combination of the electronic speed control unit and motor 990412001501 or 990412001502.

Voltage range
Torque at $5 \mathrm{~V}_{\mathrm{dc}}$
Speed at nominal load
Current at no load
Starting torque at $5 \mathrm{~V}_{\mathrm{dc}}$ at $9 \mathrm{~V}_{\mathrm{dc}}$
Speed control range for variations of:
supply voltage between 5 and $9 \mathrm{~V}_{\mathrm{dc}}$ and
load between 3 and 6 gcm *) and tem-
perature between 0 and $45{ }^{\circ} \mathrm{C} \quad 2000 \mathrm{rev} / \mathrm{min}+$ or -3%
Ambient temperature range

```
5 to 9 V Vc
2 gcm*)
2000 rev/min
\leq 35 mA (motor) + 8 mA (control unit)
\geq30 gcm*)
\geq60 gcm*)
```

[^40]

The curves are measured on an arbitrary motor.

MOUNTING

The electronic speed control unit should be mounted on a suitable heatsink. The unit can be fixed with a screw M2.5 .

APPLICATIONS

The ungoverned d.c. motors can be used in a wide range of applications:
Small household appliances:

- hair dryers
- clothes and shoe brushes
- tooth brushes
- manicure sets
- fans
- scissors
- knives
- mixers
- deodorizing systems

Motor car industry:

- demister systems
- actuator systems
- radio-tuning devices
- windscreen washer pump

Toy industry:

- high quality toys
- remotely controlled toys e.g.cars, trains, boats, dolls
- building kits

DIRECT CURRENT MOTORS

990412007401
990412008601

QUICK REFERENCE DATA

Nominal voltage
motors 990412007401 and 990412008401
motors 990412007601 and 990412008601
Speed
Input power
$3900 \mathrm{rev} / \mathrm{min}$

Torque
2 W
$30 \mathrm{gcm} *)$

APPLICATION

These small d.c. motors have been designed for applications which require high quality and long life.
Examples:

- motor car industry: fans, demister systems, actuator systems,
- small-household-appliance industry: electrical cloth and shoe brushes, deodorised systems, hair dryers,
- toy industry: high quality toys and building kits.

[^41]
DESCRIPTION

The motor has been provided with a permanent-magnet system. It has a grey, injection - moulded housing of polyacetal resin, which offers an excellent resistance to chemicals and corrosion. A special advanced construction of a flat commutator, brass-graphite brushes, and a built-in spark suppressor (V.D.R.) guarantee a good performance during its whole life.

TECHNICAL DATA

D.C. motors 990412007401 and 990412007601 . The direction of rotation is given in connection with the polarity.

D.C. motors 990412008401 and 990412008601 . The direction of rotation is given in connection with the polarity.

Weight
approx. 90 g

The values given below apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $860-1060$ mbar and a relative humidity of $45-75 \%$.

Nominal values

Voltage
Torque
Speed at nominal load at no load
Current at nominal load at no load
Starting torque
Input power
Direction of rotation
Ambient temperature range
Bearings
Maximum radial force on the bearings
Maximum axial force
Housing, material colour

$$
\begin{array}{l|l}
0.375 \mathrm{~A} & 0.190 \mathrm{~A} \\
0.095 \mathrm{~A} & 0.055 \mathrm{~A}
\end{array}
$$

$$
\left.\min .120 \mathrm{gcm}^{*}\right)
$$

$$
2 \mathrm{~W}
$$

reversible, see dimensional drawing -20 to $+60^{\circ} \mathrm{C}$ sintered bronze; self-lubricating $250 \mathrm{~g}^{*}$) 200 g*) polyacetal resin grey

Limiting conditions
The following maximum values should never be exceeded.

	motors 990412007401 and 990412008401	$\begin{array}{r} \text { motors } 990412007601 \\ \text { and } 990412008601 \end{array}$
Maximum voltage	12 V dc	24 Vdc
Maximum permissible load at $6 \mathrm{~V}_{\text {dc }}$	$60 \mathrm{gcm*}$)	
$\text { at } 12 \mathrm{~V}_{\mathrm{dc}}$	($30 \mathrm{gcm}^{*}$)	$60 \mathrm{gcm}{ }^{*}$)
at $24 \mathrm{~V}_{\mathrm{dc}}$		$30 \mathrm{gcm}{ }^{*}$)

[^42]

The curves in full lines are representative for our motors; these in dotted lines will give an information about the possible spread in the performances.

MOUNTING

The motors with a square flange with mounting holes (catalogue numbers 990412007401 and 9904120 07601) can be fixed by means of four screws (M 2.6) and nuts.

REMARKS

Versions for other supply voltages and with different speeds can be delivered on request.

A series of small d.c. motors with gearbox and with a square flange, offering a wide range of gear ratios, can be delivered under catalogue numbers 990412051401 to 990412051411 for a supply voltage of $6 \mathrm{~V}_{\mathrm{dc}}$ and 990412051601 to 990412051611 for a supply voltage of $12 \mathrm{~V}_{\mathrm{dc}}$.

DIRECT CURRENT MOTORS with reduction

QUICK REFERENCE DATA					
catalogue numbers		reduction ratio	$\begin{gathered} \text { speed } \\ (\mathrm{rev} / \mathrm{min}) \end{gathered}$	input power (W)	torque (gcm *)
nominal voltage 6 V dc	nominal voltage 12 V dc				
990412051401	990412051601	5.57: 1	690	2.1	100
990412051402	990412051602	$9: 1$	435	2.0	150
990412051403	990412051603	16.7 : 1	235	2.0	300
990412051404	990412051604	$27: 1$	143	2.1	500
990412051405	990412051605	$50: 1$	83	2.0	750
990412051406	990412051606	$81: 1$	49	2.2	1500
990412051407	990412051607	150.4 : 1	28	1.5	1500
990412051408	990412051608	243 : 1	18	1.2	1500
990412051409	990412051609	451.25: 1	9.8	1.0	1500
990412051411	990412051611	729 : 1	6.3	0.8	1500

[^43]
APPLICATION

These small d.c. motors with integrated gearboxes have been designed for applications which require a driving motor of good quality and a long life.

Examples:

- automation systems
- chart and pen-driving units for portable recorders
- rotating antenna systems
- rotating warning lights
- positioning of searchlights e.g. on cars
- electric cloth-brushes and shoe-brushes
- high-quality toys and building kits.

DESCRIPTION

This motor has been provided with a permanent magnet system. A reduction gear box has been built in with gearwheels made of polyacetal resin; various reductions are available.
A voltage dependent resistor is built in and acts as a spark suppressor. This and the fact that the commutator is flat make for a good interference suppression so that the motor can also be remotely controlled.
The grey injection-moulded housing of polyacetal resin is highly resistant to chemicals and corrosion. Mounting the motor is easy since it is provided with a flange having four holes.

MOUNTING

The motor can be fixed by means of four screws M2.6 and washers. (See dimensional drawing.)

TECHNICAL DATA

Dimensions in mm

The direction of rotation is given in connection with the polarity.

The values given in the tables on pages 4 and 5 apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $860-1060 \mathrm{mbar}$ and a relative humidity of 45-75\%

Ambient temperature range
Bearings
Maximum axial play
Housing, material colour

Gears, material
Weight
-20 to $+60{ }^{\circ} \mathrm{C}$
bronze, self lubricating
0.5 mm
polyacetal resin medium grey
polyacetal resin
approx. 110 g

Catalogue number $990412051 .$.	401	601	402	602	403	603	404	604	405	605	
Reduction ratio	$5.57: 1$		$9: 1$		$16.7: 1$		$27: 1$		$50: 1$		
Nominal values											
Voltage	6	12	6	12	6	12	6	12	6	12	V_{dc}
Torque	100		150		300		500		750		gcm^{*})
Speed at nominal load	690		435		235		143		83		$\mathrm{rev} / \mathrm{min}$
at no load	845		520		280		175		94		$\mathrm{rev} / \mathrm{min}$
Current at nominal load	340	170	325	155	335	165	340	170	315	150	mA
at no load	100	55	100	55	100	55	100	55	100	55	mA
Input power	2.1		2.0		2.0		2.1		2.0		W
Direction of rotation, see dimensional drawing	CCW		CCW		CW		CW		CCW		
Maximum radial force on the bearings	200		200		400		400		600		$\left.g^{*}\right)$
Maximum axial force	200		200		400		400		600		g^{*})
Limiting conditions**)											
Maximum voltage	12	24	12	24	12	24	12	24	12	24	V_{dc}
Maximum permissible load	150		200		350		600		1000		gcm*)

[^44]${ }^{* *}$) These maximum values should never be exceeded.

Catalogue number $990412051 \ldots$	406	606	407	607	408	608	409	609	411	611	
Reduction ratio	81: 1		150.4: 1		243: 1		451.25: 1		$729: 1$		
Nominal values											
Voltage	6	12	6	12	6	12	6	12	6	12	$\mathrm{v}_{\text {dc }}$
Torque	1500		1500		1500		1500		1500		$\mathrm{gcm}{ }^{*}$)
Speed at nominal load	49		28		18		9.8		6.3		$\mathrm{rev} / \mathrm{min}$
at no load	58		31		19.5		10.5		6.5		$\mathrm{rev} / \mathrm{min}$
Current at nominal load	370	175	240	120	190	90	165	70	140	60	mA
at no load	100	55	100	55	100	55	100	55	100	55	mA
Input power	2.2		1.5		1.2		1.0		0.8		W
Direction of rotation, see dimensional drawing	CCW		CW		CW		CCW		CCW		
Maximum radial force on the bearings	600		800		800		1000		1000		g^{*})
Maximum axial force	600		800		800		1000		1000		g^{*})
Limiting conditions ${ }^{* *}$)											
Maximum voltage	12	24	12	24	12	24	12	24	12	24	$\mathrm{v}_{\text {dc }}$
Maximum permissible load	1500		1500		1500		1500		1500		$\mathrm{gcm}{ }^{*}$)

*) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$
**) $1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$
${ }^{* *}$) These maximum values should never be exceeded.

DIRECT CURRENT MOTORS
with reduction

The solid curves are typical, the dotted ones indicate the spread in the performances.

REMARKS

Versions for other supply voltages can be supplied on request.
Motors with metal gearwheels are available for higher output torques.

DIRECT CURRENT MOTOR DRIVE UNIT with integrated gearbox

QUICK REFERENCE DATA		
Nominal voltage	4.5	$\mathrm{~V}_{\mathrm{dc}}$
Speed	225	$\mathrm{rev} / \mathrm{min}$
Input power	1.7	W
Torque	200	$\left.\mathrm{gcm}{ }^{*}\right)$

APPLICATION

This small d.c. motor drive unit with integrated gearbox has been especially designed for the toy industry (making toy cars, trains, sewing machines, dolls, etc.). It has a high-speed and a low-speed spindle so that it is highly suited for a combined function, e.g. in model helicopters or airplanes, where the low-speed spindle drives the wheels and the high-speed spindle the propellers.
Furthermore it can be used in small household appliances, such as electrical cloth and shoe brushes. For use in e.g. electric shavers and motorised boats, the motor can be supplied without gears.

DESCRIPTION

This motor drive unit consists of a d.c. motor and an integrated reduction gear, gear ratio $20.44: 1$. The complete assembly is encapsulated in a housing of polyacetal resin. A high-torque low-speed output is provided by the two ends of the spindle of the reduction gear. This spindle is perpendicular to the motor armature spindle, which provides a high-speed output.
Electrical connection to the motor is made by two solder tags.
The motor has been provided with four mounting ears.
If interference suppression is required, e.g. for remote control purposes, the motor can be supplied with a built-in spark suppressor (V.D.R.), which does the job properly thanks to the special flat-shaped long-life commutator.
*) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

TECHNICAL DATA
Dimensions in mm

The direction of rotation is given in connection with the polarity.
Weight
approx. 50 g
The values given below apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $860-1060$ mbar and a relative humidity of $45-75 \%$.

Nominal values

Voltage
Torque
Speed at nominal load at no load
Current at nominal load at no load
Starting torque
Input power
Direction of rotation
Ambient temperature range
Maximum radial force on the bearings
Maximum axial force
Housing, material colour
$4.5 \mathrm{~V}_{\mathrm{dc}}$
$200 \mathrm{gcm} *$)
$225 \mathrm{rev} / \mathrm{min}$
$280 \mathrm{rev} / \mathrm{min}$
0.36 A
0.135 A
$\geq 750 \mathrm{gcm}^{*}$)
1.7 W
reversible; see dimensional drawing
-10 to $+50^{\circ} \mathrm{C}$
$1000 \mathrm{~g}^{*}$)
$500 \mathrm{~g}^{*}$)
polyacetal resin
white
*) $\begin{aligned} \text { *) } 1 \mathrm{gcm} & \approx 10^{-4} \mathrm{Nm} \\ 1 \mathrm{~g} & \approx 10^{-2} \mathrm{~N}\end{aligned}$

Limiting conditions

The following maximum values should never be exceeded.
Maximum voltage
6 Vdc
Maximum permissible load
$300 \mathrm{gcm}{ }^{*}$)

The curves in full lines are representative for our motors; these in dotted lines will give an information about the possible spread in the performances.

MOUNTING

The motor can be fixed by means of four screws.

REMARKS

Versions are available on request:

- for other supply voltages and with other speeds
- with a reduction gear spindle with other lengths (maximum 120 mm)
- with the reduction gear spindle shifted to left or to right.

[^45]
Tachogenerators and servomotors

Servomotor
page D3
D. C. tachogenerators
page D9

SERVOMOTOR

 symmetric asynchronous type with a.c. tacho-generator

QUICK REFERENCE DATA
Nominal voltage, reference coil
control coil
110, $220 \mathrm{~V}, 50 \mathrm{~Hz}$

Speed at no load
Input at no load, reference coil
control coil
Maximum torque

QUICK REFERENCE DATA		
Nominal voltage, reference coil		
control coil	$110,220 \mathrm{~V}, 50 \mathrm{~Hz}$	
Speed at no load	$9,18 \mathrm{~V}, 50 \mathrm{~Hz}$	
Input at no load, reference coil		
control coil	$\geq 2400 \mathrm{rev} / \mathrm{min}$	
Maximum torque	$\leq 3 \mathrm{~W}$	

APPLICATION

This asynchronous motor with incorporated tacho-generator has been specially designed for closed loop compensating circuits, requiring accurate setting, asused in:

- recording measuring instruments
- electronic weighing equipment
- proces control equipment.

No maintenance is required. It is suitable for tropical environments.

[^46]
DESCRIPTION

The motor is equipped with 4 coils, 2 of which being mains fed (motor reference coils), whereas the other 2 (control coils) are to be connected to an amplifier.
The input of this amplifier is driven by the difference in voltage between the recording element and the potentiometer with indicator driven by the motor. If this difference is zero, the amplifier receives no input signal and supplies no output voltage to the control coils, so that the motor stops.
As soon as there is a voltage difference, the motor will begin to rotate so that the potentiometer is moved until the difference disappears again.
Owing to the momentum of motor and system, the indicator will overshoot the zero position, thus giving rise to another voltage difference which starts the motor anew. The result is that the motor will oscillate round the zero point. The built-in tachom-eter-generator suppresses the oscillation by generating a voltage which opposes the abovementioned voltage difference. As the indicator approaches the correct position, the voltage difference is very low and equals the e.m.f. of the generator. As a result the input voltage of the amplifier is zero before the indicator arrives at the correct point. The indicator travels to the correct point driven by the momentum of motor and system. Finally the voltage difference and the e.m.f. of the generator become zero, and the whole system is in neutral position.

TECHNICAL DATA

Dimensions in mm

Module
: 0.5
Number of teeth: 14
Height of teeth: 1.1

Connecting diagram

Reference coils of motor

Control coils of motor

Reference coils of generator
Outgoing coils of generator
between 4 and 7: $220 \mathrm{~V}, 50 \mathrm{~Hz}$ and 5 and 6 interconnected;
between 4 and $6: 110 \mathrm{~V}, 50 \mathrm{~Hz}$, 6 and 7 interconnected and 4 and 5 interconnected.
between 1 and $3: 18 \mathrm{~V}, 50 \mathrm{~Hz}$;
between 1 and 2: $9 \dot{\mathrm{~V}}, 50 \mathrm{~Hz}$ and
between 2 and 3: $9 \mathrm{~V}, 50 \mathrm{~Hz}$.
between 7 and 8: $50 \mathrm{~V}, 50 \mathrm{~Hz}$.
between 9 and 10.

SERVOMOTOR

symmetric asynchronous type with a.c. tacho-generator

Weight

approx. 1000 g
The values given below are measured at $220 \mathrm{~V}_{\mathrm{ac}}$ reference coil and $18 \mathrm{~V}_{\mathrm{ac}}$ control coil with phase angle between the two voltages of $90 \pm 5^{\circ}$.
They apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of 800-1060 mbar and a relative humidity of 45-75\%.

Nominal voltage, motor reference coil motor control coil

Frequency
Starting torque at $150 \mathrm{rev} / \mathrm{min}$
Maximum torque
Speed at maximum torque
at no load
at maximum output power
Maximum output power
Input power at no load, motor reference coil motor control coil

Current at no load, motor reference coil motor control coil

Voltage, generator reference coil
Current, generator reference coil
Voltage, generator outgoing coil (open output voltage, 50 Hz , sinusoidal)
at $2400 \mathrm{rev} / \mathrm{min}$
at $0 \mathrm{rev} / \mathrm{min}$
Direction of rotation
Maximum permissible temperature of the windings
of the bearings
Insulation according to IEC 65
Insulation test voltage
Bearings
Maximum radial force on the bearings
Maximum axial force
Rotor inertia (motor and generator)
Terminals
次 $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$
$1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$

$110,220 \mathrm{~V}$$9,18 \mathrm{~V}$	
50	Hz
≥ 135	gcm 沙
≥ 135	gcm *)
150	rev/min
≥ 2400	$\mathrm{rev} / \mathrm{min}$
1400	$\mathrm{rev} / \mathrm{min}$
≥ 1.2	W
≤ 3	W
≤ 3	W
≤ 0.035	A
≤ 0.375	A
$50 \mathrm{~V}, 50 \mathrm{~Hz}$	
≤ 0.02	A

$\geq 0.1 \mathrm{mV} / \mathrm{rev} / \mathrm{min}$
$\geq 250 \mathrm{mV}$
$\leq 1.5 \mathrm{mV}$
reversible
$120^{\circ} \mathrm{C}$
$80^{\circ} \mathrm{C}$
class E
2500 V
ball bearings
500 g *)
$\left.100 \mathrm{~g} \cdot{ }^{*}\right)$
$54 \cdot 10^{-3} \mathrm{gcms}^{2}$ *)
flying leads

Motor reference coils (2 coils in series)
Motor control coils (4 coils in series)
Generator reference coils (2 coils in series)
Generator outgoing coils (2 coils in series)

resistance	inductance
1350Ω	18.2 H
7.5Ω	0.14 H
2000Ω	7 H
110Ω	0.37 H

Torque, motor current reference coil, motor current control coil and generator voltage outgoing coil (open output voltage) as a function of rotor speed.
The curves are measured at an arbitrary motor.

Load as a function of generator voltage outgoing coil at an arbitrary constant rotor speed.
The curves are measured at an arbitrary motor.

MOUNTING

The motor can be fixed by means of four screws M4 and/or four screws M3.

REMARKS

- Input power, current and torque are measuredat an ambient temperature of $20^{\circ} \mathrm{C}$, within the first 15 s after starting the cold motor.
The speed is measured at an ambient temperature of $20^{\circ} \mathrm{C}, 5 \mathrm{~min}$ after starting the cold motor.
- A voltage deviation of - 10% from nominal causes the torque to decrease by about 20%.
- Versions for other supply voltages can be supplied on request.

D.C. TACHOGENERATORS

QUICK REFERENCE DATA		
Output voltage	$0.06 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$	$0.1 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$
Maximum permissible speed	$10000 \mathrm{rev} / \mathrm{min}$	$6000 \mathrm{rev} / \mathrm{min}$
Maximum permissible output current	0.25 A	0.16 A
Armature resistance at $20^{\circ} \mathrm{C}$	59Ω	165Ω
Rotor inertia	$8450 \mathrm{gcm}^{2}$	$8450 \mathrm{gcm}^{2}$

APPLICATION

This range of d.c. permanent magnet tachogenerators has been designed for use in electronic control and measuring systems.
They can be used as a link in servo control systems where d.c. feedback is required proportional to speed such as for programmed control of machine tools, acceleration and deceleration of high speed lifts, and variable speed drives of coil winding machines. For speed synchronization of rotary machines, such as in the printing, paper making and textile industries, these tachogenerators are ideally suited, for not only are the machines of a high quality type but, since they are totally enclosed they are able to operate in particle-laden atmospheres without their performance being affected in any way.

DESCRIPTION

These d.c. permanent magnet tachogenerators generate a d.c. voltage directly proportional to the speed of spindle rotation with a linearity of 0.5%.
They are available in two basic formshaving outputs of 60 mV and 100 mV per revolution per minute, respectively. Peak-to-peak ripple has been reduced to less than 1% for speeds from 100 to $4500 \mathrm{rev} / \mathrm{min}$.
Both basic forms of tachogenerators can be supplied in spigot-flange or base-mount ing types. A choice of three different spindle diameters is offered.

The range of d.c. tachogenerators comprises 11 different versions; eight make up the preferred range and three others comprise the non-preferred range. Selection of one of the non-preferred versions will usually result in a longer delivery time.

The tachogenerators are of rugged design with dynamically balanced armatures running in double-shielded bearings which require no further lubrication.

TECHNICAL DATA

Dimensions in mm

Fig. 1. Spigot-flange types of d.c. tachogenerators.

A	B
7	2.3×7
10	3
11	4

Fig. 2. Base-mounting types of d.c. tachogenerators.
Preferred range

Type	spigot-flange				base-mounting			
Spindle diameter (mm)	7		10	11			10	11
Catalogue number 9904121000. .	32^{1})	411)	$312)$	342)	531)	61 ${ }^{1}$)	511)	521)
Output voltage (V/rev/min)	0.06	0.10	0.06	0.06	0.06	0.10	0.06	0.06
Max. permissible speed (rev/min)	10000	6000	10000	10000	10000	6000	10000	10000
Max. permissible output current (A)	0.25	0.16	0.25	0. 25	0.25	0.16	0.25	0.25
Armature resistance at $20^{\circ} \mathrm{C} \quad$ ($\left.\Omega\right) \pm 3 \%$	59	165	59	59	59	165	59	59
For general specification see next page.								

Non-preferred range

Type	spigot-flange		
Spindle diameter (mm)	7		11
Catalogue number 9904121000. .	33^{2})	$\left.36^{2}\right)$	35^{2})
Output voltage $(\mathrm{V} / \mathrm{rev} / \mathrm{min})$ Max. permissible speed $(\mathrm{rev} / \mathrm{min})$ Max. permissible output current (A) Armature resistance at $20^{\circ} \mathrm{C}$ $(\Omega) \pm 3 \%$	$\begin{aligned} & 0.06 \\ & 10000 \\ & 0.25 \\ & 59 \end{aligned}$ Spindle extension with open ended key way	$\quad 0.06$ $\quad 10000$ $\quad 0.25$ $\quad 59$ Watertight, dustproof version	10.06 10000 0.25 59 Generator equipped with adaptor for over- pressure ventilation. For use in explosive surroundings Watertight, dustproof version
For general specification see next page.			

[^47]Direction of rotation
Max. linearity error
Max. no load reverse error at $1000 \mathrm{rev} / \mathrm{min}$
Max. output voltage at no load
A. C. content (peak-to-peak) at any speed between 100 and $4500 \mathrm{rev} / \mathrm{min}$
Voltage temperature coefficient
Max. temperature rise at maximum output current
Ambient temperature range operational storage
Insulation according IEC 65
Insulation test voltage, 50 Hz , for 30 s
Protection according IEC 34-5
Rotor inertia
Max. permissible radial force
Max. permissible axial force
Brushes
Bearings
Housing
Weight
spigot-flange types
base-mounting types
reversible ${ }^{1)}$
0.5\%
1%
600 V
1% of output voltage
$0.01 \% / \mathrm{degC}$
35 degC
-15 to $+65^{\circ} \mathrm{C}$
-30 to $+85^{\circ} \mathrm{C}$
class E
1700 V
ID 34
$8450 \mathrm{gcm}^{2}$
10 kg
10 kg
silver -graphite
double-shielded, self-lubricated
light alloy, grey painted
2.48 kg
2.65 kg

[^48]No load conditions
A tachogenerator can be represented schematically as shown in Fig. 3, where R_{i} is the armature resistance and R_{ℓ} represents the resistance of the external load.

The output voltage measured across the terminals marked $x x$ is shown for no load in Fig. 4 for the $0.06 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ types and in Fig. 5 for the $0.1 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ types.

Fig. 3. Equivalent circuit of d.c. tachogenerator.

Fig. 4 No load output voltage (V_{0}) as a function of speed (n) for $0.06 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ types.

Fig. 5 No load output voltage $\left(\mathrm{V}_{0}\right)$ as a function of speed (n) for $0.1 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ types.

Output current limitations

Since the output current is limited to 250 mA and 160 mA for the $0.06 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ and the $0.1 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ types respectively, the minimum permissible load resistance in relation to the rotational speed of the tachogenerator (output voltage) must be taken into consideration.
The minimum value of external loadresistance as a function of the speed is given for the $0.06 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ types in Fig. 6 and for the $0.1 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ types in Fig. 7.

Example:

The tachogenerator is required to run at $6000 \mathrm{rev} / \mathrm{min}$.
The minimum permissible load resistance if a $0.06 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ type is used can be found directly from the graph in Fig. 6: 1381 ת. Alternatively, this can be calculated as follows:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=\mathrm{nx} \mathrm{~V} / \mathrm{rev} / \mathrm{min} \\
& \mathrm{R}_{\text {total }} \min =\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{I}_{\mathrm{max}}}
\end{aligned}
$$

whence

$$
\mathrm{R}_{\ell \min }=\mathrm{R}_{\text {total } \min }-\mathrm{R}_{\mathrm{i}}
$$

where V_{0} is the output voltage
n is the speed in rev/min
$I_{\text {max }}$ is the maximum permissible current
R_{ℓ} min is the minimum permissible load resistance
R_{i} is the armature resistance.
In the example quoted, $I_{\max }=0.25 \mathrm{~A}$ and $\mathrm{R}_{\mathrm{i}}=59 \Omega$, therefore:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=6000 \times 0.06=360 \mathrm{~V} \\
& \mathrm{R}_{\text {total min }}=\frac{360}{0.250}=1440 \Omega \\
& \mathrm{R}_{\ell \min }=1440-59=1381 \Omega
\end{aligned}
$$

Note: This example does not take into account the percentage by which the no load output voltage will fall (4\%) as a function of the external load resistance.

Fig. 6 Minimum permissible load resistance $\left(R_{\ell \min }\right)$ as a function of speed (n) for $0.06 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ types.

Fig. 7 Minimum permissible load resistance $\left(R_{\ell} \min \right)$ as a function of speed (n) for $0.1 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ types.

Voltage drop as a function of external load

Although the linearity of the output voltage with respect to speed remains constant even at a voltage drop of 30%, the voltage drop must be taken into consideration.

Figs. 8 and 9 show how the voltage drop varies as a percentage of the no load voltage as a function of the external load. These graphs serve two purposes:

- to determine the variation in output voltage when a fluctuating load is applied
- to determine the correct speed for a constant load when a constant output voltage is required.

To maintain a certain voltage for a given load, the rotational speed should be increased by the percentage indicated in the graphs.

Fig. 8 Percentage drop in output voltage from its no load value as a function of external load $\left(R_{\ell}\right)$ for $0.06 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ types.

Fig. 9 Percentage drop in output voltage from its no load value as a function of external load $\left(\mathrm{R}_{\ell}\right)$ for $0.1 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ types.

Output power

When a tachogenerator is used to supply speed data for analogue instruments or in dicators, the external load will normally be insignificant and can usually be neglected. Circumstances can arise, however, in which the tachogenerator may be called on to supply power and, taking the minimum value of external load resistance as a function of shaft rotation from Figs. 6 and 7, the output power delivered by the tachogenerator may be plotted as a function of terminal voltage. The limit of the output power which is also determined by the maximum current that may be drawn, is shown in Figs. 10 and 11 as a function of output voltage.

Fig. 10 Output power $\left(\mathrm{P}_{0}\right)$ as a function of output voltage $\left(\mathrm{V}_{0}\right)$ for $0.06 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ types.

Fig. 11 Output power $\left(\mathrm{P}_{0}\right)$ as a function of output voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ for $0.1 \mathrm{~V} / \mathrm{rev} / \mathrm{min}$ types.

MOUNTING

For position servo systems where accuracy is essential, the spigot-flange method of mounting is to be preferred. A large number of measures have been taken in the design of the machines to minimize the a.c. component due to armature eccentricity and every care should be taken to ensure accurate spindle alignment, otherwise the a.c. component may be unacceptable.

For speed control systems the base-mounting type may be preferred; the spindle is then fitted with a suitable pulley for belt drive, care being taken that both spindles are parallel to each other. Only continuous belts may be employed.
The base-mounting type is secured in position by four screws or studs.
It is important that users of tachogenerators are aware of the effects produced by incorrect mounting. Whilst every care has been taken in design to reduce the ripple content, the user can easily destroy this quality by allowing mechanical misalignment, or impacting gearing, to interfere with the smooth running of the armature. For correct mounting the following points should be borne in mind:

- the spindle of the tachogenerator should be carefully aligned with the spindle to which it is to be coupled
- eccentricity of mechanical couplings should be a minimum
- gearing should be avoided, but where gearing must be used:
anti-backlash gears are essential if a position control servo system is involved all gears should be high quality and the tooth clearance correctly maintained by accurate centre-distances
a combination of nylon and resin-bonded fibre gears will give the smoothest operation
- direct coupling is preferred to gearing, but to reduce the tendency to produce ripple through misalignment of spindles, metal bellows couplings should be employed. The first point still applies, since any undue misalignment will inevitably result in destruction of the bellows through work-hardening under stress
- wherever possible, belt drive is preferred to reduce spindle vibrations transmit ted through mechanical couplings.

MAINTENANCE

Lubrication is unnecessary, since the tachogenerators are fitted with double-shielded self-lubricating ball bearings with a life of 50000 hours at $1000 \mathrm{rev} / \mathrm{min}$ without maintenance.

After every 2000 hours of running the brushes should be inspected and dust removed. The brushes are of silver-graphite and they should be carefully checked that they slide easily in their holders without them being taken out. The commutator should be cleaned with a cloth lightly soaked in trichlorethylene.
The brushes have a life of at least 10000 hours at $1000 \mathrm{rev} / \mathrm{min}$. When replacing the brushes it is necessary to bed them in until the contact area exceeds 70% of the brush section.
The silver-graphite brushes measure $3 \times 4 \times 12.5 \mathrm{~mm}$ and four brushes are required for each tachogenerator.
The armature should not be removed as this may affect the characteristics of the tachogenerator.

NOTE

Each tachogenerator is supplied with its own test certificate attached. Maintenance instructions are re-printed on the back of the certificate for handy reference.

Asynchronous motors

Shaded pole motors page E5

Motors with phasing capacitors page E33

INTRODUCTION

The range of asynchronous motors comprises the following types:

- shaded pole types, catalogue number $9904122 \ldots$.
- types with phasing capacitor, catalogue number 9904 123

They can be used in a wide range of applications.
Industrial and medical equipment:

- recording measuring instruments
- professional sound and picture recording instruments
- electronic weighing equipment
- process control equipment
- computer peripherals

Blowing equipment:

- industrial blowers
- projector cooling
- heating convectors
- ventilators

Office machines:

- type writers
- desk calculators

Household appliances:

- fans
- fan heaters
- hair dryers
- humidifiers

ASYNCHRONOUS MOTOR symmetric shaded pole type, with fan

RZ 27077.1

	QUICK REFERENCE DATA		
Nominal voltage		110,220	$\mathrm{~V}, 50 \mathrm{~Hz}$
Speed at no load		≥ 2880	$\mathrm{rev} / \mathrm{min}$
Input power at no load	≤ 33	W	
Maximum torque	≥ 400	$\left.\mathrm{gcm}^{*}\right)$	

APPLICATION

This asynchronous motor has been designed to be used in a wide range of applications.
Examples:
-tape recorders
-desk calculators
-type writers
-medical equipment
-recording measuring instruments.

DESCRIPTION

This symmetric shaded pole motor has a large laminated section by which low induced losses have been obtained. As a result the electric rumble and the stray field around the motor are limited to a minimum. Mechanical noise has been restricted by special spindle treatment and severe tolerances on the self-adjusting slide bearings. Motor vibrations are absorbed by a rubber suspension block. The motor has been provided with a cooling fan.
It is suitable for tropical environments.

[^49]
TECHNICAL DATA

Dimensions in mm

Connecting diagrams (view according to arrow P)

Weight
approx. 1100 g
The values given below are measured at a nominal voltage of 220 V ac; they apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of 860-1060 mbar and a relative humidity of 45-75 \%. See also "Remarks".

Nominal voltage
Frequency
Starting torque at $150 \mathrm{rev} / \mathrm{min}$
Maximum torque
Speed at maximum torque at no load
at maximum output power
Maximum output power
Input power at no load
Current at no load

$$
\begin{aligned}
& 110,220 \mathrm{~V}_{\mathrm{a}} \\
& 50 \mathrm{~Hz} \\
& \left.\geq 280 \mathrm{gcm}^{*}\right) \\
& \left.\geq 400 \mathrm{gcm}^{*}\right) \\
& 1800 \mathrm{rev} / \mathrm{min} \\
& \geq 2880 \mathrm{rev} / \mathrm{min} \\
& 2000 \mathrm{rev} / \mathrm{min} \\
& \geq 8 \mathrm{~W} \\
& \leq 33 \mathrm{~W} \\
& \leq 0.23 \mathrm{~A}
\end{aligned}
$$

*) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

Direction of rotation
Maximum permissible temperature of the windings
of the bearings
Minimum ambient temperature
Insulation according to I.E.C. 65
Insulation test voltage
Bearings
Maximum radial force on the bearings
Maximum axial force
Maximum axial play
Terminals
counterclockwise, see dimensional drawing

$$
\begin{array}{r}
120^{\circ} \mathrm{C} \\
80^{\circ} \mathrm{C}
\end{array}
$$

$-10^{\circ} \mathrm{C}$
class E
2500 V ac
self aligning slide bearings
$600 \mathrm{~g}{ }^{*}$)
$250 \mathrm{~g}{ }^{*}$)
2 mm
soldering tags

The curves are measured at an arbitrary motor.

MOUNTING

The motor can be fixed by means of four screws M4.

REMARKS

- Input power, current and torque are measured at an ambient temperature of $20^{\circ} \mathrm{C}$, within the first 15 seconds after starting the cold motor. The speed is measured at an ambient temperature of $20^{\circ} \mathrm{C}, 5$ minutes after starting the cold motor.
- A voltage deviation of -10% from nominal causes the torque to decrease by about 20%.
- Versions for other supply voltages and for an other direction of rotation can be delivered on request.

[^50]
ASYNCHRONOUS MOTOR symmetric, shaded pole type

QUICK REFERENCE DATA

Nominal voltage
110, $220 \mathrm{~V}, 50 \mathrm{~Hz}$
Speed at no load
Input power at no load
Maximum torque
$\geq 2900 \mathrm{rev} / \mathrm{min}$
$\leq 40 \quad W$
$\geq 270 \mathrm{gcm}^{*}$)

APPLICATION

This small asynchronous motor has been designed for domestic applications. Examples:

- hair dryers
- fans
- humidifiers

A good cooling of the motor (e.g. for use in hair dryers) is necessary. The motor is suitable for tropical environments.

[^51]
TECHNICAL DATA

Dimensions in mm

Weight
The values given below are measured at a nominal voltage of 220 V c; they apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $860-1060 \mathrm{mbar}$ and a relative humidity of $45-75 \%$. See also "Remarks".

Nominal voltage
Frequency
Starting torque at $150 \mathrm{rev} / \mathrm{min}$
Maximum torque
Speed at maximum torque
at no load at maximum output power
Maximum output power
Input power at no load
Current at no load

$$
\begin{aligned}
& 110,220 \mathrm{Vac} \\
& 50 \mathrm{~Hz} \\
& \left.\geq 100 \mathrm{gcm}^{*}\right) \\
& \left.\geq 270 \mathrm{gcm}^{*}\right) \\
& 2200 \mathrm{rev} / \mathrm{min} \\
& \geq 2900 \mathrm{rev} / \mathrm{min} \\
& 2300 \mathrm{rev} / \mathrm{min} \\
& \geq 6 \mathrm{~W} \\
& \leq 40 \mathrm{~W} \\
& \leq 0.3 \mathrm{~A}
\end{aligned}
$$

$\left.{ }^{*}\right) 1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

Direction of rotation
Maximum permissible temperature
of the windings
of the bearings
Minimum ambient temperature
Insulation according to IEC 65 and CEE 10
Insulation test voltage
Bearings
Maximum radial force on the bearings
Maximum axial force
Maximum axial play
Terminals
clockwise, see dimensional drawing
$120^{\circ} \mathrm{C}$
$90^{\circ} \mathrm{C}$
$-10^{\circ} \mathrm{C}$
class E
2500 V ac
self aligning slide bearings
$250 \mathrm{~g}^{*}$)
$350 \mathrm{~g}^{*}$)
0.6 mm
soldering tags

The curves are measured on an arbitrary motor.

MOUNTING

The motor can be fixed by means of four screws M4.

REMARKS

- Input power, current and torque are measured at an ambient temperature of $20^{\circ} \mathrm{C}$, within the first 15 seconds after starting the cold motor. The speed is measured at an ambient temperature of $20^{\circ} \mathrm{C}$, 5 minutes after starting the cold motor.
- A voltage deviation of -10% from nominal causes the torque to decrease by about 20\%.
- Versions for other supply voltages and for an other direction of rotation can be supplied on request.
*) $1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$

ASYNCHRONOUS MOTOR asymmetric, shaded pole type

RZ 27077-17

	QUICK REFERENCE DATA
Nominal voltage	
Speed at no load	$\geq 2700 \mathrm{rev} / \mathrm{min}$
Input power at no load	$\leq 17 \mathrm{~W}$
Maximum torque	$\left.\geq 75 \mathrm{gcm}^{*}\right)$

APPLICATION

This asynchronous motor is mainly intended for fans, forced cooling being required.

DESCRIPTION

This small asymmetric shaded pole motor has been provided with two spindle ends. It has self-aligning slide bearings. The motor is suitable for tropical environments.

[^52]
TECHNICAL DATA

Dimensions in mm

Weight

approx. 325 g
The values given below apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of 860-1060 mbar and a relative humidity of $45-75 \%$. See also "Remarks".

Nominal voltage
Frequency
Starting torque at $150 \mathrm{rev} / \mathrm{min}$
Maximum torque
Speed at maximum torque
at no load
at maximum output power
Maximum output power
Input power at no load
Current at no load
Direction of rotation
Maximum permissible temperature of the windings of the bearings
Minimum ambient temperature
Insulation according to IEC 65 and CEE 10
Insulation test voltage
Bearings
220 V ac
50 Hz
$\geq 60 \mathrm{gcm} *)$
$\geq 75 \mathrm{gcm}^{*}$)
$1700 \mathrm{rev} / \mathrm{min}$
$\geq 2700 \mathrm{rev} / \mathrm{min}$
$1800 \mathrm{rev} / \mathrm{min}$
$\geq 1.35 \mathrm{~W}$
$\leq 17 \mathrm{~W}$
$\leq 0.13 \mathrm{~A}$
counterclockwise, see dimensional drawing
$120^{\circ} \mathrm{C}$
$80^{\circ} \mathrm{C}$
$-10^{\circ} \mathrm{C}$
class E
2500 Vac
self aligning slide bearings
*) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

Maximum radial force on the bearings Maximum axial force Maximum axial play Terminals
$\left.250 \mathrm{~g}^{*}\right)$
$\left.35 \mathrm{~g}^{*}\right)$
0.6 mm
soldering tags

The curves are measured on an arbitrary motor.

MOUNTING

The motor can be fixed by means of four screws M3.

REMARKS

- Input power, current and torque are measured at an ambient temperature of $20^{\circ} \mathrm{C}$, within the first 15 seconds after starting the cold motor.
The speed is measured at an ambient temperature of $20^{\circ} \mathrm{C}, 5$ minutes after starting the cold motor.
- A voltage deviation of -10% from nominal causes the torque to decrease by about 20\%.
- Versions for other supply voltages and for an other direction of rotation can be supplied on request.

[^53]
ASYNCHRONOUS MOTOR asymmetric, shaded pole type

RZ 27077.20

	QUICK REFERENCE DATA	
Nominal voltage		$220 \mathrm{~V}, 50 \mathrm{~Hz}$
Speed at no load	$\geq 2850 \mathrm{rev} / \mathrm{min}$	
Input power at no load	$\leq 13 \mathrm{~W}$	
Maximum torque	≥ 80	$\mathrm{gcm} *)$

APPLICATION

This small asynchronous motor has been designed for use in household appliances, e.g.fans. Furthermore it can be used in office machines, vending machines, etc. The motor is suitable for tropical environments.

[^54]
TECHNICAL DATA

Dimensions in mm

Weight
approx. 330 g
The values given below apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of 860-1060 mbar and a relative humidity of 45-75\%. See also "Remarks".

Nominal voltage
Frequency
Starting torque at $150 \mathrm{rev} / \mathrm{min}$
Maximum torque
Speed at maximum torque
at no load
at maximum output power
Maximum output power
Input power at no load
Current at no load
Direction of rotation
Maximum permissible temperature
of the windings
of the bearings
Minimum ambient temperature
Insulation according to IEC 65 and CEE 10
Insulation test voltage
Bearings

$$
\begin{aligned}
& 220 \mathrm{~V}_{\mathrm{ac}} \\
& 50 \mathrm{~Hz} \\
& \left.\geq 53 \mathrm{gcm}^{*}\right) \\
& \left.\geq 80 \mathrm{gcm}^{*}\right) \\
& 1800 \mathrm{rev} / \mathrm{min} \\
& \geq 2850 \mathrm{rev} / \mathrm{min} \\
& 2000 \mathrm{rev} / \mathrm{min} \\
& \geq 1.5 \mathrm{~W} \\
& \leq 13 \mathrm{~W} \\
& \leq 0.11 \mathrm{~A}
\end{aligned}
$$

counterclockwise, see dimensional drawing

$$
120^{\circ} \mathrm{C}
$$

$$
90^{\circ} \mathrm{C}
$$

$-10^{\circ} \mathrm{C}$
class E
2500 Vac
self aligning slide bearings
*) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

Maximum radial force on the bearings
Maximum axial force Maximum axial play
Terminals
$250 \mathrm{~g}^{*}$)
35 g *)
0.6 mm
soldering tags

The curves are measured on an arbitrary motor.

MOUNTING

The motor can be fixed by means of four screws M3.

REMARKS

- Input power, current and torque are measured at an ambient temperature of $20^{\circ} \mathrm{C}$, within the first 15 seconds after starting the cold motor.
The speed is measured at an ambient temperature of $20^{\circ} \mathrm{C}, 5$ minutes after starting the cold motor.
- A voltage deviation of -10% from nominal causes the torque to decrease by about 20%.
- Versions for other supply voltages and for an other direction of rotation can be supplied on request.

[^55]\square

ASYNCHRONOUS MOTOR asymmetric shaded pole type

RZ 27077-14

QUICK REFERENCE DATA

Nominal voltage
Speed at no load
Input power at no load
Maximum torque

110, $220 \mathrm{~V}, 50 \mathrm{~Hz}$
$\geq 2825 \mathrm{rev} / \mathrm{min}$
$\leq 6 \mathrm{~W}$
$\left.\geq 30 \mathrm{gcm}^{*}\right)$

APPLICATION

This asynchronous motor has been designed for applications which require a low noise level, e.g. record players, fans, medical equipment.

DESCRIPTION

In this small asymmetric shaded pole motor the electric rumble level is kept very low thanks to the low induced losses and the small torque. Mechanical noise has been restricted by special spindle treatment and severe tolerances on the self-adjusting slide bearings. The motor is suitable for tropical environments.

```
*) \(1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}\)
```


TECHNICAL DATA

Dimensions in mm

Connecting diagrams (view according to arrow P)

Weight
approx. 350 g

The values given below are measured at a nominal voltage of 220 Vac ; they apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $860-1060 \mathrm{mbar}$ and a relative humidity of 45-75 \%. See also "Remarks".

Nominal voltage
Frequency
Starting torque at $150 \mathrm{rev} / \mathrm{min}$
Maximum torque
Speed at maximum torque at no load at maximum output power
Maximum output power
Input power at no load
Current at no load
Direction of rotation
$110,220 \mathrm{Vac}$
50 Hz
$\geq 20 \mathrm{gcm}{ }^{*}$)
$\geq 30 \mathrm{gcm}{ }^{*}$)
$2000 \mathrm{rev} / \mathrm{min}$
$\geq 2825 \mathrm{rev} / \mathrm{min}$ $2200 \mathrm{rev} / \mathrm{min}$
$\geq 0.6 \mathrm{~W}$
$\leq 6 \mathrm{~W}$
$\leq 0.045 \mathrm{~A}$
counterclockwise, see dimensional drawing

$$
\left.{ }^{*}\right) 1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}
$$

Maximum permissible temperature
of the windings
of the bearings
Minimum ambient temperature
Insulation according to I. E. C. 65
Insulation test voltage
Bearings
Maximum radial force on the bearings
Maximum axial force
Maximum axial play
Terminals

$$
\begin{aligned}
& 1200^{\circ} \mathrm{C} \\
& 80^{\circ} \mathrm{C} \\
& -10^{\circ} \mathrm{C} \\
& \text { class } \mathrm{E} \\
& 2500 \mathrm{~V} \text { ac } \\
& \text { self aligning slide bearings } \\
& 250 \mathrm{~g}^{*} \text {) } \\
& 35 \mathrm{~g}^{*} \text {) } \\
& 2.7 \mathrm{~mm} \\
& \text { soldering tags }
\end{aligned}
$$

The curves are measured at an arbitrary motor.

MOUNTING

The motor can be fixed by means of four screws M3.

REMARKS

- Input power, current and torque are measured at an ambient temperature of $20^{\circ} \mathrm{C}$, within the first 15 seconds after starting the cold motor.
The speed is measured at an ambient temperature of $20^{\circ} \mathrm{C}, 5$ minutes after starting the cold motor.
- A voltage deviation of -10% from nominal causes the torque to decrease by about 20\%.
- Versions for other supply voltages and for an other direction of rotation can be delivered on request.

[^56]$1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$

ASYNCHRONOUS MOTOR symmetric, shaded pole type

QUICK REFERENCE DATA			
Nominal voltage			
Speed at no load	\geq	2700	$\mathrm{rev} / \mathrm{min}$
Input power at no load	\leq	13	W
Maximum torque	\geq	50	$\left.\mathrm{gcm}^{*}\right)$

APPLICATION

This small asynchronous motor has been designed for use in household appliances, e.g. fans. Furthermore it can be used in office machines, vending machines, etc. The motor is suitable for tropical environments.

[^57]
TECHNICAL DATA

Dimensions in mm

Connecting diagrams (view according to arrow P)

Weight

approx. 250 g

The values given below are measured at a nominal voltage of $220 \mathrm{~V}_{\mathrm{ac}}$; they apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $860-1060 \mathrm{mbar}$ and a relative humidity of $45-75 \%$. See also "Remarks".

Nominal voltage
Frequency
Starting torque at $150 \mathrm{rev} / \mathrm{min}$
Maximum torque
Speed at maximum torque
at no load
at maximum output power
Maximum output power
Input power at no load
Current at no load

$$
\begin{aligned}
& 110,220 \mathrm{Vac} \\
& 50 \mathrm{~Hz} \\
& \left.\geq 26 \mathrm{gcm}^{*}\right) \\
& \left.\geq 50 \mathrm{gcm}^{*}\right) \\
& 1900 \mathrm{rev} / \mathrm{min} \\
& \geq 2700 \mathrm{rev} / \mathrm{min} \\
& 2000 \mathrm{rev} / \mathrm{min} \\
& \geq 1 \mathrm{~W} \\
& \leq 13 \mathrm{~W} \\
& \leq 0.085 \mathrm{~A}
\end{aligned}
$$

[^58]Direction of rotation
Maximum permissible temperature of the windings
of the bearings
Minimum ambient temperature
Insulation according to CEE 10
Insulation test voltage
Bearings
Maximum radial force on the bearings
Maximum axial force
Maximum axial play
Terminals
clockwise, see dimensional drawing
$120^{\circ} \mathrm{C}$
$90^{\circ} \mathrm{C}$
$-10^{\circ} \mathrm{C}$
classe E
2500 V ac
self aligning slide bearings
$300 \mathrm{~g}^{*}$)
250 g *)
0.7 mm
soldering tags

The curves are measured on an arbitrary motor.

MOUNTING

The motor can be fixed by means of two screws M2.6.

REMARKS

- Input power, current and torque are measured at an ambient temperature of $20^{\circ} \mathrm{C}$, within the first 15 seconds after starting the cold motor. The speed is measured at an ambient temperature of $20^{\circ} \mathrm{C}$, 5 minutes after starting the cold motor.
- A voltage deviation of -10% from nominal causes the torque to decrease by about 20\%.
- Versions for other supply voltages and for an other direction of rotation can be supplied on request.

[^59]
ASYNCHRONOUS MOTOR symmetric, shaded pole type, with fan

RZ 27077-18

QUICK REFERENCE DATA

Nominal voltage	110,220	$\mathrm{~V}, 50 \mathrm{~Hz}$
Speed at no load	≥ 2700	$\mathrm{rev} / \mathrm{min}$
Input power at no load	≤ 13	W
Maximum torque	≥ 50	$\left.\mathrm{gcm}^{*}\right)$

APPLICATION

This small asynchronous motor with fan is mainly intended for use as cooling unit in industrial appliances where a low noise level is required.
The motor is suitable for tropical environments.

[^60]
TECHNICAL DATA

Dimensions in mm

Connecting diagrams (view according to arrow P)

Weight

The values given below are measured at a nominal voltage of $220 \mathrm{~V}_{\mathrm{ac}}$; they apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $860-1060 \mathrm{mbar}$ and a relative humidity of $45-75 \%$. See also "Remarks".

Nominal voltage
Frequency
Starting torque at $150 \mathrm{rev} / \mathrm{min}$
Maximum torque
Speed at maximum torque
at no load
at maximum output power
Maximum output power
Input power at no load
Current at no load

$$
\begin{aligned}
& 110,220 \mathrm{~V}_{\mathrm{ac}} \\
& 50 \mathrm{~Hz} \\
& \left.\geq 26 \mathrm{gcm}^{*}\right) \\
& \left.\geq 50 \mathrm{gcm}^{*}\right) \\
& 1900 \mathrm{rev} / \mathrm{min} \\
& \geq 2700 \mathrm{rev} / \mathrm{min} \\
& 2000 \mathrm{rev} / \mathrm{min} \\
& \geq 1 \mathrm{~W} \\
& \leq 13 \mathrm{~W} \\
& \leq 0.085 \mathrm{~A}
\end{aligned}
$$

[^61]Direction of rotation
Maximum permissible temperature of the windings
of the bearings
Minimum ambient temperature
Insulation according to CEE 10
Insulation test voltage
Bearings
Maximum radial force on the bearings
Maximum axial force
Maximum axial play
Terminals
Air displacement at an air pressure of $1 \mathrm{~mm} \mathrm{WG}^{* *}$)
clockwise, see dimensional drawing
$120^{\circ} \mathrm{C}$
$90^{\circ} \mathrm{C}$
$-10^{\circ} \mathrm{C}$
class E
$2500 \mathrm{~V}_{\text {ac }}$
self aligning slide bearings
300 g *)
250 g *)
0.7 mm
soldering tags
$30 \mathrm{~m}^{3} / \mathrm{h}$

The curves are measured on an arbitrary motor.
*) $1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$
**) $1 \mathrm{~mm} \mathrm{WG} \approx 1 \mathrm{~kg} / \mathrm{m}^{2}$

MOUNTING

The motor can be fixed by means of two screws M2.6.

REMARKS

- Input power, current and torque are measured at an ambient temperature of $20^{\circ} \mathrm{C}$, within the first 15 seconds after starting the cold motor. The speed is measured at an ambient temperature of $20^{\circ} \mathrm{C}$, 5 minutes after starting the cold motor.
- A voltage deviation of -10% from nominal causes the torque to decrease by about 20%.
- Versions for other supply voltages and for an other direction of rotation can be supplied on request.

ASYNCHRONOUS MOTOR with phasing capacitor

	QUICK REFERENCE DA.
Nominal voltage	
Speed at no load	$\geq 110,220 \mathrm{~V}, 50 \mathrm{~Hz}$
Input power at no load	$\leq 2500 \mathrm{rev} / \mathrm{min}$
Maximum torque	$\geq 14 \mathrm{~W}$

APPLICATION

This small asynchronous motor with high starting torque is intended for applications where a high speed is not allowed because of noise restrictions.
Examples:

- musical equipment
- vending machines
- office machines
- fans.

The motor is suitable for tropical environments.

[^62]
TECHNICAL DATA

Dimensions in mm

Connecting diagrams (view according to arrow P)

Weight
approx. 500 g
The values given below are measured at a nominal voltage of $220 \mathrm{~V}_{\mathrm{ac}}$; they apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $86-1060$ mbar and a relative humidity of $45-75 \%$. See also "Remarks".

Nominal voltage
Frequency
Starting torque at $150 \mathrm{rev} / \mathrm{min}$
Maximum torque
*) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

$$
\begin{aligned}
& 110,220 \mathrm{~V}_{\mathrm{ac}} \\
& 50 \mathrm{~Hz} \\
& \left.\geq 155 \mathrm{gcm}^{*}\right) \\
& \left.\geq 155 \mathrm{gcm}^{*}\right)
\end{aligned}
$$

Speed at maximum torque at no load at maximum output power
Maximum output power
Input power at no load
Current at no load
Direction of rotation
Maximum permissible temperature
of the windings
of the bearings
Minimum ambient temperature
Insulation according to IEC 65 and CEE 10
Insulation test voltage
Bearings
Maximum radial force on the bearings
Maximum axial force
Maximum axial play
Terminals
Required phasing capacitor
$150 \mathrm{rev} / \mathrm{min}$
$\geq 2500 \mathrm{rev} / \mathrm{min}$
$1800 \mathrm{rev} / \mathrm{min}$
$\geq 2 \mathrm{~W}$
$\leq 14 \mathrm{~W}$
$\leq 0.06 \mathrm{~A}$
reversible, see dimensional drawing
$120^{\circ} \mathrm{C}$
$90^{\circ} \mathrm{C}$
$-10^{\circ} \mathrm{C}$
class E
$2500 \mathrm{~V}_{\mathrm{ac}}$
self aligning slide bearings
$300 \mathrm{~g}^{*}$)
$350 \mathrm{~g}{ }^{*}$)
1.6 mm
soldering tags
$0.5 \mu \mathrm{~F}$

The curves are measured on an arbitrary motor.

[^63]
REMARKS

- Input power, current and torque are measured at an ambient temperature of $20^{\circ} \mathrm{C}$, within the first 15 seconds after starting the cold motor. The speed is measured at an ambient temperature of $20^{\circ} \mathrm{C}, 5$ minutes after starting the cold motor.
- A voltage deviation of -10% from nominal causes the torque to decrease by about 20\%.
- A capacitance deviation of the phasing capacitor of + or -10% from nominal causes the torque and the output power to increase or decrease respectively by about 10%.
- Versions for other supply voltages can be supplied on request.

ASYNCHRONOUS MOTOR

with phasing capacitor

QUICK REFERENCE DATA	
Nominal voltage	
Speed at no load	$\geq 2800 \mathrm{rev} / \mathrm{min}$
Input power at no load	$\leq 45 \mathrm{~W}$
Maximum torque	$\left.\geq 800 \mathrm{gcm}{ }^{*}\right)$

APPLICATION

- Industrial blowers and fans
- Office machines
- Vending machines

DESCRIPTION

This motor has a housing of die-cast aluminium. It has been provided with ball bearings.

[^64]
TECHNICAL DATA

Dimensions in mm

Connecting diagrams

Weight

approx. 900 g

The values given below are measured at a nominal voltage of 220 Vac ; they apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $860-1060 \mathrm{mbar}$ and a relative humidity of $45-75 \%$. See also "Remarks".

Nominal voltage
Frequency
Starting torque at $150 \mathrm{rev} / \mathrm{min}$
Maximum torque
*) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

Speed at maximum torque
at no load
at maximum output power
Maximum output power
Input power at no load
Current at no load
Direction of rotation
Maximum permissible temperature of the windings

of the bearings

Minimum ambient temperature
Insulation according to IEC 65
Insulation test voltage
Bearings
Maximum radial force on the bearings
Maximum axial force
Maximum axial play
Terminals

2000	$\mathrm{rev} / \mathrm{min}$	
≥ 2800	$\mathrm{rev} / \mathrm{min}$	
2200	$\mathrm{rev} / \mathrm{min}$	
\geq	17	W
\leq	45	W
≤ 0.225	A	
reversible		
120	${ }^{\circ} \mathrm{C}$	
80	${ }^{\circ} \mathrm{C}$	
-10	${ }^{\circ} \mathrm{C}$	
class E		
2500	$\mathrm{~V}_{\mathrm{ac}}$	
ball bearings		
500	$\left.\mathrm{~g}^{*}\right)$	
200	$\left.\mathrm{~g}{ }^{*}\right)$	
0.1	mm	
2	$\mu \mathrm{~F}$	

Required phasing capacitor
$2 \mu \mathrm{~F}$

*) $1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$

MOUNTING

The motor can be fixed by two screws M5.

REMARKS

- Input power, current and torque are measured at an ambient temperature of $20^{\circ} \mathrm{C}$, within the first 15 s after starting the cold motor.
The speed is measured at an ambient temperature of $20^{\circ} \mathrm{C}, 5 \mathrm{~min}$ after starting the cold motor.
- A voltage deviation of -10\% from nominal causes the torque to decrease by about 20\%.
- A capacitance deviation of the phasing capacitor of + or -10% from nominal causes the torque and the output power to increase or decrease respectively by about 10%.
- Versions for other supply voltages can be supplied on request.

INDUSTRIAL CENTRIFUGAL BLOWER with asynchronous motor with phasing capacitor

RZ 27077.5

QUICK REFERENCE DATA

Nominal voltage	$220 \mathrm{~V}, 50 \mathrm{~Hz}$
Speed at maximum output power	$2200 \mathrm{rev} / \mathrm{min}$
Air displacement at an air pressure of $13 \mathrm{~mm} \mathrm{wg}{ }^{*}$)	$130 \mathrm{~m}^{3} / \mathrm{h}$

APPLICATION

For use in cooling systems requiring high static pressures to overcome airflow resistance such as in

- projector cooling
- heating convectors
- electronic equipment with high component density.

[^65]
DESCRIPTION

The industrial blower comprises a symmetrical asynchronous motor, catalogue num ber 990412302101 with a enamelled steel vane wheel in a bright steel housing. A thermal safety switch has been provided.

TECHNICAL DATA

Dimensions in mm

Connecting diagram

Weight
approx. 900 g
Nominal voltage
220 Vac
Frequency 50 Hz

Speed at maximum output power
$2200 \mathrm{rev} / \mathrm{min}$

Air displacement at an air pressure
of 13 mm wg *)

For full data of the motor see data sheets of the asynchronous motor 990412302101.
*) $1 \mathrm{~mm} \mathrm{wg}=1 \mathrm{~kg} / \mathrm{m}^{2}$

ASYNCHRONOUS MOTOR with phasing capacitor

RZ 27077-12

	QUICK REFERENCE DATA		
Nominal voltage		110,220	$\mathrm{Vac}, 50 \mathrm{~Hz}$
Speed at no load	≥ 2650	$\mathrm{rev} / \mathrm{min}$	
Input power at no load	≤ 27	W	
Maximum torque		≥ 330	$\left.\mathrm{gcm}{ }^{*}\right)$

APPLICATION

- Office machines
- Vending machines
- Ventilators
- Domestic appliances

DESCRIPTION

This asynchronous motor has been provided with two spindle ends.
It has two threaded ends for mounting
The motor is suitable for tropical environments.

[^66]
TECHNICAL DATA

Dimensions in mm

Connecting diagrams

Weight
approx. 780 g
The values given below are measured at a nominal voltage of $220 \mathrm{~V}_{\mathrm{ac}}$; they apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $860-1060 \mathrm{mbar}$ and a relative humidity of $45-75 \%$. See also "Remarks".

Nominal voltage
Frequency
Starting torque at $150 \mathrm{rev} / \mathrm{min}$
Maximum torque
$\left.{ }^{*}\right)_{1} \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

Speed at maximum torque
at no load
at maximum output power
Maximum output power
Input power at no load
Current at no load
Direction of rotation
Maximum permissible temperature of the windings
of the bearings
Minimum ambient temperature
Insulation according to IEC 65
Insulation test voltage
Bearings

Maximum radial force on the bearings
Maximum axial force
Maximum axial play
Terminals
Required phasing capacitor

[^67]
MOUNTING

The motor can be fixed by means of two screws M4.

REMARKS

- Input power, current and torque are measured at an ambient temperature of $20{ }^{\circ} \mathrm{C}$, within the first 15 s after starting the cold motor.
The speed is measured at an ambient temperature of $20^{\circ} \mathrm{C}, 5 \mathrm{~min}$ after starting the cold motor.
- A voltage deviation of -10\% from nominal causes the torque to decrease by about 20\%.
- A capacitance deviation of the phasing capacitor of + or - 10% from nominal causes the torque and the output power to increase or decrease respectively by about 10%.
- Versions for other supply voltages can be supplied on request.

ASYNCHRONOUS MOTOR with phasing capacitor

	QUICK REFERENCE DATA		
Nominal voltage	$110,220 \mathrm{~V}, 50$	Hz	
Speed at no load	\geq	2900	$\mathrm{rev} / \mathrm{min}$
Input power at no load	\leq	40	W
Maximum torque	\geq	1150	$\left.\mathrm{gcm}^{*}\right)$

APPLICATION

The motor is intended for use in

- professional sound and picture recording instruments
- medical equipment
- computer peripherals.

DESCRIPTION

This reversible asynchronous motor with phasing capacitor has a high output power and a high efficiency. Mechanical noise has been restricted by special spindle treatment and severe tolerances on the self-adjusting slide bearings. Motor vibrations are absorbed by rubber suspension blocks. It is suitable for tropical environments.

[^68]
TECHNICAL DATA

Dimensions in mm

Connecting diagrams

Weight
The values given below are measured at a nominal voltage of 220 Vac ; they apply to an ambient temperature of $22 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $860-1060 \mathrm{mbar}$ and a relative humidity of $45-75 \%$. See also "Remarks".

Nominal voltage	110, 220	Vac
Frequency	50	Hz
Starting torque at $150 \mathrm{rev} / \mathrm{min}$	≥ 450	$\mathrm{gcm}{ }^{*}$)
Maximum torque	≥ 1150	gcm *)

[^69]Speed at maximum torque

at no load

at maximum output power
Maximum output power
Input power at no load
Current at no load
Direction of rotation
Maximum permissible temperature of the windings
of the bearings

Minimum ambient temperature
Insulation according to IEC 65
Insulation test voltage
Bearings

Maximum radial force on the bearings
Maximum axial force
Maximum axial play
Terminals
Required phasing capacitor

2200	$\mathrm{rev} / \mathrm{min}$
≥ 2900	$\mathrm{rev} / \mathrm{min}$
2400	rev/min
≥ 28	W
≤ 40	W
≤ 0.15	A
reversible	
120	${ }^{0} \mathrm{C}$
80	${ }^{\circ} \mathrm{C}$
-10	${ }^{\circ} \mathrm{C}$
class E	
2500	V_{ac}
self aligning, slide bearings	

$$
\left.\left.\begin{array}{ll}
800 & \mathrm{~g}
\end{array}\right)^{*}\right)
$$

2 mm
flying leads
$2 \mu \mathrm{~F}$

*) $1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$

MOUNTING

The motor can be fixed by means of the rubber suspension blocks.

REMARKS

${ }^{1}$) Input power, current and torque are measured at an ambient temperature of $20^{\circ} \mathrm{C}$, within the first 15 s after starting the cold motor.
The speed is measured at an ambient temperature of $20^{\circ} \mathrm{C}, 5 \mathrm{~min}$ after starting the cold motor.
2) A voltage deviation of -10% from nominal causes the torque to decrease by about 20\%.
${ }^{3}$)Versions for other supply voltages can be supplied on request.
4) A capacitance deviation of the phasing capacitor of + or -10% from nominal causes the torque and the output power to increase or decrease respectively by about 10%.

II timing and control devices (A.W. HAYDON)

Indicators for built-in test equipment (bite)

General
Rectangular BITE indicators Round BITE indicators Ball BITE indicators page F 3 page F9 page F15 page F19

INTRODUCTION

Our range of microminiature BITE indicators enables performance monitoring to be achieved with ease. Functionally, these units monitor the performance of a system and/or its components and provide an automatic visual warning whenever equipment operation falls outside of the design parameters, and will continue to indicate the fault condition even after loss of power. Microminiature BITE indicators may be employed at system, sub-system, module and printed circuit board levels.

Of course, indicators need not only befitted into the various parts of a system. Signals or functions to be monitored can also be parallel-wired to indicators grouped on a conveniently placed panel where they will come under the routine inspection of an alert equipment operator. Such a fault isolation system (FIS) further increases fault detection speed and equipment efficiency.

Polymotor-A. W. Haydon offer three basic types of BITE indicators - ball, round, and rectangular. It is envisaged that the ball type will find the majority of its applications in industry, whilst the round and rectangular types will be more suited to military uses.

In addition to the three basic BITE indicator types, Polymotor -A. W. Haydon can provide test and driver circuits for applications where customer's circuitry does not provide the characteristics needed to operate the indicator in the desired manner. Examples of this are where the fault signal is in the millivolt range or in a pulse form lasting only microseconds, or where a time delay is required before the indicator operates. In most cases these circuits can be included as part of the indicator package and are often incorporated into the basic indicator assembly without increasing its size. Consultation with our engineers, early in the equipment design stage, will realize the maximum benefits in performance and design simplification, and in size, weight and cost reduction.

mox^{2} di $3 \mathrm{xil} \infty$

MAIN APPLICATIONS

FAULT DETECTION

Ball type
The microminiature size of the ball BITE indicator permits direct mounting onto printed circuit boards as well as surface or panel mounting in such equipment as:
recorders; indicators; amplifiers; annunciators; auxiliary devices.
Simplified design and functional utilization make these units ideal for use with automatic control and systems in the process industry.

Round and rectangular types

Military applications utilizing the round and rectangular types include many avionic systems where rapid in-flight fault detection is of the utmost importance, and where in-flight history is required by ground maintenance crews. Some avionic applications are given below.

- In-flight monitoring of the voltage and frequency output of 400 Hz alternators is done by sensors which send signals to the BITE indicators. The indicators'magnetic latching properties enable groundmaintenance crews to tell at a glance whether the alternators functioned properly during the flight, and to take any necessary corrective action.
- Servo loop in an aircraft control system. In this application the indicator has a built-in time delay. When a control signal is applied to the system, the indicator detects any failure to respond within 10 ms , after whichtime the delaytriggers the BITE indicator to signal an actual or potential failure.
- Ground-support computer equipment. The indicator monitors the complement of the output code continuously and signals if an erroneous code is generated.
- Aircraft fire warning system. Each of a number of indicators in the pilots' compartment represents a different section of the aircraft and, in the event of fire, the pilot can determine its location immediately. It is extremely important that a fault indicator continues to register upon the loss of power, therefore indicating lights can not even be considered for such a use.
- Automatic Landing System (ALS) in one of the major commercial aircraft. In each system 24 indicators are used to monitor various components. Immediately prior to landing, a complete check of the aircraft s landing system is made automatically, three times, and everything must be in a "go" condition before an actual landing is made.

FAULT ISOLATION

The fault isolation system (FIS) grew from the necessity for one-location perform ance monitoring of large-scale electronic and avionic concepts. No matter how complex or sophisticated the equipment under scrutiny, a well-designed FIS will give an at-a-glance performance statement - BITE indicators are the heart of any FIS - they make the performance statement.

Any out-of-tolerance parameter capable of being converted into a fault signal voltage level can be monitored, be it continuous, pulse, or transient in nature. Commercial and military application for FIS are many and varied (the FIS meets all military specifications, particularly MIL-E -5400 and MIL-STD-810). Among the many applications, a few of the more obvious are:
commercial and military aircraft;
computer systems;
industrial and process control;
qualification and verification testing.
A complete FIS consists of an annunciator panel containing any number of electrical-ly-actuated BITE indicators, signal conditioning and control/comparator network cir cuitry. A self-test capability can also be incorporated to verify BITE indication and circuit operation. K21500, K21600 and K21700 series BITE indicators have been spec ifically designed to interface with the FIS signal conditioning circuitry (low voltage d.c. signal operation).

FIS can be small too. The photograph shows a fault isolation concept applied to a printed circuit board used in telecommunication equipment. Ten rectangular BITE indicators are mounted on the left of the board.
(Photograph by courtesy of Standard Electrik Lorenz, Stuttgart, West Germany).

A FIS is as individual as the customer's requirement and Polymotor -A. W. Haydon have experienced engineers on hand to assist in realizing specific requirements (also those relating to military and standard ARINC specifications).

Typical FIS circuitry required to actuate a BITE indicator when the input signal is a.c.

RECTANGULAR BITE INDICATORS

DESCRIPTION

Fault indication is made visuallythrough windows on the front and/or side of the unit.

MECHANICAL DATA

Fig. 1

7260399

dim.	mm	in
A	5.08	0.200
B	10.16	0.400
C	17.78	0.700
D	2.59 min.	0.102 min.
E	2.84 min.	0.112 min.
F	4.76	$3 / 16$
G	7.14 diam.	$9 / 32$ diam.
H	1.58 max.	$1 / 16$ max.
J	2.54 max.	$0.100 \max$.
K	203.2 min.	8.0 min.

Readout
Enclosure
Finish
Leads
Weight

ELECTRICAL DATA

Operating voltage
Coil resistance
Duty rating
Duty cycle
Cycle rate
Input signal duration
front, normal - black; fault - white side, normal - black; fault - white cloverleaf
sealed plastic housing
black acrylic paint
30 AWG stranded and insulated (1 to 5 leads);
32 AWG stranded and insulated (6 leads) 6 nom.

28 V d.c.
$\min .1400 \Omega$ at $25^{\circ} \mathrm{C}$
intermittent
20% over voltage and temperature range $\max .10 \mathrm{~Hz}$
min. 15 ms ; max. 1 s (non-switched coils)

Diagrams and connections

The following five versions are available:
Version-P13

A

Fig. 2
(a)

Version-P23
B

(-1)2 black
(b)

Non-switched unit with internal diode suppression of inductive load; requires pulse input. Operates in same manner as P13.

Version-P33

(c)

Version-P43

B

Self-switched unit; uses power duringtransist ion only. When coil A is energized with the polarity indicated, the device will transfer from black to a white cloverleaf; close S_{2} to a makeready condition for coil B operation; open S_{1} removing power from coil A , and latch in this condition. When coil B is energized the readout will transfer from white cloverleaf to black and latch, with the reverse switching sequence.

Self-switchedunit with internal contact protection;uses power during transition only. Operates in same manner as P33.

Relay unit with internal diode suppression of inductive load; requires pulse input when not self-switched. (Switch: Form D - make occurs approx. 6 ms before break - rated 20 mA resistive at $28 \mathrm{~V} \mathrm{d.c)}$.
When coil A is energized with the polarity indicated, the device will transfer from black to a white cloverleaf; make the circuit between terminals 1 and 6; break the circuit between terminals 2 and 1 , and latch in this condition. When coil B is energized, the readout will transfer from white cloverleaf to black and latch, with the reverse switching sequence.

MILITARY TESTS

The indicators withstand the following tests:

tests	MIL-E-5400H paragraph 1	comments
high temperature	3.2 .21 .1	$105^{\circ} \mathrm{C}$ operating and non-operating
low temperature	3.2 .21 .1	$-54^{\circ} \mathrm{C}$ operating and non-operating
temperature shock	3.2 .21 .1 .1	non-operating
altitude	3.2 .21 .2	9140 m
humidity	3.2 .21 .4	
vibration	3.2 .21 .5	curves I and III 15 g to 500 Hz
shock	3.2 .21 .6	30 g for 11 ms
sand and dust	3.2 .21 .7	
fungus	3.2 .21 .8	
salt spray	3.2 .21 .9	48 h
explosive conditions	3.2 .21 .10	
transient voltage	N / A	80 V d.c. max.

1) Class 1 A equipment

MOUNTING

The indicators can be supplied mounted on the bracket of Fig. 3 in four different positions as shown in Fig. 4 a, b, c, d, distinguished by mounting numbers. When an indicator is supplied without a bracket (or with the bracket separate), a 100% epoxy adhesive should be used to fasten the indicator to the chassis (or to the bracket). Adhesives containing diluents or volatiles are to be avoided as indicator damage may result.

Fig. 3. Dimensional drawing of mounting bracket (mounting number for separate delivery-10)

dim.	mm	in
A	18.65	$47 / 64$
B	19.84	$25 / 32$
C	5.95	$15 / 64$
D	3.17	0.125
E	$4.88-5.08$	$0.192-0.200$
F	8.89	0.350
G	3.35	0.132
H	15.87	0.625
J	$2.36\left\{\begin{array}{l}+0.12 \\ -0.00\end{array}\right.$	$0.093\left\{\begin{array}{l}+0.005 \\ -0.000 \\ \hline\end{array}\right.$

a (mounting number -11)
c (mounting number -13)

b (mounting number-12)

d (mounting number-14)

Fig. 4. Indicator mounted on the bracket in four different positions.

ORDERING

Please quote the model number, version number, and mounting number (if applicable). Special windings, and different readout colours are available on request. Special mountings can be made to order.

ROUND BITE INDICATORS

DESCRIPTION

Fault indication is made visually through a window on the front of the unit. An important feature of the round type of BITE indicators is the use of mechanical latching in addition to magnetic latching which further ensures against false transfer when indicators are subjected to severe shock or vibration.

MECHANICAL DATA

Model K21602 Front panel mounting

Dimensions

	mm	in.	X	11.9 mm ($15 / 32 \mathrm{in}$) - 32 pitch thread to within 1.58 mm ($1 / 16 \mathrm{in}$) of shoulder
A	7.92	0.312°		
B	15.07	0.593		
C	16.00 max.	0.630 max.		washer 15.9 mm (5/8 in) outer dia, 0.51 mm (0.02 in) thick
D	6.35	0.250	Z	hexagonal nut 14.3 mm (9/16 in)
E	203.2 min .	8.0 min.		across flats, 2 mm (5/64 in) thick

Readout

Enclosure
Finish

Leads
Weight

ELECTRICAL DATA

Operating voltage
Coil resistance
Duty rating
Duty cycle
Cycle rate
Input signal duration
normal - black; fault - white cloverleaf sealed aluminium housing
black anodized housing;
black Ebanol C nut;
black oxide lock washer.
30 AWG stranded and insulated (4 leads)
13 g nom.

28 V d.c.
min. 600Ω at $25^{\circ} \mathrm{C}$
intermittent
12.5% over voltage and temperature range
$\max .10 \mathrm{~Hz}$
min .50 ms
max. 10 s

Diagrams and connections

A version without and a version with diodes for suppression of inductive loads are available:

Version-P13

Version-P23
B

When coil A is energized with the polarity indicated, the device will transfer from black to white cloverleaf readout and latch in this condition. When coil B is energized, the device will transfer from white cloverleaf to black readout and latch.

MILITARY TESTS

The indicators withstand the following tests:

tests	$\begin{gathered} \text { MIL-E-5400H } \\ \text { paragraph }{ }^{1} \text {) } \\ \hline \end{gathered}$	comments
high temperature	3.2.21.1	$85{ }^{\circ} \mathrm{C}$ operating; $95^{\circ} \mathrm{C}$ non-operating
low temperature	3.2.21.1	$-54{ }^{\circ} \mathrm{C}$ operating; $-65^{\circ} \mathrm{C}$ non-operating
temperature shock	3.2.21.1.1	non-operating
altitude	3.2.21.2	9140 m
humidity	3.2.21.4	
vibration	3.2.21.5	20 g to 2 kHz (exceeds MIL-E-5400)
shock	3.2.21.6	exceeds MIL-E-5400 ${ }^{2}$)
sand and dust	3.2.21.7	
fungus	3.2.21.8	
salt spray	3.2.21.9	48 h
explosive conditions	3.2.21.10	
transient voltage	N/A	80 V d.c. max.

1) Class 1 A equipment
2) Highest shock limit before false transfer occurs has not been determined. Units have been tested successfully at 100 g for 9 ms nad 590 g for $2 \mathrm{~ms}-3$ shocks in each direction in 3 mutually perpendicular planes at both g levels - total of 36 shocks.

ORDERING

Please quote K21602-P13 or K21602-P23, as required. Other readout colours are available on request.

BALL BITE INDICATORS

DESCRIPTION

For functional display, the ball type of BITE indicator makes use of a pivoted twocolour ball which has a permanent magnet core. When a fault signal is applied to one coil, a magnetic field is generated in opposition to the magnetic polarity of the ball forcing it to pivot; its permanent magnet core then aligns with the field generated by the coil. A reset signal applied to the other coil will initiate the reverse action $*$).

MECHANICAL DATA

The following 3 models are available:
Model K21702, Press-fit panel mounting

Fig. 1

dim.	mm	in
A	8.13	0.320
B	20.62	0.812
C	9.22	0.363
D	6.35 diam.	0.250 diam.
E	1.27 max.	0.050 max.
F	203.2 min.	8.0 min.

*) Units are being developed which will include a manual reset as well as the electrical reset.

Model K21702-M1 Front panel mounting

Fig. 2

Model K21702-M2, Rear panel mounting

Fig. 3

Dimensions Figs. 2 and 3

	mm	in	
A	7.62 diam.	0.30 diam.	
B	21.08 max.	0.83 max.	X 9.5 mm ($3 / 8 \mathrm{in}$) - 32 NEF thread
C	3.05	0.12	to within $1.58 \mathrm{~mm}(1 / 16 \mathrm{in})$ of
D	6.35	0.25	shoulder
E	1.52	0.06	Y washer 12.7 mm ($1 / 2 \mathrm{in}$) outer dia,
F	1.52 max .	0.06 max.	0.51 mm (0.02 in) thick
G	6.35 diam.	0.25 diam.	
H	12.7 diam.	0.50 diam.	Z hexagonal nut 12.7 mm (1/2 in)
J	203.2 min.	8.0 min .	across flats, 2 mm (0.08 in) thick

Readout

Enclosure
Finish
Leads
Weight
normal-black; fault-white
sealed aluminium housing
black anodizing
30 AWG stranded and insulated (4 leads)
4 g max.

ELECTRICAL DATA

Operating voltage
Power
Duty rating
Duty cycle
Cycle rate
Input signal duration

Diagram and connections

28 V d.c.
0.5 W nom.
intermittent
6% over voltage and temperature range
max. 4 Hz
min .50 ms

When coil A is energized with the polarity indicated, the device will transfer from black to white readout and latch in this condition. When coil B is energized, the device will transfer from white to black and latch.

MILITARY TESTS

The indicators withstand the following tests:

tests	MIL-E -5400 H paragraph ${ }^{\mathrm{I}}$)	comments
high temperature	3.2 .21 .1	$95^{\circ} \mathrm{C}$ operating; $125^{\circ} \mathrm{C}$ non-operating (or as function of mounting heat sink)
low temperature	3.2 .21 .1	$-54^{\circ} \mathrm{C}$ operating; $-65^{\circ} \mathrm{C}$ non-operating
temperature shock	3.2 .21 .1 .1	non-operating
altitude	3.2 .21 .2	9140 m
humidity	3.2 .21 .4	100% for 240 h
vibration	3.2 .21 .5	10 g to $500 \mathrm{~Hz}{ }^{2}$)
shock	3.2 .21 .6	30 g for 11 ms
sand and dust	3.2 .21 .7	
fungus	3.2 .21 .8	
salt spray	3.2 .21 .9	48 h
explosive conditions	3.2 .21 .10	

1) Class 1 A equipment
2) The indicator should be shielded from the vibrator's magnetic field.

ORDERING

Please quote the model number for ordering. Continuous duty cycle, and different readout colours are available on request.

Time indicators,
 timers and timing motors

Basic elapsed time indicator

Resettable elapsed time indicator

Hermetically-sealed elapsed time indicator

TIME INDICATORS

Basic Elapsed Time Indicators (ETI)
Resettable ETI
Hermetically-Sealed ETI
Hermetically-Sealed Resettable ETI
Commercial ETI

Industrial ETI
Microminiature ETI

Microminiature Resettable ETI
Microminiature Industrial ETI
Subminiature ETI
Microminiature Non-Reset Events Counters
Microminiature Reset Events Counters
Electro-Mechanical Counters
Laboratory Stop Clocks
Stop Clocks

Information on these devices can for the time being be found in our booklet "Timing and control devices", order No 939917306329 , which is available on request.

Basic repeat cycle timer

Precision repeat cycle tiraer

TIMERS

Basic Repeat Cycle Timers
Electronic Repeat Cycle Timers
Precision Repeat Cycle Timers
Commercial/Industrial Repeat Cycle Timer
Subminiature Repeat Cycle Timers
Progress-Indicating Delay Relays
Delay Relays
Subminiature Delay Relays
Electronic Industrial Delay Relays
Electronic Delay Relays
Crystal Can Timing Module
Electronic Timing Modules
Electronic Time Code Generator
Electro-mechanical Time Code Generators
Motor-driven Potentiometers
Rotary Stepping Switch
Interrupters

Information on these devices can for the time being be found in our booklet "Timing and control devices", order No 939917306329 , which is available on request.

Chronometrically-governed d.c. motor

High-performance governed d.c. motor

TIMING MOTORS

D. C. Motors

Chronometrically Governed D. C. Motors
High-Performance Governed D. C. Motors
Miniature D. C. Motor
Hysteresis Synchronous Motors
Miniature 400 Hz Timing Motor
Shaded-Pole Synchronous Motors
Miniature Reversible Synchronous Motor
General Duty Synchronous Motor
High -Torque Reversible Synchronous Motor

Information on these devices can for the time being be found in our booklet "Timing and control devices", order No 939917306329 , which is available on request.

Contents

SECTION I

SMALL SYNCHRONOUS MOTORS page
Principles A3
Quality control A13
Life A15
Reliability A15
Applications A16
Remarks on the technical data A18
Unidirectional motors 9904110 A19
Reversible motors9904111A 29
Synchrodrivers 9904115 A 45
A.C./D.C. synchronous motorsUniversal programme switch assembly kit
990413102001
990413102002 A57
Gearboxes $990413001 .$. A61
STEPPER MOTORS
Introduction B3
Principles B5
Terminology B9
Characteristics B11
Applications B13
Stepper motor 990411204101 B15Stepper motorStepper motorStepper motorStepper motorStepper motors
Stepper motors
Stepper motors
Stepper motors
Stepper motors
Stepper motors
Stepper motors
990411205101 B19
990411206101 B23
990411207101 B27
990411208101 B31
990411210001
B35
990411211001
990411212001 990411213001 B41
990411214001
990411215001 B47
990411216001 B53
990411218001 990411219001 B59
990411220001 990411221001 B65
990411222001990411223001B71
Stepper motors 990411224001 page
Electronic switch for
4 -phase stepper motors 990411225001B77
990413103003 B84
Electronic switch for 8 -phase stepper motors
990413103004 B89
SMALL D.C. MOTORS
Governed d.c. motors
Applications C3
Direct current motors in deep drawn metal housing
990412001501
C5
Direct current motor with interference-suppression filter
990412001502
C9
Direct current motor
Direct current motors with reduction
Electronic speed control for direct current motors

Ungoverned d.c. motors

Direct current motors

Direct current motors with reduction

Direct current motor drive unit with integrated gearbox

TACHOGENERATORS AND SERVOMOTORS

Servomotor, symmetric asynchronous type with a.c. tachogenerator
D. C. tachogenerators

ASYNCHRONOUS MOTORS
IntroductionE3

Asynchronous motor symmetric, shaded pole type, with fan
Asynchronous motor symmetric, shaded pole type
Asynchronous motor asymmetric, shaded pole type

990412203141 E13
Asynchronous motor asymmetric, shaded pole type

9904120 07...
9904120 08...
C29
9904120514. .

9904120 516..
C33

990412054301
C41

$$
990412100011 \quad \text { D3 }
$$

9904121 000..
D9
(

990412201311 E5

990412202311 E9

E17
Asynchronous motor page
asymmetric, shaded pole type 990412205311 E21
Asynchronous motorsymmetric, shaded pole type 990412206101E25
Asynchronous motorsymmetric, shaded pole type, with fan990412206102E29
Asynchronous motor with phasing capacitor 990412301101 E33
Asynchronous motor with phasing capacitor 990412302101 E37Industrial centrifugal blower withasynchronous motor with phasing capacitor990412302102E41
Asynchronous motorwith phasing capacitor990412303101E45
Asynchronous motorwith phasing capacitor990412304301E49
SECTION II
INDICATORS FOR BUILT -IN TEST EQUIPMENT (BITE)
Introduction F3
Main applications F5
Rectangular BITE indicators F9
Round BITE indicators F15
Ball BITE indicators F19
TIME INDICATORS, TIMERS AND TIMING MOTORS
Time indicators G3
Timers G5
Timing motors G7

I "Electric motors and accessories" (Polymotor)
A Small synchronous motors
B Stepper motors
C Small d.c. motors
D Tachogenerators and servomotors
E Asynchronous motors
II "Timing and control devices" (A.W. Haydon)
F Indicators for built-in test equipment (bite)
G Time indicators, timers, timing motors

[^0]: 1) At ambient temperature of $120^{\circ} \mathrm{C}$
[^1]: version with pinion
 number of teeth $=10$
 module $=0.3$
 addendum modification $=+0.2$

[^2]: ${ }^{1}$) In mounted position.

[^3]: ${ }^{1}$ ）Continuous operation．Intermittent operation must allow for a maximum permis－ sible stator temperature of $110^{\circ} \mathrm{C}$ ．See also paragraph＂Parallel and series con－ nection of the stator coils in reversible motors＂．
 2）With a $150 \Omega \pm 10 \%, 1.0 \mathrm{~W}$ resistor in series with each stator coil．
 ${ }^{3}$ ）Readily available．

[^4]: ${ }^{1}$) Readily available.

[^5]: 1) Readily available.
[^6]: 1) When the direction of rotation of the outgoing spindle is not the one which is desired a motor with the reverse direction of rotation should be chosen (e.g. 990411002131 instead of 990411002121).
[^7]: ${ }^{1}$) When the direction of rotation of the outgoing spindle is not the one which is desired a motor with the reverse direction of rotation should be chosen (e.g. 990411002131 instead of 990411002121).

[^8]: * Except types ID07, ID04 and ID06, which are fitted with sleeve bearings.

[^9]: * Except types ID08, PD22, SMD23, PD24 and SMD25, which have a 12 pole construc tion (15° and 7.5° step angles).

[^10]: *) For ambient temperatures of more than $25^{\circ} \mathrm{C}$, the torque will decrease by 0.2% per $\operatorname{deg} C$ (approx). There is also a derating at low temperature.

[^11]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^12]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^13]: ${ }^{1}$) measured with 4-phase electronic switch 990413103003 and with the coils connected according to Fig. 2b.

[^14]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^15]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^16]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^17]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^18]: *) Figures refer to terminals of electronic switch.

[^19]: *) Figures refer to terminals of electronic switch.

[^20]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^21]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^22]: ${ }^{1}$) measured with 4-phase electronic switch 990413103003 and with the coils connected according to Fig. 2b.

[^23]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^24]: ${ }^{1}$) measured with 8-phase electronic switch 990413103004 and with the coils connected according to Fig. 2b.

[^25]: Fig. 2b. Diagram for connecting the motor to the electronic switch via a printed-wiring connector, with
 $\mathrm{R}_{\mathrm{V}}=50 \Omega(\pm 5 \%), 8 \mathrm{~W} ; \mathrm{C}_{\mathrm{V}}=25 \mu \mathrm{~F}, 40 \mathrm{~V}$ d.c. $; \mathrm{V}_{\mathrm{b}}=20 \mathrm{~V}$ d.c. $; \mathrm{R}_{\mathrm{S}}=\left(\mathrm{V}_{\mathrm{b}}-5\right) / 0.440 \Omega$
 *) Figures refer to terminals of electronic switch.

[^26]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^27]: ${ }^{1}$) measured with 4-phase electronic switch 990413103003 and with the coils connected according to Fig. 2b.

[^28]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^29]: ${ }^{1}$) measured with 8-phase electronic switch 990413103004 and with the coils connected according to Fig. 2b.

[^30]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^31]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^32]: 1) measured with 8-phase electronic switch 990413103004 and with the coils connected according to Fig. 2b.
[^33]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^34]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^35]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^36]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^37]: Weight

[^38]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^39]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^40]: *) $1 \mathrm{gcm}=10^{-4} \mathrm{Nm}$

[^41]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^42]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$
 $1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$

[^43]: *) $\operatorname{lgcm} \approx 10^{-4} \mathrm{Nm}$

[^44]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$
 $1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$

[^45]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^46]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^47]: 1) Cable shielded 1 metre
 2) Cable, shielded, 1 metre long, wire size $2 \times 0.6 \mathrm{~mm}^{2}$ (with cable gland)
[^48]: 1) For clockwise rotation (seen when looking towards the spindle) the white lead is positive.
[^49]: $\bar{*}) 1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^50]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

 $$
 1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}
 $$

[^51]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^52]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^53]: *) $1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$

[^54]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^55]: *) $1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$

[^56]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^57]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^58]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^59]: *) $1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$

[^60]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^61]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^62]: $\left.{ }^{*}\right) 1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^63]: *) $1 \mathrm{~g} \approx 10^{-2} \mathrm{~N}$

[^64]: $\left.{ }^{*}\right) 1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^65]: *) $1 \mathrm{~mm} \mathrm{wg}=1 \mathrm{~kg} / \mathrm{m}^{2}$

[^66]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^67]: *) $1 \mathrm{~g} \approx 10-2 \mathrm{~N}$

[^68]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

[^69]: *) $1 \mathrm{gcm} \approx 10^{-4} \mathrm{Nm}$

